
MEASURES AND STABILITY IN A MODEL

K. GANNON

Abstract. We prove that if a formula is stable in a model, then every local Keisler measure
on the associated local type space is a convex combination of (at most countably many)
types. Using this, we give an elementary proof of “Fubini’s theorem” in this context.

1. Introduction

We prove what is stated in the abstract. We begin with some notation. Let x, y be tuples
and let ϕ(x; y) be a partitioned formula in a language L with variables x and parameters y.
Let ϕ∗(y;x) be the same formula as ϕ(x; y), but with exchanged roles for the variables and
parameters. We recall the definition of stable in a model :

Definition 1.1. A formula ϕ(x; y) is stable in an L-structure M if for any two sequences
(an)n∈N, (bm)m∈N where an ∈Mx and bm ∈My, we have that

lim
m

lim
n
ϕ(an, bm) = lim

n
lim
m
ϕ(an, bm),

provided both limits exist, where ϕ(an, bm) =

{
1 M |= ϕ(an, bm),

0 otherwise.

Let Sϕ(M) be the space of ϕ-types with parameters from M . Let Bϕ(M) be the Boolean
algebra of definable subsets of M generated by {ϕ(x, b) : b ∈M}. We will routinely identify
definable sets with the formulas which define them. A ϕ-formula is an element of Bϕ(M).
Likewise, we have analogous definitions for Sϕ∗(M) and Bϕ∗(M). A ϕ∗-definition for a type
p in Sϕ(M) is a ϕ∗-formula, dpϕ∗(y), such that for each b ∈ My, ϕ(x, b) ∈ p if and only if
M |= dpϕ∗(b). Finally, we let Mϕ(M) and Mϕ∗(M) denote the spaces of finitely additive
probability measures on Bϕ(M) and Bϕ∗(M) respectively. We recall that we can identify
a measure in each of these spaces canonically with a regular Borel probability measure on
their corresponding type space, e.g. Mϕ(M) is in canonical correspondence with regular
Borel probability measures on Sϕ(M).

In [1], Ben Yaacov established a surprising connection between functional analysis and
local stability. In particular, he gave a proof of the fundamental theorem of stability using
Grothendieck’s double limit theorem [2]. Via the double limit theorem, he showed:

Theorem 1.2. Assume that ϕ(x; y) is stable in M , p ∈ Sϕ(M), and q ∈ Sϕ∗(M). Then p
has a ϕ∗-definition dpϕ∗(y), q has a ϕ-definition dqϕ(x), and dpϕ∗(y) ∈ q if and only if dqϕ(x) ∈ p.

It is natural to ask “What do Keisler measures looks like in this context?”. We will show
that finitely additive probability measures are simply “sums of types”. Recall that Keisler
showed in [3] that if a formula ϕ(x; y) is k-stable for some k, i.e. there do not exist a1, ..., ak,
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b1, ..., bk so that M |= ϕ(ai, bj) if and only if i < j, then every finitely additive probability
measure on Bϕ(M) is at most a countable sum of “weighted” types. From Theorem 1.2 and
an application of the Sobczyk-Hammer Decomposition Theorem, we prove the following,

Theorem 1.3. Let ϕ(x; y) be stable in M and assume that µ ∈Mϕ(M). Then µ =
∑

i∈I riδpi
where I is some initial segment of N1, each pi is in Sϕ(M), δpi is the corresponding Dirac
measure at pi, each ri is a positive real number (strictly greater than 0), and

∑
i∈I ri = 1.

To be clear, a formula ϕ is stable in M if and only if ϕ∗ is stable in M . Therefore, Theorem
1.3 can also be applied to Mϕ∗(M). We note that from this description of measures in this
context, we have almost for free the following corollary,

Corollary 1.4 (Local Fubini). Assume that ϕ(x; y) is stable in M . Let µ ∈ Mϕ(M) and
ν ∈ Mϕ(M). Let Fϕ

µ : Sϕ∗(M) → R via Fϕ
µ (q) = µ(dqϕ(x)). Let Fϕ∗

ν : Sϕ(M) → R via

ν(dpϕ∗(y)). Then the maps Fϕ
µ and Fϕ∗

ν are measurable and∫
Sϕ(M)

Fϕ∗

ν (p)dµ =

∫
Sϕ∗ (M)

Fϕ
µ (q)dν,

where we have identified µ and ν with their corresponding regular Borel measures on Sϕ(M)
and Sϕ∗(M) respectively.

Acknowledgements. This note follows from discussions with my advisor Sergei Starchenko
as well as Gabriel Conant.

2. Local Measures and Stability in a Model

The proof of Theorem 1.3 uses the Sobczyk-Hammer decomposition theorem for positive,
bounded charges. We state the theorem for finitely additive probability measures. Before
referencing this theorem, we establish a convention and recall two kinds of measures.

Remark 2.1. We will say that B is a Boolean algebra on X if B ⊂ P(X) and B is a Boolean
algebra under the standard interpretation of of union, intersection, complement, etc. We
also remark that X and ∅ are elements of B.

Definition 2.2. Let B be a Boolean algebra on a set X and µ be a finitely additive proba-
bility measure on B.

(1) We say that µ is strongly continuous on B if for all ε > 0 there exist F1, ..., Fn ∈ B
such that {Fi}ni=1 form a partition of X and for each i, µ(Fi) < ε.

(2) We say that µ is 0-1 valued on B if for every F in B, µ(F ) = 0 or µ(F ) = 1.

We refer the reader to [5, Theorem 5.2.7] for a proof of the following theorem.

Theorem 2.3 (Sobczyk-Hammer Decomposition Theorem [4]). Let B be a Boolean algebra
on X and µ be a finitely additive probability measure on B. Then, there exists an (not
necessarily proper) initial segment I of N, a sequence of distinct finitely additive probability
measures (µi)i∈I , and a sequence of positive real numbers (ri)i∈I where each ri ≥ 0, with the
following properties,

(i) µ0 is strongly continuous on B,
(ii) µi is 0-1 valued on B for every i ≥ 1,

1I need not be a proper initial segment. I = {0, ..., n} for some n or I = N
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(iii)
∑

i∈I ri = 1, and
(iv) µ =

∑
i∈I riµi.

Further, the decomposition in (iv) is unique (up to permutation of the sequence).

The Sobczyk-Hammer decomposition theorem allows us to decompose any finitely additive
probability measure into a single strongly continuous measure and a convex combination of
(at most countably many) 0-1 valued measures. We will show that if ϕ(x; y) is stable in
M , then there do not exist any strongly continuous measures on Bϕ(M). Therefore, every
finitely additive probability measure will be the “weighted sum” of at most countably many
types.

2.1. Proof of Theorem 1.3.

Definition 2.4 (2-Tree). Let B be a Boolean algebra on a set X. We say that B has a
2-tree if there exists T ∈ P(B) such that (T,)) is an infinite, complete, binary tree, and if
A,C ∈ T , A 6⊃ C, and C 6⊃ A, then A ∩ C = ∅.

Fact 2.5. Let B be a Boolean algebra on a set X and assume that B has a 2-tree. Then
|Ult(B)| ≥ 2ℵ0 where Ult(B) is the set of ultrafilters on B.

Proof. Let γ be a path in T and let Aγ = {B ∈ T : B ∈ γ}. Clearly, Aγ has the finite
intersection property (since if B,C ∈ Aγ, then either B ⊂ C or C ⊂ B). Then, Aγ can be
extended to an ultrafilter over B. For each path γ, let Uγ be an ultrafilter extending Aγ.
Now, assume that δ, γ are two different paths in T . Assume that Uγ = Uδ = U . Since γ, δ
are two separate paths, there exists A ∈ γ and B ∈ δ such that A 6⊂ B and B 6⊂ A. Then
A ∩ B = ∅ and therefore U cannot extend both Aγ and Aδ. Therefore, we have at least 2ℵ0

many ultrafilters on B. �

Lemma 2.6. Let B be a Boolean algebra on a set X. Assume that there exists a strongly
continuous measure µ over B. Then B has a 2-tree.

Proof. Using µ, we will build a 2-tree. We build this tree in steps:
Stage 0: Let T0 = {X}.
Stage n + 1: We construct a tree of height n + 1. Assume that Tn is a (complete) binary
tree of height n such that for each A ∈ Tn, µ(A) > 0. Assume furthermore that if A,B ∈ T
and A 6⊃ B and B 6⊃ A, then A ∩ B = ∅. We will construct Tn+1 by adding two children to
each leaf. Let Ln be the collection of leaves on Tn. By assumption, each node of our tree

has positive measure, therefore for each L ∈ Ln, µ(L) > 0. Let ε = min{µ(L):L∈L}
2

. Now, since
µ is strongly continuous, there exist H1, ..., Hm ∈ B such that H = {H1, ..., Hm} partitions
X and µ(H) < ε for each H ∈ H. Now fix a leaf Li. Consider Li ∩H = {Li ∩Hj : Hj ∈ H}.
We notice that Li ∩H forms a partition of Li. Therefore, we have that

0 < µ(Li) = µ
( ⋃
K∈Li∩H

K
)

=
∑

K∈Li∩H

µ(K).

Hence, there exists Kr ∈ Li ∩H such that µ(Kr) > 0. Furthermore, we note that

µ(Kr) = µ(Li ∩Hr) ≤ µ(Hr) < ε ≤ Li
2
.

By the above, we note that µ(Kr) < µ(Li). Therefore there must exist some Kl ∈ Li ∩ H
such that Kl 6= Kr and µ(Kl) > 0. We now add Kr, Kl as children for Li. Let Tn+1 be the
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tree constructed after repeating this process for each L ∈ Ln. Clearly, Tn+1 is a binary tree
of height n+ 1 such that for each A ∈ Tn+1, µ(A) > 0.

Now let T =
⋃
n≥0 Tn. T is clearly a 2-tree by construction. �

Definition 2.7. Let Redϕ(M) be the reduct of M to language Lϕ = {ϕ}. Then, we say
that a subset N of M is a ϕ-substructure of M ,written N ≺ϕ M , if Redϕ(N) ≺ Redϕ(M).

Theorem 2.8. Assume that ϕ(x; y) is stable in M . Then there are no strongly continuous
measures on Bϕ(M).

Proof. Assume that there exists a strongly continuous measure over Bϕ(M). By the Lemma
2.6 and Fact 2.5, we know that there exists a countable subalgebra B0 ⊂ Bϕ(M) such that
Ult(B0) ≥ 2ℵ0 (i.e. B0 is generated by the collection of subsets of M which appear in our
infinite binary tree). Choose C ⊂ M such that for each B ∈ B0, there exists b1, ..., bn
in C such that B is an element of the boolean algebra generated by {ϕ(x; bi) : i ≤ n}.
Notice that since B0 is countable, we can choose C to be countable. By the Downward
Löwenheim-Skolem theorem, there exists N ≺ϕ M such that C ⊂ N and |N | = ℵ0. Then,

2ℵ0 ≤ |Ult(Bϕ(C))| ≤ |Ult(Bϕ(N))| = |Sϕ(N)|.
However, by stability, every ϕ-type over N is definable by a ϕ∗-formula with parameters
from N . Since |N | = ℵ0, there are only countably many ϕ∗-formulas. Therefore, not every
ϕ-type is definable. Hence, ϕ(x; y) is unstable in N . Since N ≺ϕ M , by definition we have
N ⊂M and so ϕ(x; y) is unstable in M . �

Corollary 2.9. Let ϕ(x; y) be stable in M and let µ be a finitely additive probability measure
on Bϕ(M). Then there exists an (not necessarily proper) initial segment I of N such that
µ =

∑
i∈I riδpi where pi ∈ Sϕ(M),

∑
i∈I ri = 1, and each ri > 0.

Proof. By the Sobczyk-Hammer Decomposition Theorem, any finitely additive measure on
Bϕ is the a convex combination of a strongly continuous measure and (at most) countably
many {0-1} valued measures. Since there are no strongly continuous measures on Bϕ, every
measure is the “weighted” sum of at most countably 0-1 valued measures. Every 0-1 valued
measure is of the form δp for some p ∈ Sϕ(M), which completes the proof. �

2.2. Proof of Corollary 1.4. In this subsection, we prove the local version of Fubini’s
theorem.

Proposition 2.10. Assume that ϕ(x; y) is stable in M . Then the maps Fϕ
µ , F

ϕ∗
ν as defined

in Corollary 1.4 are well defined and measurable. In particular, they are continuous.

Proof. By symmetry, we only need to show the proposition for Fϕ
µ . By Theorem 1.3, µ =∑

i∈I riδpi . Since every type is definable, we know that for each p ∈ Sϕ(M), the map
Fϕ
δp

: Sϕ∗(M) → R is continuous. Notice that Fϕ
µ =

∑
i∈I riFδpi . If I = {0, ..., n}, then Fϕ

µ

is clearly continuous. If I = N, let gN =
∑N

i=1 riF
ϕ
δpi

. Then, each gN is continuous and the

sequence (gN)N∈N converges uniformly to Fϕ
µ , so Fϕ

µ is continuous. �

Proposition 2.11. Assume that ϕ(x; y) is stable in M , p ∈ Sϕ(M), and ν ∈ Mϕ∗(M).
Then, ∫

Sϕ∗ (M)

Fϕ
δp
dν =

∫
Sϕ(M)

Fϕ∗

ν dδp.
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Proof. We compute both terms. First, we compute the LHS.∫
Sϕ(M)

Fϕ∗

ν dδp = Fϕ∗

ν (p) = ν(dpϕ∗(y)).

Now the RHS. Using Theorem 1.2, we compute∫
Sϕ∗ (M)

Fϕ
δp
dν = ν

({
q ∈ Sϕ∗(M) : Fϕ

δq
(q) = 1

})
= ν

(
{q ∈ Sϕ∗(M) : δq(d

q
ϕ(x)) = 1

})
= ν

({
q ∈ Sϕ∗(M) : dqϕ(x) ∈ p

})
= ν

({
q ∈ Sϕ∗(M) : dpϕ∗(y) ∈ q

})
= ν(dpϕ∗(y)).

�

Theorem 2.12. Assume that ϕ(x; y) is stable in M . Let µ ∈ Mϕ(M) and ν ∈ Mϕ∗(M).
Then ∫

Sϕ∗ (M)

Fϕ
µ dµ =

∫
Sϕ(M)

Fϕ∗

ν dµ.

Proof. By stability in M , µ =
∑

i∈I riδpi . Then we compute∫
Sϕ∗ (M)

Fϕ
µ dν = lim

N→∞

∫
Sϕ∗ (M)

N∑
i=1

riF
ϕ
δpi
dν = lim

N→∞

N∑
i=1

ri

∫
Sϕ(M)

Fϕ∗

ν dδpi

= lim
N→∞

∫
Sϕ(M)

Fϕ∗

ν d
( N∑
i=1

riδpi

)
=

∫
Sϕ(M)

Fϕ∗

ν dµ.

The computations above are all straight forward to verify. We now give a few overkill
justifications. The first equality follows from the dominated convergence theorem. The
third equality follows from Proposition 2.11 and linearity of integration. The last equality
follows from the measures

∑N
i=1 riδpi converging in (the total variation) norm to µ. �
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