Beijing International Center for Mathematical Research
,
Peking University
2022 秋: 代数学 (实验班)
课程信息:
任课老师:
肖梁
课程时间:
单周一 12,周四 78
教室:
二教 306
答疑时间:
周二上午10-11点,数学中心,78101--1
电子邮箱:
lxiao at
bicmr.pku
.edu.cn
课程介绍:
pdf版本
.
本课程是抽象代数的实验班,主要讨论群、环、模及域等基本性质,具体内容如下:
子群、商群、同态、群作用、西罗子群、群的直积和半直积、可解群、合成群列
群表示论:群的表示、Schur引理、群表示的特征和正交关系
环:理想、同态、商环、分式域、欧几里得整环、主理想整环、唯一分解整环
模:模直和、自由模、主理想整环上模结构定理
域:域扩张、分裂域、伽罗华理论、分圆域、五次方程分裂域、无穷伽罗华群
教材及参考资料:
D. Dummit, R. Foote,
Abstract Algebra
, 3rd edition. See also the
errata
.
J.-P. Serre,
Linear representations of finite groups
, Graduate Textbook of Mathematics 42.
丁石孙、聂灵沼,
代数学引论
(第二版).
李文威,
代数学方法
(第一卷).
T. Hungerford,
Algebra
, Graduate Textbook of Mathematics 73.
课程评分方案
作业: 14%,共7次,每两周一次,习题课提交
小论文:6%,最后一次习题课提交
期中考试: 30%,11月3日,周四
期末考试: 50%,时间待定
小论文
选择一个自己感兴趣的与代数学有关的话题写一篇5--10页的综述或者对一个具体问题的研究,内容不限. 注意写作规范及格式、用LaTeX排版. 选题举例:群表示简介、域上的中心单代数、伽罗华理论与三次和四次求根公式、典型李群介绍等等.
作业
作业在网页上发布,每两周在习题课提交. 作业题目中15道对错题只需要给出答案,无需解释理由. 热身问题不需要提交,标准题目选择10道提交,较困难题目选择5道提交. (虽然并不是所有作业题都需要提交纸质解答,但希望学生们至少尝试每道作业题,考试题目中有30%以上为作业题的原题或简单变换.) 我们鼓励学生们讨论作业题,但必须独立书写题目解答. 解答中英文皆可.
Homework 1
Homework 2
Homework 3
Homework 4
Midterm exam of Fall 2021
and its
solution
Midterm exam
and its
solution
Homework 5
Homework 6
Homework 7
Practice Exam of Fall 2021
Final Exam of Fall 2021
and its
solution
Alternative Final Exam
Final exam
and its
solution
LaTex笔记
这里
是慢慢在更新的LaTex课程笔记。点击下面每节课的链接可以看到手写的笔记.
课程安排
Tentative schedule
Lecture
Date
Content
1
9/5
Groups, examples, isomorphisms, and subgroups
, §1.1--1.3, 1.6, 2.1.
2
9/8
Cosets, Lagrange theorem, quotient groups, homomorphisms
, §1.6, 2.2--2.5, 3.1--3.2.
3
9/15
Isomorphism theorems, composition series, Holder program
, §3.3--3.4.
4
9/19
Jordan--Holder theorem, simplicity of A
n
, and finitely generated abelian groups
, §3.4, 5.1--5.2.
5
9/22
Recognizing direct produces, group actions, semi-direct products
, §1.7, 2.2, 4.1--4.2, 5.4--5.5.
6
9/29
Stabilizers and orbits of group actions, class equation, outer automorphisms
, §4.3--4.4.
7
10/3
(special time and location: 1pm-3pm, 78Jiayibing)
Sylow's theorems and applications
, §4.5.
video
8
10/6
Commutator subgroups, nilpotent groups, and p-groups
, §6.
9
10/13
Group representations, irreducibility, Schur's lemma.
, [Ser, §1, 2.2].
10
10/17
Characters, orthogonality relations
, [Ser, §2.1, 2.3].
11
10/20
Rings, ideals, and quotient rings
, [Ser, §2, 5].
10/27
Midterm Exam.
12
10/31
Chinese remainder theorem and PIDs
, §7.6,8.1
13
11/3
Euclidean domains and Unique factorization domains
, §8.1,8.3.
14
11/10
UFD properties of polynomial rings
, §9.
15
11/14
Finitely generated modules over PID
, §10.1, 12,1.
16
11/17
Field extensions
, § [丁聂, § 7.1-7.2].
17
11/24
Normal extensions
, [丁聂, § 7.3, 7.7].
18
11/28
Separable extensions and Finite fields
[丁聂, § 7.4, 7.5].
19
12/1
Galois theory I
, [丁聂, § 7.6, 8.1].
20
12/8
Galois theory II
, [丁聂, § 8.1].
21
12/12
Galois group of polynomials, Insolvability of the Quintic
, §14.6--14.8.
22
12/15
Transcendent extensions, infinite Galois group
, §14.9.
TBA
Final Exam