
APPROXIMATION THEOREMS FOR KEISLER MEASURES

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Kyle Gannon

Sergei Starchenko, Director

Graduate Program in Mathematics

Notre Dame, Indiana

August 2021



© Copyright by

Kyle Gannon

2020

All Rights Reserved



APPROXIMATION THEOREMS FOR KEISLER MEASURES

Abstract

by

Kyle Gannon

This dissertation is concerned with Keisler measures and their approximations.

We investigate tame families of Keisler measures in varying contexts. We first re-

strict ourselves to the local NIP setting. There, we partially generalize a theorem of

Hrushvoski, Pillay, and Simon and show that in this context, a measure is definable

and finitely satisfiable (dfs) if and only if it is finitely approximated. We then consider

generically stable measures outside of the NIP setting. We show that generically sta-

ble types correspond to {0, 1}-valued frequency interpretation measures, and we give

examples of finitely approximated measures which are not frequency interpretation

measures and local dfs measures which are not locally finitely approximated (joint

with Gabriel Conant). We then introduce and describe “sequential approximations”.

We show that measures which are finitely satisifable in a countable model of an

NIP theory admit this kind of approximation. We also prove that generically stable

types admit a similar (and stronger) approximation. In the final chapter, we restrict

ourselves to the group setting and introduce a convolution operation on Keisler mea-

sures. We classify all idempotent measures over stable groups and also show that

a particular convolution algebra over an NIP group is isomorphic to a natural Ellis

semigroup (joint with Artem Chernikov).
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CHAPTER 1

INTRODUCTION

Progress in understanding NIP structures and especially NIP groups has rapidly

advanced with the study of a particular family of finitely additive probability mea-

sures, so-called Keisler measures, over these structures. Initially, Keisler measures

were introduced and first studied by H.J. Keisler [36], hence the name. Keisler demon-

strated that some of the ideas and tools from stability theory could be extended to

NIP structures by replacing types, which can be viewed as {0, 1}-valued measures,

with arbitrary finitely additive probability measures. Almost 20 years after Keisler’s

original paper, his work was revisited and greatly expanded upon by the work of

Hrushovski, Peterzil, Pillay, and Simon [31–33]. The general theory of Keisler mea-

sures over NIP structures was developed in their work and led to the implementation

of these objects across the field. Keisler measures played an essential role in the

proof of the Pillay conjectures for o-minimal groups [31], provided a framework for

the stable, distal, and NIP graph regularity lemmas [10, 11, 41, 42] as well as their

group theoretic counterparts [15–17], and shaped our understanding of topological

dynamics in NIP structures [7, 9, 49].

In contrast, little was (and still is) known about Keisler measures outside the

class of NIP structures. This absence of any general theorems has left an interesting

gap in the literature. The work in this dissertation provides and implements novel

techniques for working with Keisler measures both inside and outside of the NIP

context. In particular, we will demonstrates that concepts from functional analysis,

combinatorics, and classical model theory are required to develop a general theory of
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Keisler measures.

This thesis is broken into 6 chapters (including this one). The second chapter of

this dissertation functions as a foundation for the rest of this text. There, we define

Keisler measures and describe their basic topological and geometric properties. We

then move on to describe the zoo of Keisler measures. We discuss the many different

kinds of measures which we will come across throughout this text and show how these

measures interact. Finally, we recall a collection of theorems about measures in the

NIP context. Many of the results in this chapter fall into one of three categories:

folklore results, propositions generalized from the type case to the measure context,

and results originally proved by Hrushovski, Pillay, and Simon in [33]. Throughout

the entire dissertation, we will liberally reference this chapter.

Chapter 3 is a modified version of my article entitled Local Keisler measures and

NIP formulas [25]. The main theorem of this chapter is that ϕ-measures which

are locally definable and finitely satisfiable over a small model are locally finitely

approximated. Here, we move to the vantage point of classical functional analysis.

The proof of our main theorem relies on a celebrated theorem of Bourgain, Fremlin,

and Talagrand [5]. Many of the basic observations in our original paper have been

moved to Chapter 2 since the proofs in the local case are similar to the global case.

Chapter 4 is a modified version of my article with Gabriel Conant entitled Remarks

on generic stability in independent theories [14]. In NIP theories, generically stable

Keisler measures can be characterized in several ways. We analyze these various

forms of “generic stability” in arbitrary theories. Among other things, we show that

the standard definition of generic stability for types coincides with the notion of a

frequency interpretation measure. We also give combinatorial examples of types in

NSOP theories that are finitely approximated but not generically stable, as well as

ϕ-types in simple theories that are definable and finitely satisfiable in a small model,

but not finitely approximated. Our proofs demonstrate interesting connections to
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classical results from Ramsey theory for finite graphs and hypergraphs.

Chapter 5 introduces a new class of measures, as well as a new class of types, which

we call sequentially approximated measures and strongly sequentially approximated

types. The first condition can be though of as a strengthening of finite satisfisfiability

over a small model or a weakening of finite approximability. In general, if a measure

is both sequentially approximated and definable, then it is finitely approximated.

Moreover, we show that in NIP theories, any measure which is finitely satisfiable in

a countable model is sequentially approximated. Strongly sequentially approximated

types remain mysterious. We show that all generically stable types are strongly

sequentially approximated over any model in which they invariant. However, in

general, we find that the associated Keisler measure to a type can be sequentially

approximated while the type is not strongly sequentially approximated.

The final chapter is a modified version of my preprint with Artem Chernikov

entitled Definable convolution and idempotent Keisler measures which is currently in

preparation [6]. We initiate a systematic study of the definable convolution operation

on Keisler measures, generalizing the work of Newelski in the case of types. Adapting

results of Glicksberg, we show that the supports of idempotent dfs measures are nice

semigroups, and classify idempotent measures in stable groups as invariant measures

on type-definable subgroups. We establish left-continuity of the convolution map in

NIP theories and use it to show that the convolution semigroup is isomorphic to a

particular Ellis semigroup in this context.

1.1 Notation

If r, s are real numbers, and ε > 0, then we write r ≈ε s to mean |r − s| < ε.

For the most part, our model theory notation is standard. We use L to denote a

first order language, T to denote a first order theory in the language L, and U to

denote a sufficiently saturated model of T . Throughout this work, we will always
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have some fixed L, T , and U in the background with some conditions on T . We use

the letters x, y, z to denote finite tuples of variables (until the final chapter where we

will require our tuples to have length 1). If a tuple of variables x is fixed, we use x to

denote a tuple of tuples. We say that a subset A of U is a small if U is |A|+-saturated.

We write M ≺ U to mean M is an elementary substructure of U and M is a small

subset of U . Given A ⊆ U , we use the phrase “L(A)-formula” to refer to formulas

with parameters from A and “L-formula” to refer to formulas without parameters.

Moreover, if x is a tuple of variables then we let Lx(A) be the Boolean algebra of

L(A)-formulas (modulo logical equivalence1) with free-variables in x. Likewise, we

let Defx(A) denote the Boolean algebra of A-definable subsets of Ux. We remark that

Defx(A) and Lx(A) are isomorphic in the obvious way and we will abuse notation

and routinely identify definable sets with the formulas which define them. Similarly,

if (xi)i∈ω is a sequence of distinct tuples of variables, we let L(xi)i∈ω(A) denote the

Boolean algebra of formulas in this family of variables.

We say that a subset A of Ux is type-definable if there exists a small collection

of formulas {ψi(x) : i ∈ I} (i.e. |I| is smaller than the saturation of U) such that

A = {a ∈ Ux : U |= ψi(a) for each i ∈ I}. Moreover, if B ⊂ U and B contains all

the parameters from each ψi, we say that A is type-definable over B. Additionally, if

{ψi(x) : i ∈ I} is a small collection of formulas, then we may write r(x) =
∧
i∈I ψi(x)

where r(U) = {a ∈ Ux : U |= ψi(a) for each i ∈ I}.

We write ϕ(x; y) for a partitioned formula with object variables x and parameter

variables y. The formula ϕ∗(y;x) will denote the exact same formula as ϕ(x; y),

but with the roles exchanged for parameter and variable tuples. There is a slight

ambiguity in the literature between instances of ϕ and ϕ-formulas. We use these

terms with the following convention: an instance of ϕ is a formula of the form

ϕ(x; b) with b ∈ Uy. A ϕ-formula is a Boolean combination of instances of ϕ. We

1In particular, ϕ(x) is identified with ψ(x) if and only if U |= ∀x(ϕ(x)↔ ψ(x)).

4



denote the collection of ϕ-formulas as Lϕ(U) (again, modulo logical equivalence).

Similarly, Lϕ(U) is a Boolean algebra isomorphic to the collection of subsets of U

defined via a ϕ-formula. Finally, for a fixed partitioned L(U)-formula ϕ(x; y), we say

that a subset A of Ux is ϕ-type-definable over M if M contains all the parameters

from ϕ(x; y) and there is a small collection of ϕ-formulas {ψi(x) : i ∈ I} such that M

contains all the parameters from each ψi(x) and A = {a ∈ Ux : U |= ψi(a) for each

i ∈ I}.

1.1.1 Types and type spaces

If A ⊆ U , then we let Sx(A) be the collection of complete types in variable(s)

x with parameters from A. If we want to emphasize the length of tuple instead of

the tuple itself, we will write Sn(A) for Sx(A) when |x| = n. For a fixed partitioned

L(A)-formula ϕ(x; y), we let Sϕ(A) be the collection of complete ϕ-types over A.

We recall that both Sϕ(A) and Sx(A) are a totally disconnected, compact Hausdorff

spaces (also known as Stone spaces). For a formula ϕ(x) ∈ Lx(A), we write χϕ(x) as

the characteristic function from Sx(A)→ [0, 1]. Namely,

χϕ(x)(p) =


1 ϕ(x) ∈ p,

0 otherwise.

If a, b are tuples (possibly infinite), then we write tp(a/A) to denote the type of

a over the parameters A and a ≡A b to mean that tp(a/A) = tp(b/A).

We now recall a few basic definitions and facts about global types. The facts

presented here are well known and proofs can be found in most standard model

theory texts (for instance [59]).

Definition 1.1. Let p ∈ Sx(U).

1. p is called invariant if there exists a model M ≺ U such that for any partitioned
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L-formula ϕ(x; y), if b ≡M b′ then ϕ(x; b) ∈ p if and only if ϕ(x; b′) ∈ p. In this
case, we say that p is M-invariant.

2. p is called definable if there exists a modelM ≺ U such that for any partitioned
L-formula ϕ(x; y), there exists a formula ψ(y) in Ly(M) such that for any
b ∈ Uy, we have that ϕ(x; b) ∈ p if and only if U |= ψ(b). In this case, we say
that p is definable over M .

3. Assume that M ≺ U . Then p is called finitely satisfiable in M if for ev-
ery Lx(U)-formula ψ(x) in p, there exists some b ∈ M such that U |= ψ(b).
We denote the collection of global types which are finitely satisfiable in the
elementary submodel M as Sx(U ,M).

Definition 1.2. Let p ∈ Sx(U) and q ∈ Sy(U) be two global types such that p is

invariant. Then, p is M -invariant for some M . We define the Morley product of

p and q (denoted p ⊗ q) as follows: for any formula L(U)-formula ϕ(x; y), choose

N ≺ U such that M ≺ N and N contains all the parameters from ϕ(x; y). Then,

ϕ(x; y) ∈ p ⊗ q if and only if ϕ(x; b) ∈ p for some/any b |= q|N . This product is

well-defined (since p is M -invariant) and moreover does not depend on the choice of

M or N .

The following fact is a standard exercise.

Fact 1.3. If both p, q are M-invariant then p ⊗ q is M-invariant. Moreover, the

Morley product on invariant types is associative.

We now move on to discuss EM-types and Morley sequences. In this thesis, we

will think of EM-types as types in countable many variable.

Definition 1.4. Fix an ordinal β and a β-indexed sequence (aα)α<β of points in

Ux. Then the Ehrenfeucht-Mostowski type or EM-type of the sequence (aα)α<β

(over a parameter set B ⊆ U), denoted EM((aα)α<β/B), is the following partial type:

{ϕ(x0, ..., xn) ∈ L(xi)i∈ω(B) : U |= ϕ(aα0 , ..., aαn) for any α0 < ... < αn}.

We remark that this partial type corresponds to a subset of S(xi)i<ω(B).
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Observation 1.5. It is clear from the definition above that for any ordinal β, any

sequence of points (aα)α<β in Ux, and any B ⊆ U , the type EM((aα)α<β/B) is

complete if and only if the sequence (aα)α<β is indiscernible over B.

Definition 1.6. Let p ∈ Sx(U) and assume that p is invariant. Then, for any natural

number n, we define pn inductively

1. p0(x0) = p(x0).

2. For any pn+1(x0, ..., xn+1) = p(xn+1)⊗ pn(x0, ..., xn).

3. pω =
⋃
i∈ω p

n.

A Morley sequence (of order type ω) in p over M is a sequence of points (ai)i∈ω

such that each ai is in Ux and for any n ∈ ω, (a0, ..., an) |= pn|M .

In general, we say that a sequence (aα)α<β ordered by an ordinal β is a Morley

sequence in p over M if the sequence is indiscernible over M and the EM-type of this

sequence over M is given by {pn|M : n ∈ ω}.

The following definition is due to Pillay and Tanović.

Definition 1.7 ([50]). Let p ∈ Sx(U). Then p is called generically stable if there

exists a model M ≺ U such that p is M -invariant and for any ordinal β, any Morley

sequence (aα)α<β in p over M , and any L(U)-formula ψ(x), we have that

|{α : U |= ψ(aα)}| < ω or |{α : U |= ¬ψ(aα)}| < ω.

In this case, we say that p is generically stable over M .

1.1.2 Stability and NIP

For the majority of this dissertation, we will work in and around the dividing line

of the independence property. In Chapter 6, we will spend a few sections working

with stable theories. We recall the definitions here.
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Definition 1.8. Let ϕ(x; y) be a partitioned Lx(U)-formula. Then, ϕ(x; y) is unsta-

ble if for every n, there exists a sequence a1, ..., an and b1, ..., bn such that U |= ϕ(ai; bj)

if and only if i < j. We say that a formula ϕ(x; y) is stable if and only if it is not

unstable. Furthermore we say that a theory T is stable is every L-formula is stable.

Definition 1.9. Let ϕ(x; y) be a partitioned Lx(U)-formula. Then, for a subset

A ⊂ Ux, we say that ϕ(x; y) shatters A if for every K ⊆ A, there exists some

bK ∈ Uy such that {a ∈ Ux : U |= ϕ(a; bK)} ∩ A = K. We say that ϕ(x; y) has the

independence property if ϕ(x; y) shatters arbitrarily large finite subsets of U . We

say that ϕ(x; y) is dependent or NIP (not the independence property) if and only if

ϕ(x; y) does not have the independence property. Furthermore we say that a theory

T is NIP is every L-formula is NIP.

It is not difficult to check that the definitions for a theory being stable or NIP are

well-defined (i.e. do not depend on the choice of model). Therefore, every partitioned

L-formula is either stable/NIP or unstable/not NIP with respect to the theory T .

We will deal with NIP theories and NIP formulas in greater detail in the following

chapters. We recall a few very basic facts about stable and NIP formulas (see [59,

Lemma 2.5, Lemma 2.9] for the NIP proofs).

Fact 1.10. Let ϕ(x; y) be a partitioned L(U)-formula.

1. If ϕ(x; y) is stable (NIP), then ϕ∗(x; y) is stable (respectively, NIP).

2. Any Boolean combination of stable (NIP) formulas is stable (respectively, NIP).

Miscellaneous Notation: We end this chapter by providing some miscellaneous

notation which is used throughout the text.

For a subset Ax ⊂ Ux, we denote the collection of n-tuples from Ax as (Ax)n and

the collection of all finite tuples as (Ax)<ω =
⋃
n∈ω(Ax)n.

Notation 1.11 (Convex Combination). Let Y be a vector space (over R) and A ⊆ Y .

We let conv(A) be the convex hull of A, and we let convQ(A) denote the collection
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of all rational convex combinations of elements from A, i.e.

conv(A) =

{
n∑
i=1

riai : ai ∈ A ; n ∈ N ; ri ∈ R+ ;
n∑
i=1

ri = 1

}
,

and,

convQ(A) =

{
n∑
i=1

riai : ai ∈ A ; n ∈ N ; ri ∈ Q+ ;
n∑
i=1

ri = 1

}
.
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CHAPTER 2

KEISLER MEASURES

In this chapter, we define our main object of study: Keisler measures. As stated

in the introduction, this chapter forms the necessary prerequisites for the rest of

the thesis. We use this chapter as a repository for general propositions and helpful

lemmas which come in handy in later chapters. After introducing Keisler measures,

we describe some basic topological and geometric properties about the space of Keisler

measures. We also present some basic facts concerning the relationship between a

measure and its support. Following this, we enter the zoo of Keisler measures. There

are many different kinds of Keisler measures and here we introduce them and explain

how they relate to one another. In the last section, we recall some facts and theorems

about Keisler measures in the context of NIP theories. Throughout this chapter, we

always have a theory T and a sufficiently saturated model U of T in the background.

Definition 2.1. Let A ⊆ U . Then a Keisler measure (in variables x) over A is a

finitely additive probability measure on Lx(A). Namely, µ is a Keisler measure if and

only if µ : Lx(A)→ [0, 1] and for any ϕ(x), ψ(x) in Lx(A) we have

1. µ(x = x) = 1.

2. µ(¬ϕ(x)) = 1− µ(ϕ(x)).

3. µ(ϕ(x) ∨ ψ(x)) = µ(ϕ(x)) + µ(ψ(x))− µ(ϕ(x) ∧ ψ(x)).

Moreover, we let Mx(A) be the collection of Keisler measures on Lx(A).

Notation 2.2. If µ ∈Mx(A), we sometimes write µ as µx or µ(x) to emphasize the

variable the measure is in. If |x| = |y|, then we may also write µ(y) or µy which
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corresponds to the measure in My(A) derived by simply changing the variable(s)

from x to y. Also, like type spaces, if we want to emphasize the length of the tuple

instead of the tuple itself, we write Mx(A) simply as Mn(A) when |x| = n. If A ⊆ B

and µ ∈Mx(B), then we let µ|A be the natural restriction of µ to Lx(A). We remark

that µ|A ∈Mx(A).

Fact 2.3. There is a one-to-one correspondence between finitely additive measures

on a Boolean algebra and regular Borel probability measures on its associated Stone

space. In our main setting, this implies that there is a unique correspondence between

Keisler measures on Lx(A) and regular Borel probability measures on Sx(A). To be

pedantic, any Keisler measure naturally extends to a unique regular Borel probability

measure on Sx(A) while every regular Borel probability measure on Sx(A) restricts to

a unique Keisler measure on Lx(A). Throughout this thesis, we will identify the two

without remark (see the discussion prior to Lemma 7.3 in [59]).

In keeping with tradition, we sometimes abuse notation and identify a formula

ψ(x) in Lx(A) with the collection of types in Sx(A) which contain ψ(x), but this will

be obvious from the context of our statement. We now describe the special kind of

regularity that Keisler measures enjoy.

Observation 2.4. Suppose µ ∈ Mx(A). Then µ is regular as a Borel measure on

Sx(A) in the following sense:

1. If C is a closed subset of Sx(A), then for every ε > 0 there exists some Lx(A)-
formula ψ(x) such that C ⊆ ψ(x) and |µ(C)− µ(ψ(x))| < ε.

2. If O is an open subset of Sx(A), then for every ε > 0 there exists some Lx(A)-
formula ρ(x) such that ρ(x) ⊆ O and |µ(O)− µ(ρ(x))| < ε.

3. If B is a Borel subset of Sx(A), then for every ε > 0 there exists some open
set O and some closed set C such that C ⊆ B ⊆ O, |µ(B) − µ(C)| < ε and
|µ(B)− µ(O)| < ε.
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2.1 Basic topological and geometric structure

The space Mx(A) comes equipped with two topologies (the norm topology and

the compact Hausdorff topology). We will define both, but primarily use the com-

pact Hausdorff topology in later sections and chapters. After this subsection, all

mentions of Mx(A) as a topological space are in reference to the compact

Hausdorff topology unless explicitly stated otherwise. We begin by con-

structing the norm topology on Mx(A). LetMx(A) be the collection of all bounded1

regular Borel (signed) measures on Sx(A). Then, Mx(A) forms a real Banach space

with the total variation norm. This norm induces the following metric on the space

of Keisler measures,

d(µ, ν) = sup
ϕ(x)∈Lx(A)

|µ(ϕ(x))− ν(ϕ(x))|.

By Fact 2.3, the collection of Keisler measures is identified with a subset of Mx(A).

In particular, Mx(A) forms a norm-closed convex subset of this Banach space. The

topology induced on Mx(A) from the norm onMx(A) is called the norm topology.

Moreover we can characterize Mx(A) as a subset of Mx(A) as follows: for any λ ∈

Mx(A), λ is a Keisler measure if and only if ||λ|| = 1 and for any ϕ(x) ∈ Lx(A),

we have that λ(ϕ(x)) ≥ 0. More importantly, if D ⊆Mx(A), then it makes sense to

consider conv(D) and convQ(D).

We now describe a weaker topology on Mx(A). Under this topology, the space

Mx(A) is a compact Hausdorff topology. There are several equivalent ways to describe

the compact Hausdorff topology on Mx(A). First, this topology is the topology

induced from the product space [0, 1]Lx(A) where we think of each measure as a map

from Lx(A) to [0, 1]. Second, this topology on Mx(A) is the coarsest topology such

that for any continuous function f : Sx(A) → R, the map
∫
f : Mx(A) → R is

1A measure µ is bounded if µ(Sx(A)) <∞.
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continuous. In simple terms, a basic open subset U of Mx(A) is of the form

U =
n⋂
i=1

{
µ ∈Mx(A) : ri < µ(ϕi(x)) < si

}
,

where each ϕi(x) ∈ Lx(A) and each ri, si are in R for i ≤ n. Again, in future sections

we will almost always consider Mx(A) as a topological space with this compact Haus-

dorff topology. We mention that the compact Hausdorff topology arrises naturally

from functional analysis. The next fact follows directly from [54, Corollary 4.7.6].

Fact 2.5. Let C(Sx(A)) be the collection of continuous functions from Sx(A) → R.

We observe that since Sx(A) is a compact Hausdorff space, the space of continu-

ous2 linear functionals from C(Sx(A)) to R is canonically isomorphic to Mx(A) by

the Riesz representation theorem (sometimes called the Riesz-Markov-Kakutani rep-

resentation theorem). Moreover, the compact Hausdorff topology defined above for

Mx(A) is exactly the restriction of the standard weak∗ topology onMx(A) to Mx(A).

Every type in Sx(A) can be viewed as a {0, 1}-valued Keisler measure on Lx(A)

in the obvious way. For a fixed type p ∈ Sx(A), we write δp for the Dirac measure

concentrating on p. This measure is defined as follows: for any ϕ(x) ∈ Lx(A),

δp(ϕ(x)) =


1 ϕ(x) ∈ p,

0 ¬ϕ(x) ∈ p.

The map δ : Sx(A)→Mx(A) which sends a type to its corresponding Keisler measure

is injective and continuous and hence Sx(A) is naturally embedded in Mx(A). For

any a in Ax, we write δtp(a/A) simply as δa. It is obvious that if a is in Ax, then δa

extends uniquely to a global measure and so we routinely associate δa with its global

counterpart (i.e. δtp(a/U)). If a ∈ (Ax)<ω where a = (a1, ..., an), then we write the

associated average measure as Av(a) where for any ϕ(x) ∈ Lx(A),

2Continuous with respect to the supremum norm on C(Sx(A)).
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Av(a)(ϕ(x)) =
|{i : U |= ϕ(ai)}|

n
.

Again, as in the case of Dirac measures concentrating on realized types, if a is in

(Ax)<ω then Av(a) extends uniquely to a global measure (i.e. a measure on Lx(U))

and we again routinely associate Av(a) with this measure. The following facts are

standard and left to the reader.

Fact 2.6. Fix A ⊆ U . If we consider {δa : a ∈ Ax} either as a subset of Mx(A) or

as a subset of Mx(U), then the following are true.

1. The norm topology on Mx(A) refines the compact Hausdorff topology on Mx(A).

2. The norm-closure of conv({δa : a ∈ Ax}) is the following:{∑
i∈ω

riδai : ai ∈ Ax; ri ∈ R≥0;
∑
i∈ω

ri = 1
}
.

3. The set convQ({δa : a ∈ Ax}) is a norm-dense subset of conv({δa : a ∈ Ax}).

4. We have that convQ({δa : a ∈ Ax}) = {Av(a) : a ∈ (Ax)<ω}.

Notation 2.7. We write conv(Ax) for conv({δa : a ∈ Ax}).

2.1.1 Supports of Keisler measures

We now move on to discussing an important collection of types connected to a

Keisler measure: the support. The support of a measure can be thought of as the

portion of the type space where the measure concentrates. More formally,

Definition 2.8. If µ is in Mx(A), then we denote the support of µ as sup(µ) where,

sup(µ) = {p ∈ Sx(A) : µ(ϕ(x)) > 0 for any ϕ(x) ∈ p}.

From time to time, one can reduce problems about Keisler measures to problems

about types by showing that a particular property holds for all types in the support
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of a measure. We now state and prove some basic properties about supports. The

propositions in this subsection are all more or less folklore. We provide the proofs

for clarity and completeness.

Proposition 2.9. Let µ be in Mx(A). Then for any formula ϕ(x) in Lx(A) such

that µ(ϕ(x)) > 0, there exists some q ∈ sup(µ) such that ϕ(x) ∈ q. As consequence,

we observe that sup(µ) 6= ∅.

Proof. Assume that µ(ϕ(x)) > 0. Notice that the collection Φ = {ϕ(x)} ∪ {ψ(x) ∈

Lx(A) : µ(¬ψ(x)) = 0} is finitely consistent. Therefore there exists a type q contain-

ing each formula from Φ. By construction, q is in the support of µ.

Proposition 2.10. Let µ ∈Mx(A). Then sup(µ) is a compact subset of Sx(A) and

µ(sup(µ)) = 1

Proof. Assume that p 6∈ sup(µ). Then, there exists a formula ϕp(x) such that ϕp(x) ∈

p and µ(ϕp(x)) = 0. Therefore

Sx(A)\ sup(µ) =
⋃

p 6∈sup(µ)

ϕp(x).

So sup(µ) is closed. Since Sx(A) is compact, it follows that sup(µ) is compact.

Now assume that µ(Sx(A)\ sup(µ)) > 0. By regularity of µ, there exists a clopen

subset ψ(x) such that ψ(x) ⊆ Sx(A)\ sup(µ) and µ(ψ(x)) is positive. By Proposition

2.9, ψ(x) ∩ sup(µ) is non-empty and so we have a contradiction. We conclude that

µ(sup(µ)) = 1.

Proposition 2.11. Let µ ∈ Mx(A). Let B ⊆ A and r : Sx(A) → Sx(B) be the

natural restriction map. Then, for any q in sup(µ|B), there exists some q̂ ∈ sup(µ)

such that r(q̂) = q.

Proof. The map r : Sx(A) → Sx(B) is a continuous surjection between compact

Hausdorff spaces. Since the continuous image of compact sets are compact, we observe
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that r(sup(µ)) is compact (and therefore closed). Notice that r(sup(µ)) ⊆ sup(µ|B).

We only need to check that r(sup(µ)) is a dense subset of sup(µ|B). Assume that

ϕ(x) ∈ Lx(B) and ϕ(x)∩ sup(µ|B) 6= ∅. We need to show that ϕ(x)∩ r(sup(µ)) 6= ∅.

Since ϕ(x) ∩ sup(µ|B) 6= ∅, we have that µ|B(ϕ(x)) > 0. So, µ(ϕ(x)) > 0. By

Proposition 2.9, there exists q ∈ sup(µ) such that ϕ(x) ∈ q. Then, we have that

ϕ(x) ∈ r(q) and so r(sup(µ)) ∩ ϕ(x) 6= ∅. We conclude that r(sup(µ)) is a closed

dense subset of sup(µ|B) and so r(sup(µ)) = sup(µ|B). This completes the proof.

Remark 2.12. Let µ ∈ Mx(A) and B ⊆ A. If r is the restriction map from Sx(A)

to Sx(B), then the µ|B is the pushforward of µ along r, i.e. r∗(µ) = µ|B. This is

clear by the definition of the pushforward of a measure.

2.2 Zoo of Keisler measures

We now move to the global context and begin to describe the many different

kinds of Keisler measures which appear in this dissertation. We are interested in

tameness properties of measures and especially when our measures are controlled by

a small submodel of U . Instead of defining all the properties at once, we separate

these properties into manageable subsections. As stated previously, many of the

results in this section fall into one of three categories: folklore results, propositions

generalized from the type case to the measure context, and results originally proved

in [33] (some of the results are exposited in the paper [14]). We begin by defining

the properties of invariance, definability, and finite satisfiability. We then move on to

discuss Borel-definable measures and products of measures. We end this section with

a by defining finitely approximated measures, frequency interpretation measures, and

smooth measures.
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2.2.1 Invariant, definable, and finitely satisfiable measures

The first three properties we describe are direct generalizations of tameness prop-

erties for types.

Definition 2.13. Fix µ ∈Mx(U).

1. µ is invariant if there is M ≺ U such that for any partitioned L-formula ϕ(x; y)
and any b, b′ ∈ Uy, if b ≡M b′ then µ(ϕ(x; b)) = µ(ϕ(x; b′)). In this case, we
also say µ is M-invariant or invariant over M .

2. µ is definable if there is M ≺ U such that for any partitioned L-formula ϕ(x; y)
and any ε > 0, there exists formulas ψ1(y), ..., ψn(y) such each ψi(y) ∈ Ly(M),
the collection {ψi(y) : i ≤ n} forms a partition of Uy, and if |= ψi(c) ∧ ψi(c′),
then |µ(ϕ(x; c))−µ(ϕ(x; c′))| < ε. In this case, we also say µ is definable over
M .

3. µ is finitely satisfiable in M ≺ U if for any L(U)-formula ϕ(x), if µ(ϕ(x)) > 0
then U |= ϕ(a) for some a ∈Mx. Similar to the case for types, we let Mx(U ,M)
denote the measures in Mx(U) which are finitely satisfiable in M .

4. µ is dfs if there is M ≺ U such that µ is both definable over M and finitely
satisfiable in M . Similarly, if this is the case, we say that µ is dfs over M .

We now show that both definability and finite satisfiability imply invariance.

Proposition 2.14. If µ is definable over M or finitely satisfiable in M , then µ is

M-invariant.

Proof. Let µ be definable over M and assume that b, b′ are in Uy with b ≡M b′. Then,

for any ε > 0, we can find a partition Pε of Uy as in the definition of definability.

Since b ≡M b′, we know that they must be in the same partition since all the formulas

in the formation of the partition Pε are L(M)-formulas. Therefore, |µ(ϕ(x; b)) −

µ(ϕ(x; b′))| < ε for every ε which implies µ is M -invariant.

Suppose that µ is in Mx(U ,M). Assume that µ is not M -invariant. Then,

there exists a L-formula ϕ(x; y), an ε > 0, and b, b′ ∈ Uy such that b ≡M b′ and

µ(ϕ(x; b))− µ(ϕ(x; b′)) > ε. Then, µ(ϕ(x; b) ∧ ¬ϕ(x; b′)) > 0. By finite satisfiability,
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there exists some c in Mx such that U |= ϕ(c; b) ∧ ¬ϕ(c; b′). Therefore, b 6≡M b′ and

we have a contradiction.

We move to defining fiber functions. These functions are extremely useful and

are used heavily throughout the rest of this text. They will play a central role in

the discussion of product measures. We defined them here because they are also

used in a nice topological characterization of definable measures. We use this latter

characterization in the majority of the upcoming proofs.

Definition 2.15. Given M ≺ U , a partitioned L(M)-formula ϕ(x; y), and an M -

invariant measure µ ∈ Mx(U), define the map Fϕ
µ,M : Sy(M) → [0, 1] such that

Fϕ
µ,M(q) = µ(ϕ(x; b)) where b |= q (this is well-defined by M -invariance). We will

write Fϕ
µ,M simply as Fϕ

µ when there is no possibility of confusion.

The next lemma is used to show that definability for a measure is equivalent to a

continuity condition. We prove this lemma in the generality of Stone spaces since it

is used again in Chapter 3.

Lemma 2.16. Let S be a totally disconnected compact Hausdorff space. Then, a map

f : S → [0, 1] is continuous if and only if for every ε > 0, there exists a collection of

clopen sets P = {C1, ..., Cm} such that P forms a partition of S and for each i ≤ m,

if b, b′ ∈ Ci, then |f(b)− f(b′)| < ε.

Moreover, if f is continuous then for every ε > 0, there exists a partition of clopen

sets {C1, ..., Cm} of S such that if we choose bi in each Ci and let ri = f(bi), then

sup
q∈S
|f(q)−

m∑
i=1

riχCi(q)| < ε

Proof. First, we prove the forward direction. Assume that f : S → [0, 1] is continu-

ous. Let B = {Bεi : i ≤ n} be a finite collection of open intervals of length ε which

cover [0, 1]. Then, f−1(Bεi) = Ui. Then, Ui =
⋃
j∈Ji Cij where each Cij is clopen.
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Now,
n⋃
i=1

f−1(Bεi) =
n⋃
i=1

⋃
j∈Ji

Cij

is an open cover of S. So,
⋃m
k=1Ck for some k’s in {ij : i ≤ n, j ∈ Ji} is a finite

subcover. If b, b′ ∈ Ck, then f(b), f(b′) ∈ Bεi and so |f(b)− f(b′)| < ε. Choosing the

atoms of the Boolean algebra generated by {Ck : k ≤ m} gives us a partition.

Now, the other direction. We need to show that f is continuous. Let Bε be an open

interval of length ε. We want to show that f−1(Bε) is an open set. If f−1(Bε) = ∅,

then we are done. Assume that p ∈ f−1(Bε). Notice that f(p) ∈ Bε. Choose δ such

that (f(p)−δ, f(p)+δ) ⊂ Bε. Let P = {C1, ..., Cm} form a partition for δ and assume

that p ∈ Cp. Then, f(Cp) ⊆ (f(p) − δ, f(p) + δ) and so Cp ⊂ f−1(Bε). Repeating

this process for each p ∈ f−1(Bε), we conclude that f−1(Bε) =
⋃
p∈Bε Cp. Therefore,

f−1(Bε) is open.

For the moreover part, fix ε and let {C1, ..., Cm} be the partition of S found in

the forward direction of the proof. For each i ≤ m, choose bi ∈ Ci and set ri = f(bi).

For any p ∈ S, p is in exactly one element of the partition, say Cj. Then, we note

that bj and p are in the same partition. Therefore, we compute,

|f(p)−
m∑
i=1

riχCi(p)| = |f(p)− rjχCj(p)| = |f(p)− rj| = |f(p)− f(bj)| < ε

Since p was arbitrary, the inequality holds.

Proposition 2.17. Suppose that µ ∈Mx(U). The measure µ is definable over M if

and only if µ is M-invariant and for any partitioned L(M)-formula ϕ(x; y), the map

Fϕ
µ : Sy(M)→ [0, 1] is continuous.

Proof. Assume µ is definable over M . By Proposition 2.14, µ is M -invariant. Fix a

partitioned L(M)-formula ϕ(x; y) such that ϕ(x; y) = θ(x; y, a) for some L-formula

θ(x; y, z) and a ∈ M z. Then F θ
µ : Syz(M) → [0, 1] is continuous by definability and
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Lemma 2.16. Moreover, the map ia : Sy(M) → Syz(M) where ia(p) is the complete

type extending p ∪ {z = a} is also continuous. Then, Fϕ
µ = F θ

µ ◦ ia and so Fϕ
µ is

continuous. The other direction follows directly from Lemma 2.16.

From time to time, we might want to change the model we are working over. We

will see in later chapters (especially Chapters 3 & 5) that it is advantageous to work

over a countable model. The next proposition allows us to change the model we are

working over while ensuring that our measure maintains the same properties over the

new model (provided that our measure is already invariant over the new model).

Proposition 2.18. Suppose that µ ∈Mx(U). Assume that µ is M-invariant.

1. If µ is definable then it is definable over M .

2. If µ is finitely satisfiable in some small model N then it is finitely satisfiable in
M .

Proof. Assume that µ is definable. Fix a partitioned L-formula ϕ(x; y). Without loss

of generality, we may assume that µ is definable overN whereM ⊆ N . Then, the map

Fϕ
µ,N : Sy(N) → [0, 1] is continuous by definability. The map Fϕ

µ,M : Sy(M) → [0, 1]

is well-defined by M -invariance. Let r : Sy(N) → Sy(M) be the natural restriction

map. Then r is a quotient map since it is a surjective continuous map between

compact Hausdorff spaces. Moreover, we have that Fϕ
µ,N = Fϕ

µ,M ◦r. By the universal

property of quotient maps, Fϕ
µ,M is continuous and hence, µ is definable over M .

Now assume that µ is finitely satisfiable in some small modelN and let µ(ϕ(x; b)) >

0. LetN1 realize a coheir of tp(N/M) overMb. By compactness, there exists a b′ ∈ Uy

such that tp(N1b/M) = tp(Nb′/M). By invariance, we know that µ(ϕ(x; b)) =

µ(ϕ(x; b′)). Since µ is finitely satisfiable in N , there exists some a in Nx such that

U |= ϕ(a; b′). Since tp(N1b/M) = tp(Nb′/M), there exists a1 in Nx
1 such that

|= ϕ(a1; b). By the coheir hypothesis, there exists a0 in Mx such that |= ϕ(a0; b).
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We now demonstrate that measures which are finitely satisfiable in a small model

also have a topological characterization.

Proposition 2.19. Assume that µ ∈Mx(U). Then, µ is finitely satisfiable in M if

and only if µ is in the closure of conv(Mx) (viewed as a subset of Mx(U)).

Proof. Assume µ is finitely satisfiable in M . Let U be a basic open subset of Mx(U)

containing µ. Then, there exists L(U)-formulas ϕ1(x), ..., ϕn(x), and real numbers

ri, ..., rn, s1, ..., sn such that,

U =
n⋂
i=1

{ν ∈Mx(M) : ri < ν(ϕi(x)) < si}.

The collection {ϕ1(x), ..., ϕn(x)} generates a finite Boolean algebra of Lx(U). Let

θ1(x), ..., θm(x) be the atoms of this Boolean algebra and consider Θ = {θj(x) :

µ(θj(x)) > 0}. Since µ is finitely satisfiable in M , we know that for each θj(x) ∈ Θ,

there exists aj in Mx such that U |= θj(aj). Consider the Keisler measure,

ν =
∑
θj∈Θ

µ(θj(x))δaj .

It is clear that ν ∈ U and so µ ∈ cl(conv(Mx)).

Now, suppose that µ ∈ cl(conv(Mx)). We want to show that µ is finitely satisfiable

in M . Fix a formula ψ(x) ∈ Lx(U) and assume that µ(ψ(x)) > 0. Consider the open

set Uψ = {ν ∈ Mx(U) : 0 < ν(ψ(x)) < 2}. Since µ is in the closure of conv(Mx),

there exists some µψ =
∑n

i=1 riδai where each ai is in Mx and µψ ∈ Uψ. Then, for

some i ≤ n, U |= ψ(ai) which completes the proof.

The last proposition of this section demonstrates that that dfs measures are ϕ∗-

definable. Restricting to the case of types, the proposition shows that if p is dfs over a

model M , then for any partitioned Lxy(M)-formula ϕ(x; y), there exists a ϕ∗-formula
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ψ(y) with parameters only from M such that |= ψ(b) if and only if ϕ(x; b) ∈ p. As

in Proposition 2.18, the proof uses the universal property of quotient maps.

Proposition 2.20. Assume that µ is dfs over M and let ϕ(x; y) be a partitioned

L(M)-formula. Then,

1. For any closed set C ⊆ [0, 1], the set {b ∈ Uy : µ(ϕ(x; b)) ∈ C} is ϕ∗-type-
definable over M .

2. Suppose b ∈ Uy and µ(ϕ(x; b)) > 0. Then there is a ϕ∗-formula ψ(y), with
parameters from M , such that U |= ψ(b) and µ(ϕ(x; c)) > 0 for any c ∈ ψ(U).

Proof. Let rϕ : Sy(M) → Sϕ∗(M) be the natural restriction map. Recall that any

continuous surjection between compact Hausdorff spaces is a quotient map, and so

rϕ is a quotient map. We claim that F := Fϕ
µ ◦ r-1

ϕ is a well-defined function from

Sϕ∗(M) to [0, 1]. In other words, we fix c, c′ ∈ Uy such that tpϕ∗(c/M) = tpϕ∗(c
′/M)

and show that µ(ϕ(x; c)) = µ(ϕ(x; c′)). Toward a contradiction, suppose µ(ϕ(x; c)) >

µ(ϕ(x; c′)). Then µ(ϕ(x; c) ∧ ¬ϕ(x; c′)) > 0, and thus ϕ(x; c) ∧ ¬ϕ(x; c′) is realized

in M , which contradicts tpϕ∗(c/M) = tpϕ∗(c
′/M).

Since µ is definable over M , we have that Fϕ
µ is continuous. Now, by the univer-

sal property of quotient maps, F is continuous. This immediately implies the first

statement by considering F−1(C). For the second statement, fix b ∈ Uy such that

µ(ϕ(x; b)) > 0. Then F (tpϕ∗(b/M)) > 0. Fix 0 < δ < F (tpϕ∗(b/M)) and consider

U = F -1((δ, 1]). Then U is an open set in Sϕ∗(M) containing tpϕ∗(b/M), and so there

is a ϕ∗-formula ψ(y) over M such that tpϕ∗(b/M) ∈ {p ∈ Sϕ∗(U) : ψ(y) ∈ p} ⊆ U .

Now ψ(y) is as desired.

2.2.2 Borel definability and products

In this subsection, we describe the basics of Borel-definability and products as well

as relate these concepts to the properties from the previous subsection. In general,

one can always construct a product type from an invariant type and an arbitrary
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type (see Definition 1.2). While it is true that for any pair of measures µ ∈ Mx(U)

and ν ∈ My(U) we can construct the product measure µ × ν on Lx(U) × Ly(U),

this construction loses too much information. We would like to have a measure on

Lxy(U) which naturally extends both of our measures. Now, we have good news and

bad news. The good news is that for certain pairs of measures, we can assemble a

product on the space Lxy(U). Unfortunately, construction of this product measures

is more complicated than the type construction. This process relies on integrating

fiber functions over a small submodel. Therefore, we will restrict to the collection

of measures which have Borel fiber functions. This leads to the definition of Borel-

definability.

Definition 2.21. Fix µ ∈Mx(U). Then the measure µ is Borel-definable if there is

M ≺ U such that µ is M -invariant and for any partitioned L-formula ϕ(x; y), the map

Fϕ
µ : Sy(M)→ [0, 1] is a Borel map. In this case, we say that µ is Borel-definable

over M .

It is obvious from the definition that all definable measures are Borel, since all the

fiber functions associated to a definable measure are continuous. We will see later

that in the NIP context, all invariant measures are Borel-definable. We now recall

some basic propositions which will help us define products.

Proposition 2.22. Suppose that µ ∈Mx(U). Assume that µ is Borel-definable over

M . Then,

1. for every partitioned L(M)-formula ϕ(x; y), the map Fϕ
µ,M : Sy(M) → [0, 1] is

Borel.

2. Moreover, for any N such that M ⊆ N we have that µ is Borel-definable over
N .

Proof. The proof of the first statement is similar to the proof of Proposition 2.17.

The function Fϕ
µ is the composition of a Borel function and a continuous function,

23



and hence is Borel. In particular, if θ(x; y, b) = ϕ(x; y) and we consider the maps

F θ
µ : Syz(M) → [0, 1] and ib : Sy(M) → Syz(M) where ib(p) is the unique type

extending p ∪ {z = b}, then Fϕ
µ = F θ

µ ◦ ib.

We now prove the second statement. For any L-formula ϕ(x; y), we have that Fϕ
µ,N

is equal to Fϕ
µ,M ◦ r where r is the restriction map. Therefore Fϕ

µ,N is the composition

of a continuous function and a Borel function, hence Borel.

Definition 2.23. Let µ ∈Mx(U) and ν ∈My(U) be Keisler measures, and suppose

µ is Borel-definable over M ≺ U . We define the product µ⊗ ν in Mxy(U) such that,

given an L(U)-formula ϕ(x; y),

µ⊗ ν(ϕ(x; y)) =

∫
Sy(N)

Fϕ
µ dν|N ,

where N ≺ U contains M and any parameters in ϕ(x; y) and ν|N denotes the regular

Borel probability measure on Sy(N) associated to the restriction of ν to Ly(N) (we

will write ν instead of ν|N when there is no possibility for confusion).

In the context of the definition, the product µ ⊗ ν is well-defined and does not

depend on the choice of N (see [59, Proposition 7.19] and also Proposition 6.4 in this

thesis for a similar proof). We warn the reader that the product in general is not

commutative, i.e. µx⊗νy 6= νy⊗µx. We now take the opportunity to clarify how the

properties from our first section behave under products. Propositions 2.24 and 2.25

can be found in [33, Lemma 1.6] (the first without proof, the latter with).

Proposition 2.24. Let µ ∈ Mx(U), ν ∈ My(U), and λ ∈ Mz(U) be Keisler

measures, and suppose µ and ν are definable over M ≺ U . Then µ ⊗ ν is definable

over M , and µ⊗ (ν ⊗ λ) = (µ⊗ ν)⊗ λ.

Proof. We first show µ ⊗ ν is definable over M . Fix an L-formula ϕ(x, y; z). We

need to show that the map Fϕ
µ⊗ν : Sz(M) → [0, 1] is continuous. To demonstrate
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this, we will show that this map is a uniform limit of continuous functions, and hence

continuous.

Fix ε > 0. Since µ is definable, the map Fϕ
µ : Syz(M) → [0, 1] is continuous.

Since Syz(M) is a Stone space, there are L(M)-formulas ψ1(y, z), . . . , ψn(y, z), which

partition Syz(M), and real numbers r1, . . . , rn such that for any p ∈ Syz(M), Fϕ
µ (p) ≈ε∑n

i=1 riχψi(y,z)(p) by Lemma 2.16. Fix p ∈ Sz(M), c |= p|M , and N ≺ U containing

Mc. Let ϕc denote ϕ(x, y; c) and ψci denote ψi(y, c). Then

Fϕ
µ⊗ν(p) =

∫
Sy(N)

Fϕc

µ dν ≈ε
∫
Sy(N)

n∑
i=1

riχψci (y) dν =
n∑
i=1

riν(ψci (y)) =
n∑
i=1

riF
ψi
ν (p).

Since ν is definable over M , we have that each Fψi
ν is continuous, and so

∑n
i=1 riF

ψi
ν

is continuous. Therefore Fϕ
µ⊗ν is the uniform limit of continuous functions.

Now, to verify associativity, let ϕ(x, y, z) be any L(U)-formula. We define k1 =

(µ⊗(ν⊗λ))(ϕ(x, y, z)) and k2 = ((µ⊗ν)⊗λ)(ϕ(x, y, z)), and show k1 = k2. Let N ≺

U contain M and any parameters in ϕ(x, y, z). Fix ε > 0, and let ψ1(y, z), . . . , ψn(y, z)

and r1, . . . , rn approximate Fϕ
µ : Syz(N)→ [0, 1] as above. Then

k1 =

∫
Syz(N)

Fϕ
µ d(ν ⊗ λ) ≈ε

∫
Syz(N)

n∑
i=1

riχψi(y,z) d(ν ⊗ λ)

=
n∑
i=1

ri(ν ⊗ λ)(ψi(y, z)) =

∫
Sz(N)

n∑
i=1

riF
ψi
ν dλ.

Recall that k2 =
∫
Sz(N)

Fϕ
µ⊗ν dλ. As above, we have Fϕ

µ⊗ν(p) ≈ε
∑n

i=1 riF
ψi
ν (p) for any

p ∈ Sz(N). Therefore

|k2 − k1| <
∫
Sz(N)

∣∣Fϕ
µ⊗ν −

∑n
i=1 riF

ψi
ν

∣∣ dλ+ ε < 2ε.

Proposition 2.25. Suppose µ ∈ Mx(U), ν ∈ My(U), and M ≺ U . If µ is Borel-

definable over M and both µ and ν are finitely satisfiable in M , then µ⊗ ν is finitely
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satisfiable in M .

Proof. Fix a formula ϕ(x; y) ∈ Lxy(U). Assume that µ⊗ ν(ϕ(x; y)) > 0. Then,

∫
Sy(N)

Fϕ
µ d(ν|N) > 0.

Then, there exists some q ∈ sup(ν|N) such that Fϕ
µ (q) > 0. Choose b ∈ Uy such

that b |= q. Then µ(ϕ(x; b)) > 0. By finite satisfiability of µ, there exists some a in

Mx such that U |= ϕ(a, b). Then, ϕ(a, y) ∈ q, and since q ∈ sup(ν|N), we have that

ν(ϕ(a, y)) > 0. Since ν is finitely satisfiable in M , there exists c ∈ My such that

U |= ϕ(a, c).

Corollary 2.26. Assume µ ∈ Mx(U) and ν ∈ My(U). If µ and ν are dfs over M ,

then µ⊗ ν is dfs over M .

Proof. Follows directly from Proposition 2.24 and Proposition 2.25.

Definition 2.27. Suppose that µ ∈Mx(U) and µ is definable. Then, we define the

following measures:

1. µ0(x0) = µ(x0).

2. µn = µn(x0, ..., xn) = µ(xn)⊗ µn−1(x0, ..., xn−1).

3. µω =
⋃
i∈ω µ

n (where µω is a finitely additive measure on L(xi)i∈ω(U)).

We note that µn and µω are well-defined and definable by Proposition 2.24. Moreover,

we let Mω(U) be the collection of finitely additive measures on L(xi)i∈ω(U).

2.2.3 Finitely approximated, FIM, and smooth measures

In this section, we discuss the properties and relationships between finitely approx-

imated measures, frequency interpretation measures (also known as FIM measures),

and smooth measures. First, we remark that the notions of frequency interpreta-

tion measures and smooth measure first appear in [33] while finitely approximated
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measures are described implicitly. Finitely approximated measures were first ex-

plicitly studied by Chernikov and Starchenko in the context of the NIP regularity

theorem [10]. Finitely approximated and FIM measures (locally) admit families of

tame uniform approximations. To be more precise, after restricting to a partitioned

formula, both FIM measures and finitely approximated measures resemble frequency

measures i.e. measures of the form Av(a). The difference between a FIM measure

and a finitely approximated measure is the answer to the following question: For any

particular partitioned formula, how difficult is it to find a uniform approximation

of the form Av(a)? For FIM measures, one can easily find these approximations

and there are many. Intuitively, one can find an approximation by simply taking a

large random tuple (random with respect to the product measure). For an arbitrary

finitely approximated measure finding an approximation might be more difficult.

On the other hand, smooth measures can be thought of as a generalization of re-

alized types. Akin to realized types, these measures have unique extensions (by defi-

nition). We will later see examples of proofs where the classical role of a realized type

is given to a smooth measure (see Propositions 2.43 and 5.27). Additionally, smooth

measures also admit very nice approximations. While FIM and finitely approximated

measures are characterized by admitting approximations of the form Av(a), smooth

measures can be characterized by admitting a small family of formulas which can be

used to approximate the measure of all other formulas in Lx(U). This will be seen

more clearly in Fact 2.29.

Definition 2.28. Let µ ∈Mx(U).

1. µ is finitely approximated if there is M ≺ U such that for any partitioned
L-formula ϕ(x; y) and any ε > 0, there exists some ā ∈ (Mx)<ω such that
for any b ∈ Uy, |µ(ϕ(x; b)) − Av(a)(ϕ(x; b))| < ε. In this case, we call ā a
(ϕ, ε)-approximation for µ, and we say µ is finitely approximated in M .

2. µ is a frequency interpretation measure (or FIM) if there is M ≺ U such
that for any partitioned L-formula ϕ(x; y), there is a sequence (θn(x1, . . . , xn))∞n=1

of L(M)-formulas satisfying the following properties:
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(a) For any ε > 0, there is some nε,ϕ ≥ 1 such that if n ≥ nε,ϕ, ā |= θn(x̄), and
b ∈ Uy, then |µ(ϕ(x; b))− Av(ā)(ϕ(x; b))| < ε.

(b) limn→∞ µ
n(θn(x1, . . . , xn)) = 1.

In this case, we say that µ is FIM over M .

3. µ is smooth if there exists M ≺ U such that for any N where M ⊆ N , there
exists a unique measure µ′ ∈ Mx(N) such that µ′|M = µ|M . In this case, we
also say that µ is smooth over M .

4. µ is trivial if it is in the closure (in the norm topology) of the convex hull of
the Dirac measures of points in Ux, i.e., there are sequences (an)∞n=0 from Ux
and (rn)∞n=0 from [0, 1] such that

∑∞
n=0 rn = 1 and µ =

∑∞
n=0 rnδan . If each an

is in a submodel M , we say that µ is trivial over M .

In the definition of FIM, condition (a) implies that µ is finitely approximated in

any M ≺ U which contains parameters for the family of formulas (θ(x1, ..., xn))ωn=1.

We will see in Proposition 2.30 that finitely approximated measures are definable

and so the iterated product µn in condition (b) is well-defined. Moreover, from the

definition above, it is unclear which type of approximation smooth measures have.

The following fact makes this picture clear (see [33, Lemma 2.3] details).

Fact 2.29. Let µ ∈Mx(U). Then, µ is smooth over M if and only if for every parti-

tioned formula ϕ(x; y) in L and every n ∈ N, there exists formulas ψn1 (y), ..., ψnm(y),

θn−1 (x), θn+
1 (x), ..., θn−m (x), θn+

m (x) in L(M) such that,

1. {ψni (y)}mi=1 partition Uy.

2. If |= ψnj (b), then θn−j (x) ⊆ ϕ(x; b) ⊆ θn+
j (x).

3. For each j ≤ m, µ(θn+
j (x))− µ(θn−j (x)) < 1

n
.

We now describe the relationships between these new classes of measures.

Proposition 2.30. Assume that µ ∈Mx(U).

1. If µ is finitely approximated over M , then µ is dfs over M .

2. If µ is FIM over M , then µ is finitely approximated over M .
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3. If µ is smooth over M , then µ is FIM over M .

4. If µ is trivial over M , then µ is smooth over M .

Proof. We prove the first statement. Assume that µ is finitely approximated over M .

We first show that µ is finitely satisfiable in M . Suppose that ψ(x, y) is a Lxy-formula

and µ(ϕ(x; b)) > ε > 0 for some b ∈ Uy. By finite approximability, there exists a

tuple a = a1, ..., an of elements in Mx which is a (ϕ, ε
2
)-approximation for µ. Then,

|µ(ϕ(x; b)) − Av(a)(ϕ(x; b))| < ε
2

and so Av(a)(ϕ(x; b)) > 0. Therefore, there must

be some index i ≤ n such that |= ϕ(ai; b).

Notice that µ is M -invariant since µ is finitely satisfiable in M . By Proposition

2.17, it suffices to show that for every partitioned L-formula ϕ(x; y), the map Fϕ
µ :

Sy(M)→ [0, 1] is continuous. If a = (a1, ..., an) is a (ϕ, ε)-approximation for µ, then

sup
p∈Sy(M)

|Fϕ
µ (p)− Fϕ

Av(a)(p)| = sup
p∈Sy(M)

|Fϕ
µ (p)− 1

n

n∑
i=1

χϕ(ai,y)(p)| < ε.

It is clear that the map χϕ(ai,y) : Sy(M) → [0, 1] is continuous. Hence, the map

1
n

∑n
i=1 χϕ(ai,y) is continuous. Therefore, Fϕ

µ is the uniform limit of continuous func-

tions and hence continuous.

The second statement is trivial from the definition. For the third statement, see

Corollary 2.6 in [33]. The final statement is easy to show and left to the reader as an

exercise.

Let’s now see how these families of measures interact with our notion of prod-

uct. We begin by proving some lemmas about finitely approximated measures toward

showing that the product of finitely approximated measures remains finitely approx-

imated and these measures commute with one another.

Lemma 2.31. Fix M ≺ U and an L(M)-formula ϕ(x; y).

1. If a ∈ (Mx)m and b ∈ (My)n then Av(a)⊗ Av(b) = Av(b)⊗ Av(a).
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2. Suppose ν ∈My(U) is Borel-definable over M , and a1, ..., an ∈Mx. Then∫
Sy(M)

Fϕ
Av(a) dν =

∫
Sx(M)

Fϕ∗

ν dAv(a),

i.e., Av(a)⊗ ν(ϕ(x; y)) = ν ⊗ Av(a))(ϕ(x; y)).

3. Fix µ ∈Mx(U) and ν ∈My(U). Assume that µ and ν are finitely approximated
over M . Let ā be a (ϕ, ε)-approximation for µ and b̄ be a (ϕ∗, ε)-approximation
for ν, then

|µ⊗ ν(ϕ(x; y))− Av(a)⊗ Av(b)(ϕ(x; y))| < 2ε.

Proof. The first statement is obvious from the definition. For the second statement,

we compute;

∫
Sy(M)

Fϕ
Av(a) dν =

∫
Sy(M)

1

n

n∑
i=1

Fϕ
ai
dν =

1

n

n∑
i=1

∫
Sy(M)

Fϕ
ai
dν

=
1

n

n∑
i=1

ν(ϕ(ai; y)) =
1

n

n∑
i=1

Fϕ∗

ν (tp(ai/M)) =

∫
Sx(M)

Fϕ∗

ν dAv(a).

For the final statement, we use the first and the second to compute the following;

(µ⊗ ν)(ϕ(x; y)) =

∫
Sy(M)

Fϕ
µ dν ≈ε

∫
Sy(M)

Fϕ
Av(a) dν =

∫
Sx(M)

Fϕ∗

ν dAv(a)

≈ε
∫
Sx(M)

Fϕ∗

Av(b)
dAv(a) = Av(a)⊗ Av(b)(ϕ(x; y)).

Corollary 2.32. Suppose µ ∈ Mx(U) and ν ∈ My(U). Assume that µ and ν are

finitely approximated in M ≺ U . Then µ⊗ν = ν⊗µ and µ⊗ν is finitely approximated

in M .

Proof. We first show that these measures commute. Fix an L(U)-formula ϕ(x; y).

Choose a model N expanding M and containing all the parameters from ϕ(x; y).

Now apply parts 1 and 3 of Lemma 2.31:

µ⊗ ν(ϕ(x; y)) ≈2ε Av(a)⊗ Av(b)(ϕ(x; y)) = Av(b)⊗ Av(a) ≈2ε ν ⊗ µ(ϕ(x; y)).
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To demonstrate that µ ⊗ ν is finitely approximated in M , we fix ε > 0 and

let φ(x, y; z) be an L-formula. Let θ1(x; y, z) = φ(x, y, z) and θ2(y;x, z) = φ(x, y, z).

Then a straightforward calculation shows that if ā ∈ (Mx)m is a (θ1,
ε
2
)-approximation

for µ and b̄ ∈ (My)n is a (θ2,
ε
2
)-approximation for ν, then ((ai, bj))i∈[m],j∈[n] ∈

(Mxy)mn is a (φ, ε)-approximation for µ⊗ ν.

Warning 2.33. Since FIM measures are finitely approximated, we know that FIM

measures commute. However, the product of FIM measures does not have to be FIM

(see Corollary 4.18).

We recall a special property of smooth measures. In particular, smooth mea-

sures commute with all Borel-definable measures. This fact was originally proved by

Hrushovski, Pillay, and Simon (see [33, Corollary 2.5]). The moreover portion can be

found in [63, Corollary 3.17].

Fact 2.34. Assume that µ ∈ Mx(U) and ν ∈ My(U). Moreover, assume that ν is

Borel-definable over M and µ is smooth over M . Then, for any ϕ(x; y) ∈ Lxy(M),

we have that, ∫
Sy(M)

Fϕ
µ d(ν|M) =

∫
Sx(M)

Fϕ∗

ν d(µ|M).

In particular, we have that µ ⊗ ν = ν ⊗ µ. Moreover, if µ and ν are smooth (over

M) then µ⊗ ν is smooth (over M).

We end this section by describing which kinds of properties descend to smaller

models.

Proposition 2.35. Assume that µ ∈Mx(U). If µ is definable, FIM, smooth, finitely

approximated, or dfs over/in M , then there exists a model M0 such that M0 ≺ M ,

|M0| = |T |+ ℵ0 and µ has that property over/in M0.

Proof. We notice that the properties of definability, FIM, and smoothness only re-

quire the existence of (|T |+ ℵ0)-many Lx(M)-formulas (by Fact 2.29 and the defini-
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tions of definable and FIM). If we choose an elementary submodel M0 of M containing

the parameters from these formulas, then µ will have the desired property over M0.

Finitely approximated measures only require the existence of (|T | + ℵ0)-many

elements of M . Choosing an elementary submodel M0 of M with these elements

demonstrates that µ is finitely approximated in M0.

Finally by the first argument, if µ is dfs over M then there is some M0 ≺ M of

size |T | + ℵ0 such that µ is definable over M0. Then, µ is M0-invariant and so by

Proposition 2.18, µ is finitely satisfiable in M0.

2.3 Keisler measures in NIP theories

In this section, we restrict our attention to the class of NIP theories. With the

exception of Proposition 2.43, many of the results in this section are well known

and were first proven by Hrushovski, Pillay, and Simon [33]. We will see that in NIP

theories, many of our definitions collapse into a few distinct classes. Our first theorem

collapses Borel-definable measures and invariant measures (see [59, Proposition 7.19,

discussion after Definition 7.16]).

Fact 2.36 (T is NIP). Suppose that µ ∈ Mx(U) and let M be a small submodel of

U . Then the following are equivalent:

1. µ is M-invariant.

2. µ is Borel-definable over M .

3. Every type in sup(µ) is invariant over M .

Warning 2.37. The above does not hold in general and counterexamples are easy

to come by in the Random Graph.

Fact 2.38 (T is NIP). Assume that µ, ν are M-invariant. Then, µ⊗ν is M-invariant

and Borel-definable.
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Proof. By the Fact 2.36, we only need to show that µ ⊗ ν is M -invariant. Fix a

partitioned L-formula ϕ(x, y; z). Let a and b be elements in U z such that tp(a/M) =

tp(b/M). For sake of contradiction, assume that µ⊗ ν(ϕ(x, y, a)) > µ⊗ ν(ϕ(x, y, b)).

Fix N such that M ≺ N and a, b are elements of N . Let Fϕa
µ : Sy(N) → [0, 1] via

Fϕa
µ (q) = µ(ϕ(x, c, a)) and define Fϕb

µ similarly. Then,

∫
Sy(N)

Fϕa
µ d(ν|N) >

∫
Sy(N)

Fϕb
µ d(ν|N) =⇒

∫
Sy(N)

Fϕa
µ − Fϕb

µ d(ν|N) > 0.

Therefore, there exists some q ∈ sup(ν|N) such that Fϕa
µ (q) > Fϕb

µ (q). Let d |=

q. Then, we have that µ(ϕ(x, d, a)) > µ(ϕ(x, d, b)). Notice that if we show that

tp(da/M) = tp(db/M), then µ(ϕ(x, d, a)) = µ(ϕ(x, d, b)) since µ is M -invariant, and

this will give us a contradiction with the previous sentence. Assume that ψ(y, z) ∈

tp(da/M). Then, ψ(y, a) ∈ q. By Proposition 2.11, there exists some q̂ ∈ sup(ν)

such that q̂|N = q. Since q ⊂ q̂, ψ(y, a) ∈ q̂. By Fact 2.36, q̂ is M -invariant. Since

tp(a/M) = tp(b/M), we have that ψ(y, b) ∈ q̂ and so ψ(y, b) ∈ q because b ∈ N z.

Since d |= q, we have that ψ(y, z) ∈ tp(db/M) and so µ(ϕ(x, d, a)) = µ(ϕ(x, d, b))

which completes the proof.

We refer the reader to the discussion prior to [59, Exercise 20] for an alternative

proof.

We now come to what should be called The fundamental theorem of generically

stable measure in NIP theories. In a very real sense, one could read this thesis as

a large footnote to this theorem. The majority of the work throughout the last five

years has gone to generalizing portions of this theorem into different contexts as well

as finding counterexamples outside to NIP setting. We are grateful that Hrushovski,

Pillay and Simon proved this theorem and we thank them for their work. This

theorem states the following.

Theorem 2.39 (T is NIP). The following are also equivalent.
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1. µ is dfs over M .

2. µ is finitely approximated over M .

3. µ is FIM over M .

Moreover, we say that µ is generically stable over M (in the context of a

NIP theory) if any/all of 1− 3 hold.

The significance of Theorem 2.39 should not be understated and the proof is non-

trivial. Hrushovski, Pillay, and Simon present two proofs of this theorem in [33]. One

proof goes through Ben Yaacov’s work on continuous VC classes [4] while the other

is closely related to classical VC theory and uses Chebyshev’s inequality. In Chapter

3, we will prove a local version of this result (relating the local versions of dfs and

finitely approximated). At the time of writing, we do not know a local version of

FIM (see the introduction to Chapter 3).

The following results further impress the notion that smooth measures can play

the role of realized types (at least in NIP theories). The first result argues that every

measure can be extended to a smooth (think realized) measure [59, Proposition 7.9].

Fact 2.40 (T is NIP). Let M ≺ U and µ ∈ Mx(M). Then, µ admits a smooth

extension, i.e. there exists ν ∈Mx(U) such that ν is smooth and ν|M = µ.

We now take the ideology that a measure can be realized by a smooth one seriously.

We suggest that the curious reader check the analogous statement of Proposition 2.41

and 2.43 for types and see where realizations are used. They will notice that the

proof is similar to ours except for the fact that the elements in U have been replaced

by smooth measures. We will double down on this intuition in Chapter 5. Using

the previous facts about smooth measures, we can now provide a new proof of the

associativity of the product ⊗ on invariant measures.

Proposition 2.41 (T is NIP). The product ⊗ is associative on invariant measures.

34



Proof. Assume that µ ∈ Mx(U), ν ∈ My(U), and λ ∈ Mz(U). If µ and ν are

invariant, then (µ⊗ν)⊗λ = µ⊗ (ν⊗λ). Without loss of generality, we may suppose

that µ, ν are invariant over M and ϕ(x, y, z) ∈ Lxyz(M). It suffices to show

(µ⊗ ν)⊗ λ(ϕ(x, y, z)) = µ⊗ (ν ⊗ λ)(ϕ(x, y, z)).

Fix ε. By Fact 2.40, we may choose small models N,N1 such that M ≺ N ≺ N1 ≺ U

and measures λ̂ ∈Mz(U), ν̂ ∈My(U) such that λ̂|M = λ|M , ν̂|N = ν|N , λ̂ is smooth

over N , and ν̂ is smooth over N1. Since λ̂ is smooth over N , λ̂ is finitely approximated

in N1 (Proposition 2.30) and so for the partitioned formula θ(z;x, y) = ϕ(x, y, z),

there exists some n and c ∈ (N z)n such that c is a (θ, ε)-approximation for λ̂. Likewise,

for the partitioned formula θ1(y;x, z), there exists some m and b ∈ (Ny
1 )m such that

b is a (θ1, ε)-approximation of ν̂. For each i ≤ n, we let F
ϕci
µ : Sy(N) → [0, 1] via

F
ϕci
µ (p) = µ(ϕ(x, d, ci)) where d |= p. We first approximate (µ⊗ ν)⊗λ(ϕ(x, y, z)) by

using Fact 2.34.

(µ⊗ ν)⊗ λ(ϕ(x, y, z)) =

∫
Sz(M)

Fϕ
µ⊗νd(λ|M) =

∫
Sz(M)

Fϕ
µ⊗νd(λ̂|M)

=

∫
Sz(N)

Fϕ
µ⊗νd(λ̂|N) =

∫
Sxy(N)

F θ
λ̂
d(µ⊗ ν|N) ≈ε

∫
Sxy(N)

F θ
Av(c)d(µ⊗ ν|N)

=
1

n

n∑
i=1

µ⊗ ν(ϕ(x, y, ci)) =
1

n

n∑
i=1

∫
Sy(N)

F
ϕci
µ d(ν|N)

=
1

n

n∑
i=1

∫
Sy(N)

F
ϕci
µ d(ν̂|N) =

1

n

n∑
i=1

∫
Sy(N1)

F
ϕci
µ d(ν̂|N1)

=
1

n

n∑
i=1

∫
Sx(N1)

F
ϕ∗ci
ν̂ d(µ|N1) ≈ε

1

n

n∑
i=1

∫
Sx(N1)

F
ϕ∗ci
Av(b)

d(µ|N1)

=
1

m · n

m∑
j=1

n∑
i=1

µ(ϕ(x, bj, ci)).
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We now approximate the other product. We first argue that ν̂⊗ λ̂ extends (ν⊗λ)|M .

Fix ψ(y; z) ∈ Lyz(M). Again, by Fact 2.34,

ν ⊗ λ(ψ(y, z)) =

∫
Sz(M)

Fψ
ν d(λ|M) =

∫
Sz(M)

Fψ
ν d(λ̂|M)

=

∫
Sz(N)

Fψ
ν d(λ̂|N) =

∫
Sy(N)

Fψ∗

λ̂
d(ν|N) =

∫
Sy(N)

Fψ∗

λ̂
d(ν̂|N)

= λ̂⊗ ν̂(ψ∗(z; y)) = ν̂ ⊗ λ̂(ψ(y; z)).

By Fact 2.34, the product ν̂⊗ λ̂ is a smooth measure (smooth over N1) which extends

(ν ⊗ λ)|M . By 3 of Corollary 2.32 and Fact 2.34, we compute the following;

µ⊗ (ν ⊗ λ)(ϕ(x, y, z)) =

∫
Syz(M)

Fϕ
µ d(ν ⊗ λ|M) =

∫
Syz(M)

Fϕ
µ d(ν̂ ⊗ λ̂|M)

=

∫
Syz(N1)

Fϕ
µ d(ν̂ ⊗ λ̂|N1) =

∫
Sx(N1)

Fϕ∗

ν̂⊗λ̂d(µ|N1) ≈2ε

∫
Sx(N1)

Fϕ∗

Av(b)⊗Av(c)
d(µ|N1)

=
1

m · n

m∑
j=1

n∑
i=1

µ(ϕ(x, bj, ci)).

We conclude that |µ⊗ (ν⊗λ)(ϕ(x, y, z))− (µ⊗ν)⊗λ(ϕ(x, y, z))| < 5ε which finishes

the proof.

Observation 2.42 (T is NIP). Suppose µ ∈Mx(U). If µ is invariant, then for any

n > 1, the measures µn and µω (from Definition 2.27) are well-defined by Proposition

2.41.

This final proposition was proved in our work on convolution algebras with Artem

Chernikov.

Proposition 2.43 (T is NIP). Let M ≺ U and suppose that Minv
x (U ,M) is the col-

lection of global M-invariant measures (endowed with the induced compact Hausdorff

topology). If ν ∈My(U) and ϕ(x; y) is any partitioned Lxy(U)-formula, then the map
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−⊗ ν(ϕ(x; y)) : Minv
x (U ,M)→ [0, 1] is continuous.

Proof. Choose N0 such that M � N0, and N0 contains all the parameters from ϕ.

Then, choose N submodel that N0 ⊂ N . There exists some ν̂ ∈ My(U) such that

ν̂|N0 = ν|N0 and ν̂ is smooth over N by Fact 2.40. Let b be some (ϕ∗, ε)-approximation

for ν̂ over N (i.e. b is some element in (Ny)<ω). Then for any µ ∈Minv
x (U ,M), µ is

invariant over both N0 and N . By the observation that integrating over either space

yields the same result, we have the following.

µ⊗ ν(ϕ(x; y)) =

∫
Sy(N0)

Fϕ
µ,N0

d(ν|N0) =

∫
Sy(N0)

Fϕ
µ,N0

d(ν̂|N0) =

∫
Sy(N)

Fϕ
µ,Nd(ν̂|N).

By Fact 2.34, ∫
Sy(N)

Fϕ
µ,Nd(ν̂|N) =

∫
Sx(N)

Fϕ∗

ν̂,Nd(µ|N).

Now, we can use our (ϕ∗, ε)-approximation,

∫
Sx(N)

Fϕ∗

ν̂,Nd(µ|N) ≈ε
∫
Sx(N)

Fϕ∗

Av(b)
d(µ|N) =

1

n

n∑
i=1

µ(ϕ(x; bi)) =
1

n

n∑
i=1

∫
Sy(U)

χϕ(x;bi)dµ.

Clearly, each map
∫
χϕ(x;bi) : Mx(U) → [0, 1] is continuous by the definition of

the topology on this space. Therefore, each map
∫
χϕ(x;bi) : Minv

x (U ,M) → [0, 1] is

continuous and the sum is continuous. Since Av(b) is independent of the choice of µ,

sup
µ∈Minv

x (U ,M)

|µ⊗ ν(ϕ(x; y))− 1

n

n∑
i=1

∫
Sy(U)

χϕ(x;bi)dµ| < ε.

Therefore, − ⊗ ν(ϕ(x; y)) is a uniform limit of continuous functions and hence con-

tinuous.

On a personal note, I spent a long time trying to prove Proposition 2.43. If one

restricts to the case where |M | = ℵ0, then one can use BFT (Lemma 3.29) and the
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dominated convergence theorem to prove the proposition. However, as the proof

above shows, this approach is a red herring for the general case. It was not until I

fully internalized the belief that smooth measures can be thought of as realized types

(in NIP theories) that I was able to prove this result.
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CHAPTER 3

LOCAL KEISLER MEASURES AND NIP FORMULAS

This chapter is a modified version of my article Local Keisler measures and NIP

formulas [25]. As previously stated, the connection between finitely additive prob-

ability measures and NIP theories was first noticed by Keisler in his seminal paper

[36]. Around 20 years later, the work of Hrushovski, Peterzil, Pillay, and Simon

greatly expanded this connection in [31], [32], and [33]. In particular, they introduce

the notion of generically stable measures. These measures exhibit properties similar

to those found in the context of stable theories. One of the most striking results

to come from this line of research is that dfs measures, finitely approximated mea-

sures, and FIM measures are the same in the context of NIP theories. We recall that

Hrushovski, Pillay, and Simon [33] showed the following,

Theorem. Assume that T is an NIP theory. Let U be a sufficiently saturated model

of T , M be a small elementary substructure of U , and µ ∈Mx(U). Then the following

are equivalent.

1. µ is dfs over M .

2. µ is finitely approximated in M .

3. µ is FIM over M .

Moreover, we say that µ is generically stable over M (in the context of a NIP theory)

if any/all of the above statements hold.

The purpose of this chapter is to prove a local version of the theorem above. We

show that properties 1 and 2 are equivalent in the local context. At the time of
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writing, there is no known local definition for FIM. More specifically, we prove the

following:

Theorem (Main theorem). Let T be a first order theory. Let U be a sufficiently

saturated model of T , M be a small elementary substructure of U , and ϕ(x; y) a

partitioned, NIP L-formula. Let µ be a finitely additive measure on the collection of

ϕ-definable sets with parameters from U , i.e. Lϕ(U). Then µ is dfs over M (as in

Definition 3.33) if and only if µ is finitely appoximated in M (as in Definition 3.34).

The proof of the global theorem cannot be directly applied to prove the above

theorem. In the global case, one considers iterated products of dfs measures and

computes the measure of a specific existential formula relative to this product. A

priori, there is not a robust enough notion of product in the local context in which

one can measure existential formulas. Therefore, we need to use a different technique

to prove our main theorem.

The proof of our main theorem involves translating the concepts of definable

and finitely satisfiable into the framework of functional analysis. From this vantage

point, we can apply an important result of Bourgain, Fremlin, and Talagrand [5],

namely, Theorem 3.4 in this dissertation. The connection between NIP formulas and

Theorem 3.4 was first noticed by Chernikov and Simon [9] as well as independently

by Ibarlućıca [34]. Furthermore, work extending this connection for types has been

done by Simon [62] as well as the NIP in a model case by Khanaki and Pillay [38].

We extend this connection to local measures via Ben Yaacov’s work on continuous

VC classes [4].

This chapter is organized as follows: In section 3.1, we provide all necessary

functional analysis background necessary for this chapter. In section 3.2, we connect

NIP formulas, continuous VC classes, and the important result of Bourgain, Fremlin,

and Talagrand mentioned earlier in the introduction. In section 3.3, we begin by

exporting some important definitions into the local context. We then translate these
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properties into the language of analysis. Using the theorems from functional analysis

outlined in section 3.1 and the connection established in section 3.2, we will prove

our main theorem.

3.1 Background in analysis

We recall some definitions and theorems from functional analysis. We refer the

reader to [18] as a standard reference on the subject. Let X be a set, and let RX

denote the collection of all functions from X to R. Then RX is a topological space

with the standard product topology. If A ⊆ RX , we let clp(A) be the topological

closure of A in RX . Let (fi)i∈ω be a sequence in RX . We recall two different notions

of convergence:

1. (fi)i∈ω converges pointwise to a function f , written fi → f , if for every b ∈ X
and for every ε > 0 there is some natural number N such that for any n > N ,
|fn(b)− f(b)| < ε.

2. (fi)i∈ω converges uniformly to a function f , written fi →u f , if for every ε > 0
there is some natural number N so that for any n > N , supb∈X |fn(b)−f(b)| < ε.

Now, assume that X is a topological space and let C(X) denote the space of

continuous from X to R. If X is a compact Hausdorff space, then C(X) is a Banach

space with the uniform norm, || · ||∞, where ||f ||∞ = supx∈X |f(x)|. Again, let (fi)i∈ω

be a sequence of points in C(X) ⊂ RX . We say that (fi)i∈ω converges weakly to a

function f , written fi →w f , if for all continuous linear functionals G : C(X) → R,

we have that limi∈ω G(fi) = G(f).

We note if X is a compact Hausdorff space, such as Sy(M), then for any se-

quence of functions (fi)i∈ω in C(X), one may determine whether this sequence con-

verges pointwise, weakly, or uniformly. We now recall some theorems from functional

analysis which connect these notions of convergence. Our first theorem is a trivial

consequence of Mazur’s lemma, a proof of which can be found in any basic text on
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functional analysis (for instance, [19]). This theorem connects the notions of uniform

convergence and weak convergence. We will refer to the following theorem simply as

Mazur’s lemma.

Theorem 3.1 (Mazur’s Lemma). Let (Y, || · ||) be a Banach space, y ∈ Y , (ai)i∈ω

be a sequence of elements in Y , and A = {ai : i ∈ ω}. If ai →w y, then there is a

sequence of zi ∈ convQ(A) such that limi→∞ ||zi − y|| = 0.

In particular, if X is a compact Hausdorff space, (fi)i∈ω is a sequence in C(X),

and fi →w g, then there exists hi ∈ convQ({fi : i ≤ N}) such that hi →u g. Our

next theorem connects the notions of pointwise convergence and weak convergence.

This theorem is a routine application of the dominated convergence theorem and the

Riesz representation theorem (see [56, Theorem 18.4.1] for details).

Theorem 3.2. Let X be a compact Hausdorff space, f ∈ C(X), and (fi)i∈ω be a

sequence in C(X). Then the following are equivalent:

1. fi →w f .

2. fi → f and supi∈ω ||fi||∞ <∞.

The next theorem is a translation of the celebrated result by Bourgain, Fremlin,

and Talagrand [5] which we alluded to in the introduction. This particular translation

is due to Khanaki and Pillay [38]. A much more general statement is proven in [5]

than the one we provide. The connection between this theorem and NIP formulas

is well known and has been expanded upon in [62], [37], and [38]. This theorem is

slightly more technical than the last two, but essentially it allows one to find pointwise

convergent sequences under a particular tameness condition. Before we can state the

theorem, we define the tameness condition.

Definition 3.3. Let A ⊂ RX . Then we say that A is sequentially independent

if there exists a sequence (fi)i∈ω of elements in A, an r ∈ R, and an ε > 0 such that
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for every I ⊆ ω, there exists some bI in X such that,

{n ∈ ω : fn(bI) ≤ r} = I and {n ∈ ω : fn(bI) ≥ r + ε} = ω\I.

If A is not sequentially independent, we say that A is sequentially dependent.

Theorem 3.4 ([5], translated by [38]). Let X be a compact Hausdorff space, A ⊆

C(X), and |A| ≤ ℵ0. Assume that supf∈A ||f ||∞ < ∞. Then the following are

equivalent:

1. A is sequentially dependent.

2. for each f ∈ RX , if f ∈ clp(A), then there exists a sequence of elements (fi)i∈ω
from A such that fi → f .

We now briefly discuss a family of special functions. For a fixed theory T , a

monster model U of T , and a model M ≺ U , we define the following functions.

Definition 3.5. If ϕ(x; y) is a partitioned L-formula and a is in Mx, we define the

map Fϕ
a : Sy(M)→ {0, 1} ⊂ R via

Fϕ
a (q) = Fϕ

δa
(q) = χϕ(a,y)(q) =


1 ϕ(a, y) ∈ q,

0 otherwise.

Moreover, we let FϕM = {Fϕ
a : a ∈Mx}.

Remark 3.6. It is clear that for each a in Mx the map Fϕ
a is continuous. In this

chapter, we will always view Fϕ
a as a map from Sy(M) to R. We let conv(FϕM) be the

convex hull of FϕM in C(Sy(M)).

Definition 3.7. Let f ∈ convQ(FϕM). A representative sequence for f is a

sequence of points a1, ..., am ∈ Mx so that for every b ∈ Uy, Av(a)(ϕ(x; b)) =

f(tp(b/M)).
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Remark 3.8. Every element f in convQ(FϕM) has many representative sequences.

If f ∈ convQ(FϕM), then f =
∑n

i=1 riF
ϕ
ci

where each ci is in Mx, ri ∈ Q+, and∑n
i=1 ri = 1. Let m be the smallest number so that for every i ≤ n, m · ri ∈ N. Let

ai = ci, ..., ci︸ ︷︷ ︸
m·ri times

Then, the concatenation of the ai’s is a representative sequence for f .

3.2 NIP, VC, and BFT

We now connect the notions of Vapnik-Chervonenkis dimension (or VC dimen-

sion), NIP formulas, and sequential dependence. In particular, we show that if ϕ(x; y)

is NIP, then conv(FϕM), as a subset of RSy(M), is sequentially dependent. This result,

Theorem 3.21, follows implicitly by results in [4]. Here, we give a direct proof of this

theorem. We begin by fixing some notation.

Notation 3.9. Let ϕ(x; y) be a partitioned formula. Let Fϕ be the family of definable

subsets of Ux of the form {ϕ(x; b) : b ∈ Uy}. Likewise, we let Fϕ∗ = {ϕ(a, y) : a ∈

Ux}.

We now continue by recalling some basic VC theory. The purpose here is to

clearly state the VC theorem. The VC theorem acts an an intermediary connecting

the NIP formulas with the result of Bourgain, Fremlin, and Talagrand.

Definition 3.10. Let X be a set and let F be a family of subsets of X. Then, the

VC-dimension of F is the largest n such that there exists A ⊂ X, |A| = n, and,

{K ⊂ A : ∃F ∈ F so that F ∩ A = K} = P(A).

We denote the VC-dimension of F as dimV C(F). If no such n exists, then dimV C(F) =

∞.
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The following observation was first made by Laskowski [40].

Fact 3.11. A formula ϕ(x; y) is NIP if and only if Fϕ and Fϕ∗ have finite VC-

dimension.

Definition 3.12. Let X be a set, F be a family of subsets of X, and µ be a mea-

sure on P(X). Then, we say that a sequence of elements a1, ..., an in X is an ε-

approximation for µ over F (or (F , ε)-approximation for µ) if for every F ∈ F ,

|µ(F )− Av(ā)(F )| < ε.

Now we may state the VC Theorem.

Theorem 3.13 ([65]). Let X be a set and F a family of subsets of X. Assume that

F has finite VC-dimension. Let µ be a probability measure concentrating on a finite

subset of X, i.e. µ(A) = 1 for some finite set A. Then, for every ε > 0, there exists

some constant Cε,d, depending only on ε and d = dimV C(F), and a sequence of points

c1, ..., cm in X such that m ≤ Cd,ε and c1, ..., cm is an (F , ε)-approximation of µ.

Remark 3.14. We notice that if F is a family of subsets of X with VC-dimension d,

then for every ε > 0 and for every probability measure µ concentrating on a finite set,

there exists some Kd,ε depending only of d and ε and a sequence of points a1, ..., am

in X where m = Kd,ε such that a1, ..., am is an ε-approximation of µ over F . In other

words, for any measure concentrating on a finite set, we can find an ε-approximation

of exactly length Kd,ε, e.g. we may take Kd,ε = Cd,ε! since one can just concatenate

sequences of length less than Cd,ε with themselves many times.

We now define dependence in the continuous context and explain how this relates

to sequential dependence.

Definition 3.15 (Shattering). Let X, Y be sets, f : X × Y → [0, 1], r ∈ (0, 1) and

ε > 0. Let A ⊂ X. We say that f (r, ε)-shatters A if for every K ⊆ A, there exists
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some bK in Y so that

{a ∈ X : f(a, bK) ≤ r} ∩ A = K,

and,

{a ∈ X : f(a, bK) ≥ r + ε} ∩ A = A\K.

Moreover, we say that B witnesses the (r, ε)-shattering of A if for each K ⊆ A, B

contains bK as above.

The following definition of dependence is equivalent to the one given in [4].

Definition 3.16. Let X, Y be sets and let f : X × Y → [0, 1]. We say that f is

(r, ε)-independent if for every n ∈ N, there exists A ⊂ X where |A| > n and f

(r, ε)-shatters A. We say that f is independent if there exists some r ∈ (0, 1) and

ε > 0 so that f is (r, ε)-independent. Finally, we say that f is dependent if f is not

independent.

Fact 3.17. If f : X × Y → [0, 1] is dependent, then X = {f(a, y) : a ∈ X} ⊂ RY is

sequentially dependent.

Proof. This follows directly from the definitions.

We prove the theorem advertised in the introduction of this section, namely The-

orem 3.21. We begin by defining a function. Showing that this function is dependent

in the correct context yields our theorem.

Definition 3.18. Let f : X ×Y → {0, 1}. Then, we define the map Ψf : conv(X)×

conv(Y )→ [0, 1] via

Ψf (µ, ν) =

∫
f(x, y)dµdν =

n∑
i=1

m∑
j=1

risjf(ai, bj),

where µ =
∑n

i=1 riδai and ν =
∑m

j=1 sjδbj .
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Lemma 3.19. Assume that ϕ(x; y) is an NIP formula. Consider f : Ux×Uy → {0, 1}

via,

f(a, b) =


1 U |= ϕ(a, b),

0 otherwise.

Then the map Ψf : conv(Ux)× conv(Uy)→ [0, 1] is dependent.

Proof. Assume that the map Ψf is independent. We will find a Boolean combination

of ϕ which is not NIP. Since Ψf is independent, Ψf is (r0, ε0)-independent for some

r0 in (0, 1) and ε0 > 0. Let r = r0 + ε0
3

, ε = ε0
3

, and δ = ε
6

= ε0
18

. Then Ψf

is (r, ε)-independent because [r, r + ε] ⊂ [r0, r0 + ε0]. Now, d1 = dimV C(Fϕ) and

d2 = dimV C(Fϕ∗) where d1, d2 < ∞ since ϕ(x; y) is NIP. Let n? = Kδ,d1 and let

m? = Kδ,d2 described in Remark 3.14. Choose the smallest w ∈ {1, 2, ..., n?m?} such

that w
n?m?

≥ r. Let n? ×m? = {(i, j) : i ≤ n?, j ≤ m?} and let W = [n? ×m?]
w, i.e.

the subsets of n? ×m? of size |w|. Now, consider the formula:

θ(x1, ..., xn? , y1, ..., ym?) ≡ ¬
∨
α∈W

∧
(i,j)∈α

ϕ(xi, yj)

Notice that θ(x, y) takes in two sequences of elements and decides whether ϕ(x; y)

holds on a certain proportion of pairs of elements. In other words, if a1, ..., an? is a

sequence in Ux and b1, ..., bm? is a sequence in Uy, then θ(a, b) determines whether

Ψf (Av(a),Av(b)) is greater than r.

We now show that θ is not NIP. Assume that Ψf (r0, ε0)-shatters A. Then, for

each K ⊆ A, there exists νK in conv(Uy) so that,

{µ ∈ conv(Ux) : Ψf (µ, νK) ≤ r} ∩ A = K,

and,

{µ ∈ conv(Ux) : ΨF (µ, νK) ≥ r + ε} ∩ A = A\K.
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Then, for each µ ∈ A, let aµ1 , ..., a
µ
n? be a δ-approximation for that particular µ over Fϕ

of length exactly n?. Moreover, for each K ⊂ A, let bK1 , ..., b
K
m? be a δ-approximation

for νK over Fϕ∗ of length exactly m?. Let A? = {(aµ1 , ..., aµn?) : µ ∈ A} ⊂ U |x|·n? and

B? = {(bK1 , ..., bKm?) : K ⊂ A} ⊂ U |y|·m? . Then

|Ψf (µ, νK)−Ψf (Av(aµ),Av(bK))| < 2δ =
ε

3
.

Now, if (aµ1 , ..., a
µ
n?) is in A? and (bK1 , ..., b

K
m?) is in B?, then by a standard compu-

tation we notice that,

U |= θ(aµ, bK) ⇐⇒ Ψf (Av(aµ), Av(bK)) ≤ r ⇐⇒ Ψf (µ, νk) ≤ r0,

as well as,

U |= ¬θ(aµ, bK) ⇐⇒ Ψf (Av(aµ), Av(bK)) ≥ r + ε ⇐⇒ Ψf (µ, νk) ≥ r0 + ε.

We conclude that θ is not NIP. However, by the Fact 1.10, ϕ is also not NIP. Therefore,

we have a contradiction.

Recall that FϕM = {Fϕ
a : a ∈M} as defined in Definition 3.5.

Corollary 3.20. Assume that ϕ(x; y) is an NIP formula. Then the map Eval :

conv(FϕM)× Sy(M)→ [0, 1] where Eval(f, p) = f(p) is dependent.

Proof. Assume not. Then Eval is (r, ε)-independent for some r and ε. Assume that

A ⊆ conv(FϕM) is (r, ε)-shattered. Then, for each subset K of A, there exists pK in

Sy(M) where {f ∈ conv(FϕM) : f(pK) ≤ r} ∩ A = K and {f ∈ conv(FϕM) : f(pK) ≥

r + ε} ∩ A = A\K. Since f is in conv(FϕM), we note that f =
∑n

i=1 riF
ϕ
ai

for some

ai in Mx and ri > 0. Let µf =
∑n

i=1 riδai . For each K ⊂ A, we let bK ∈ Uy be a

realization of pK . Let A? = {µf : f ∈ A} ⊂ conv(Ux). Then, for any µf ∈ A?, we
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have,

Ψf (µf , δbK ) = Eval(f, tp(bK/M)) = Eval(f, pK).

Therefore if Eval is independent then so is the map Ψf . Since ϕ(x; y) is NIP, this

contradicts Lemma 3.19.

Theorem 3.21. Assume that ϕ(x; y) is an NIP formula. Then conv(FϕM) ⊆ RSy(M)

is sequentially dependent.

Proof. This follows directly from Corollary 3.20 and Fact 3.17.

3.3 Local Keisler measures

We now fix T a countable1 first order theory, U a sufficiently saturated model

of T , M a small elementary submodel of U , and ϕ(x; y) a partitioned L-formula.

We do not require ϕ(x; y) to be NIP unless explicitly stated otherwise. In the first

subsection, we define the weak notion of ϕ-dfs (Definition 3.25). Assuming that

ϕ(x; y) is NIP, we show that if µ is a finitely additive probability measure on Lϕ(U)

and µ is ϕ-dfs stable over some M where M is countable, then for every ε > 0, there

exists a sequence of points a1, ..., an of elements in Mx such that this sequence is an

ε-approximation for µ over Fϕ (Theorem 3.30). In the second subsection, we then

use Theorem 3.30 to prove our main result described in the introduction. Some of

the proofs in this section are almost identical to the general Keisler measure case and

so we reference Chapter 2 liberally.

3.3.1 Basic definitions and properties

Let us begin with the definition of a ϕ-measure and then describe two possible

notions for what it means for a ϕ-measure to be invariant.

1For uncountable theories, we simply take the reduct to a countable language containing the
formula we are working with.
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Definition 3.22. For any partitioned L-formula ϕ(x; y), a ϕ-measure is a finitely

additive probability measure from Lϕ(U). We denote the collection of all ϕ-measures

as Mϕ(U).

Definition 3.23. Let µ ∈Mϕ(U).

1. µ is M-invariant if for every ϕ-formula ψ(x; b) and for any c ∈ Uy such that
tp(b/M) = tp(c/M), we have µ(ψ(x; b)) = µ(ψ(x; c)).

2. µ is ϕ-invariant over M if for every b, c ∈ Uy such that tp(b/M) = tp(c/M),
we have that µ(ϕ(x; b)) = µ(ϕ(x; c)).

The collection of measures which are ϕ-invariant over M contains the collection

of M -invariant measures. Notice that ϕ-invariance only mentions instances of ϕ

and does not mention all ϕ-formulas (i.e. Boolean combinations of instances of ϕ).

We refer the reader to section 3.4 of this chapter for a counterexample. Our next

definition connects ϕ-invariant measures over M to functions from Sy(M) to R.

Definition 3.24. Assume that µ ∈ Mϕ(U) and µ is ϕ-invariant over M . Then, we

define the function Fϕ
µ : Sy(M)→ [0, 1] via Fϕ

µ (p) = µ(ϕ(x; b)) where b |= p.

As in the global case, Definition 3.24 allows us to transfer problems involving

finitely additive measures to questions involving functions. We will soon see that

special kinds of measures correspond to special kinds of functions. Let us now describe

these special measures.

Definition 3.25. Let µ ∈Mϕ(U).

1. We say that µ is ϕ-definable over M if for every ε > 0 there exist L(M)-
formulas ψ1(y), ..., ψn(y), such that:

(a) The collection {ψi(y) : i ≤ m} forms a partition of Uy.
(b) If U |= ψi(e) ∧ ψi(c), then |µ(ϕ(x; e))− µ(ϕ(x; c))| < ε.

2. We say that µ is finitely satisfiable in M if for every ϕ-formula ψ(x) such
that µ(ψ(x)) > 0, there exists some a in Mx such that U |= ψ(a).
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3. We say that µ is ϕ-dfs over M if µ is both ϕ-definable and finitely satisfiable
in M .

We now connect the kinds of measures defined above with functions from Sy(M)

to R.

Proposition 3.26. Let µ ∈Mϕ(U). Then µ is ϕ-definable over M if and only if µ

is ϕ-invariant and the map Fϕ
µ : Sy(M)→ [0, 1] is continuous.

Proof. This follows directly from Lemma 2.16 and the assumption that M is small.

Proposition 3.27. If µ ∈ Mϕ(U) and µ is finitely satisfiable in M , then µ is M-

invariant, and in particular, µ is ϕ-invariant.

Proof. The proof is similar to the proof of Proposition 2.14.

Recall that if A ⊆ RX , then clp(A) is the topological closure of A in RX . We now

connect this closure property with finite satisfiability.

Proposition 3.28. Let µ ∈ Mϕ(U) and assume that µ is finitely satisfiable in M .

Let X = Sy(M). Then Fϕ
µ ∈ clp(convQ(FϕM)) ⊂ RX .

Proof. By Proposition 3.27, the map Fϕ
µ is well defined. Let U be some open subset

of RX containing Fϕ
µ . Without loss of generality, there exists q1, ..., qn ∈ Sy(M) and

real numbers r1, ..., rn, s1, ..., sn such that

U =
n⋂
i=1

{f ∈ RX : ri < f(qi) < si}.

Choose some bi |= qi for each qi. Since U contains Fϕ
µ , we have that ri <

µ(ϕ(x; bi)) < si. We notice that ϕ(x; b1), ..., ϕ(x; bn) generate a finite Boolean al-

gebra. Let θ1(x), ..., θm(x) be the atoms of this Boolean algebra. If µ(θi(x)) > 0 then

by finite satisfiability we can find ai in Mx such that U |= θi(ai). Define
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f(y) =
∑

{i:µ(θi(x))>0}

µ(θi(x))Fϕ
ai

(y).

Then, f ∈ conv(FϕM) ∩ U . Since convQ(FϕM) is a dense subset of conv(FϕM) with the

induced topology from RX , there exists some g ∈ convQ(FϕM) ∩ U .

Lemma 3.29. Suppose that ϕ(x; y) is NIP. Let µ ∈Mϕ(U). Assume that µ is finitely

satisfiable in M and |M | = ℵ0. Then there exists some sequence (fi)i∈ω of elements

in convQ(FϕM) such that fi → Fϕ
µ .

Proof. By Proposition 3.28, Fϕ
µ is in clp(convQ(Fϕ

M)). Since ϕ(x; y) is NIP, Theorem

3.21 holds. Since | convQ(FϕM)| = ℵ0, the first statement of Theorem 3.4 is satisfied.

Therefore the second statement of Theorem 3.4 holds, so there exists a sequence of

elements fi ∈ conv(FϕM) such that fi → Fϕ
µ .

We now prove the main theorem of this subsection.

Theorem 3.30. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). Assume that µ is

ϕ-dfs over M and |M | = ℵ0. Then for every ε > 0, there exists a sequence a1, ..., an

of elements in Mx such that for any b ∈ Uy

|µ(ϕ(x; b))− Av(a)(ϕ(x; b))| < ε.

Proof. Fix ε. By Lemma 3.29, there exists a sequence (fi)i∈ω of elements in convQ(FϕM)

such that fi → Fϕ
µ . By Fact 3.26, we know that Fϕ

µ is continuous. Since each fi is

also continuous, we may apply Theorem 3.2. Therefore, fi →w Fϕ
µ . By Mazur’s

lemma, there exists a sequence gi ∈ convQ(FϕM) such that gi →u F
ϕ
µ . Choose gn such

that

sup
q∈Sy(M)

|Fϕ
µ (q)− gn(q)| < ε.
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Notice that gn =
∑n

i=1 riF
ϕ
ci

and let a1, ..., an be a representative sequence for gn.

Then for each b ∈ Uy,

|µ(ϕ(x; b))− Av(a)(ϕ(x; b))| = |Fϕ
µ (tp(b/M))− gn(tp(b/M))|.

Since M is small, we may conclude that

sup
b∈U
|µ(ϕ(x; b))− Av(ā)(ϕ(x; b))| = sup

q∈Sy(M)

|Fϕ
µ (q)− gn(q)| < ε.

Question 3.31. Suppose that ϕ(x; y) is NIP, µ ∈ Mϕ(U), and µ is ϕ-dfs over a

model N (where N is not necessarily countable). Does the conclusion of Theorem

3.30 hold?

3.3.2 Main result

The purpose of this section is to prove our main theorem as described in the

introduction. We again do not require ϕ(x; y) to be NIP in this section unless

explicitly stated. We will see that if we strengthen our definition of ϕ-definability

and in turn our definition of ϕ-dfs, we can prove our main result. We begin this

section by considering different families of ϕ-definable sets.

Definition 3.32. For a fixed partitioned L-formula ϕ(x; y), we define ∆ϕ as the

Boolean algebra of partitioned formulas generated by {ϕ(x; yi) : i ∈ ω, |yi| = |y|}.

If θ(x; y) is an element of ∆ϕ, we let Lθ(U) be the Boolean subalgebra of Lx(U)

generated by {θ(x; b) : b ∈ Uy}. Moreover, we let Iθ denote the obvious restriction

map from Mϕ(U) to Mθ(U). For notational purposes, if µ ∈Mϕ(U) and θ(x; y) is in

∆ϕ, then we write Iθ(µ) simply as µθ.

For example, the formulas ϕ(x; y1)∧ϕ(x; y2), ϕ(x; y1)4ϕ(x; y2), and
∨14
i=1 ϕ(x; yi)
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are all elements of ∆ϕ. We now give the appropriate definitions for dfs and finite

approximability in the local context as well as some relations between the properties

we have already defined.

Definition 3.33. Let µ ∈Mϕ(U). Then µ is definable over M if for every θ(x; y)

in ∆ϕ and ε > 0 there exist L(M)-formulas ρ1(y),...,ρm(y), such that

1. The collection {ρi(y) : i ≤ m} forms a partition of Uy.

2. if U |= ρi(e) ∧ ρi(c), then |µ(θ(x; e))− µ(θ(x; c))| < ε.

We say that µ is dfs over M if µ is definable and finitely satisfiable in M .

Definition 3.34. Let µ ∈Mϕ(U). Then, µ is finitely approximated in M if for

every θ(x; y) in ∆ϕ and for every ε > 0, there exists a sequence a1, ..., an in Mx such

that for any b ∈ Uy

|µ(θ(x; b))− Av(a)(θ(x; b))| < ε.

Proposition 3.35 (Basic Properties). Let µ ∈Mϕ(U).

1. µ is M-invariant if and only if for every θ(x; y) in ∆ϕ, the measure µθ ∈Mθ(U)
is θ-invariant over M .

2. µ is definable over M if and only if for every θ(x; y) in ∆ϕ, the measure µθ ∈
Mθ(U) is θ-definable over M .

3. µ is definable over M if and only if µ is M-invariant and for every θ(x; y) in
∆ϕ the map F θ

µθ
: Sy(M)→ [0, 1] is continuous.

4. µ is dfs over M if and only if for each θ(x; y) ∈ ∆ϕ, the measure µθ ∈Mθ(U)
(as a θ-measure) is dfs over M .

5. If µ is finitely approximated over M , then µ is dfs over M .

Proof. 2 and 4 follow directly from the definitions. 1 follows from the fact that M

is small. 3 follows from Proposition 3.26 and 2. The proof of 5 is identical to the

general Keisler measure case shown in 1 of Proposition 2.30.
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We now present some properties for local measures which were proven for global

measures case in Chapter 2. These properties will allow us to reduce our main result

to the countable case and so we may apply Theorem 3.30.

Proposition 3.36. Let µ ∈Mϕ(U). Assume that µ is finitely satisfiable over N and

µ is M-invariant. Then, µ is finitely satisfiable in M .

Proof. The proof is similar to the proof of Proposition 2.18.

Proposition 3.37. Let µ ∈Mϕ(U). If µ is dfs over M , then there exists M0 ≺ M

such that |M0| = ℵ0 and µ is dfs over M0.

Proof. The proof is similar to the proof of Proposition 2.35.

Now we may essentially reduce our main result to Theorem 3.30.

Lemma 3.38. Assume that ϕ(x; y) is NIP. Let µ ∈Mϕ(U). If µ is dfs over M , then

for every ε > 0 there exists a sequence a1, ..., an in Mx such that for any b ∈ Uy,

|µ(ϕ(x; b))− Av(a)(ϕ(x; b))| < ε.

Proof. By Theorem 3.37, µ is dfs over some M0 where M0 ≺ M and |M0| = ℵ0.

Then, we may apply Theorem 3.30 to µ and M0. Since M0 ⊆M , we are done.

Theorem 3.39. Assume that ϕ(x; y) is NIP. Let µ ∈ Mϕ(U). Then µ is dfs over

M if and only if µ is finitely approximated over M .

Proof. By 5 of Proposition 3.35, if µ is finitely approximated over M , then µ is dfs

over M . We only need to show the other direction. Assume µ is dfs over M . By

4 of Proposition 3.35, for any θ(x; y) in ∆ϕ, µθ is dfs over M . By construction,

µ(θ(x; b)) = µθ(θ(x; b)) for every b ∈ Uy. By Lemma 3.38, for every ε > 0 there are

a1, ..., an in Mx so that for every b ∈ Uy,

|µθ(θ(x; b))− Av(a)(θ(x; b))| < ε.
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Since µ(θ(x; b)) = µθ(θ(x; b)), we conclude that µ is finitely approximated overM .

3.4 Example

In section 3.3, we claimed that ϕ-invariant over M is not equivalent to M -

invariant. In this section, we provide a concrete example in the Random Graph. Ac-

tually, our counterexample shows something stronger, namely we construct a measure

which is ϕ-definable (over ∅), but not M -invariant. We begin by recalling a general

fact about finitely additive measures (see [54, Theorem 3.6.1] for details).

Fact 3.40. Fix a set X and let A and D be two Boolean algebras on X. Let µ1, µ2

be finitely additive measures on A,D respectively. Let B be a Boolean algebra on X

containing both A,D. Then, there exists a finitely additive measure µ on B which

extends µ1 and µ2 if and only if

µ1(A) ≥ µ2(D) for any A ∈ A, D ∈ D, such that A ⊇ D,

and

µ1(E) ≤ µ2(F ) for any E ∈ A, F ∈ D, such that E ⊆ F .

Corollary 3.41. Assume that B is a Boolean algebra on a set X. Let A1,A2 be

subalgebras of B such that A1 ∩A2 = {∅, X}. Let µ1, µ2 be finitely additive measures

on A1, A2 respectively. Assume that for each B ∈ A1 and C ∈ A2, such that B,C 6= ∅,

we have that B ∩ C 6= ∅. Then, there exists a finitely additive measure µ on B such

that µ|A1 = µ1 and µ|A2 = µ2.

Proof. We show that the condition for Theorem 3.40 holds. Let A ∈ A1, B ∈ A2.

Then, B 6⊂ A since B ∩ Ac 6= ∅. Likewise for the other direction. Therefore, there is

no obstruction to amalgamation.

Theorem 3.42. Let (U ;R) be a monster model of the Random Graph with edge

56



relation R(x, y) and M a small elementary submodel. Then, there exists a measure

µ ∈MR(U) such that µ is R-definable over M , but µ is not M-invariant.

Proof. Let a, b ∈ U such that tpR∗(a/M) = tpR∗(b/M) and U |= R(a, b). Now, let

A1 be the Boolean algebra generated by {R(x, c) : c ∈ U , c 6= a, b} and let A2 be the

Boolean algebra generated by {R(x, a), R(x, b)}. Let µ be the “Lebesgue measure”

on Lx(U) restricted to LR(U). In particular, if c1, ..., cn is a sequence of points in U

with ci 6= cj for i 6= j, then for any K ∈ P(n),

µ
( k∧
ci∈K

R(x, ci) ∧
∧
cj 6∈K

¬R(x, cj)
)

=
1

2n
.

We let µ1 on A1 be µ|A1 . For any choice of r > 4, we define µ2 as follows:

1. µ2(x = x) = 1 and µ2(∅) = 0.

2. µ2(R(x, a)) = 1
2
.

3. µ2(R(x, b)) = 1
2
.

4. µ2(R(x, a) ∧R(x, b)) = 1
r
.

5. µ2(¬R(x, a) ∧ ¬R(x, b)) = 1
r
.

6. µ2(R(x, a) ∧ ¬R(x, b)) = 1
2
− 1

r
.

7. µ2(¬R(x, a) ∧R(x, b)) = 1
2
− 1

r
.

By Corollary 3.41, there exists ν on Lϕ(U) such that ν extends both µ1 and

µ2. Notice that for every element d ∈ U , we have that ν(R(x, d)) = 1
2
. Therefore,

ν is R−invariant (even R−definable). However, ν is not M−invariant. Consider

c1, c2 ∈ U such that ci 6= a, b, tpR∗(ci/M) = tpR∗(a/M), and U |= R(c1, c2). Let

θ(x, y1, y2) = R(x, y1)∧R(x, y2). Now, tpθ∗(c1c2/M) = tpθ∗(ab/M) and we have that:

ν(R(x, a) ∧R(x, b)) =
1

r
6= 1

4
= ν(R(x, c1) ∧R(x, c2)).
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CHAPTER 4

REMARKS ON GENERIC STABILITY

This chapter is joint work with Gabriel Conant and is a modified version of our

paper Remarks on generic stability in independent theories [14]. An extremely useful

characterization of stability for a complete theory is that any global type is definable

and finitely satisfiable in some small model. On the other hand, the class of stable

theories is highly restrictive, and a great deal of current research in model theory has

focused on finding stable-like phenomena in unstable environments. In NIP theories,

although not every type is necessarily definable and finitely satisfiable, the class of

types with these properties is still quite resilient, and such types are now referred to

as generically stable.

Generically stable types in NIP theories were first identified by Shelah [58], and

then thoroughly studied by Hrushovski and Pillay [32] and Usvyatsov [64]. This

investigation was extended to Keisler measures in NIP theories in [31] and [32], cul-

minating in the work of Hrushovski, Pillay, and Simon [33] where generically stable

Keisler measures were defined. As mentioned previously, it is shown in [33] that a

global Keisler measure µ is dfs if and only if µ is finitely approximated if and only

if µ is a frequency interpretation measure (Theorem 2.39) and we call this class of

measures generically stable (in the NIP context).

A standard hypothesis in the NIP setting is that definability and finite satisfiabil-

ity (in a small model) are opposite extremes on the spectrum of invariant types and

measures, and so the synthesis of both properties forms a stable refuge in an unstable

world. So it is not unreasonable to explore a similar motif beyond NIP theories, and
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especially in other tame regions like simplicity or NTP2.

In this chapter, we study the above forms of “generic stability” in the wilderness

outside of NIP. Generically stable types in arbitrary theories were defined by Pillay

and Tanović in [50] and, in Section 4.1, we reconcile this definition with the setting of

measures. Specifically, we show that a global type is generically stable if and only if it

is a frequency interpretation measure (Proposition 4.2), which establishes a concrete

connection between generic stability for measures in NIP theories and for types in

arbitrary theories.

In section 4.2, we analyze theories in which every dfs Keisler measure is trivial (we

call such theories dfs-trivial). We show that dfs-triviality reduces to measures in one

variable (Proposition 4.9), and that dfs-nontriviality is preserved in reducts (Theorem

4.12). Finally, we give examples of dfs-trivial theories, including the theory of the

Random Graph, the theory T rs of the generic Kr
s -free r-hypergraph for s > r ≥ 3,

and the theory T ∗feq of a generic parameterized equivalence relation (Corollary 4.14).

We then turn to the classes of dfs measures, finitely approximated measures, and

FIM measures. As these three classes coincide in NIP theories, we focus on separating

them in general theories. For instance, the question of whether finitely approximated

measures coincide with frequency interpretation measures in arbitrary theories was

asked by Chernikov and Starchenko in [10, Remark 3.6], and the examples below give

a negative answer.

In Section 4.3, we first recall an example, due to Adler, Casanovas, and Pillay [1],

of a theory with a generically stable global type p such that p⊗ p is not generically

stable. This theory is a variant of T ∗feq in which equivalence classes have size two.

We note that this gives a non-simple theory with a finitely approximated 2-type that

is not generically stable (and thus not frequency interpretable). We then exhibit

similar behavior with a 1-type in the theory of the generic Ks-free graph for s ≥ 3.

Specifically, we consider the global type of a disconnected vertex, which is clearly
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not generically stable, and use lower bounds on the Ramsey numbers of Erdős and

Rogers [24] to show this type is finitely approximated.

At this point, it still remains open whether there is a theory with a definable and

finitely satisfiable global Keisler measure that is not finitely approximated. However,

if we shift our focus to the local level of ϕ-types and ϕ-measures, then interesting

examples emerge. This viewpoint is also motivated by the main theorem of Chapter

3 where we show that if ϕ(x; y) is an NIP formula, then any definable and finitely

satisfiable Keisler measure on ϕ-definable sets is finitely approximated. In Section

4.3.3, we show that this fails for ϕ-types in simple theories. In particular, we consider

the theory T rs for some s > r ≥ 3, and define the ϕ-type pR = {ϕ(x̄; b) : b ∈ U}

where ϕ(x1, . . . , xr−1; y) is ¬R(x̄, y) ∧
∧
i 6=j xi 6= xj. Using the Ramsey property for

finite Kr−1
s -free (r − 1)-hypergraphs (due to Nešetřil and Rödl [44]), we show that

pR is finitely satisfiable in any small model. We then show that pR is not finitely

approximated by adapting an averaging argument of Erdős and Kleitman [23] on

maximal cuts in (r − 1)-hypergraphs to the setting of weighted hypergraphs.

A recurring theme in our results is that generic stability in the wild is very uncom-

mon, and more fragile than in NIP theories. Regarding the interaction between dfs

measures and finitely approximated measures, our examples suggest a much weaker

connection outside of NIP, at least at the local level. On the other hand, all of our

examples of measures that are finitely approximated, but not frequency interpretable,

live in theories with TP2. So perhaps there is hope for an NIP-like connection for

these notions in NTP2 or simple theories.

4.1 Generically stable types

In NIP theories, a Keisler measure µ ∈ Mx(U) is called generically stable if it

satisfies the equivalent properties in Theorem 2.39. Generically stable types in NIP

theories were initially studied by Shelah [58], and then in more depth by Hrushovski
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and Pillay [32] and Usyvatsov [64]. In [50], Pillay and Tanović give a definition of

generic stability for types in arbitrary theories (Definition 1.7). This notion is further

studied by Adler, Casanovas, and Pillay in [1]. An equivalent formulation of generic

stability for types in arbitrary theories is given by Garćıa, Onshuus, and Usvyatsov

in [26].

For ease of presentation, we recall an (obvious) equivalent definition of generic

stability here. Given an infinite ordinal α and a sequence (ai)i<α in Ux, we let

Av(ai)i<α denote the average type of (ai)i<α over U , i.e., the partial type of L(U)-

formulas ϕ(x) such that {i < α : U |= ¬ϕ(ai)} is finite.

Definition 4.1 ([50]). A type p ∈ Sx(U) is generically stable if there isM ≺ U such

that p isM -invariant and Av(ai)i<α is a complete type for any Morley sequence (ai)i<α

in p over M and any infinite ordinal α. In this case, we also say p is generically

stable over M .

We make two remarks. First, the use of ordinals other than ω is necessary in

Definition 4.1. For example, if T is NIP then any invariant global type satisfies the

conclusion of the definition when α = ω, but if T unstable then there is some invariant

global type that is not definable (or finitely satisfiable in any small model), and hence

not generically stable (see, e.g., [48, Theorem 2.15]). Second, since Definition 4.1

involves Morley sequences, it does not immediately transfer to measures1. The next

result clarifies both of these remarks.

Proposition 4.2. Given p ∈ Sx(U) and M ≺ U , the following are equivalent.

1. p is generically stable over M .

2. p is M-invariant and p = Av(ai)i<ω for any Morley sequence (ai)i<ω in p over
M .

3. δp is a frequency interpretation measure over M .

1Randomizations might be a possible future avenue to explore.
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Proof. 2⇒ 1. Assume 2. To show 1, it suffices to consider Morley sequences indexed

by ω+ω (we leave this as an exercise for the reader). So fix an L(U)-formula ϕ(x) and

a Morley sequence (ai)i<ω+ω in p overM . If ϕ(x) ∈ p then, by 2, {i < ω : U |= ¬ϕ(ai)}

and {ω ≤ i < ω+ω : U |= ¬ϕ(ai)} are finite, and so {i < ω+ω : U |= ¬ϕ(ai)} is finite.

If ϕ(x) 6∈ p then ¬ϕ(x) ∈ p and so, by the same reasoning, {i < ω + ω : U |= ϕ(ai)}

is finite.

1⇒ 3. Assume 1, and fix an L-formula ϕ(x; y). We construct a sequence (θn)n≥1

as in Definition 2.28. By Definition 4.1 and compactness, there is some nϕ such that

for any Morley sequence (ai)i<ω in p over M , and any b ∈ Uy, either ϕ(x; b) ∈ p and

|{i < ω : U |= ¬ϕ(ai; b)}| ≤ nϕ, or ¬ϕ(x; b) ∈ p and |{i < ω : U |= ϕ(ai; b)}| ≤ nϕ

(see [32, Proposition 3.2] or [50, Proposition 1] for details). Note that this implies

that p is definable over (ai)i<ω, and thus definable over M by M -invariance (see

Proposition 2.18 or [59, Lemma 2.18]). So we may choose an L(M)-formula ψ(y)

such that, for all b ∈ Uy, ϕ(x; b) ∈ p if and only if U |= ψ(b).

Given i ≥ 1, let ni = nϕi. We will define a sequence (θni(x1, . . . , xni))
∞
i=1 of

L(M)-formulas such that, for all i ≥ 1, θni(x1, . . . , xni) ∈ p(ni) and

if ā |= θni(x1, . . . , xni) and b ∈ Uy then |δp(ϕ(x; b))− Avā(ϕ(x; b))| ≤ 1
i

(†)

(recall that δp is the Keisler measure where we view p as a {0, 1}-valued measure in

Mx(U)). First, we note that this suffices to prove 3. Indeed, given (θni)
∞
i=1 as above

and n ≥ nϕ, let θn(x1, . . . , xn) be θni(x1, . . . , xni)∧
∧
j≤n xj = xj where ni ≤ n < ni+1.

Note that θn(x1, . . . , xn) ∈ p(n) for all n. Also, if n ≥ nϕ, ā |= θn(x1, . . . , xn),

and b ∈ U then, using the triangle inequality and (†), one can show |δp(ϕ(x; b)) −

Avā(ϕ(x; b))| < 3
i

where i is such that ni ≤ n < ni+1. So it suffices to construct

(θni)
∞
i=1 as above.
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Fix i ≥ 1, and define the L(M)-formula

ϕ(x1, . . . , xni ; y) :=
∨
I⊆[ni]
|I|>nϕ

(∧
j∈I

(
ϕ(xj; y) ∧ ¬ψ(y)

)
∨
∧
j∈I

(
¬ϕ(xj; y) ∧ ψ(y)

))
.

Then p(ni)(x1, . . . , xni) ∧ ϕ(x1, . . . , xni ; y) is inconsistent. Now, if we decide to set

θni(x1, . . . , xni) := ∀y¬ϕ(x1, . . . , xni ; y), we have θni(x1, . . . , xni) ∈ p(ni). It is straight-

forward to verify that θni(x1, . . . , xni) satisfies (†).

3 ⇒ 2. Assume 3. By definition, p is M -invariant. Fix a Morley sequence

(ai)i<ω in p over M , and some ϕ(x; b) ∈ p. Let I = {i < ω : U |= ϕ(ai)}. By 3,

we may choose n sufficiently large and an L(M)-formula θ(x1, . . . , xn) ∈ p(n) such

that, for any ā′ |= θ(x̄), |δp(ϕ(x)) − Avā′(ϕ(x; b))| < 1. Note, in particular, that

θ(ai1 , . . . , ain) holds for any i1 < . . . < in < ω. We now have |ω\I| < n since, if not,

then there are i1 < . . . < in < ω such that ¬ϕ(aij ; b) holds for all 1 ≤ j ≤ n, and so

δp(ϕ(x; b))− Av((ai1 , . . . , ain)(ϕ(x; b)) = 1, contradicting the choice of n and θ.

The previous proposition can be taken as evidence that frequency interpretation

measures provide a compatible generalization of the standard notion of generic sta-

bility for types to the class of all measures.

Remark 4.3. Suppose p ∈ Sx(U) is generically stable over M ≺ U , and let ϕ(x; y) be

an L-formula. Then we have L(M)-formulas (θn)∞n=1 witnessing that p is a frequency

interpretation measure over M (as in Definition 2.28). By Proposition 2.20, and the

proof of Proposition 4.2, we see that θn is of the form ∀y¬ϕ(x1, . . . , xn; y), where

ϕ(x1, . . . , xn; y) is a Boolean combination of ϕ(xi, y) and a ϕ∗-formula ψ(y) over M .

In particular, if L0 ⊆ L contains ϕ(x; y), then p|L0 is still generically stable over M

with respect to T |L0 .

Call a global M -invariant type p ∈ Sx(U) stable over M ≺ U if p|M is a stable

type, i.e., there does not exist a formula ϕ(x; y), an M -indiscernible sequence (ai)i<ω
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of realizations of p|M , and a sequence (bi)i<ω from Uy such that U |= ϕ(ai; bj) if and

only if i ≤ j. It is not hard to show that p ∈ Sx(U) is stable over M ≺ U if and

only if p = Av(ai)i<ω for any indiscernible sequence (ai)i<ω of realizations of p|M

(see, e.g., [1]). In particular, if p ∈ Sx(U) is stable over M ≺ U , then it is generically

stable over M . Using a similar proof (which we leave as an exercise), one obtains an

analogous characterization of generic stability in terms of the order property.

Proposition 4.4. Suppose p ∈ Sx(U) is M-invariant for some M ≺ U . Then p

is generically stable over M if and only if there does not exist a formula ϕ(x; y),

a Morley sequence (ai)i<ω in p over M , and a sequence (bi)i<ω from Uy such that

U |= ϕ(ai; bj) if and only if i ≤ j.

4.2 dfs-trivial theories

Definition 4.5. Fix a variable sort x.

1. Let Mtr
x (U), Mdfs

x (U), Mfam
x (U), and Mfim

x (U) denote the spaces of trivial mea-
sures, dfs measures, finitely approximated measures, and frequency interpreta-
tion measures, respectively.

2. A set Ω ⊆ Mx(U) is closed under localization if, for any µ ∈ Ω and any
Borel subset X ⊆ Sx(U) with µ(X) > 0, Ω contains the Keisler measure

ϕ(x) 7→ µ(ϕ(x) ∩X)/µ(X)

(we call this measure the localization of µ at X).

Note that, in the last definition above, we have identified µ ∈ Mx(U) with the

associated Borel probability measure on Sx(U). Note also that a type p ∈ Sx(U) is

trivial if and only if it is realized in U .

Remark 4.6. Mtr
x (U) ⊆ Mfim

x (U) ⊆ Mfam
x (U) ⊆ Mdfs

x (U), and each of these sets is

closed under localization.

Proposition 4.7. Suppose Ω ⊆ Mx(U) is closed under localization. Then Ω ⊆

Mtr
x (U) if and only if, for any µ ∈ Ω, there is b ∈ Ux such that µ(x = b) > 0.
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Proof. The left-to-right-direction is clear. So assume that for any µ ∈ Ω, there is

b ∈ Ux such that µ(x = b) > 0. Fix µ ∈ Ω and let S = {b ∈ Ux : µ(x = b) > 0}.

We first argue that S is countable. Given b ∈ X, let n(b) ∈ N≥2 be such that

1
n(b)

< µ(x = b) ≤ 1
n(b)−1

. If S is uncountable, then there is some infinite S0 ⊆ S

and n ≥ 2 such that n(b) = n for all b ∈ S0. So if Y ⊆ S0 has size n, then

µ(Y ) =
∑

b∈Y µ(x = b) > 1, which is a contradiction.

Let ν =
∑

b∈S µ(x = b)δb. We will show µ = ν. First, suppose X ⊆ Sx(U) is

Borel and X ∩ S = ∅ (here we identify U with the set of realized types in Sx(U)).

Then we claim µ(X) = 0. If not, then let µ0 ∈Mx(U) be the localization of µ at X.

Then µ0 ∈ Ω, and so there is some b ∈ Ux such that µ0(x = b) > 0, which contradicts

X∩S = ∅. Now, given a Borel set X ⊆ Sx(U), we have µ(X) = µ(X\S)+µ(X∩S) =

µ(X ∩ S) = ν(X) as desired.

For the rest of this section, we assume T is one-sorted.

Definition 4.8. A complete theory T is dfs-trivial if every dfs Keisler measure is

trivial, i.e., Mdfs
n (U) = Mtr

n (U) for all n ≥ 1.

Proposition 4.9. T is dfs-trivial if and only if Mdfs
1 (U) = Mtr

1 (U).

Proof. Fix n ≥ 1 and suppose that every measure in Mdfs
n (U) is trivial. Suppose

µ ∈ Mdfs
n+1(U), and let µ0 ∈ Mn(U) be the projection of µ to the first n variables,

i.e., µ0(ϕ(x1, . . . , xn)) = µ(ϕ(x1, . . . , xn) ∧ xn+1 = xn+1). Note that µ0 ∈ Mdfs
n (U),

and thus is trivial by assumption. Fix a countable set I ⊂ Un and a function

r : I → (0, 1] such that µ0 =
∑

i∈I riδi. Fix i ∈ I, and let νi ∈ M1(U) be such that

νi(ϕ(x)) = 1
ri
µ(ϕ(xn+1) ∧ (x1, . . . , xn) = i). Then νi ∈ Mdfs

1 (U) for all i ∈ I, and so

we have νi =
∑∞

j=0 s
i
jδaij for some sequences (aij)

∞
j=0 from U and (sij)

∞
j=0 from [0, 1].

Now we claim that

µ =
∑
i∈I

∞∑
j=0

ris
i
jδ(i,aij)

,
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and so µ is trivial. Let x̄ = (x1, . . . , xn, xn+1) and, for i ∈ I, define the formula

σi(x̄) := ((x1, . . . , xn) = i) ∧ (xn+1 = xn+1). Then µ(σi(x̄)) = ri for any i ∈ I. Since∑
i∈I ri = 1, it follows that for any L(U)-formula ϕ(x1, . . . , xn, xn+1), we have

µ(ϕ(x̄)) =
∑
i∈I

µ(ϕ(x̄) ∧ σi(x̄)) =
∑
i∈I

µ(ϕ(i, xn+1) ∧ σi(x̄)) =
∑
i∈I

riνi(ϕ(i, x))

=
∑
i∈I

∞∑
j=0

ris
i
jδaij(ϕ(i, x)) =

∑
i∈I

∞∑
j=0

ris
i
jδ(i,aij)

(ϕ(x̄)).

Question 4.10. Does the analogue of Proposition 4.9 hold for finitely approximated

measures or for frequency interpretation measures?

Remark 4.11. If T is NIP then T is dfs-nontrivial. This is a standard construction,

which we briefly recall (see also, e.g., [59, Example 7.2]). Assume T is NIP, and let

(ai)i∈[0,1] be a non-constant indiscernible sequence in U . Define µ ∈ M1(U) so that

µ(ϕ(x)) is the Lebesgue measure of {i ∈ [0, 1] : U |= ϕ(ai)}. Since T is NIP, it follows

that µ is a well-defined nontrivial definable Keisler measure, and it is clearly finitely

satisfiable in any M ≺ U containing (ai)i∈[0,1].

It should be mentioned that not every NIP theory admits a nontrivial dfs type.

For example, in distal theories (which are NIP), any such type must be algebraic (see

[60, Proposition 2.27]). However, if T is stable then any non-algebraic global type

corresponds to a nontrivial dfs Keisler measure.

The next goal is to show that dfs-nontriviality is preserved under reducts. First,

we make precise our use of the word “reduct”. Let T0 be a complete L0-theory in

some one-sorted language L0 of small cardinality (relative to U). Without loss of

generality, we assume L0 is relational. We say T0 is a reduct of T if there is some

finite F ⊂ U and, for each n-ary relation R ∈ L0, an L(U)-formula θR(x1, . . . , xn)

(with |xi| = 1) such that (U\F ; (θR)R∈L0) |= T0.

Theorem 4.12. If T0 is a reduct of T , and T0 is dfs-trivial, then T is dfs-trivial.
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Proof. Fix a finite set F ⊂ U and L(U)-formulas (θR)R∈L0 such that if U0 is the L0-

structure (U\F ; (θR)R∈L0), then U0 |= T0. We may add constants to T and assume

that each θR is over ∅, and F is definable by an L-formula χ(x) over ∅.

To show that T is dfs-trivial, it suffices by Propositions 4.7 and 4.9 to fix some

µ ∈ Mdfs
1 (U) and show that µ(x = b) > 0 for some b ∈ U . Toward a contradiction,

suppose µ(x = b) = 0 for all b ∈ U . Let M ≺ U be such that µ is definable and

finitely satisfiable in M . Then M0 := M\F ≺L0 U0, and U0 is |M0|+-saturated as an

L0-structure.

Now let µ0 be the restriction of µ to L0-formulas over U0. We show that µ0 ∈

Mdfs
1 (U0), which contradicts the assumption that T0 is dfs-trivial. In particular,

we show µ0 is definable (with respect to L0) and finitely satisfiable in M0. Fix

an L0-formula ϕ(x; y). Suppose b ∈ Uy0 is such that µ0(ϕ(x; b)) > 0. Note that

µ(χ(x)) = 0 by assumption, and so µ(ϕ(x; b) ∧ ¬χ(x)) > 0. So ϕ(x; b) ∧ χ(x) is

realized in M , i.e., ϕ(x; b) is realized in M0. Now fix a closed set C ⊆ [0, 1] and let

X = {b ∈ Uy0 : µ0(ϕ(x; b)) ∈ C}. Then X = {b ∈ Uy : µ(ϕ(x; b)) ∈ C} ∩ (U\F )y, and

so X is L0-type-definable over M by Proposition 2.20(a). Since F is ∅-definable, X

is L0-type-definable over M0.

Recall that the Random Graph is the Fräıssé limit of the class of finite graphs,

and the Random Bipartite Graph is the Fräıssé limit of the class of finite bipartite

graphs. In order to obtain a Fräıssé class in the latter case, we work in the language

L = {E,P,Q} where E is the edge relation and P,Q are predicates for the bipartition.

Theorem 4.13.

1. The theory of the Random Graph is dfs-trivial.

2. The theory of the Random Bipartite Graph is dfs-trivial.

Proof. We prove part (b). The argument for part (a) is similar (and easier), so we

leave it as an exercise. The case of the Random Graph is also alluded to by Chernikov
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and Starchenko in [10, Example 3.8].

Let T be the theory of the Random Bipartite Graph. By Propositions 4.7 and 4.9,

it suffices to fix µ ∈ Mdfs
1 (U) and show that µ(x = b) > 0 for some b ∈ U . Toward

a contradiction, suppose µ(x = b) = 0 for all b ∈ U . Fix M ≺ U such that µ is

definable and finitely satisfiable in M .

Suppose first that there is some b ∈ U such that µ(E(x, b)) > 0. Without loss

of generality, assume b ∈ Q(U). By Proposition 2.20(b), there is a E∗-formula ψ(y)

over M such that U |= ψ(b) and µ(E(x, c)) > 0 for any c ∈ ψ(U). Without loss of

generality, we may assume ψ(y) is of the form

∧
m∈A

E(m, y) ∧
∧
m∈B

¬E(m, y)

for some finite disjoint A,B ⊆ M . Note that A ⊆ P (M). By saturation, there is

c ∈ U such that E(m, c) holds for all m ∈ A and ¬E(m, c) holds for all m ∈M\A. It

follows that U |= ψ(c), and so µ(E(x, c)) > 0. Therefore µ(E(x, c) ∧ x 6∈ A) > 0. By

finite satisfiability, there is some m ∈ M\A such that U |= E(m, c). Then E(m, c)

holds and m ∈M\A, which contradicts the choice of c.

Now suppose that µ(¬E(x, b)) = 1 for all b ∈ U . Note that µ(P (x) ∨ Q(x)) = 1

and so, without loss of generality, we may assume µ(P (x)) > 0. Let E0(x, y) be the

formula ¬E(x, y)∧ ((P (x)∧Q(y))∨ (P (y)∧Q(x))). Then E0(x, y), P (x), and Q(x)

define a Random Bipartite Graph on U . Moreover, if b ∈ Q(U) then µ(E0(x, b)) > 0.

So we may apply the argument above to obtain a contradiction.

We now give several examples of theories which are dfs-trivial because they have

one of the above theories as a reduct. Recall that, given r ≥ 2, an r-uniform hyper-

graph (or r-graph) is a set of vertices together with an irreflexive, symmetric r-ary

relation R. For any fixed r ≥ 2, the class of finite r-graphs is a Fräıssé class, and

we let T r be the theory of the Fräıssé limit. Given s > r, let Kr
s be the complete
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r-graph on s vertices. Then, for any fixed s > r, the class of finite Kr
s -free r-graphs

is a Fräıssé class, and we let T rs be the theory of the Fräıssé limit.

Corollary 4.14. The following theories are dfs-trivial:

1. T r for any r ≥ 2,

2. T rs for any s > r ≥ 3,

3. the theory of any pseudofinite field,

4. the theory of the random tournament,

5. the theory T ∗feq of a generic parameterized equivalence relation, and

6. any completion of ZF.

Proof. (1) We show that T 2 is a reduct of T r. Let F ⊂ U be a set of size r − 2.

Let E(x, y) be R(x, y, c̄) where c̄ enumerates F . Suppose A,B ⊂ U\F are finite and

disjoint. Define a one-point extension H = ABF ∪{e} of the induced hypergraph on

ABF by adding only the edges R(a, e, c̄) for all a ∈ A. Then H is an r-graph, and

so we may assume H embeds in U over ABF . Now E(a, e) holds for all a ∈ A and

¬E(b, e) holds for all b ∈ B.

(2) Note that if r ≥ 3 and U |= T rs then the graph H constructed in (1) is Kr
s -free.

So the same argument works to show that T 2 is a reduct of T rs .

(3) Let T be the theory of a pseudofinite field K, and let p be a prime different

from the characteristic of K. By a result of Duret [20], T 2 is a reduct of T via the

formula E(x, y) := ∃z(x+ y = zp) ∧ x 6= y.

(4) Recall that a tournament is a directed graph in which every pair of vertices is

joined by exactly one directed edge. Let T be the theory of the random tournament

(i.e., the Fräıssé limit of finite tournaments), and let U |= T . We show that the theory

of the Random Bipartite Graph is a reduct of T . Let R be the directed edge relation,

and fix some a ∈ U . Let P = {b ∈ U : R(a, b)} and let Q = {b ∈ U : R(b, a)}. Note

that P and Q partition U\{a}. Define a bipartite graph relation E ⊆ P × Q where
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E(b, c) holds if and only if R(b, c). Then (P,Q;E) satisfies the axioms of the Random

Bipartite Graph.

(5) We show that the theory of the Random Bipartite Graph is a reduct of T ∗feq

(see Section 4.3.1 for the definition of this theory). Let Ez(x, y) be the parameterized

equivalence relation, where x, y are in the object sort O and z is in the parameter

sort P . Fix some a ∈ O(U), and let P0 = O(U)\{a} and Q0 = P (U). Define a

bipartite graph relation E0 ⊆ P0 × Q0 where E0(b, c) holds if and only if Ec(a, b).

Then (P0, Q0;E0) satisfies the axioms of the Random Bipartite Graph.

(6) Let T be a completion of ZF, and let U |= T . We show that T 2 is a reduct of

T via the formula E(x, y) := (x ∈ y ∨ y ∈ x).2 Fix finite disjoint A,B ⊂ U . Define

c = A∪ {B}, which is an element of U . Then E(a, c) holds for all a ∈ A and, by the

axiom of foundation, we have ¬E(b, c) for all b ∈ B.

Noticeably absent from the previous corollary is T 2
s for s ≥ 3. We will see in

Section 4.3.2 that these theories are not dfs-trivial.

4.3 Examples

4.3.1 Parameterized equivalence relations

The purpose of this section is to develop an example of Adler, Casanovas, and

Pillay [1]. Let L be a language with two sorts O and P (for “objects” and “param-

eters”) and a ternary relation Ez(x, y) on O × O × P (with x, y of sort O and z of

sort P ). Let Tfeq2 be the incomplete theory asserting that for any z in P , Ez(x, y) is

an equivalence relation on O in which each class has size 2. Then Tfeq2 has a model

completion, which we denote T ∗feq2. This theory was defined in [1, Example 1.7], and

can also be constructed as the generic variation of the theory T ∗eq2 of an equivalence

relation with infinitely many classes of size 2. Generic variations were defined by

2This was observed by James Hanson.
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Baudisch in [3], although we have used an equivalent two-sorted version as in [8,

Section 6.2].

Note that T ∗eq2 has quantifier elimination and eliminates ∃∞ (in fact, this theory

is complete and strongly minimal). It follows that T ∗feq2 is complete, model complete,

and eliminates ∃∞ (see [3, Corollary 2.10, Theorem 3.1]). However, T ∗feq2 does not

eliminate quantifiers unless one adds a binary function f : P ×O → O such that, for

any z ∈ P , fz(−) : O → O swaps the two elements in each Ez-class (more precisely,

fz(x) = y if and only if Ez(x, y) ∧ x 6= y).

Theorem 4.15. T ∗feq2 is not simple.

Proof. To show that T ∗feq2 is not simple we will in fact witness TP2.

Let {bi,j, ci : i, j < ω} ⊆ O(U) be a collection of pairwise distinct objects. Given

i < ω and j < k < ω, the formula Ex(bi,j, ci) ∧ Ex(bi,k, ci) is inconsistent since all

Ex-classes have size 2. On the other hand, for any function σ : ω → ω, the type

{Ex(bi,σ(i), ci) : i < ω} is consistent since we can find a parameter a ∈ P (U) such that

{bi,σ(i), ci} is an Ea-class for all i < ω. Altogether, we have shown that the formula

ϕ(x; y1, y2) := Ex(y1, y2) has TP2.

Despite the similarities between the definitions of T ∗feq2 and T ∗feq, the behavior of

generically stable types is different (recall that T ∗feq is dfs-trivial by Corollary 4.14).

Remark 4.16. If U |= T ∗feq2 then any definable subset of O(U) is finite or cofinite

(this is easily checked using quantifier elimination in the language with f named).

Fact 4.17 (Adler, Casanovas, & Pillay [1]). If U |= T ∗feq2 then there is a generically

stable type p ∈ S1(U) such that p⊗ p is not generically stable.

Proof. See [1, Example 1.7]. The type p is the unique type in S1(U) that contains

O(x) and ¬Ec(x, b) for all b ∈ O(U) and c ∈ P (U). By Remark 4.16, it is clear that

p is generically stable, and it is shown in [1] that p⊗ p is not generically stable.
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Since the type p in the previous fact is not realized in U , we conclude that T ∗feq2

is not dfs-trivial. We also obtain a separation between generic stability and finite

approximation for types (recall that these notions are equivalent in NIP theories).

Corollary 4.18. If U |= T ∗feq2 then there is a type q ∈ S2(U) that is finitely approxi-

mated but not generically stable.

Proof. Let p ∈ S1(U) be the type from Fact 4.17. Then p ∈Mfim
1 (U) by Proposition

4.2. So q := p ⊗ p ∈Mfam
2 (U), since Mfim

1 (U) ⊆Mfam
1 (U) and finitely approximated

measures are closed under Morley products (see Proposition 2.32).

4.3.2 Ks-free graphs

Fix s ≥ 3 and let Ks be the complete graph on s vertices. Given a finite graph

G, let αs(G) denote the size of the largest subset of G which induces a Ks−1-free

subgraph. Let Rs(n) be the smallest integer N such that any graph G of size N

either contains Ks or satisfies αs(G) ≥ n.

Theorem 4.19 (Erdős & Rogers 1962 [24]). Rs(n) ≥ Ω(n1+cs) for some cs > 0.

Thus there are Ks-free graphs (Gi)
∞
i=0 such that |Gi| → ∞ and αs(Gi) = o(|Gi|).

Remark 4.20. For s = 3, Theorem 4.19 was first proved by Erdős [22] in 1957, and

it was eventually shown that R3(n) = Θ( n2

logn
) (see [2] and [39]).

We use L = {E} for the language of graphs, and let U |= T 2
s be sufficiently

saturated. By quantifier elimination for T 2
s , there is a unique type in S1(U) containing

¬E(x, b) for all b ∈ U . We let pE denote this type. Note that pE is definable over ∅

and not realized in U .

Theorem 4.21. The type pE is finitely approximated, but is not generically stable.

Proof. Let (ai)i<ω be a Morley sequence in pE over some small model. Then ai 6=

aj ∧ ¬E(ai, aj) holds for all i 6= j, and so there is b ∈ U such that E(ai, b) holds if

and only if i is even. So pE is not generically stable.
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Now we show that pE is finitely approximated in the unique countable model M

of T 2
s . Let ϕ(x; ȳ) be a formula in the language of graphs, with ȳ = (y1, . . . , ym).

Without loss of generality, we may assume that some instance of ϕ(x; ȳ) is in pE

(otherwise every instance of ¬ϕ(x; ȳ) is in pE, and so we may apply the argument

below to ¬ϕ(x; ȳ)).

By quantifier elimination, we may fix a quantifier-free formula ψ(ȳ), an integer

N ≥ 1, and At, Bt, Ct, Dt ⊆ [m], for t ∈ [N ], such that

ϕ(x; ȳ) ≡
N∨
t=1

(∧
i∈At

¬E(x, yi) ∧
∧
i∈Bt

x 6= yi ∧
∧
i∈Ct

E(x, yi) ∧
∧
i∈Dt

x = yi

)
∧ ψ(ȳ).

Since pE contains an instance of ϕ(x; ȳ), it follows that there is some t∗ ∈ [N ] such

that Ct∗ = ∅ = Dt∗ , and so ϕ(x; b̄) ∈ pE for any b̄ ∈ Um such that U |= ψ(b̄). Fix

ε > 0. We want to find n ≥ 1 and ā = (a1, . . . , an) ∈Mn such that, for any b̄ ∈ Um,

∣∣δp(ϕ(x; b̄))− Av(ā)(ϕ(x; b̄))
∣∣ < ε. (†)

Let |At∗| = k and |Bt∗ | = `. By Theorem 4.19, we may choose n > 2`
ε

and

G = {a1, . . . , an} ⊂ M such that αs(G) < ε
2k
n. Fix b̄ ∈ Um. If U |= ¬ψ(b̄) then

ϕ(x; b̄) 6∈ p and U |= ¬ϕ(ai; b̄) for all i ∈ [n], so (†) holds trivially. So we can assume

U |= ψ(b̄), which implies that ϕ(x; b̄) ∈ p.

For j ∈ At∗ , set Xj = {i ∈ [n] : E(ai, bj)}, and note that {ai : i ∈ Xj} induces a

Ks−1-free subgraph of G (since U is Ks-free). In particular |Xj| < ε
2k
n for all j ∈ At∗ .

Define the sets Y = {i ∈ [n] : ai = bj for some j ∈ Bt∗} and Z = {i ∈ [n] : ¬ϕ(ai; b̄)}.

Then we have Z ⊆ Y ∪
⋃
j∈At∗

Xj, which implies

|Z| ≤ |Y |+
∑
j∈At∗

|Xj| < `+ ε
2
n < εn.

So (†) holds, as desired.
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Remark 4.22. From the proof of Theorem 4.21 we see that, given an L-formula

ϕ(x; ȳ), there is a sequence (θn(x1, . . . , xn))∞n=1 of L-formulas (over ∅) such that, for

any ε > 0, if n ≥ nε,ϕ then |pE(ϕ(x; b̄)) − Avā(ϕ(x; b̄))| < ε for any ā |= θn(x̄) and

b̄ ∈ U ȳ. In particular, let θn(x1, . . . , xn) describe the isomorphism type of the graph

G chosen with αs(G) sufficiently small depending on ε and ϕ. Of course, since αs(G)

is small, G must contain (many) edges, and so θn(x̄) 6∈ p(n)
E .

Next, we show that if U |= T 2
s then Mdfs

1 (U) coincides with Mfam
1 (U), and is the

convex hull of pE and Mtr
1 (U). So pE is essentially the only non-trivial dfs measure

in one variable. We also observe that every frequency interpretation measure in one

variable is trivial.

Theorem 4.23. Let U |= T 2
s .

1. Mfam
1 (U) = Mdfs

1 (U) = {rpE + (1− r)µ : µ ∈Mtr
1 (U), r ∈ [0, 1]}.

2. Mfim
1 (U) = Mtr

1 (U).

Proof. Part (a). Let µ ∈M1(U) be definable and finitely satisfiable in M ≺ U .

Claim: If µ(x = b) = 0 for all b ∈ U , then µ = pE.

Proof: Assume µ(x = b) = 0 for all b ∈ U and, toward a contradiction, suppose

µ(E(x, b)) > 0 for some b ∈ U . There are two cases.

Suppose first that b 6∈ M . Let ψ(y) be an L(M)-formula such that ψ(b) holds

and, for any c ∈ U , if ψ(c) holds then µ(E(x, c)) > 0. Let A ⊂ M be the finite

set of parameters in ψ(y). Since b 6∈ M , we may find c ∈ U such that c ≡A b and

¬E(m, c) for all m ∈ M\A. Then ψ(c) holds and so µ(E(x, c) ∧ x 6∈ A) > 0. But

E(x, c) ∧ x 6∈ A is not realized in M .

Now suppose b ∈M . Let X = {m ∈M : E(m, b)}. Then X is Ks−1-free, so there

is c ∈ U\M such that E(m, c) for all m ∈ X. By the above, µ(¬E(x, c)) = 1, and so

µ(¬E(x, c) ∧ E(x, b)) > 0. But ¬E(x, c) ∧ E(x, b) is not realized in M . aclaim
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Now, let S = {b ∈ U : µ(x = b) > 0}. As in the proof of Proposition 4.7, S

is countable. By the claim, we may assume S 6= ∅, and so µ(S) > 0. Let ν =

1
µ(S)

∑
b∈S µ(x = b)δb, and note that ν ∈Mtr

1 (U).

Let X = U\S. If µ(X) = 0 then µ = ν, and we are finished. So assume µ(X) > 0.

Let µ0 be the localization of µ at X. Then µ0 is dfs and µ0(x = b) = 0 for all b ∈ U .

By the claim, µ0 = pE. Note that pE(S) = 0 since S is countable. Altogether, given

A ∈ Def1(U), we have

µ(A) = µ(A\S) + µ(A ∩ S)

= µ(X)µ0(A\S) + µ(S)ν(A ∩ S) = µ(X)pE(A) + (1− µ(X))ν(A).

So µ = µ(X)pE + (1− µ(X))ν, as desired.

Part (b). Suppose µ ∈Mfim
1 (U). Then µ ∈Mdfs

1 (U) and so, by Theorem 4.21 and

the claim in part (a), we have µ(x = b) > 0 for some b ∈ U . So Mfim
1 (U) = Mtr

1 (U)

by Proposition 4.7.

4.3.3 Kr
s -free hypergraphs

We have now seen that if s > r ≥ 3 then T rs is dfs-trivial, while T 2
s is not dfs-

trivial for any s > 2. The change in behavior from r = 2 to r ≥ 3 is reminiscent of a

similar disparity at the level of dividing lines. In particular, T 2 is simple, but T 2
s is

not simple for any s ≥ 3 (in fact, T 2
s has SOP3 by Shelah [57]). On the other hand,

T r and T rs are both simple for any s > r ≥ 3 (this was shown by Hrushovski [30]; see

also [13, Section 7.1]).

Despite the fact that T rs is dfs-trivial for s > r ≥ 3, we can find interesting

behavior in these theories at the level of ϕ-types. First, let us recall some notions.

Let T be a complete theory with monster model U , and fix an L-formula ϕ(x; y). We

let Sϕ(U) be the space of complete ϕ-types over U . Given p ∈ Sϕ(U), we recall:
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1. p is definable if the set {b ∈ Uy : ϕ(x; b) ∈ p} is definable (and thus, the same
is true for any Boolean combination of ϕ(x; yi));

2. p is finitely satisfiable in M ≺ U if any finite subset of p is realized in M ;

3. p is finitely approximated if there is M ≺ U such that, for any formula ψ(x; z),
which is a finite Boolean combination of ϕ(x; yi), and any ε > 0, there are
a1, . . . , an ∈Mx such that, for any c ∈ U z, |δp(ψ(x; c))− Avā(ψ(x; c))| < ε.

The definitions above for ϕ-types are consistent with the definitions for ϕ-measures

when we view a type as a {0, 1}-valued local Keisler measure on Lϕ(U) (see Definition

3.33 and 3.34).

Recall that in Chapter 3, we proved a local version of the equivalence of 1 and 2

in Theorem 2.39. Specifically, if ϕ(x; y) is NIP and µ is a local Keisler measure on

ϕ-formulas, then µ is dfs if and only if µ is finitely approximated (see Theorem 3.39).

We will show that the analogue of this fails for simple formulas. In fact, we will find

a complete ϕ-type in a simple theory (specifically, T rs for s > r ≥ 3) that is dfs, but

is not finitely approximated. Before defining this type, we recall some results from

graph theory. First, we state the following corollary of the Ramsey property for the

class of finite Kr
s -free r-graphs.

Theorem 4.24 (Nešetřil & Rödl 1979 [43, 44]). Given s > r ≥ 2 and n ≥ 1, there

is a finite Kr
s -free r-graph G such that any edge-coloring of G with n colors admits a

monochromatic copy of Kr
s−1.

Next, we consider (vertex) colorings of weighted hypergraphs. In particular, given

r ≥ 2, a weighted r-graph is a pair H = (V,w) where V is a finite vertex set and

w : [V ]r → R is a function (here [V ]r is the set of r-element subsets of V ). Suppose

H = (V,w) is a weighted r-graph. Set w(V ) =
∑

σ∈[V ]r w(σ). An r-coloring of H is

a function χ : V → [r]. We say that an r-coloring χ splits σ ∈ [V ]r if χ(u) 6= χ(v) for

all distinct u, v ∈ σ. The weight of an r-coloring χ, denoted w(χ), is the sum of w(σ)

over all σ ∈ [V ]r such that χ splits σ. The next fact is due to Erdős and Kleitman

[23] in the setting of unweighted hypergraphs.
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Lemma 4.25. Let H = (V,w) be a finite weighted r-graph for some r ≥ 2. Then

there is an r-coloring χ of H such that w(χ) ≥ r!
rr
w(V ).

Proof. Given an r-coloring χ of H and σ ∈ [V ]r, let wχ(σ) be w(σ) if χ splits σ, and

0 otherwise. So w(χ) =
∑

σ∈[V ]r wχ(σ). Let n = |V |. Then the number of r-colorings

of H is rn and, given σ ∈ [V ]r, the number of r-colorings of H that split σ is rn−rr!.

So we can compute the average weight of an r-coloring of H as follows:

1

rn

∑
χ

w(χ) =
1

rn

∑
χ

∑
σ

wχ(σ) =
1

rn

∑
σ

∑
χ

wχ(σ) =
1

rn

∑
σ

rnr!

rr
w(σ) =

r!

rr
w(V ).

Therefore some r-coloring of H has weight at least r!
rr
w(V ).

Now we fix s > r ≥ 3. Let M |= T rs be the Fräıssé limit of the class of finite

Kr
s -free r-graphs, and let U � M be a sufficiently saturated elementary extension.

Let ϕ(x1, . . . , xr−1; y) be the formula ¬R(x1, . . . , xr−1, y) ∧
∧
i 6=j xi 6= xj. We define

pR ∈ Sϕ(U) to be the complete ϕ-type containing ϕ(x̄; b) for all b ∈ U .

Theorem 4.26. The ϕ-type pR is dfs, but not finitely approximated.

Proof. It is clear that pR is definable. We show that pR is finitely satisfiable in M .

Fix b1, . . . , bn ∈ U . We want to find a1, . . . , ar−1 ∈ M such that ¬R(ā, bi) holds for

all i ∈ [n], and ai 6= aj for all distinct i, j ∈ [r − 1].

By Theorem 4.24, there is a finite Kr−1
s -free (r − 1)-graph G = (W,E) such that

any edge-coloring of G with n colors admits a monochromatic copy of Kr−1
s−1 . Define an

r-graph H = (W,R) such that, given σ ∈ [W ]r, R(σ) holds if and only if [σ]r−1 ⊆ E.

Then H is Kr
s -free since, if A ∈ [W ]s is such that [A]r ⊆ R then [A]r−1 ⊆ E. So we

may assume that H is an induced subgraph of M\{b1, . . . , bn}.

For i ∈ [n], let Ci = {τ ∈ [W ]r−1 : R(τ, bi)}. Toward a contradiction, suppose

[W ]r−1 = C1 ∪ . . . ∪ Cn. Then we can define an edge coloring c : E → [n] such that

c(τ) = min{i ∈ [n] : τ ∈ Ci}. By choice of G, there is A ∈ [W ]s−1 and ` ∈ [n]
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such that [A]r−1 ⊆ E and c(τ) = ` for all τ ∈ [A]r−1. But then [A ∪ {b`}]r ⊆ R,

contradicting that U is Kr
s -free. So we may fix some σ ∈ [W ]r−1\(C1 ∪ . . .∪Cn). Let

σ = {a1, . . . , ar−1}. Then a1, . . . , ar−1 ∈ M , ¬R(ā, bi) for all i ∈ [n], and ai 6= aj for

all distinct i, j ∈ [r − 1], as desired.

To show that pR is not finitely approximated, we fix ā1, . . . , ān ∈ U r−1 and find

some b ∈ U such that |{t ∈ [n] : ϕ(āt; b)}| < (1− εr)n, where εr = (r − 1)1−r(r − 1)!.

After re-indexing if necessary, we may assume there is some m ≤ n such that, given

t ∈ [n], we have |{at1, . . . , atr−1}| = r − 1 if and only if t ≤ m.

Let V = {ati : t ∈ [m], i ∈ [r − 1]}. For σ ∈ [V ]r−1, set

Iσ =
{
t ∈ [m] : {at1, . . . , atr−1} = σ

}
.

Define the weight function w : [V ]r−1 → {0, 1, . . . ,m} such that w(σ) = |Iσ|. Note

that {Iσ : σ ∈ [V ]r−1} is a partition of [m] (with some Iσ possibly empty), and

so w(V ) = m. By Lemma 4.25, there is an (r − 1)-coloring χ of (V,w) such that

w(χ) ≥ εrm. Let Σ = {σ ∈ [V ]r−1 : χ splits σ}.

We now define an r-graph (V ′, R′) extending (V,R). Let V ′ = V ∪{v∗}, where v∗

is a vertex not in V , and set R′ = R ∪ {σ ∪ {v∗} : σ ∈ Σ}. Toward a contradiction,

suppose (V ′, R′) is not Kr
s -free. Then there is A ∈ [V ′]s such that [A]r ⊆ R′. So

v∗ ∈ A since (V,R) is Kr
s -free. Since |A ∩ V | = s − 1 > r − 1, there are distinct

v1, v2 ∈ A ∩ V such that χ(v1) = χ(v2). Fix σ ∈ [A ∩ V ]r−1 such that v1, v2 ∈ σ.

Then χ does not split σ, and so σ ∪ {v∗} 6∈ R′, which contradicts [A]r ⊆ R′.

Finally, since (V ′, R′) is Kr
s -free, it follows that there is some b ∈ U such that,

given σ ∈ [V ]r−1, R(σ, b) holds if and only if σ ∈ Σ. Let I = {t ∈ [m] : R(āt, b)}.

Then I =
⋃
σ∈Σ Iσ, and so |I| = w(χ) ≥ εrm. So

|{t ∈ [n] : ¬ϕ(āt; b)}| = |I ∪ {m+ 1, . . . , n}| ≥ εrm+ n−m ≥ εrn,
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as desired.

Note that pR does not extend to a global dfs measure, since T rs is dfs-trivial and

pR cannot be extended to a global trivial measure.

Remark 4.27. The main reason to use hypergraphs in the above arguments was to

work in a simple theory. However, a similar situation could be constructed in the

theory T 2
s for s ≥ 4. Specifically, let ϕ(x, y; z) be ¬(E(x, z) ∧ E(y, z)) ∧ x 6= y, and

let p ∈ Sϕ(U) be the complete ϕ-type containing ϕ(x, y; b) for all b ∈ U . Then an

argument similar to the r = 3 case of Theorem 4.26 shows that p is dfs, but not

finitely approximated.

In light of all of the examples above, we make the following conjecture and ask

some questions.

Conjecture 4.28. There is a theory T , and a Keisler measure µ ∈Mx(U) such that

µ is dfs, but not finitely approximated.

Question 4.29. Is there a simple (or even NTP2) theory T and a global Keisler

measure µ ∈ Mx(U) such that either µ is dfs but not finitely approximated, or µ is

finitely approximated but not a frequency interpretation measure? Is there a type in

a simple (or NTP2) theory with either of these properties?
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CHAPTER 5

SEQUENTIAL APPROXIMATIONS

One of the joys of working in a metric space is that the closure of a set coincides

with its sequential closure. In particular, if X is a metric space, A is a subset of

X, and a is in the closure of A, then there exists a sequence of elements in A such

that this sequence converges to a. In [61], Simon showed that global types which are

finitely satisfiable in a countable model of a countable NIP theory admit a similar

property. Fix T a countable theory, U a monster model of T andM a small elementary

submodel. Simon demonstrated the following ([61, Lemma 2.8]):

Theorem 5.1 (Simon). Assume that T is NIP. If p ∈ Sx(U) and finitely satisfiable

in M where |M | = ℵ0, then there exists a sequence of points (ai)i∈ω such that each

ai ∈Mx and limi→∞ tp(ai/U) = p.

The purpose of this chapter is to morally generalize the proof of the above theorem

in two different directions. By mimicking Simon’s proof, we are able to prove the

following,

1. Let T be any countable theory. If p is a type in Sx(U) and is generically stable
over M , then p admits a strong sequential approximation in M , i.e. there exists
a sequence of points in Mx such that their corresponding types converge to p.

2. Assume that T is a countable NIP theory. Let µ be a Keisler measure in Mx(U)
and |M | = ℵ0. If µ is finitely satisfiable in M , then µ admits a sequential
approximation in M , i.e. there exists a sequence of points in (Mx)<ω such that
their corresponding average measures converge to µ.

The proofs of both of these theorems are slightly more involved than one would

expect. For example, we already know many diverse and useful approximation theo-
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rems for measures in NIP theories. Additionally, we know from Proposition 4.2 that

if p is generically stable over a model M and I is a Morley sequence in p over M ,

then p is the sequential limit of this sequence. However, stringing together different

approximation techniques typically results in a modes-of-convergence problem.

As stated previously, the technique used to prove both these theorems mimics

the argument used in [61, Lemma 2.8]. In the generically stable case, the set up is

identical: let p be generically stable over a model M , and I be a Morley sequence

in p over M . As in Simon’s proof, we use both M and I to find an eventually

indiscernible sequence of points in Mx which converge to p|MI . The eventual EM-

type of this sequence over M is precisely pω|M . Using generic stability (specifically,

Proposition 4.2) and compactness, we conclude that this sequence must converge to

p.

The proof of the Keisler measure case is slightly more exotic since there is no

standard notion of a “Morley sequence in a Keisler measure”. Therefore, we must

replace I with another object. We will show that this can be resolved by replacing the

Morley sequence by a countable model Nω containing a family of smooth extensions

of µ|M . This provides more evidence for the intuition that smooth measures can play

the role of realized types, at least in the NIP context. After constructing a countable

model with these “realizations”, we find a sequence of points in (Mx)<ω such that the

corresponding average measures on these tuples converge to µ|Nω . After finding an

ε-eventual indiscernible subsequence, we are able to readapt most of Simon’s proof

technique by making use of known approximation theorems, symmetry properties,

and some basic integration techniques.

In addition to proving these two main theorems, we also describe some basic

properties of strongly sequentially approximated types and sequentially approximated

measures. At the end of the chapter, we examine some concrete examples outside

the generically stable and NIP contexts. Most notably, we observe that there exists a
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type p such that its corresponding Keisler measure is sequentially approximated (even

finitely approximated), but the type itself is not strongly sequentially approximated

(in fact, the types described in both Corollary 4.18 and Theorem 4.21 exemplify this

property).

This chapter is structured as follows: In section 5.1, we describe sequentially

approximated measures and strongly sequentially approximated types. In section 5.2,

we demonstrate that if p is generically stable over M , then p is strongly sequentially

approximated in M . In section 5.3, we show that if T is a countable NIP theory, and

µ is finitely satisfiable in a countable model M , then µ is sequentially approximated

in M . In section 5.4, we exposit some concrete examples of types which are not

(strongly) sequentially approximated but their associated measures are sequentially

approximated.

5.1 Sequentially approximated types and measures

We begin this chapter by isolating the property of sequential approximability.

We assume that T is countable, but make no other global assumptions on T unless

specifically stated. As usual, U is a fixed sufficiently saturated model of T . We recall

some basic facts about convergence. Recall that for any A ⊆ U , both Sx(A) and

Mx(A) are compact Hausdorff topological spaces with the topology induced from

[0, 1]L(A).

Definition 5.2. Fix A ⊆ U , p ∈ Sx(A) and µ ∈Mx(A).

1. We say that a sequence of types (pi)i∈ω, where each pi is in Sx(A), converges
to p if it converges in the Stone space topology on Sx(A), which we write as
“limi→∞ pi = p in Sx(A)”. In particular, for every ψ(x) ∈ Lx(A), there exists
some natural number Nϕ such that for any n > Nϕ, ψ(x) ∈ pn if and only if
ψ(x) ∈ p. Moreover, we say that a sequence (ai)i∈ω of points in Ux converges
to p if tp(ai/A) converges to p in Sx(A).

2. We say that a sequence of measures (µi)i∈ω, where each µi is in Mx(A), con-
verges to µ if it converges in the usual compact Hausdorff topology on Mx(A),
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which we write as “limi→∞ µi = µ in Mx(A)”. In particular, for every ψ(x) ∈
Lx(A) and ε > 0, there exists some natural number Nϕ,ε such that for any
n > Nϕ,ε,

|µn(ϕ(x))− µ(ϕ(x))| < ε.

In addition, we say that a sequence of tuples (ai)i∈ω, where each tuple is an
element of (Ax)<ω, converges to µ if Av(ai) converges to µ in Mx(A).

The following proposition observes the relationships between finitely satisfiable

types/measures and topological closure (in the compact Hausdorff topology).

Proposition 5.3. If p ∈ Sx(U), µ ∈ Mx(U), and p, µ are finitely satisfiable in a

submodel M , then

1. The type p is in the closure of {tp(a/U) : a ∈Mx} in Sx(U).

2. The associated Keisler measure δp is in the closure {δa : a ∈Mx} in Mx(U).

3. The measure µ is in the closure of {Av(a) : a ∈ (Mx)<ω} in Mx(U).

Proof. The proof of 1 is standard and the proof of 2 follows directly from 1. Statement

3 follows from Proposition 2.19 and Fact 2.6.

We now define strongly sequentially approximated types and sequentially approx-

imated measures.

Definition 5.4. Let p ∈ Sx(U) and µ ∈Mx(U). We say that,

1. p is strongly sequentially approximated if there exists M ≺ U and there ex-
ists a sequence of points (ai)i∈ω such that each ai is inMx and limi→∞ tp(ai/U) =
p in Sx(U). In this case, we say that µ is strongly sequentially approxi-
mated in M .

2. µ is sequentially approximated if there exists M ≺ U and there M if
there exists a sequence of tuples (ai)i∈ω such that each ai is in (Mx)<ω and
limi→∞Av(ai) = µ in Mx(U). In this case, we say that p is sequentially
approximated in M .

Warning 5.5. The definition above is only meaningful in the context of types and

measures over large sets of parameters. Indeed, if M is a countable model and T is a
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countable theory, then for every p ∈ Sx(M), there exists a sequence of points in Mx

such that limi→∞ tp(ai/M) = p in Sx(M). The analogous statement also holds for

measures.

Warning 5.6. By Proposition 5.3, a type p in Sx(U) is strongly sequentially ap-

proximated over a model M , then the associated Keisler measure δp is sequentially

approximated over M . The converse fails in general.

5.1.1 Basic properties

We now relate (strongly) sequentially approximated (types) measures to proper-

ties we already know. For intuition, sequential approximability should be thought of

as a strong version of finite satisfiability over a small model or a weaker version of

finite approximability.

Proposition 5.7. Assume that p ∈ Sx(U) and µ ∈Mx(U).

1. If p and µ are (strongly) sequentially approximated in M , then p and µ are
finitely satisfiable in M . Even more, p and µ are finitely satisfiable in a count-
able elementary submodel of M .

2. If µ is sequentially approximated in M , then µ is Borel-definable over M .

3. If µ is finitely approximated in M , then µ is sequentially approximated in M .

4. If T is NIP, then p is strongly sequentially approximated in M if and only if δp
is sequentially approximated in M .

5. Assume that k ⊆ {1, 2, ..., n} and let πk : Sn(U) → Sk(U) and ρk : Mn(U) →
Mk(U) be the obvious projection. If p ∈ Sn(U) and p is strongly sequentially
approximated, then πk(p) is strongly sequentially approximated. Similarly, if
µ ∈Mn(U) is sequentially approximated then so is ρk(µ).

Proof. The first part of statement 1 is obvious. For the second part, we only need

to choose a submodel containing a sequence which sequentially approximates our

type/measure.
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Proof of 2: By statement 1, µ is finitely satisfiable in M and hence M -invariant.

So, for any partitioned formula ϕ(x; y) in L, the map Fϕ
µ : Sy(M) → [0, 1] is well-

defined. Then, this statement follows from the observation that the map Fϕ
µ is Baire-1

(since the sequence of continuous functions
(
Fϕ

Av(a)

)
i∈ω converges pointwise to Fϕ

µ ).

Therefore the map Fϕ
µ is Borel and thus µ is Borel-definable over M .

Proof of 3: Let (ϕn(x; yn))n∈ω be an enumeration of the partitioned L-formulas.

For each n choose an in (Mx)<ω such that for every b ∈ Uyj where j ≤ n, we have

|Av(an)(ϕj(x; b))− µ(ϕj(x; b))| < 1

n
.

It is clear that limn→∞Av(an) = µ in Mx(U).

Proof of 4: Again, the forward direction is trivial. We consider the converse.

If δp is sequentially approximated if M then δp is finitely satisfiable in a countable

submodel M0 by statement 1. It is clear that p is finitely satisfiable in M0. Hence,

by Theorem 5.1, p is strongly sequentially approximated in M0 and hence in M .

Proof of 5: Clear from the definition. Simply consider the sequence restricted to

the appropriate coordinates.

Proposition 5.8. A measure µ is sequentially approximated and definable over M

if and only if µ is finitely approximated over M .

Proof. We first prove the forward direction. The proof is more or less identical to

the proof of Theorem 3.30. Hence, we only sketch the argument. For any partitioned

formula ϕ(x; y) in L, consider the map Fϕ
µ : Sy(M)→ [0, 1]. Let (ai)i∈ω be a sequence

of points in (Mx)<ω such that limi→∞Av(ai) = µ in Mx(U). Recall that each map

Fϕ
Av(a) : Sy(M)→ [0, 1] is continuous and the sequence

(
Fϕ

Av(ai)

)
i∈ω converge pointwise

to Fϕ
µ . Since µ is definable, the map Fϕ

µ is continuous. Then by a standard application

of Mazur’s lemma (Theorem 3.1), there exists a sequence of functions (gj)j∈ω such

that each gj is a rational convex combination of {Fϕ
Av(ai)

: i ≤ nj} for some natural
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number nj and this sequence converges uniformly to Fϕ
µ . Using this sequence, it is

easy to show that µ is finitely approximated over M by choosing a representative

sequence of some gj sufficiently close to Fϕ
µ .

For the converse, µ is definable over M by statement 1 in Proposition 2.30. More-

over, µ is sequentially approximated in M by statement 3 in Proposition 5.7.

Finally, we show that sequentially approximated measures commute with defin-

able measures. It is known in the context of NIP theories that definable measures

commute with finitely satisfiable measures (see [59, Proposition 7.22]), however all

known proofs make use of the fact that measures in NIP theories admit (local) uniform

approximation by averaging on types. In general, it is not clear whether sequentially

approximated measures admit such approximations.

Proposition 5.9. Sequentially approximated and definable measures commute. In

particular, if µ ∈Mx(U), ν ∈My(U), µ is sequentially approximated over M and ν

is definable over M , then µ⊗ ν = ν ⊗ µ.

Proof. Fix a formula ϕ(x; y) in Lxy(U). Assume that M ⊆ N and N contains all

the parameters from ϕ(x; y). Since ν is definable over M (and therefore, definable

over N), we know that the map Fϕ∗
ν : Sx(N)→ [0, 1] is continuous. By Lemma 2.16,

for every ε > 0, there exists formulas ψ1(x), ..., ψn(x) in Lx(M) and real numbers

r1, ..., rn such that

sup
q∈Sy(N)

|Fϕ∗

ν (q)−
n∑
i=1

riχψi(x)(q)| < ε.

Let (aj)j∈ω be a sequence of points in (Mx)<ω such that limj→∞Av(aj) = µ in Mx(U).

Now, we compute

ν ⊗ µ(ϕ(x; y)) =

∫
Sx(N)

Fϕ∗

ν dµ ≈ε
∫
Sx(N)

n∑
i=1

riχψi(y)dµ =
n∑
i=1

riµ(ψi(y))
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=
n∑
i=1

ri lim
j→∞

Av(ψi(aj)) = lim
j→∞

n∑
i=1

ri Av(ψi(aj)) = lim
j→∞

∫
Sx(N)

n∑
i=1

riχψi(y)dAv(aj).

We also compute the other product. By the dominated convergence theorem, we

have

µ⊗ ν(ϕ(x; y)) =

∫
Sy(N)

Fϕ
µ dν = lim

j→∞

∫
Sy(N)

Fϕ
Av(aj)

dν = lim
i→∞

∫
Sx(N)

Fϕ
ν dAv(aj).

Therefore, we have that

|ν ⊗ µ(ϕ(x; y))− µ⊗ ν(ϕ(x; y))| ≤ lim
j→∞

∫
Sx(N)

|Fϕ
ν −

n∑
i=1

riχψ(y)|dAv(aj)

< lim
j→∞

∫
Sx(N)

εdAv(aj) = lim
j→∞

ε = ε.

5.1.2 Egorov’s theorem

It is interesting to note that sequentially approximated measures are not too far

away from finitely approximated measures. In particular, if we fix some measure

on the parameter space, any sequentially approximated measure is almost finitely

approximated. A direct application of Egorov’s theorem gives this result.

Theorem 5.10 (Egorov’s Theorem). Let (X,B, µ) be a finite measure space. Assume

that fi is a sequence of measurable functions from X → R such that (fi)i∈ω converges

to a function f pointwise. Then, for every ε > 0 there exists a closed set Yε ⊂ X

such that fi|Y converges to f |Y uniformly on Yε and µ(X\Yε) < ε.

A proof of Egorov’s theorem can be found in [35, Theorem 3.2.4.1]. As literally a

direct corollary, we have the following application.

Corollary 5.11. Assume that p and µ are (strongly) sequentially approximated in M .
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Let ν be a measure on Sy(M). Then, for every ε > 0, there exists a set Xε ⊂ Sy(M)

such that,

1. ν(Xε) > 1− ε.

2. For every δ > 0 and every partitioned formula ϕ(x; y) ∈ L, there exists aδ in
(Mx)<ω such that for every b ∈ Uy such that tp(b/M) ∈ Xε, we have,

|µ(ϕ(x; b))− Av(aδ)(ϕ(x; b))| < δ.

3. For every δ > 0 and every partitioned formula ϕ(x; y) ∈ L, there exists aδ in
Mx such that for every b ∈ Uy such that tp(b/M) ∈ Xε, we have,

ϕ(x; b) ∈ p ⇐⇒ |= ϕ(aδ, b).

5.2 Generically stable types

In this section, we demonstrate that generically stable types admit a strong se-

quential approximation over models. We assume that T is countable unless explicitly

stated otherwise. We begin with a discussion on eventually indiscernible sequences

which were introduced in [61].

Definition 5.12. Let (ci)i∈ω be a sequence of points in Ux and A ⊂ U . We say

that (ci)i∈ω is an eventually indiscernible sequence over A if for any formula

ϕ(x0, ..., xn) in L(A), there exists some natural number Nϕ such that for any nk >

.... > n0 > Nϕ and mk > ... > m0 > N , we have that

|= ϕ(cn0 , ..., cnk)↔ ϕ(cm0 , ..., cmk).

Fact 5.13. Let (bi)i∈ω be a sequence of points in Ux and assume that |A| = ℵ0. Then,

there exists a subsequence (ci)i∈ω of (bi)i∈ω such that (ci)i∈ω is eventually indiscernible

over A.

Proof. The proof is a standard application of Ramsey’s theorem and taking the diag-

onal. We prove a “continuous” version of this fact in the next section and the proof
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is analogous. See Proposition 5.21 for details.

Now, for any eventually indiscernible sequence (ci)i∈ω over a set of parameters A,

we can associate to this sequence a unique type in Sω(A). We call this the eventual

Ehrenfeucht-Mostowski type (or EEM-type) of (ci)i∈ω over A. We now give the formal

definition.

Definition 5.14. Let (bi)i∈ω be a sequence of points in Ux and A ⊆ U . Then the

eventual Ehrenfeucht-Mostowski type of (bi)i∈ω overA, written EEM((bi)i∈ω)/A),

is a (partial) type in Sω(A) with the following definition: let ϕ(xi0 , ..., xik) be a for-

mula in L(A) where the indices are ordered i0 < ... < ik. Then, ϕ(xi0 , ...xik) ∈

EEM((bi)i∈ω)/A) if and only if there exists some Nϕ such that for any nk > ... >

n0 > Nϕ, we have that U |= ϕ(bn0 , ..., bnk).

Notice that a EEM-type of a sequence is always indiscernible in the following sense:

if we have indices i0, ..., ik and j0, ..., jk where i0 < ... < ik and j0 < ... < jk, then

ϕ(xi0 , ..., xik) is in the EEM-type of (bi)i∈ω over A if and only if ϕ(xj0 , ..., xjk) is. This

follows directly from the definition. Finally, we have one last observation.

Proposition 5.15. Assume that (ci)i∈ω is an eventually indiscernible sequence over

A. Then, EEM((ci)i∈ω/A) is complete.

Proof. Clear from the definitions.

The next lemma proves the bulk of the main theorem. The proof strategy is

as follows: Assume that p is generically stable over a countable model M and let

I be a Morley sequence in p over M . Then, we can find a sequence of points in

M which converge to p|MI in Sx(MI). After moving to an eventually indiscernible

subsequence, we show that the EEM-type of this eventually indiscernible sequence

is pω|M . Now, if this eventually indiscernible subsequence does not converge to p in

Sx(U), we use compactness to contradict generic stability.
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Lemma 5.16. Assume that p ∈ Sx(U) and p is generically stable over M . Assume

moreover that |M | = ℵ0. Then, there exists a sequence (ci)i∈ω of points in Mx such

that limi→∞ tp(ci/U) = p.

Proof. Let I = (ai)i∈ω be a Morley sequence in p over M . Since T , M , and I are

countable, |Lx(MI)| is countable. It follows that {ϕ(x) : ϕ(x) ∈ p|MI} is countable

and we may enumerate this collection of formulas as (ϕi(x))i∈ω. Since p is generically

stable over M , p is finitely satisfiable in M . For each natural number i, we choose bi in

M such that U |=
∧
j≤i ϕj(bi). Now, consider the sequence (bi)i∈ω. By construction,

we have that limi→∞ tp(bi/MI) = p|MI in Sx(MI). By Fact 5.13, we may choose a

subsequence (ci)i∈ω of (bi)i∈ω such that (ci)i∈ω is eventually indiscernible over MI.

We now argue that limi→∞ tp(ci/U) = p in Sx(U). For notation purposes, we will

write (ci)i∈ω as J .

Claim: EEM(J/M) = EM(I/M) = pω|M .

We show this by induction on the length of the formula. We begin with the base

case. Since limi→∞ tp(bi/MI) = p|MI , and (ci)i∈ω is a subsequence of (bi)i∈ω, it is

clear that limi→∞ tp(ci/M) = p|M . Our induction hypothesis is as follows: For any

formula θ(x0, ..., xk) in Lx0,...,xk(M), we have that θ(x0, ..., xk) ∈ EM(I/M) if and

only if θ(x0, ..., xk) ∈ EEM(J/M).

Towards a contradiction, we assume that ¬θ(x0, ..., xk+1) ∈ EEM(J/M) and

θ(x0, ..., xk+1) ∈ EM(I/M). Since ¬θ(x) ∈ EEM(J/M), there exists some natural

numberNθ1 such that for any nk+1 > ... > n0 > Nθ1 , we have that |= ¬θ(cn0 , ..., cnk+1
).

Since θ(x) ∈ EM(I/M), we conclude that |= θ(a0, ..., ak+1). Since p is generi-

cally stable over M , I is totally indiscernible over M (see [50, Proposition 2.1]).

Therefore, |= θ(ak+1, a0..., ak) also holds and so θ(x, a0, ..., ak) ∈ p|Ma0,...,ak . Since

limi→∞ tp(ci/MI) = p|MI , there exists some Nθ2 such that for every n > Nθ2 ,

we have that |= θ(cn, a0, ..., ak). Choose n∗ > max{Nθ1 , Nθ2}. Then, the for-

mula θ(cn∗ , x0, ..., xk) ∈ tp(a0, ..., ak/M). By our induction hypothesis, we have
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that θ(cn∗ , x) ∈ EEM(J/M) and so there exists Nθ3 such that for any mk > ... >

m0 > Nθ3 , we have that |= θ(cn∗ , cm0 , ..., cmk). Now consider what happens when

m0 > max{Nθ3 , n∗}. Then, mk > ... > m0 > n∗ > Nθ1 and so |= ¬θ(cn∗ , ..., cmk) by

our assumption. However, mk > ... > m0 > Nθ3 and therefore |= θ(cn∗ , ..., cmk). This

is a contradiction.

Claim: The sequence (tp(ci/U))i∈ω converges to a type in Sx(U).

It suffices to argue that for any formula ψ(x) ∈ Lx(U), the limi→∞ χψ(ci) ex-

ists. Assume not. Then, we may choose a subsequence (c′i)i∈ω of (ci)i∈ω such that |=

ψ(c′i)↔ ¬ψ(c′i+1). For notational purposes, we also denote ((c′i)i∈ω) as J ′. It is clear

that (c′i)i∈ω is also eventually indiscernible and EEM((c′i)i∈ω/M) = EEM((ci)i∈ω/M).

Then, by using this sequence, one can show that the following type is finitely consis-

tent:

Θ1 = EEM(J ′/M) ∪
⋃

i is even

{ψ(xi) ∨ ¬ψ(xi+1)}.

If we let (di)i∈ω realize this type, then (di)i∈ω is a Morley sequence in p over M since

EEM(J ′/M) = EEM(J/M) = EM(I/M) = pω|M .

Then, |= ψ(di) if and only if i is even. This contradicts generic stability since {i ∈

ω :|= ψ(di)} is neither a finite or cofinite subset of ω.

Claim: The sequence (tp(ci/U))i∈ω converges to p.

Again, assume not. Since (tp(ci/U))i∈ω converges, there must be a formula θ(x) ∈

Lx(U) such that θ(x) ∈ p and there exists an N such that for every n > N , we have

that |= ¬θ(cn). By virtually the same argument, one can show the following type is

finitely consistent:

Θ2 = EEM(J/M) ∪
⋃
i∈ω

¬θ(xi).

If we let (di)i∈ω realize this type, then again (di)i∈ω is a Morley sequence in p over M .
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Then, limi→∞ tp(di/U) 6= p in Sx(U). This contradicts statement 2 of Proposition

4.2 and completes the proof.

Theorem 5.17. Assume that p ∈ Sx(U) and p is generically stable over M . Then,

p is strongly sequentially approximated over M .

Proof. By Proposition 4.2, p is generically stable over a model M if and only if δp

is FIM over M . Therefore δp is FIM over M . By Proposition 2.35, δp is FIM over

a countable model. So, p is generically stable over a countable model and we may

apply Lemma 5.16.

Corollary 5.18. Assume that T is countable or uncountable. Let U be a monster

model of T and M a small elementary substructure of U . Assume that p is generically

stable over M . Then, for any countable collection of formulas ∆ = {ψi(x, yi)}i∈ω in

L, there exists a sequence of points (ci)i∈ω each in Mx such that limi→∞ tp∆(ci/U) =

p|∆.

Proof. Let L′ be a countable sublanguage of L containing all the formulas in ∆. By

Remark 4.3 the corresponding type p′ is generically stable over the corresponding

model M ′. Hence, we may apply Theorem 5.17.

We end this section by collecting the known examples of strongly sequentially

approximated types.

Observation 5.19. Assume that p ∈ Sx(U) and let M be a small elementary sub-

model. Then, p is strongly sequentially approximated over M if:

1. If T is stable, and p is invariant over M .

2. If T is NIP, |M | = ℵ0, and p is finitely satisfiable in M .

3. If p is generically stable over M .

We just proved 3. Clearly, 1 follows from 3 (we remark that it also follows from 2).

As noted previously, the proof of 2 is precisely Lemma 2.8 of [61].
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Question 5.20. Does there exist a global type p which is strongly sequentially ap-

proximated and definable over a model M but is not generically stable over M?

Under what model theoretic tameness assumptions can this happen (e.g. Simple,

NTP2, NSOP1)?

5.3 Sequential approximations in NIP theories

Throughout this entire section, we assume that T is a countable NIP theory. We

show that measures which are finitely satisfiable in a countable model of a countable

NIP theory are sequentially approximated. We begin by discussing a “continuous”

analogue of eventually indiscernible sequences.

5.3.1 ε-Eventually indiscernible sequences

We fix some notation. If ϕ(x0, ..., xn) is a formula in L(U) and a0, ..., an is a

sequence of tuples in (Ux)<ω where each ai = (a0
i , ..., a

mi
i ), then we write ϕc(a0, ..., an)

to mean,
n⊗
i=0

Av(ai)xi(ϕ(x0, ..., xn)).

We observe that by unpacking the definition of the product measure, our formula can

be computed as follows:

ϕc(a0, ..., an) =
1∏n

i=0mi

mi∑
j0=0

...
mn∑
jn=0

χϕ(aj00 , ..., a
jn
n ).

Definition 5.21. Let (ci)i∈ω be a sequence of tuples in (Ux)<ω and let A ⊆ U be

a collection of parameters. Then, we say that the sequence (ci)i∈ω is ε-eventually

indiscernible over A if for any formula ϕ(x0, ..., xn) in L(A) and any ε > 0, there

exists Nε,ϕ such that for any nk > ... > n0 > N and mk > .... > m0 > N , we have

that;

|ϕc(an0 , ..., ank)− ϕc(am0 , ..., amk)| < ε
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Proposition 5.22. Let (ai)i∈ω be a sequence of tuples in (Ux)<ω. If A is a countable

set of parameters, then there exists some subsequence (ci)i∈ω of (a)i∈ω such that (ci)i∈ω

is ε-eventually indiscernible over A.

Proof. This proof is a standard application of Ramsey’s theorem applied to the “con-

tinuous” setting. Enumerate all formulas pairs in L(xi)i∈ω(A) × { 1
n

: n ∈ N>0}. Let

(ai)i∈ω = (a0
i )i∈ω and set B0 = {a0

i : i ∈ ω}. Now, assume we have constructed

the subsequence (ali)i∈ω and Bl. We now construct (al+1
i )i∈ω and Bl+1. Assume that

(ϕ(x0, ..., xk),
1
n
) is the l+1 indexed pair in our sequence. Then we define the coloring

rl+1 : ((Bl)
k)2 → {0, 1} where r(aln0

, ..., alnk ; a
l
m0
, ..., almk) = 0 if and only if,

|ϕc(aln0
, ..., alnk)− ϕc(a

l
m0
, ..., almk)| <

1

n
.

By Ramsey’s theorem, there is a monochromatic subset B
′

l of Bl. Since finitely many

ball of radius 1
n

cover [0, 1], it must be the case that this monochromatic subset

has color 0. Let (al+1
i )i∈ω be the obvious reindexed subsequence of (ali)i∈ω with the

elements only from the monochromatic set B
′

l . Then, we let Bl+1 = {al+1
i : i ∈ ω}.

By construction, the sequence (aii)i∈ω is ε-eventually indiscernible.

We now present a collection of facts which will help us demonstrate that the asso-

ciated averaging measures along ε-eventually indiscernible sequences always converge

(in Mx(U)). The first fact is elementary and left to the reader as an exercise.

Fact 5.23. Assume that (µi)i∈ω is a sequence of measures in Mx(U). If for every

formula ϕ(x) ∈ Lx(U), limi→∞ µ(ϕ(x)) converges, then (µi)i∈ω converges to a mea-

sure.

The next collection of facts can be found in [33]. In particular, 1 follows immediately

from Lemma 2.10 while 2 and 3 are from Corollary 2.14. The proof of Lemma 2.10

is non-trivial and is an interpretation of results in [4]. We suggest the reader review

Definition 2.27 and Observation 2.42 before continuing this section.
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Fact 5.24 (T is NIP). Let µ, ν ∈ Mx(U) such that µ, ν are invariant over M and

suppose that λ is a finitely additive probability measure on L(xi:)i∈ω(U) where |xi| =

|xj| for each i, j. Recall that a measure λ on L(xi)i∈ω(U) is said to be A-indiscernible

if for every increasing sequence of indices i0, ..., in and any formula ϕ(xi0 , ..., xin) in

L(xi)i∈ω(A), we have that

λ(ϕ(xi0 , ..., xin)) = λ(ϕ(x0, ..., xn)).

The following statements are true.

1. if λ ∈ Mω(U) and λ is ∅-indiscernible, then for any formula ϕ(x; b) ∈ Lx(U),
we have that limi→∞ λ(ϕ(xi, b)) exists.

2. Then µω and νω are M-indiscernible.

3. If µω|M = νω|M , then µ = ν.

Proposition 5.25. If (ci)i∈ω is an ε-eventually indiscernible sequence over M , then

the sequence (Av(ci))i∈ω converges in Mx(U).

Proof. Assume not. Then there exists some formula ψ(x; b) in Lx(U), some ε0 > 0,

and some subsequence (c′i)i∈ω of (ci)i∈ω such that for each natural number i,

|Av(c′i)(ψ(x; b))− Av(c′i+1)(ψ(x; b))| > ε.

It is clear that (c′i)i∈ω is also ε-eventually indiscernible over M . We now work towards

proving a contradiction to 1 of Fact 5.24 via (topological) compactness of the space

Mω(U). For any formula ϕ(xi0 , ..., xik) ∈ L(xi)i∈ω(M), we let rϕ be the unique real

number such that for every ε > 0, there exists an Nε,ϕ such that for any nk > ...n0 >

Nϕ,ε we have

|ϕc(c′n0
, ..., c′nk)− rϕ| < ε.

Since the sequence (c′i)i∈ω is ε-eventually indiscernible over M , rϕ exists for each
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ϕ(x) ∈ L(xi)i∈ω(M). Now, for every ϕ(x) ∈ L(xi)i∈ω(M) and ε > 0, we define the

following family of closed subsets of Mω(U);

Cϕ,ε =
{
λ ∈Mω(U) : rϕ − ε ≤ λ(ϕ(x)) ≤ rϕ + ε

}
.

We now define another family of sets and argue that they are closed.

Di =
{
λ ∈Mω(U) : |λ(ϕ(xi, b))− λ(ϕ(xi+1, b))| ≥

ε0
2

}
.

Notice that Di is closed since for every natural number i, the evaluation map Ei :

Mω(U) → [0, 1] via Ei(λ) = λ(ψ(xi, b)) is continuous. Define Fi = Ei − Ei+1 and

Hi = Ei+1 − Ei. Then we have, Di = F−1
i ([ ε0

2
, 1]) ∪ H−1

i ([ ε0
2
, 1]). Hence, Di is a

finite union of closed sets and therefore closed. It is not difficult to show using (c′i)i∈ω

that the collection Φ = {Cε,ϕ : ε > 0, ϕ(x) ∈ Lω(M)} ∪ {Di : i ∈ ω} has the finite

intersection property. Therefore, there exists some λ ∈Mω(U) in the intersection of

all the sets in ϕ. Moreover, λ is indiscernible (even more, indiscernible over M) by

construction. Since λ is in Di for each i, its existence contradicts 1 of Fact 5.24.

5.3.2 Smooth sequences

In this subsection, we define the notion of a smooth sequence and prove the main

theorem. If µ is a global M -invariant measure, then a smooth sequence is a collection

of models and measures meant to replicate a Morley sequence. The ideology is the

following: A Morley sequence in p over M is to the infinite type pω|M as a smooth

sequence in µ over M is to the measure µω|M . The following is the formal definition.

We remark that many of the computations in this section make use of Fact 2.34.

Definition 5.26. Let µ ∈ Mx(U) and assume that µ is invariant over some small

model M . Then, a smooth sequence in µ over M is a sequence of pairs of small
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models and measures, (Ni, µi)i∈ω, such that:

1. M ≺ N0 and Ni ≺ Ni+1 and each Ni is small.

2. µi is smooth over Ni.

3. µ0|M = µ|M and for i > 0, µi|Ni−1
= µ|Ni−1

.

Furthermore, we define
⊗ω

i=0 µi =
⋃ω
i=0

⊗n
i=0 µi which is a measure on L(xi)i∈ω(U).

Proposition 5.27 (T NIP). Assume that µ ∈ Mx(U) and µ is M-invariant. Let

(Ni, µi)i∈ω be a smooth sequence in µ over M . Then,
⊗ω

i=0 µi|M = µω|M .

Proof. For our base case, it is true by construction that µ0|M = µ|M . For our

induction hypothesis, we assume that µk−1|M =
⊗k−1

i=0 µi|M . We fix λ =
⊗k−1

i=0 µi

and show the induction step: Let ϕ(x0, ..., xk) be any formula in Lx0,...,xk(M). Since

the product of smooth measures is smooth (Fact 2.34), we have that λ is generically

stable over Nk−1. Therefore, λ is invariant over Nk−1. We let x = (x0, ..., xk−1) and

consider the computation:

µk ⊗ λ(ϕ(x0, ..., xk−1, xk)) =

∫
Sx(Nk)

Fϕ
µk
d(λ|Nk) =

∫
Sxk (Nk)

Fϕ∗

λ d(µk|Nk)

Since λ is invariant over Nk−1 and µk|Nk−1
= µ|Nk−1

,

=

∫
Sxk (Nk−1)

Fϕ∗

λ d(µk|Nk−1
) =

∫
Sxk (Nk−1)

Fϕ∗

λ d(µ|Nk−1
) =

∫
Sx(Nk−1)

Fϕ
µ d(λ|Nk−1

)

Since µ is invariant over M , we may continue,

=

∫
Sx(M)

Fϕ
µ d(λ|M) =

∫
Sx(M)

Fϕ
µ d(µk−1|M) = µ⊗ µn(ϕ(x0, ..., xk−1, xk)).
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Proposition 5.28. If T is a countable NIP theory, µ ∈Mx(U), and µ is invariant

over M where |M | = ℵ0, then there exists a smooth sequence (Ni, µi)i∈ω in µ over M

such that each Ni is countable.

Proof. We construct the sequence as follows: At step 1, consider µ|M . Let µ0 be a

smooth extension of µ|M to U . Since T is countable, by the Proposition 2.35 we know

that there exists N0 such that M ≺ N0 ≺ U , µ0 is smooth over N0, and |N0| = ℵ0. At

step m, we repeat the process. We consider µ|Nm−1 , choose µm a smooth extension

of µ|Nm−1 to Mx(U), and let Nm be a countable model such that Nm−1 ≺ Nm ≺ U

and µm is smooth over Nm.

We now begin the proof of our main theorem. Again, the proof is similar to both

the generically stable case in the previous section and even more so to the proof of

Lemma 2.8 in [61]. Here, however, the major difference is that we replace the Morley

sequence in that proof with a countable model, Nω, which contains a smooth sequence

in µ over M . Then, we find a sequence of tuples in M such that the associated average

measures converge to µ|Nω in Mx(Nω). After choosing an ε-eventually indiscernible

subsequence, we know from our NIP assumption that this new sequence converges

to a global measure ν in Mx(U). Finally, we demonstrate that νω|M = µω|M which

completes the proof.

Theorem 5.29 (T is NIP). Let µ be finitely satisfiable in a countable model M .

Then, there exists a sequence (a)i∈ω of elements, each in (Mx)<ω, such that for any

θ(x) ∈ Lx(U), we have that,

lim
i→∞

Av(ai)(θ(x)) = µ(θ(x)).

Proof. Choose a smooth sequence (Ni, µi) in µ over M . By Proposition 5.28 we may

let Nω be a countable model such that Nω contains each Ni. We begin by constructing

a sequence of tuples of elements in (Mx)<ω such that Av(ai)i∈ω converges to µ|Nω in
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Mx(Nω). Since Nω is countable, we let (θi(x))i∈ω be an enumeration of the formulas

in Lx(Nω). Since µ is finitely satisfiable in M , we can find we find ak ∈ (M)<ω such

that for any j ≤ k, we have that,

|µ(θj(x))− Av(ak)(θj(x))| < 1

k
.

By construction, it is clear that the sequence (ai)i∈ω converges to µ|Nω in Mx(Nω).

Now, we let (ci)i∈ω be an ε-almost indiscernible subsequence of (ai)i∈ω. Then, the se-

quence (ci)i∈ω converges in Mx(U) by Proposition 5.25. Assume that (ci)i∈ω converges

to some measure ν ∈ Mx(U). Hence, ν is finitely satisfiable in M by Proposition

5.7 and therefore ν is invariant over M . We now show that νω|M = µω|M . This will

conclude the proof by 3 of Fact 5.24.

Since (ci)i∈ω is a subsequence of (ai)i∈ω, it follows immediately that ν|Nω = µ|Nω

and therefore ν|M = µ|M . Now we proceed by induction on n. We assume that

νn|M = µn|M . Fix ϕ(x0, ..., xn+1) in L(M). Let λ =
⊗n

i=0 µi. Then, by the Proposi-

tion 5.27, µn|M = λ|M . We let x = (x0, ..., xn). Each step in the following computa-

tion follows from either our induction hypothesis, base case, Proposition 5.27, Fact

2.34 or changing our space of integration.

ν ⊗ νn(ϕ(x0, ..., xn+1)) =

∫
Sx(M)

Fϕ
ν d(νn|M) =

∫
Sx(M)

Fϕ
ν d(µn|M)

=

∫
Sx(M)

Fϕ
ν d(λ|M) =

∫
Sx(Nω)

Fϕ
ν d(λ|Nω) =

∫
Sxn+1 (Nω)

Fϕ∗

λ d(ν|Nω)

=

∫
Sxn+1 (Nω)

Fϕ∗

λ d(µ|Nω) =

∫
Sx(Nω)

Fϕ
µ d(λ|Nω) =

∫
Sx(M)

Fϕ
µ d(λ|M)

=

∫
Sx(M)

Fϕ
µ d(µn|M) = µ⊗ µn(ϕ(x0, ..., xn+1)).
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We now observe that we have another proof of the theorem that global measures in

NIP theories which are definable and finitely satisfiable are also finitely approximated.

Corollary 5.30. If T is a countable NIP theory and µ is dfs over M , then µ is

finitely approximated over M .

Proof. By Proposition 2.35, µ is dfs over a countable model, M0. By the previous

result, µ is sequentially approximated in M0. Since µ is also definable, an application

of Proposition 5.8 yields the result.

Observation 5.31. Assume that µ ∈ Mx(U) and let M be a small elementary

submodel. Then, µ is sequentially approximated in M if:

1. T is stable, and µ is invariant over M .

2. T is NIP, |M | = ℵ0, and µ is finitely satisfiable in M .

3. µ is finitely approximated in M .

5.4 Examples

In this section, we exhibit some concrete examples of types which are not strongly

sequentially approximated. We begin by describing a type in an NIP theory which is

finitely satisfiable in a small model but not strongly sequentially approximated (and

it’s associated Keisler measure is not sequentially approximated). Before we begin,

we remind the reader of the following observation: If a sequence in a topological

space converges, then every every subsequence converges (to the same limit).

Proposition 5.32. Let M = (ω1;<) with the usual ordering and let T< be the theory

of M in the language {<}. Recall that T< is NIP. Let p ∈ Sx(ω1) be any complete

type extending {α < x : α < ω1}. Let U be a monster model of T< such that M ≺ U

and let p∗ ∈ Sx(U) be any global coheir of p. Then, p∗ is not strongly sequentially

approximated.
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Proof. Assume for contradiction that p∗ is strongly sequentially approximated over

some model N . Then there exists a sequence of points (bi)i∈ω in N such that

limi→∞ tp(bi/U) = p∗ in Sx(U). By Ramsey’s theorem, there is either an infinite

strictly increasing or an infinite strictly decreasing subsequence. Assume that there

is an infinite increasing subsequence, (ci)i∈ω of (bi)i∈ω. Notice that for every ci, it

must be the case that ci < x ∈ p∗. Since p∗ is a coheir of p, p∗ is finitely satisfiable

in ω1. So, for each ci there exists α in ω1 such that ci < α. Now, for each ci, we

let αi = min{α ∈ ω1 : U |= ci < α}. Since ω1 is well-ordered, αi is well-defined.

Now, we let β be the supremum (in ω1) of {αi : i ∈ ω}. Then, for each i we have

that ci < αi < β. Moreover, we know that β < x ∈ p and so β < x ∈ p∗. Now, we

consider the formula ψ(x) = x < β. For each i ∈ ω, we have that |= ψ(ci), and so

there exists some N , such that for every n > N , |= ψ(bi). This is a contradiction

since ¬ψ(x) ∈ p∗.

Now we assume that (ci)i∈ω is a decreasing subsequence. Notice that for each

i, ci > x ∈ p∗. By saturation, there exists c∞ such that c∞ < ci for all i and

c∞ > x ∈ p∗. Setting ψ(x) = c∞ < x we see again that there exists some natural

number N such that for every n > N , |= ψ(bi). This again is a contradiction since

¬ψ(x) ∈ p∗.

Proposition 5.33. Let p∗ be as in Proposition 5.32. Then the associated Keisler

measure δp∗ is not sequentially approximated.

Proof. Clear from 4 of Proposition 5.7.

The following example was demonstrated to us in conversations with Gabriel

Conant.

Proposition 5.34. Recall Theorem 4.21. Let T 2
s be the theory of the random Ks-free

graph. Let p be the unique global complete type extending the formulas {¬E(x, b) :

b ∈ U}. Then, δp is sequentially approximated (even finitely satisfiable) but p is not
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strongly sequentially approximated. Moreover, T 2
s admits no (non-realized) strongly

sequentially approximated types.

Proof. The proof that δp is finitely approximated can be found in Theorem 4.21.

By 3 of Proposition 5.7, δp is sequentially approximated. By 5 of Proposition 5.7,

it suffices to show that there are no non-realized types in one variable which are

strongly sequentially approximated. Let p be any type in Sx(U) and assume that

(bi)i∈ω is a sequence of points in Mx converging to p. Since p is non-realized, we may

assume that the points in (bi)i∈ω are distinct. Then, by Ramsey’s theorem, there

is a subsequence which is either independent or complete. It cannot be complete,

because that would violate Ks-freeness. Therefore, (bi)i∈ω contains an independent

subsequence, call it (ci)i∈ω. By compactness, there exists a a ∈ U such that |= ϕ(ci, a)

for every even i. Then, (ci)i∈ω does not converge in Sx(U) and so (bi)i∈ω does not

converge in Sx(U).

Proposition 5.35. Let U |= T ∗feq2 and q ∈ S2(U) (see Corollary 4.18). Then, δq is

finitely approximated, but not strongly sequentially approximated.

Proof. Again, see Corollary 4.18 to see why δq is finitely approximated. Assume

that q is strongly sequentially approximated over M . Then, there exists a sequence

(ci)i∈ω = ((a1
i , a

2
i ))i∈ω such that each (a1

i , a
2
i ) ∈ O(M)× O(M) and (ci)i∈ω converges

to q in Sx(U). Consider the formula ϕ(x1, x2, y) = ¬E(x1, x2, y). Notice for every

b ∈ P (U), ϕ(x1, x2; b) ∈ p.

Case 1: There exists an infinite disjoint subsequence, i.e. there exists a sub-

sequence (c′i)i∈ω of (ci)i∈ω such that {a1′
j , a

2′
j } ∩ {a1′

k , a
2′

k } = ∅. Then, there exists

b ∈ P (U) such that |= E(a1′
j , a

2′
j , b) for every c′j in (c′i)i∈ω. Then (c′i)i∈ω does not

converge to q and so (c)i∈ω cannot converge to q.

Case 2: There does not exist an infinite disjoint subsequence. Then, there exists a

finite set B ⊂ O(M) such that for each ci, {a1
i , a

2
i }∩B 6= ∅. By the infinite pigeon hole
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principle, there exists an infinite subsequence (c′i)i∈ω of (ci) and an element d ∈ B such

that for each c′j, d ∈ {a1′
j , a

2′
j }. So, consider the formula θ(x1, x2) ≡ x1 = d ∨ x2 = d.

Then, for each i in our subsequence U |= θ(c′i) and so (c′i)i∈ω does not converge to q

in S2(U) (since clearly ¬θ(x1, x2) ∈ q). Since (c′i)i∈ω does not converge, neither does

(ci)i∈ω.

We leave the following exercise for the curious reader.

Exercise 5.36. Let TR be the theory of the Random Graph and let U a monster

model of TR. Then Sx(U) has no strongly sequentially approximated types and

Mx(U) no sequentially approximated measures.
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CHAPTER 6

CONVOLUTION ALGEBRAS OF KEISLER MEASURES

This chapter is joint work with Artem Chernikov and is a modified portion of our

preprint Definable convolution and idempotent Keisler measures which is currently

in preparation [6]. The connection between model theory and topological dynamics

began with the work of Newelski [45, 47]. Newelski introduced various notions and

ideas from topological dynamics into the model-theoretic study of definable groups.

A fundamental observation of this research is that certain spaces of types over a

definable group natrually carry the algebraic structure of a compact left-continuous

semigroup (see Fact 6.11). In a broad sense, this operation on types (over a definable

group) can be extended to a large class of Keisler measures (over the same group),

where this operation corresponds to convolution.

Before moving to the model theory context, let us first recall the classical setting.

Let G be a locally-compact topological group. The space of bounded, regular, Borel

probability measures on G carries an algebraic structure, namely the convolution

operation. If µ and ν are measures on G, then the convolution product of these two

measures is defined via:

µ ? ν(A) =

∫
y∈G

∫
x∈G

χA(x · y)dµ(x)dν(y),

where A is any Borel subset of G and χA is the characteristic function of A. Moreover,

we say that a measure µ is idempotent if µ ? µ = µ. The first major connection be-

tween the convolution product and topological group theory begins with the following
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theorem of Wendel [67, Theorem 1].

Theorem 6.1 (Wendel). Let G be a compact topological group and µ a regular Borel

probability measure on G. Then µ is idempotent if and only if the support of µ is

a closed subgroup of G and the restriction of µ to this subgroup is the unique (bi-

invariant) normed Haar measure.

Conceptually, this result links the existence of an idempotent measure on a com-

pact group with the existence of an algebraic substructure of the same group. We

remark that this line of research was extended to the class of locally compact abelian

groups by Rudin [55] and Cohen [12]. Fortunately for model theory, individuals such

as Glicksberg [28, 29] and Pym [52, 53] continued this research into the category of

(semi-)topological semigroups. With these historical connections in mind, we inves-

tigate the algebraic structure of Keisler measures under definable convolution. The

following three questions should act as a guide for this chapter.

1. Under which conditions can the convolution product of two Keisler measures
be defined?

2. What structural properties arise from the existence of an idempotent Keisler
measure?

3. Is there a connection between convolution algebras and Ellis semigroups?

In Section 6.1, we extend the usual product ⊗ on Borel-definable measures to

a slight larger context. We will define the product ⊗̃ which only requires the fiber

function of the measure on the left hand side of the product to be Borel when restricted

to the support of the right hand side (Definition 6.3). We will see that this product

both extends the usual product on invariant types (see Definition 1.2 for definition)

and well as the product on Borel-definable measures (see Proposition 6.5 for the proofs

of both claims). In response to Question 1, we define the convolution product on ∗-

Borel pairs of Keisler measures in terms of ⊗̃ (Definition 6.9). We then observe some
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basic properties, e.g. this convolution product extends the coheir product studied by

Newelski and others (Proposition 6.11).

Following Wendel, the expectation is that there is a connection (in tame contexts)

between idempotent measures and group objects in the definable category. In the

Section 6.2, we investigate idempotent Keisler measures (Definition 6.15). We observe

that right invariant measures of type-definable subgroup are idempotent (Proposition

6.17). We remark that to show this result, we need to make use of the extended notion

of product, namely ⊗̃ (it is not clear, a priori, that right invariant Keisler measures

are Borel-definable). As in Wendel’s proof, we shift our focus to investigating the

supports of idempotent Keisler measures. In general, these remain mysterious and so

we restrict ourselves to the dfs context. We prove that the support of an idempotent

dfs Keisler measures equipped with the usual coheir product, i.e. (sup(µ), ∗), is a

compact, left-continuous semigroup with no proper closed two-sided ideals (Corollary

6.23 and Theorem 6.28). Through understanding the support of idempotent dfs

measures, we are able to answer Question 2 in the context of stable groups and give

a complete classification akin to Wendel’s work. In the stable context, we prove

that idempotent Keisler measures are in unique correspondence with type-definable

subgroups. More precisely, a measure µ is idempotent if and only if µ is the unique

invariant Keisler measures concentrating on its (type-definable) stabilizer (Theorem

6.42).

In the final section, we respond to Question 3. Definable group actions in the

NIP context where studied extensively in [9] and [7]. In section 6.3, we demonstrate

a concrete connection between Ellis semigroups and our definable convolution semi-

group in the NIP context. Newelski observed that the semigroup (Sx(G, G), ∗) on the

space of global types finitely satisfiable in a small model G ≺ G (with the standard

coheir product) is isomorphic to the Ellis semigroup E(Sx(G, G), G) where G acts on

Sx(G, G) [47]. In the NIP setting, we prove an analogous result for Keisler measures.
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The convex hull of Dirac measures concentrating on points in G, conv(G), acts nat-

urally on the space Mx(G, G). We prove that the Ellis semigroup of this action is

isomorphic to the convolution semigroup
(
Mx(G, G), ∗

)
(Theorem 6.51).

6.1 Definable convolution

6.1.1 Products revisited

In this subsection, we slightly generalize our standard notion of product (⊗)

so that we fix a technical issue which arrises later when we define our convolution

product. Consider the following scenario: suppose that G is a monster model of a

group and H is a type-definable subgroup. If H admits a right-invariant measure

µ, then one can intuitively compute the convolution of µ with itself. Namely, the

convolution product of µ with itself should be equal to µ. While it is not obvious that

measures of this kind are Borel-definable, this computation can be realized by slightly

tweaking the domain of the integral in Definition 2.23. Moreover, this newish notion

of product (which we denote as ⊗̃) extends both the Morley product of invariant

types and the standard product on Borel-definable measures (Proposition 6.5).

Definition 6.2. Let µ ∈ Mx(U), ν ∈ My(U), and ϕ(x; y) ∈ Lxy(U). Then, we say

that the triple (µ, ν, ϕ) is Borel if there exists N ≺ U such that;

1. N contains all the parameters from ϕ(x; y).

2. For any q ∈ sup(ν|N) and d, d′ ∈ Uy where d, d′ |= q, we have that µ(ϕ(x; d)) =
µ(ϕ(x; d′)). Intuitively, µ is invariant over the support of ν|N .

3. The map Fϕ
µ,N : sup(ν|N)→ [0, 1] is Borel (with respect to the topological space

sup(ν|N)), where Fϕ
µ,N(q) = µ(ϕ(x; d)) and d is some/any realization of q. This

is well defined by requirement 2.

Moreover, if N satisfies the hypothesis above for the triple (µ, ν, ϕ), then we say that

(µ, ν, ϕ) is Borel over N .
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Definition 6.3. Let µ ∈ Mx(U), ν ∈ My(U), and ϕ(x; y) ∈ Lxy(U). Assume that

(µ, ν, ϕ) is Borel. Then, we compute the product as follows;

µ⊗̃ν(ϕ(x; y)) =

∫
sup(ν|N )

Fϕ
µ,NdνN ,

where (µ, ν, ϕ) is Borel over N and the measure νN is the restriction of the regular

Borel measure ν|N on Sy(N) to the compact subset sup(ν|N). As usual, when there

is no possibility for confusion, we will write Fϕ
µ,N simply as Fϕ

µ .

We check that our definition is well-defined.

Proposition 6.4. Assume that (µ, ν, ϕ) is Borel. Then, µ⊗̃ν(ϕ(x; y)) does not de-

pend on the choice of N .

Proof. This proof is practically identical to the method used in [59, Proposition 7.19].

Assume that (µ, ν, ϕ) is Borel over M and N . It suffices assume that M ⊆ N since

we may always choose a common extension. Let r : sup(ν|N) → sup(ν|M) be the

natural restriction map. Then Fϕ
µ,M ◦ r = Fϕ

µ,N and the pushforward of the measure

νN , namely r∗(νN), is equal to νM by Remark 2.12. Hence, the following sequence of

equations hold: ∫
sup(ν|M )

Fϕ
µ,MdνM =

∫
sup(ν|M )

Fϕ
µ,Mdr∗(νN)

=

∫
sup(ν|N )

(
Fϕ
µ,M ◦ r

)
dνN =

∫
sup(ν|N )

Fϕ
µ,NdνN .

Proposition 6.5. The product ⊗̃ extends both the Morely product on invariant types

as well as the product of Borel-definable Keisler measures. In particular,

1. Let p ∈ Sx(U) and q ∈ Sy(U). Assume that p is invariant. Then for any formula
ϕ(x; y) ∈ Lxy(U), we have that ϕ(x; y) ∈ p⊗q if and only if δp⊗̃δq(ϕ(x; y)) = 1.
In other words, δp⊗q = δp⊗̃δq.
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2. Let µ ∈ Mx(U) and ν ∈ My(U). Assume that µ is Borel-definable. Then for
any formula ϕ(x; y) ∈ Lxy(U), we have that µ⊗ ν(ϕ(x; y)) = µ⊗̃ν(ϕ(x; y)). In
other words, µ⊗ ν = µ⊗̃ν.

Proof. We first prove statement 1. Fix a L(U)-formula ϕ(x; y) and assume that p

is invariant over N where N contains all the parameters from ϕ. Since q is a type,

sup(δq|N) is a single point. Therefore, any map from this space to the reals is Borel.

Let b ∈ Uy and b |= q|N . Then

δp⊗̃δq(ϕ(x; y)) =

∫
sup(δq |N )

Fϕ
δp
d(δq)N = Fϕ

δp
(q|N) =


1 ϕ(x; b) ∈ p,

0 ¬ϕ(x; b) ∈ p.

By above, δp⊗̃δq(ϕ(x; y)) = 1 if and only if ϕ(x; y) ∈ tp(a, b/M) where b |= q and

a |= q|Nb.

Now we prove statement 2. This follows from the fact that integrals in our context

depend only on their support. In particular,

µ⊗ ν(ϕ(x; y)) =

∫
Sy(N)

Fϕ
µ d(ν|N) =

∫
sup(ν|N )

Fϕ
µ dνN = µ⊗̃ν(ϕ(x; y)).

Remark 6.6. To be pedantic, let p ∈ Sx(U) and q ∈ Sy(U) and assume p is invariant

(say, over N). Then, the product δp ⊗ δp is not always well-defined since the fiber

maps of the form Fϕ
δp

: Sy(N) → [0, 1] may not be Borel. However, Fϕ
δp
|sup(δq |N ) is a

Borel map from sup(δq|N) to R since sup(δq|N) is a single point.

Notation 6.7. For the rest of the chapter, we will identify ⊗̃ with ⊗.

6.1.2 Basic properties of convolution

Throughout the rest of this chapter, we let L = {e, ·, ...} be a language extending

the language of groups and T be an L-theory where ‘e’ is interpreted as the identity
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and ‘·’ as multiplication. We let G be a sufficiently saturated model of T and we now

use the letters ‘x, y’ to denote tuples of variables of length 1. We begin by introducing

our convolution product, fittingly called the definable convolution. Similar to the

classical case, this operation takes in pairs of measures in Mx(G) and returns a

measure in the same space.

Notation 6.8. For any formula ϕ(x) ∈ Lx(G), we let ϕ′(x; y) = ϕ(x · y).

Definition 6.9. Suppose µ, ν ∈Mx(G) and let νy denote the measure in My(U) such

that for any ψ(y) ∈ Ly(U), νy(ψ(y)) = ν(ψ(x)).

1. We say that (µ, ν) is ∗-Borel if for every formula ϕ(x) ∈ Lx(U), the triple
(µ, νy, ϕ

′) is Borel.

2. If (µ, ν) is ∗-Borel, we define the definable convolution product of µ with
ν as follows,

µ ∗ ν(ϕ(x)) = µ⊗̃νy(ϕ′(x; y)) =

∫
sup(νy |G)

Fϕ′

µ,GdνG(y),

where ϕ(x) is any formula in Lx(U), G is some/any small submodel of G such
that (µ, ν, ϕ) is Borel over G, and νG(y) is the Borel measure νy on sup(νy|G) (as
in Definition 6.3). We will usually write this product simply as

∫
sup(ν|G)

Fϕ′
µ dνG

or even
∫
Fϕ′
µ dν when there is no possibility of confusion.

While it is tradition to give privilege to left invariant measures, and one can

certainly define convolution to give guarantee that left invariant measures are ∗-

Borel, we will see that our definition correctly extends Newelski’s notion of product.

But first, we need to check that our operation returns a measure.

Proposition 6.10. Let µ, ν ∈ Mx(G). If (µ, ν) is ∗-Borel, then µ ∗ ν is a Keisler

measure.

Proof. It is easy to check that µ ∗ ν(x = x) = 1 and µ ∗ ν(¬ϕ(x)) = 1− µ ∗ ν(ϕ(x)).

Fix ψ1(x), ψ2(x) ∈ Lx(G) such that ψ1(x) ∧ ψ2(x) = 0. To demonstrate that µ ∗ ν is
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a Keisler measure, it suffices to check that

µ ∗ ν(ψ1(x) ∨ ψ2(x)) = µ ∗ ν(ψ1(x)) + µ ∗ ν(ψ2(x)).

Let θ(x; y) = ψ1(x · y) ∨ ψ2(x · y) and let G be a small model such that (µ, ν, ρ) is

Borel over G for ρ ∈ {ψ1, ψ2, θ}. Then for any q ∈ sup(ν|G), F θ
µ(q) = µ(θ(x; b)) =

µ(ψ1(x · b) ∨ ψ2(x · b)) where b |= q. Since ψ1(x) ∧ ψ2(x) = ∅, we have that their

translates are also empty. Therefore,

F θ
µ(q) = µ(θ(x; b)) = µ(ψ1(x · b)) + µ(ψ2(x · b)) = Fψ′1

µ (q) + Fψ′2
µ (q).

By linearity of integration and the observation that our fiber functions only return

positive values,

(µ ∗ ν)(ψ1(x) ∨ ψ2(x)) =

∫
sup(ν|G)

F θ
µdνG =

∫
sup(ν|G)

Fψ′1
µ + Fψ′2

µ dνG

=

∫
sup(ν|G)

Fψ′1
µ dνG +

∫
sup(ν|G)

Fψ′2
µ dνG = (µ ∗ ν)(ψ1(x)) + (µ ∗ ν)(ψ2(x)).

We now take the opportunity to demonstrate that this notion of convolution

extends the coheir product extensively studied by Newelski [45, 47] and other from

the point of view of topological dynamics (see e.g. [49] for the following fact).

Fact 6.11. Fix G ≺ G. Given p, q ∈ Sx(G, G), we define the operation p ∗ q :=

tp(a · b/G) ∈ Sx(G, G), for some/any (a, b) |= p ⊗ q. Then, (Sx(G, G), ∗) is a left

continuous semigroup: for each q ∈ Sx(G, G), the map − ∗ q : Sx(G, G) → Sx(G, G)

is continuous.

Proposition 6.12. Let δ : Sx(G, G) → Mx(G, G) via δ(p) = δp. Then, δ is a

topological embedding and for any ϕ(x) ∈ Lx(G), we have that ϕ(x) ∈ p ∗ q if and
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only if δp ∗ δq(ϕ(x)) = 1. In other words, δp∗q = δp ∗ δq.

Proof. It can be easily checked that this map is an embedding. Fix ϕ(x) ∈ Lx(U).

By Proposition 6.5, we have the following equalities:

δp∗q(ϕ(x)) = δpx⊗qy(ϕ(x · y)) = δpx⊗̃δqy(ϕ(x · y)) = δp ∗ δq(ϕ(x)).

The following computations are straight forward and left to the reader as an

exercise. These facts demonstrate that definable convolution behaves reasonably.

Fact 6.13. Let µ, µ1, ..., µn, ν1, ..., νm ∈Mx(G), and assume the pairs (µi, νj) are ∗-

Borel for i ≤ n and j ≤ m. Let a, b, a1, ..., an ∈ G, and r1, ..., rn, s1, ..., sm ∈ R≥0 such

that
∑n

i=1 ri =
∑m

j=1 sj = 1. Then, the following hold.

1. µ ∗ δe = δe ∗ µ = µ.

2. δa ∗ δb = δab.

3. For any formula ϕ(x) ∈ Lx(U), we have (δa ∗ µ)(ϕ(x)) = µ(ϕ(a · x)).

4.
(∑n

i=1 riµi

)
∗
(∑m

j=1 sjνj

)
=
∑n,m

i,j ri · sj(µi ∗ νj).

5. For any formula ϕ(x) ∈ Lx(U), we have(( n∑
i=1

riδai

)
∗ µ
)

(ϕ(x)) =
n∑
i=1

riµ(ϕ(ai · x)).

We now observe that the following model theoretic properties are preserved under

convolution. Most of the following propositions are slight variations of proofs already

found in this dissertation.

Proposition 6.14. Let µ, ν ∈Mx(G). Assume that (µ, ν) is ∗-Borel. Then,

1. If µ, ν are definable over G, then µ ∗ ν is definable over G.

2. If µ, ν are finitely satisfiable in G, then µ ∗ ν is finitely satisfiable in G.
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3. If µ, ν are finitely approximated over G, then µ∗ν is finitely approximated over
G.

4. If µ(x = b) = 0 for every b in G, then µ ∗ ν(x = b) = 0 for every b ∈ G.

Proof. The proofs of 1, 2, and 3 are slight variations on Proposition 2.24, Proposition

2.25, and Lemma 2.31, respectively. We only need to prove 4. Fix b ∈ G and let

ϕ(x) ≡ x = b. Notice that;

µ ∗ ν(x = b) = µ⊗̃νy(x · y = b) =

∫
sup(ν|G)

Fϕ′

µ dνG.

We have that Fϕ′
µ (q) = µ(x ·c = b) where c |= q. Then, µ(x ·c = b) = µ(x = bc−1) = 0

by assumption. Therefore,
∫
Fϕ′
µ dν =

∫
0dνG = 0.

6.2 Idempotent measures

Idempotent measures are an important class of measures. In the compact group

setting, the existence of an idempotent implies the existence of a closed subgroup

(and vice versa). Glicksberg demonstrates this result also holds in the abelian semi-

topological semigroup setting [29] (which is essentially the stable abelian group case).

Here, we define idempotent Keisler measures. We then translate some of Glicksberg’s

results into the definable convolution setting. At the end of this section, we use these

results to prove that in stable groups, idempotent measures are in unique correspon-

dence with type-definable subgroups. We begin by giving a few measure-theoretic

definitions in the group context. We continue working with a monster model G of a

theory T expanding a group.

6.2.1 Basic facts and definitions

Definition 6.15. Let µ ∈Mx(G).

1. We say that µ is ∗-Borel if (µ, µ) is ∗-Borel.
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2. We say that µ is idempotent if µ is ∗-Borel and µ ∗ µ = µ.

3. We say that µ is right-invariant if for any formula ϕ(x) ∈ Lx(G) and any
a ∈ G, µ(ϕ(x)) = µ(ϕ(x · a)).

Definition 6.16. Let H be a type-definable subgroup of G, where H(x) is the partial

type defining the domain of H. Then H is definably amenable if there exists a

measure µ ∈ Mx(G) such that µ(H(x)) = 1 and for any formula ϕ(x) ∈ Lx(G) and

any a ∈ H, µ(ϕ(x)) = µ(ϕ(x · a)). If this is the case, we call µ right H-invariant.

Proposition 6.17. Let H be a type-definable definably amenable subgroup of G, with

definition H(x). Suppose that µ ∈Mx(G) is right H-invariant. Then the pair (µ, µ) is

∗-Borel and µ is idempotent. Moreover, if ν is another measure such that ν(H(x)) =

1, then (µ, ν) is ∗-Borel and µ ∗ ν = µ.

Proof. We show that for any measure ν ∈ Mx(G) such that ν(H(x)) = 1, (µ, ν) is

∗-Borel and µ ∗ ν = µ. For ease of notation, we will identify ν with νy. Fix a formula

ϕ(x) in Lx(G). Let G be an elementary submodel of G such that G contains the

parameters from both in H(x) and ϕ. Fix some q ∈ sup(ν|G) ⊆ Sy(G). We now

observe that q is in H(y) (i.e. q ` H(y)). Why? If not, then q ∈ Sy(G)\H(y). Since

H(y) is closed, Sy(G)\H(y) is open. Therefore, Sx(G)\H(y) =
∨
i∈I ψi(y). Then

ψi(y) ∈ q for some i and since q ∈ sup(ν|G), we know that ν(ψi(y)) > 0. But this

is a contradiction since ν(H(y)) = 1 and ψi(y) is disjoint from H(y). Therefore, if

b ∈ G and b |= q, then b ∈ H. Now, we notice that the function Fϕ′

µ,G is constant on

sup(ν|G) since Fϕ′

µ,G(q) = µ(ϕ(x · b)) = µ(ϕ(x)). Therefore, (µ, ν) is ∗-Borel. Now, we

compute µ ∗ ν(ϕ(x));

µ ∗ ν(ϕ(x)) =

∫
sup(ν|G)

Fϕ′

µ dνG =

∫
sup(ν|G)

µ(ϕ(x))dνG = µ(ϕ(x)).

Notice that this implies that (µ, µ) is Borel and µ∗µ = µ. Therefore, µ is idempotent.

114



With the previous proposition in mind, we observe the following.

Observation 6.18. Let H be a type-definable subgroup of G. The following classes

of measures are idempotent:

1. δe is idempotent.

2. If G is definably amenable and µ is a right G-invariant measure, then µ is
idempotent.

3. If G is definable amenable, µ is the right invariant measure on G, and H has
finite index in G, then µH(ϕ(x)) = [G : H] · µ(ϕ(x) ∩H(x)) is idempotent.

4. If H is amenable as a discrete group and µ is a right invariant measure on
P(H). Then, the Keisler measure µH(ϕ(x)) = µ(ϕ(x) ∩H) is idempotent.

We now classify idempotent measures which concentrate on finite subsets of G.

Our proof follows from Theorem 1 of [67] (see Theorem 6.1) applied to finite groups.

However, we expect there is a much more elementary proof of this result.

Proposition 6.19. Let H be a finite subgroup of G and let µH be the Haar measure

on this finite group, i.e. µH = 1
|H|
∑

a∈H δa. Then, µH is idempotent. Moreover, if µ

is any idempotent measure whose support is a finite collection of realized types, then

µ = 1
|H|
∑

a∈H δa for some finite subgroup H of G.

Proof. If µH = 1
|H|
∑

a∈H δa, then

µH ∗ µH =
( 1

|H|
∑
a∈H

δa

)
∗
( 1

|H|
∑
a∈H

δa

)
=

1

|H|2
∑

(a,b)∈H×H

δab

=
1

|H|2
|H|
∑
c∈H

δc =
1

|H|
∑
c∈H

δc = µH

The other direction is elementary modulo Wendel’s Theorem 1 applied to finite

groups. Assume that sup(µ) = {a1, ..., an} = A. Notice that if µ is idempotent,

then sup(µ) is closed under multiplication. If not, then there exists c ∈ G such that

c = ai ·aj and c is not in A. Notice that µ(x = c) = 0, but µ∗µ(x = c) > 0. Therefore,
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we may assume A is closed under products. Furthermore, any finite subset of a group

closed under products is itself a group. If |A| = n, then for any ai ∈ A, we claim

that {ai, a2
i ..., a

n+1
i } contains a−1

i . Therefore, A is a compact group and µ|A is an

idempotent measure on A. By Theorem 6.1, µ|A is the unique Haar measure on a

subgroup of A. Since sup(µ) = A, we may conclude that µ = 1
n

∑
a∈A δa.

Finally, we show that in the NIP abelian context, the class of idempotent dfs

measures is preserved under definable convolution.

Proposition 6.20. Assume that T is abelian and NIP. Assume that µ, ν ∈ Mx(G)

and both µ, ν are dfs and idempotent. Then, µ ∗ ν is dfs and idempotent.

Proof. By Proposition 6.14, µ ∗ ν is dfs. Fix a formula ϕ(x) ∈ L(G) and fix G ≺ G

such that G contains all the parameters from ϕ(x) and both µ, ν are dfs over G.

By NIP, µ, ν are finitely approximated and so their products commute (see Theorem

2.39 and Proposition 2.32). Hence, we have the following

µ ∗ ν(ϕ(x)) = µx ⊗ νy(ϕ(x · y)) = νy ⊗ µx(ϕ(x · y)).

By change of variables and commutativity, we can continue

= νx ⊗ µy(ϕ(y · x)) = νx ⊗ µy(ϕ(x · y)) = ν ∗ µ(ϕ(x)).

Now, let λ = µ ∗ ν. By associativity (similar to Proposition 2.41), we notice

λ ∗ λ = µ ∗ ν ∗ µ ∗ ν = µ ∗ µ ∗ ν ∗ ν = µ ∗ ν = λ.

Therefore, µ ∗ ν is dfs and idempotent.
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6.2.2 Supports and convolution

In the proof of Wendel’s theorem (as well as Glicksberg’s proof in the abelian

semitopological semigroup setting [29]), an idempotent regular Borel measure µ is

associated to a closed subgroup via the support of the measure. In particular, sup(µ)

is a closed group and µ|sup(µ) is its associated (normed, bi-invariant) Haar measure. In

the general model theory context, our situation is not as nice. We begin this section

by exploring two concrete model theoretic examples of idempotent measures. In the

next few sections, we will become increasingly interested in the semigroup (sup(µ), ∗)

where µ is a global dfs measures and ∗ is the usual coheir product restricted to the

support. This is well defined since if µ is dfs, then every element in the support of µ

is finitely satisfiable over a fixed small model. By adapting some of Glicksberg’s work

to our context, we will show that the support of an idempotent dfs measures has a

relatively nice semigroup structure (i.e. compact, left-continuous, no closed two-sided

ideals). We now consider the supports of a few idempotent Keisler measures.

Example 6.21. Let Tdoag be the complete theory of an infinite divisible ordered

abelian group in the language {+, <, 0, 1}. Let G be a monster model of T and

consider Q as an elementary substructure in the natural way. Let p∞ be the unique

global coheir extending the type {x > a : a ∈ Q} ∈ Sx(Q). Similarly let p−∞

be the unique global coheir extending the type {x < a : a ∈ Q} ∈ Sx(Q). We

let µ = 1
2
δp−∞ + 1

2
δp∞ and we claim that µ, δp∞ , and δp−∞ are idempotent. By

Proposition 6.14, the products δα ∗ δβ for α, β ∈ {∞,−∞} are finitely satisfiable

in Q. From this observation, and Fact 6.13 it is not difficult to demonstrate the

following computation:

µ ∗ µ =
(1

2
δp−∞ +

1

2
δp∞

)
∗
(1

2
δp−∞ +

1

2
δp∞

)

=
1

4

(
δp−∞ ∗ δp−∞

)
+

1

4

(
δp−∞ ∗ δp∞

)
+

1

4

(
δp∞ ∗ δp−∞

)
+

1

4

(
δp∞ ∗ δp∞

)
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=
1

4
δp−∞ +

1

4
δp∞ +

1

4
δp−∞ +

1

4
δp∞ =

1

2
δp−∞ +

1

2
δp∞ = µ.

We observe that the semigroups (sup(δp∞), ∗) and (sup(δp−∞), ∗) are groups (with a

single element) and (sup(µ), ∗) is not a group since it does not contain an identity.

Example 6.22. Let G = (S1, ·, C(x, y, z)) be the standard circle group over R with

the clockwise ordering. Let TO be the corresponding theory. Let µ be the Keisler

measure on this structure which corresponds to the normed Haar measure on S1. Let

G be a monster model of TO such that G ≺ G. We know that µ is smooth over S1

and admits a unique global extension µ̃. We remark that µ̃ is right invariant and so

µ̃ is idempotent (Proposition 6.17). Let St : Sx(G) → S1 be the standard part map

and assume that p ∈ sup(µ̃) and St(p) = a. Then ϕξ := C(a − ξ, x, a + ξ) 6∈ p for

every infinitesimal ξ ∈ G (follows directly from the fact that p is finitely satisifable in

S1). As the types are determined by their cut in the circular order, it follows that for

every a ∈ S1 there are exactly two types a+(x), a−(x) ∈ sup(µ) such that St(a+(x)) =

St(a−(x)) = a. These types are determined by whether C(a+ ξ, x, b) holds for every

infinitesimal ξ and element b ∈ S1 or C(b, x, a − ξ) holds for every infinitesimal ξ

and element b ∈ S1, respectively. It follows that (sup(µ̃), ∗) ∼= S1 × {+,−} with

multiplication defined as follows;

aδ(x) ∗ bε(x) = (a · b)δ(x),

where δ, ε ∈ {+,−}. Again, (sup(µ), ∗) is not a group.

We now start our investigation of (sup(µ), ∗) where µ is an idempotent dfs mea-

sure. As stated previously, we demonstrate that if µ is both dfs and idempotent, then

(sup(µ), ∗) is a compact, left-continuous, semigroup with no closed two-side ideals.

Proposition 6.23. Let µ, ν ∈Mx(G). Assume that µ is dfs and ν is finitely satisfi-

able in a small model. Then, we have that sup(µ) ∗ sup(ν) ⊆ sup(µ ∗ ν).
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Proof. Assume that p ∈ sup(µ) and q ∈ sup(ν) and let ϕ(x) ∈ p ∗ q. Choose G such

that µ is dfs over G, ν is finitely satisfiable in G, and G contains all the parameters

from ϕ. We need to show that µ ∗ ν(ϕ(x)) > 0. Recall,

µ ∗ ν(ϕ(x)) =

∫
sup(ν|G)

Fϕ′

µ dνG.

Since µ is dfs, the map Fϕ′
µ : sup(ν|G)→ [0, 1] is continuous. Therefore, it suffices to

find some r ∈ sup(ν|G) such that Fϕ′
µ (r) > 0. Consider r = q|G. Then, Fϕ′

µ (q|G) =

µ(ϕ(x · b)) where b |= q|G. Then, ϕ(x · b) ∈ p and since p ∈ sup(µ), we have that

µ(ϕ(x · b)) > 0. Hence, Fϕ′
µ (q|G) > 0 and so µ ∗ ν(ϕ(x)) > 0.

Corollary 6.24. Assume that µ is dfs and idempotent. Then (sup(µ), ∗) is a compact

Hausdorff semigroup which is left-continuous, i.e. the map − ∗ q : sup(µ) → sup(µ)

is continuous for each q ∈ sup(µ).

Proof. By Proposition 2.10, we conclude that sup(µ) is a compact Hausdorff space.

By Proposition 6.23, we have that sup(µ) ∗ sup(µ) ⊆ sup(µ ∗ µ) = sup(µ). Now,

choose some G ≺ G such that µ is dfs over G. Then, every element in sup(µ) is

finitely satisfiable in G. So, (sup(µ), ∗) is a subsemigroup of (Sx(G, G), ∗). Since

(Sx(G, G), ∗) is a left-continuous semigroup (Fact 6.11), we conclude that (sup(µ), ∗)

is also left-continuous.

Proposition 6.25. Let µ, ν ∈Mx(G). Assume that µ is dfs and ν is finitely satisfi-

able in some small model. Then, sup(µ) ∗ sup(ν) is a dense subset of sup(µ ∗ ν).

Proof. By Proposition 6.23, we already know that sup(µ) ∗ sup(ν) ⊆ sup(µ ∗ ν). We

only need to demonstrate the density claim. Fix some r ∈ sup(µ ∗ ν) and a formula

ϕ(x) ∈ Lx(G). Assume that ϕ(x) ∈ r. We need to find p ∈ sup(µ) and q ∈ sup(ν)

such that ϕ(x) ∈ p ∗ q. Choose G such that µ is dfs over G, ν is finitely satisfiable

in G, and G contains all the parameters from ϕ(x). Since ϕ(x) ∈ r and r is in the
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support of µ ∗ ν, we know that µ ∗ ν(ϕ(x)) > 0. Therefore,
∫
Fϕ′
µ dνG > 0 and so

there exists t ∈ sup(ν|G) such that Fϕ′
µ (t) > 0. If c |= t, then µ(ϕ(x · c)) > 0. So

by Proposition 2.9 there exists p ∈ sup(µ) such that ϕ(x · c) ∈ p. By Proposition

2.11, we let q ∈ sup(ν) such that q|G = t. By construction, we then observe that

ϕ(x) ∈ p ∗ q.

We now define a family of global functions which mimic the map y →
∫
f(xy)dµ.

Definition 6.26. Let µ be dfs and fix ϕ(x) ∈ Lx(G). We then define the global

function Dϕ′
µ : Sy(G)→ [0, 1] as µ(ϕ(x·c)), where c |= p|G and G is a small elementary

substructure of G such that µ is dfs over G and G contains all the parameters from

ϕ(x).

Notice that for any formula ϕ(x) ∈ Lx(G), the map Dϕ′
µ is continuous since µ is dfs.

We remark that Dϕ′
µ = Fϕ′

µ,G ◦r where r is the standard restriction map from Sx(G) to

Sx(G). The next two results are adapted from Glicksberg’s work on semitopological

semigroups into the general model theory context (we refer the interested reader to

[28, 29]).

Proposition 6.27. Let µ ∈ Mx(G) and assume µ is dfs and idempotent. Assume

that Dϕ′
µ |sup(µ) attains a maximum at q. Then for any p ∈ sup(µ), we have that

Dϕ′
µ (q) = Dϕ′

µ (p ∗ q).

Proof. Fix G0 a submodel where µ is dfs over G0 and contains all the parameters

from ϕ(x). Let b |= q|G0 and let θ(x; y) = ϕ((x · y) · b). Now fix a larger submodel G

such that G0b ⊂ G. We also let δ = µ(ϕ(x · b)). Then,

Dϕ′

µ (q) = µ(ϕ(x · b)) = µ ∗ µ(ϕ(x · b)) = µx⊗̃µy(θ(x; y))

=

∫
sup(µ|G)

F θ
µdµG ≤

∫
sup(µ|G)

δdµG = Dϕ′

µ (q)
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Observe that for any t ∈ sup(µ|G), a |= t, and t̂ in sup(µ) such that t̂|G = t, we have

F θ
µ(t) = µ(ϕ(x · a) · b) = µ(ϕ(x · ab)) = Dϕ′

µ (t̃ ∗ q) ≤ Dϕ′
µ (q) = δ. We conclude that

for any t ∈ sup(µ|G), F θ
µ(t) ≤ δ. Therefore, F θ

µ = δ almost everywhere (with respect

to µG). Since both maps are continuous, they are equal over sup(µ|G). Finally, for

any p ∈ sup(µ), we notice;

Dϕ′

µ (q) = δ = F θ
µ(p|G) = µ(ϕ((x · a) · b)) = µ(ϕ(x · (a · b))) = Dϕ′

µ (p ∗ q).

Theorem 6.28. Let µ ∈ Mx(G) and assume that µ is dfs and idempotent. Let

I ⊆ sup(µ) be a closed two-sided ideal, i.e. I is a closed subset of sup(µ) and p ∗ I =

I ∗ p = I for any p ∈ sup(µ). Then, I = sup(µ).

Proof. Let I be a closed two-sided ideal of sup(µ). Notice that if I is a dense subset

sup(µ), then I = sup(µ). Hence, we may assume that I is not dense and so there

exists some ϕ(x) ∈ Lx(G) such that ϕ(x)∩ sup(µ) is nonempty and ϕ(x) ⊂ sup(µ)\I.

Let G ≺ G contain the parameters for ϕ and such that µ is dfs over G. We claim that

there exists some q ∈ sup(µ) such that Dϕ′
µ (q) > 0. Assume not. Let p, q ∈ sup(µ)

be arbitrary. Let b |= q|G. Then, µ(ϕ(x · b)) = Dϕ′
µ (q) = 0 by assumption. Since

p ∈ sup(µ) and µ(ϕ(x · b)) = 0, we have that ¬ϕ(x · b) ∈ p which implies that

¬ϕ(x) ∈ p ∗ q. Consider the continuous characteristic function χϕ : sup(µ)→ {0, 1}.

Since p, q were arbitrary, we have that χϕ vanishes on sup(µ)∗sup(µ). By Proposition

6.25, χϕ vanishes on the dense subset sup(µ) ∗ sup(µ) ⊆ sup(µ), and so χϕ vanishes

on sup(µ). But this contradicts the choice of ϕ.

So, there exists a q ∈ sup(µ) such that Dϕ′
µ (q) > 0. Since Dϕ′

µ is continuous, it

attains a maximum on sup(µ). Let r be a maximum. We claim for any h ∈ I, we
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have that Dϕ′
µ (h) = 0. Notice that Dϕ′

µ (h) = µ(ϕ(x · b)) where b |= h|G. Now,

µ(ϕ(x · b)) = µ({p ∈ sup(µ) : ϕ(x · b) ∈ p}) = µ({p ∈ sup(µ) : ϕ(x) ∈ p ∗ h}).

However, I is a (left) ideal and so sup(µ) ∗ h ⊆ I. By assumption, ϕ(x)∩ I = ∅, and

so we have {p ∈ sup(µ) : ϕ(x) ∈ p ∗ h} = ∅. Therefore, Dϕ′
µ (h) = 0. Since I is a

(right) ideal, we have that h ∗ r ∈ I. Therefore,

0 < Dϕ′

µ (r) = Dϕ′

µ (h ∗ r) = 0.

We have obtained a contradiction.

Corollary 6.29. Assume that µ is dfs and idempotent. Suppose that | sup(µ)| > 1,

i.e. µ is not a type. Then, sup(µ) contains no zero elements, i.e., there is no element

p ∈ sup(µ) such that for any q in sup(µ), p ∗ q = q ∗ p = p.

Proof. If p is a zero-element, then {p} is a closed two-sided ideal.

As is true in most mathematics, if we buy more, we get more. If we add some

additional assumption about the structure of sup(µ), we can prove more things. We

now add the additional assumption that our semigroup is somewhat minimal. We

notice that in Example 6.22, the support of the measure µ̃ is equal to its own minimal

left ideal. Let us make that our assumption. We first recall the following structural

theorem due to Ellis (see [21, Proposition 4.2]).

Fact 6.30. Assume that (S, ·) is a compact Hausdorff semigroup such that for any

a ∈ S, the map −·a : S → S is continuous. Then, there exists a minimal left ideal, I.

Moreover, if J(I) = {i ∈ I : i2 = i} is the set of idempotents in I, then the following

hold.

1. J(I) is non-empty.
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2. For every p ∈ I and i ∈ J(I), we have that p · i = p.

3. I =
⋃
{i · I : i ∈ J(I)} where the union is disjoint one and each set i · I is a

group with identity i.

Definition 6.31. Let µ ∈Mx(G). Assume that µ is dfs and idempotent. Then, we

say that µ is minimal if (sup(µ), ∗) has no proper left ideals.

We now use the minimality assumption to prove a few stronger result.

Proposition 6.32. Assume that µ is dfs, idempotent, and minimal. Let ϕ(x) ∈

Lx(G) be any formula. Then, for any p, q ∈ sup(µ), we have that Dϕ′
µ (p) = Dϕ′

µ (q).

Proof. By Fact 6.30, sup(µ) =
⋃
{ij ∗ sup(µ) : ij ∈ J(sup(µ))}. Assume that Dϕ′

µ

attains a maximum at p and p ∈ i1 ∗ sup(µ). In particular, p = i1 ∗ p since i1 ∗ sup(µ)

is a group. We know that q = i2 ∗ q for some i2 ∈ J(sup(µ)). By Proposition 6.27,

we know

Dϕ′

µ (p) = Dϕ′

µ (i1 ∗ p) = Dϕ′

µ (i2 ∗ (i1 ∗ p)) = Dϕ
µ((i2 ∗ i1) ∗ p) = Dϕ′

µ (i2 ∗ p).

Notice that q and i2 ∗ p are elements of the group i2 ∗ sup(µ). Therefore there exists

some r ∈ i2 ∗ I such that r ∗ (i2 ∗ p1) = q. Hence Dϕ′
µ (i2 ∗ p1) = Dϕ′

µ (r ∗ (i2 ∗ p1)) =

Dϕ′
µ (q).

Proposition 6.33. Assume that µ is dfs, idempotent, and minimal. Then for every

ϕ(x) ∈ Lx(G), µ(ϕ(x)) = Dϕ′
µ (p) for any p ∈ sup(µ).

Proof. By the Proposition 6.32, we may assume towards a contradiction that µ(ϕ(x)) >

Dϕ′
µ (i) where i is an idempotent in sup(µ). Choose G such that µ is dfs over G and

G contains the parameters from ϕ. Then, µ(ϕ(x) ∧ ¬ϕ(x · b)) > 0 where b |= i|G.

So there exists q ∈ sup(µ) such that ϕ(x) ∧ ¬ϕ(x · b) ∈ q. Notice that ϕ(x) ∈ q and

¬ϕ(x · b) ∈ q =⇒ ¬ϕ(x) ∈ q ∗ i. However, by Fact 6.30, q ∗ i = q and so now we

have that ϕ(x),¬ϕ(x) ∈ q which is a contradiction.
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A direct translation of the previous proposition demonstrates that all dfs, idem-

potent, minimal Keisler measures are generically right invariant over their support.

Notice the following:

Corollary 6.34. Assume that µ is dfs, idempotent, and minimal. Let ϕ(x; b) ∈ Lx(G)

and let µ be dfs over G. Then, for any a ∈ G such that tp(a/Gb) ∈ sup(µ|Gb), we

have that

µ(ϕ(x)) = µ(ϕ(x · a)).

6.2.3 Idempotent measures on stable groups

In this subsection, we classify idempotent measures on stable groups. We prove

that each idempotent measure is the unique Keisler measure which witnesses the

definable amenability of its own stabilizer. Our proof relies on the results of the pre-

vious section (namely Theorem 6.28 and Corollary 6.34) and a variant of Hrushovski’s

group chunk theorem due to Newelski [46]. This proof is dependent on the existence

of ranks and so a generalization to the arbitrary dfs-idempotent (even NIP) context

does not directly follow. We assume some familiarity with stable group theory (see

[51] or [66]). Throughout this section, we will clearly mark the theorems which as-

sume global stability. As usual, T is a first order theory expanding a group and G is

a monster model of T . We now recall the definition of the stabilizer of a measure.

Definition 6.35. Let µ ∈Mx(G). Then the stabilizer of µ is defined as follows:

Stab(µ) = {g ∈ G : for any ϕ(x) ∈ Lx(G), µ(ϕ(x)) = µ(ϕ(g · x))}.

The next result follows from continuity and compactness and is left as an exercise.

Fact 6.36. Let G ≺ G. If µ is definable over G, then Stab(µ) is type-definable over

G. In particular, there exists a small collection of formulas {ψi(x) : i ∈ I} with

parameters only from G such that Stabµ(x) =
∧
i∈I ψ(x) and Stabµ(G) = Stab(µ).
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We now restrict ourselves to the stable group theory context. Let us recall an

important observation about Keisler measures in stable theories which follows from

Keisler’s original work (see [36] or [10, Lemma 4.3])

Fact 6.37 (T is stable). Every measure in Mx(G) is dfs.

The next collections of facts follow from [49, Fact 1.8] and [9].

Fact 6.38 (T is stable). Let H be a type-definable subgroup of G. For notation, if

H(x) =
∧
j∈J ψj(x) is a definition of H, then we let SH(G) be the collection of type

in Sx(G) which concentrate on H, i.e. p ∈ SH(G) if and only if ψj(x) ∈ p for each

j ∈ J .

1. For p, q ∈ SH(G), we have that p ∗ q is equal to tp(a · b/G), where a |= p and
b |= q and a |̂

G
b (in the sense for forking independence). By stability, this is

well defined and corresponds to the standard product on Sx(G).

2. SH(G) has a unique minimal closed left ideal I (which is also the unique minimal
closed right ideal) which is already a subgroup of (SH(G), ∗).

3. I is precisely the generic types of SH(G) and, with the induced topology, (I, ∗)
is a compact Hausdorff topological group (isomorphic to H/H0).

4. H is definably amenable. Moreover, there exists a measure µ ∈ Mx(G) such
that µ is both the unique right H-invariant Keisler measure and unique left
H-invariant Keisler measure with sup(µ) = I. If one views this measure as a
regular Borel measure on SH(G), then after restricting µ to the closed set I,
µ|sup(µ) coincides with the Haar measure.

Definition 6.39 (T is stable). Let Ĝ be a larger monster model of T such that

G ≺ Ĝ.

1. The symbol ∆ will denote a finite invariant set of formulas, i.e. formulas of
the form ϕ(u · x · y, y) ∈ L (so any right or left translative of an instance of ϕ
is also an instance of ϕ).

2. We write R∆ to denote Shelah’s ∆-rank, note that it is invariant under two-
sided translations since ∆ is.

3. For P ⊆ Sx(G), we let cl(P ) denote the topological closure of P and ∗P denote
the closure of P under ∗.
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4. For P ⊆ Sx(G), we let gen(P ) denote the set of r ∈ cl(∗P ) such that there is
no q ∈ cl(∗P ) with R∆(r) ≤ R∆(q) for all ∆ and R∆(r) < R∆(q) for some ∆.

5. For P ⊆ Sx(G), we let 〈P 〉 denote the smallest G-type-definable subgroup of Ĝ
containing P (Ĝ) where P (Ĝ) = {b ∈ Ĝ : b |= p : for some p ∈ P}.

In the next result, we will see that the interaction between the ∗-product on types

and local ranks ∆ ranks is extremely tame (in stable groups setting).

Fact 6.40 (T is stable). Let Ĝ be a larger monster model of T such that G ≺ Ĝ.

1. [46, Fact 2.1] If P ⊆ Sx(G) is non-empty, then gen(P ) is a non-empty closed
subset of Sx(G).

2. [46, Lemma 2.2] R∆(p∗q) ≥ R∆(p), R∆(q) for any p, q ∈ Sx(G) and ∆ (this fol-
lows by the symmetry of forking, invariance of R∆ under two-sided translations,
and the fact that forking is characterized by drop in rank).

The following fact is [46, Theorem 2.2]. It is stated there for strong types over ∅,

which implies our statement after naming the elements of G with constants (call this

theory TG) and viewing Ĝ as a monster model of TG.

Fact 6.41 (T is stable). Let Ĝ be a larger monster model of T such that G ≺ Ĝ.

Suppose that P ⊆ Sx(G) is a non-empty set of types. Then,

〈P 〉 = {a ∈ Ĝ : tp(a/G) ∗ gen(P ) = gen(P ) setwise},

is a G type-definable subgroup of Ĝ and gen(P ) is precisely the set of generic types of

〈P 〉 over G.

Theorem 6.42 (T is stable). Let G be a monster model of T . Let µ ∈Mx(G). Then

the following are equivalent:

1. µ is idempotent.

2. µ is the unique right Stab(µ)-invariant (and also unique left Stab(µ)-invariant)
Keisler measure.
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Proof. Notice that 2 =⇒ 1 follows directly from Proposition 6.17. It suffices to

show 1 =⇒ 2. Let µ ∈ Mx(G) be an idempotent measure. By Fact 6.37 µ is dfs

over some small model G ≺ G. By Corollary 6.24, sup(µ) is a closed subset of Sx(G)

and closed under ∗, therefore cl(∗ sup(µ)) = sup(µ) and gen(sup(µ)) ⊆ sup(µ).

We claim that gen(sup(µ)) is a two-sided ideal in (sup(µ), ∗). Let r ∈ gen(sup(µ))

and q ∈ sup(µ). If r ∗ q is not in gen(sup(µ)), then there exists some p ∈ sup(µ) such

that R∆(p) ≥ R∆(r ∗ q) ≥ R∆(r) for all ∆ and some inequality strict (by Fact 6.40),

which contradicts the assumption that r ∈ gen(sup(µ)). But also, if q ∗ r is not in

gen(sup(µ)), there is some p ∈ sup(µ) with R∆(p) ≥ R∆(q ∗ r) ≥ R∆(r) and some

inequality strict, again by Fact 6.40, contradicting r ∈ gen(sup(µ)). Therefore, by

Theorem 6.28, we conclude that gen(sup(µ)) = sup(µ).

We now fix a larger monster, Ĝ and think of G as a small elementary submodel,

i.e. G ≺ Ĝ. Then, by Fact 6.41, we have that Ĥ := 〈sup(µ)〉 = {a ∈ Ĝ : a |= p, p ∈

sup(µ)} is a G-type-definable subgroup of Ĝ and sup(µ) = gen(sup(µ)) is precisely

the set of generic types on Ĥ restricted to G. Since Ĥ possibly uses all the parameters

in G, we have to be careful. Let H(x) be a definition of Ĥ over with parameters only

from G such that H(Ĝ) = Ĥ. Given p ∈ Sx(G), we let p̂ ∈ Sx(Ĝ) be its unique

G-definable extension, and let µ̂ be the unique G-definable extension of µ. We will

argue that Ĥ = Stabµ(Ĝ). We have the following observations.

1. p ∗ q = r ⇐⇒ p̂ ∗ q̂ = r̂ for any p, q, r ∈ Sx(G).

2. The same holds for measures, in particular µ̂ is an idempotent of
(
Mx(Ĝ) ∗

)
.

Assume that µ, ν ∈ Mx(G) are definable over G. Then µ̂ ∗ ν̂ is also definable
over G (Proposition 6.14) and extends µ ∗ ν, hence µ̂ ∗ ν̂ = µ̂ ∗ ν by uniqueness
of definable extensions.

3. Stabµ(Ĝ) = Stab(µ̂) by definability (Fact 6.36).

4. sup(µ̂) = {p̂ : p ∈ sup(µ)}.
Assume that there exists some p ∈ sup(µ) such that p̂ 6∈ sup(µ̂). Then, there
exists a formula ψ(x; b) ∈ p̂ such that µ̂(ψ(x; b)) = 0. Since µ is definable
over some small submodel G, µ̂ is also definable over G and in particular,
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µ̂ is G-invariant. Since G is |G|+ saturated, there exists a ∈ G such that
tp(a/G) = tp(b/G). Since p̂ is the unique definable extension of p, we know
that ψ(x; a) ∈ p. Then, µ(ψ(x; a)) > 0 since p ∈ sup(µ). Then µ̂(ψ(x; a)) > 0
and µ̂(ψ(x; b)) = 0. By G-invariant of µ̂, we have a contradiction.

Conversely, if p ∈ Sx(G) and p̂ ∈ sup(µ̂) it is clear that p ∈ sup(µ) since µ̂|G = µ.

5. The generics of H(x) over Ĝ are precisely {p̂ : p is a generic of H(x) over G}.
By stability, every generic r ofH(x) over Ĝ does not fork over G, so it is definable

over G and r|G is a generic of H(x) over G. Hence, r = (̂r|G). Conversely, a
definable (non-forking) extension of a generic type is generic.

6. Hence sup(µ̂) is precisely the set of generics of H(x) over Ĝ, in particular
(sup(µ̂), ∗) is a topological group by Fact 6.38.

7. Then µ̂ restricted to (sup(µ̂), ∗) (viewed as a regular Borel measure) is right
∗-invariant.

By (6), (sup(µ̂), ∗) is a group and so for any p ∈ sup(µ̂), p−1 is well-defined. By
regularity, it suffices to check ∗-invariance for formulas. Let ϕ(x; b) ∈ Lx(Ĝ).
Then, for any p ∈ sup(µ̂), we have that,

µ̂(ϕ(x; b)∗p) = µ̂({q∗p : ϕ(x; b) ∈ q}) = µ̂({q : ϕ(x; b) ∈ q∗p−1}) = µ̂(ϕ(x·c, b)),

where c |= p−1|Gb. By Corollary 6.34, µ̂(ϕ(x · c, b)) = µ̂(ϕ(x; b)) and so µ̂ is
right ∗-invariant.

8. By Fact 6.38 for Ĥ, there is a unique right Ĥ-invariant Keisler measure ν in
Mx(Ĝ) such that ν(H(x)) = 1, sup(ν) is the set of generics of H(x) over Ĝ,
and ν|sup(ν) (viewed as a Borel measure) is the Haar measure on the compact
topological group (sup(ν), ∗).

9. Thus sup(µ̂) = sup(ν). Since both µ and ν are right ∗-invariant and by unique-
ness of the Haar measure, we have that µ̂|sup(µ) = ν|sup(ν) and hence µ̂ = ν.

10. In particular, Ĥ = Stab(ν) = Stab(µ̂) = Stabµ(Ĝ), so µ is the right invariant
measure on the G-type definable group Stabµ(x).

From stability, we know that there exists a unique right Stabµ(G)-invariant Keisler

measure in Mx(G). Notice that for every a ∈ Stabµ(G), we have that µ(ϕ(x · a)) =

µ(ϕ(x)) by definition. Therefore, It suffices to check that µ(Stabµ(x)) = 1. From line

10, we have that,

µ(Stabµ(x)) = µ̂(Stabµ(x)) = µ̂(Stabµ̂(x)) = ν(Stabν(x)) = 1.
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6.3 Ellis Semigroup

In this section, we demonstrate that definable convolution and model theory are

connected via the structure of a particular Ellis semigroup. Let us begin by recalling

the construction of an Ellis semigroup. Let X be a compact Hausdorff space and S

be a semigroup acting on X by homeomorphisms. Therefore we can consider the map

π : S ×X → X such that for each s ∈ S, the map πs : X → X is a homeomorphism.

Let XX be space of functions from X to X equipped with the product topology.

Then {πs : s ∈ S} is naturally a subset of XX . The Ellis semigroup of the action

(X,S) is the closure of
(
{πs : s ∈ S}, ◦

)
in XX and we denote this semigroup as

E(X,S).

Let us return to the model theory context. We now fix T , a first order theory

expanding a group, G a saturated model of T , and G a small submodel of G. Recall

that we denote the collection of global types finitely satisfiable in G as Sx(G, G).

Then, there is a natural action of G on Sx(G, G). Newelski showed that the Ellis

semigroup of this action has a very natural presentation [45].

Fact 6.43 (Newelski). E(Sx(G, G), G) ∼= (Sx(G, G), ∗).

We will show an analogous result for measures in the context of NIP theories.

6.3.1 Measure case

Recall that conv(G) is the convex hull of Dirac measures concentrating on G and

Mx(G, G) is the collection of global measures in Mx(G) which are finitely satisfiable

in G. Observe that there is a natural semigroup action of conv(G) on Mx(G, G) as
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follows: For any
∑n

i=1 riδgi ∈ conv(G) and µ ∈Mx(G, G), we define

(( n∑
i=1

riδgi

)
· µ
)

(ϕ(x)) =
n∑
i=1

riµ(ϕ(gi · x)).

any formula ϕ(x) ∈ Lx(G). Throughout this final section, we will denote elements

of conv(G) as k, the semigroup action described above as π, and the corresponding

homeomorphisms of elements in conv(G) under this action as πk, i.e.

π : conv(G)×Mx(G, G)→Mx(G, G),

and for k ∈ conv(G),

πk : Mx(G, G)→Mx(G, G).

It is not difficult to see that for every k ∈ conv(G), the map πk is continuous. There-

fore, we can consider the Ellis semigroup of this semigroup action. For notational

purposes, we will sometimes write E(Mx(G, G), conv(G)) as simply E.

We now show that if T is NIP, then E(Mx(G, G), conv(G)) is isomorphic to

the convolution algebra of global measures which are finitely satisfiable in G, i.e.

(Mx(G, G), ∗). We demonstrate that these two semigroups are isomorphic by consid-

ering the map ρ : Mx(G, G) → Mx(G, G)Mx(G,G) where ρ(ν) = ρν = ν ∗ −, proving

that the image of ρ is precisely the Ellis semigroup, and showing that ρ is indeed an

isomorphism. Before continuing, we observe that our map ρ is well-defined and that

Mx(G, G) is a semigroup by recalling the following facts.

Observation 6.44. Let T be NIP and assume that µ ∈Mx(G, G). Then,

1. µ is Borel-definable over G (Fact 2.36).

2. For any ν ∈Mx(G, G), µ ∗ ν ∈Mx(G, G) (Proposition 6.14).

3. The operation ∗ on Mx(G, G) is associative and so (Mx(G, G), ∗) is a semigroup
(Similar to the proof that ⊗ is associative (Proposition 2.41)).
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We do however first need to show that (Mx(G, G), ∗) is left-continuous. This follows

directly from a general continuity result we proved about Keisler measures in NIP

theories in Chapter 2 (namely Lemma 2.43). This is necessary to show that our map

ρ is surjective.

Proposition 6.45. Let ν ∈Mx(G, G). Then the map −∗ ν : Mx(G, G)→Mx(G, G)

is continuous.

Proof. Let U be a basic open subset of Mx(G, G). Then, there exists a sequence of

formulas ϕ1(x), ..., ϕn(x) in Lx(G) and real numbers r1, ..., rn, s1, ..., sn such that,

U =
n⋂
i=1

{µ ∈Mx(G, G) : ri < µ(ϕi(x)) < si}.

Then, we have that;

(
− ∗ν

)−1

(U) =
n⋂
i=1

{µ ∈Mx(G, G) : ri < µ ∗ ν(ϕi(x)) < si}

=
n⋂
i=1

{µ ∈Mx(G, G) : ri < µx ⊗ νy(ϕi(x · y)) < si}

=
n⋂
i=1

(
−⊗νy(ϕi(x · y))

)−1(
{µ ∈Mx(G, G) : ri < µ(ϕi(x)) < si}

)
.

By Lemma 2.43, the preimage of U under −∗ ν is the finite intersection of open sets

and therefore open.

6.3.2 The isomorphism

In this subsection, we will show the map ρ : Mx(G, G) → E(Mx(G, G), conv(G))

via ρ(ν) = ρν = ν ∗ − is an isomorphism. We begin by recalling the topology on

Mx(G, G)Mx(G,G).
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Fact 6.46. If U is a basic open subset of Mx(G, G)Mx(G,G), then

U =
k⋂
i=1

{f : Mx(G, G)→Mx(G, G)|ri < f(νi)(ψi(x)) < si},

where each ri, si ∈ R, each ψi(x) is an element of Lx(G), and νi ∈ Mx(G, G) (with

possible repetitions in the ψi’s and νi’s).

Proposition 6.47. The map ρ is injective.

Proof. Notice that for every ν ∈Mx(G, G), ρν(δe) = ν.

We now show that the image of ρ is a subset of E. This proof relies on the

fact that measures in NIP theories have smooth extensions and Lemma 2.43. It is

interesting to note that in the countable NIP case, one can replace all instances of

smooth measures with results involving Lemma 3.29 (i.e. application of BFT).

Lemma 6.48. If µ ∈Mx(G, G), then ρµ ∈ cl({πk : k ∈ conv(G)}).

Proof. Let U be a basic open subset of Mx(G, G)Mx(G/G) containing πµ. Then, we

may find some ψ1(x), ..., ψn(x) in Lx(U) and ν1, ..., νn ∈Mx(G, G) and Bε ⊂ U where,

Bε =
n⋂
i=1

{f : |f(νi)(ψi(x))− πµ(νi)(ψi(x))| < ε}.

Now, for each i ≤ n, we choose a model Ni and a measure ν̂i such that ν̂i|M = ν|M ,

Ni contains all the parameters from ψi, and ν̂i is smooth over Ni. Let ε0 <
ε
4

and

Av(ai) be a (ψi, ε0)-approximation for νi where the tuple ai ∈ (Ni)
<ω. In the following

computation we associate ψi and ψ′i.

πµ(νi)(ψi(x)) = µ ∗ νi(ψi(x)) = µ⊗ νi(ψi(x · y))

=

∫
Sy(M)

Fψi
µ d(νi|M) =

∫
Sy(M)

Fψi
µ d(ν̂i|M)
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=

∫
Sy(N)

Fψi
µ d(ν̂i|N) =

∫
Sx(N)

F
ψ∗i
νi d(µ|N)

≈ε0
∫
Sx(N)

F
ψ∗i
Av(ai)

d(µ|N) =
1

m

m∑
j=1

µ(ψi(x · aj)).

Consider the finite collection of formulas obtained from this computation with each

pair (νi, ψi). In particular, we let Ψi =
⋃m
j=1{ψi(x, aj)} and we let Ψ =

⋃n
i=1 Ψi be this

collection. Since µ is finitely satisfiable in G, we can find some element kµ in conv(G)

such that for each θ(x) ∈ Ψ, we have that kµ(θ(x)) = µ(θ(x)) (see Proposition 2.19).

Now, we claim that πkµ is in Bε. This follows directly from running the equations

above in reverse. In particular, we have that;

1

m

m∑
j=1

µ(ψi(x · aj)) =
1

m

m∑
j=1

kµ(ψi(x · aj))

=

∫
Sx(N)

F
ψ∗i
Av(a)d(kµ|N) ≈ε0

∫
Sx(N)

F
ψ∗i
ν̂i
d(kµ|N)

=

∫
Sy(N)

Fψi
kµ
d(νi|N) =

∫
Sy(M)

Fψi
kµ
d(ν̂i|M)

= kµ ⊗ νi(ψi(x · y)) = πkµ(νi)(ψi(x)).

Now, πµ(νi)(ψi(x)) ≈2ε0 πkµ(νi)(ψi(x)) for each pair of ψi and νi and so πkµ ∈ Bε.

Lemma 6.49. The map ρ is surjective onto it’s image.

Proof. Let f ∈ E(Mx(G, G), conv(G)). Since f ∈ cl({πk : k ∈ conv(G)}), there exists

a net (ki)i∈I of elements in conv(G) such that limi∈I πki = f . For each ψ(x) ∈ Lx(G)

and for every ν ∈Mx(G, G), we have that:

lim
i∈I

πki(ν)(ψ(x)) = f(ν)(ψ(x)).

Consider δe. Let µf = f(δe). Then we claim that the net limi∈I ki convergence to µf
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in Mx(G, G). Notice that for any ψ(x) ∈ Lx(G), we have the following:

lim
i∈I

ki(ψ(x)) = lim
i∈I

πki(δe)(ψ(x)) = f(δe)(ψ(x)) = µf (ψ(x)).

Now, we claim that for any ν ∈Mx(G, G), we have that f(ν) = ρµ(ν).

f(ν) = lim
i∈I

πki(ν) = lim
i∈I

[πki ◦ ρν ](δe) = lim
i∈I

ρki∗ν(δe) = lim
i∈I

[ki ∗ ν]

Then, since − ∗ ν is a continuous map from Mx(G, G) → Mx(G, G), we have that

− ∗ ν commutes with nets. Therefore,

lim
i∈I

[ki ∗ ν] = [lim
i∈I

ki] ∗ ν = µf ∗ ν = ρµf (ν).

Therefore, we conclude that f = ρµf = µf ∗ −.

Proposition 6.50. The map ρ−1|Im(ρ) : E(Mx(G, G), conv(G))→Mx(G, G) is well-

defined and continuous.

Proof. The map is well defined since ρ is injective and the image of ρ is precisely the

domain. If U is a basic open set in Mx(G, G), then for some ϕ1(x), ..., ϕn(x) ∈ Lx(U)

and r1, ..., rn, s1, ..., sn ∈ R, we have

U =
n⋂
i=1

{µ ∈Mx(G, G) : ri < µ(ϕi(x)) < sj}.

Then,

(ρ−1|E)−1(U) =
n⋂
i=1

{f : ri < f(δe)(ϕi(x)) < si}.

which is a restriction of a basic open subset to E(Mx(G, G), conv(G)) and thus open.

Theorem 6.51. The map ρ : (Mx(G, G), ∗) → E(Mx(G, G), conv(G)) is a homeo-
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morphism which respects the semigroup operation, and therefore an isomorphism.

Proof. ρ is a homeomorphism since ρ−1|E is a continuous bijection between compact

Hausdorff spaces. Now, notice that ρ(µ∗ν)(λ) = (µ∗ν)∗λ = µ∗(ν ∗λ) = ρµ(ν ∗λ) =

ρµ ◦ ρν(λ). We conclude that ρ(µ ∗ ν) = ρµ ◦ ρν .
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