2022 秋: 代数学一 (实验班) 期末考试版本A

时间: 120 分钟 满分: 110 分, 最高得分不超过 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contain 1_R and $1_R \neq 0_R$; all ring homomorphisms take 1 to 1.

判断题 请在答卷纸上整齐编号书写 T 或 F (10 分)

1. 若 K 是域 F 的一个有限伽罗华扩张且相应的伽罗华群是单群, 那么 K/F 没有任何一个中间域 E (除了 K 和 F) 使得 K 是 E 的伽罗华扩张.

If the field K is a finite Galois extension of the field F whose Galois group is simple, then there is no intermediate fields E of K/F for which K is Galois over E, except K and F themselves.

- 2. 设 H 是一个 G 的子群. 若 H 的中心化子是整个群 G, 那么 H 是 G 的中心的子群. Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a subgroup of the center of G.
- 3. 每一个 $G_1 \times G_2$ 的子群都是形如 $H_1 \times H_2$, 这里 $H_1 \leq G_1$ 和 $H_2 \leq G_2$ 是相应的子群.

Every subgroup of $G_1 \times G_2$ is of the form $H_1 \times H_2$ for subgroups $H_1 \leq G_1$ and $H_2 \leq G_2$.

4. 设 p 是一个素数, α 是一个自然数. 那么每一个阶为 $2p^{\alpha}$ 的有限群都是可解的.

Let p be a prime number and $\alpha \in \mathbb{N}$. Then every group of order $2p^{\alpha}$ is solvable.

5. 设 $\varphi: R \to R'$ 是一个满的环同态,并且假设 R 是一个整环.则 R' 是一个整环.

Let $\varphi: R \to R'$ be a surjective ring homomorphism, and assume that R is an integral domain. Then R' is an integral domain.

6. 在 \mathbb{Q} 中, $\frac{1}{2}$ 是 2 和 3 的一个最大公约元素.

A gcd of 2 and 3 in \mathbb{Q} is $\frac{1}{2}$.

- 7. 设 K 是一个 \mathbb{Q} 的包含在某个 $\mathbb{Q}(\mu_n)$ 的域扩张. 那么 K 在 \mathbb{Q} 上的一个伽罗华扩张. Let K be an extension of \mathbb{Q} that is contained in $\mathbb{Q}(\mu_n)$ for some n, then K is Galois over \mathbb{Q} .
- 8. 若 K 是正特征 p 的域 F 的一个有限不可分扩张, 那么对于任何一个元素 $\alpha \in K$, 若它满足 $K = F(\alpha)$, 则 α 的极小多项式可以被写为 $f(x^p)$ 的样子,这里 $f(x) \in F[x]$ 是一个多项式.

If K is a finite inseparable field extension of a field F of characteristic p > 0, then for every $\alpha \in K$ satisfying $K = F(\alpha)$, the minimal polynomial of α can be written as $f(x^p)$ for some $f(x) \in F[x]$.

9. 令 K 是有限域 F 的一个 n 次扩张,那么 K/F 的所有中间域的个数 (包括 K 和 F) 和 n 的约数的个数相等.

Let K be a finite extension of degree n of a finite field F, then the number of intermediate fields between K and F (including F and K themselves) is the same as the (positive) divisors of n.

10. 设x为一个自由变元. 那么 $\mathbb{Q}(x)$ 是 $\mathbb{Q}(\frac{x^2+1}{x})$ 的一个二次扩张.

Let x be an indeterminate variable. Then $\mathbb{Q}(x)$ is a quadratic extension of $\mathbb{Q}(\frac{x^2+1}{x})$.

解答题一 $(10 \ \%)$ 令 G 是一个有限群,K 是其正规子群, P 是 K 的一个西罗 p-子群 $(p \ \%)$ 、证明: $G = KN_G(P)$, 这里 $N_G(P)$ 是 P 在 G 中的正规化子.

Let G be a finite group, K a normal subgroup, and P a p-Sylow subgroup of K for some prime p. Prove that $G = KN_G(P)$, where $N_G(P)$ is the normalizer of P in G.

解答题二 $(15 \ \beta)$ 环 $\mathbb{Z}[x]/(x^3+1,6)$ 中一共有多少个素理想?为什么? (如果你引用一些定理或者熟知的结论,请清楚地注明,并验证所需的条件。)

How many prime ideals are there in the ring $\mathbb{Z}[x]/(x^3+1,6)$? Why? (If you make use of a known theorem or a well-known result, please state clearly which theorem or result you are using, and please verify the needed conditions.)

解答题三 (15 分) 设 $n \geq 3$ 是一个无平方因子的整数. 令 $R = \mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a,b \in \mathbb{Z}\}$ 是复数域 \mathbb{C} 的子环.

- (1) 证明: $\sqrt{-n}$ 和 $1+\sqrt{-n}$ 是 R 中的不可约元.
- (2) 证明 R 不是一个唯一分解整环.
- (3) 构造一个 R 中的理想使得它不是主理想,并证明之.

Let n be a square-free integer greater than 3. Let R denote the subring $\mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Z}\}$ of the field of complex numbers \mathbb{C} .

- (1) Show that $\sqrt{-n}$ and $1 + \sqrt{-n}$ are irreducible in R.
- (2) Prove that R is not a unique factorization domain (UFD).
- (3) Construct an ideal in R that is not principal; prove it.

解答题四 $(10\ \mathcal{G})$ 设 $\mathbb{Q}=K_0\subseteq K_1\subseteq K_2\subseteq\cdots\subseteq K_n$ 是 \mathbb{C} 中的一列域扩张使得对每个 $i\geq 0,\,K_{i+1}$ 是 K_i 的三次伽罗华扩张. 证明: $\mathbb{Q}(\sqrt[3]{2})$ 不包含在 K_n 中.

Let $\mathbb{Q} = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ be a sequence of subfields of \mathbb{C} such that K_{i+1} is Galois over K_i of degree 3 for each $i \geq 0$. Show that $\mathbb{Q}(\sqrt[3]{2})$ is not contained in K_n .

解答题五 $(15 \, \mathcal{G})$ 令 p 为一个素数且设 F 是一个包含所有 p次单位根的域. 令 K 是 F 的伽罗华扩张且伽罗华群为 $\mathbf{Z}_p \times \mathbf{Z}_p$.

- (1) 证明:存在两个元素 $\alpha, \beta \in K^{\times}$ 使得 $K = F(\alpha, \beta)$ 且 $a = \alpha^p, b = \beta^p \in F$. (你可以使用Artin的特征线性无关的定理,但如果要使用 Kummer 定理,请证明)
- (2) 列出扩张 K/F 的所有的中间域,请写成在 $F(\eta)$ 的形式,这里 η 是 K 中的某个元素. 并给出相应的 $\mathbf{Z}_p \times \mathbf{Z}_p$ 的子群 (给出生成元, 用 α 和 β 表示).

Let p be a prime number and let F be a field containing p-th roots of unity. Let K be a Galois extension of F with Galois group $\mathbf{Z}_p \times \mathbf{Z}_p$.

- (1) Show that there exist two elements $\alpha, \beta \in K^{\times}$ such that $K = F(\alpha, \beta)$ and $a = \alpha^p, b = \beta^p \in F$. (You can use Artin's theorem on independence of characters. But if you want to use Kummer theory, prove it.)
- (2) List all intermediate fields between K and F and express each field in the form of $F(\eta)$ for some element $\eta \in K$ in terms of α and β . Moreover, give the corresponding Galois subgroups, in terms of generators.

解答题六 $(15 \ \mathcal{G})$ 设 p 是一个素数, q 为 p 的幂次. 记 \mathbb{F}_q 为有 q 个元素的有限域, \mathbb{F}_{q^n} 为其次数为 n 的有限扩张.

- (1) 证明: q-Frobenius 元素 $\sigma(x) = x^q$ 是循环群 $Gal(\mathbb{F}_{q^n}/\mathbb{F}_q)$ 的生成元.
- (2) 考虑如下的范数映射 $N: \mathbb{F}_{q^n} \to \mathbb{F}_q$

$$N(x) = x\sigma(x)\sigma^{2}(x)\cdots\sigma^{n-1}(x).$$

证明: N 是满射.

(3) 证明: $N^{-1}(1)$ 作为 \mathbb{F}_q -线性空间生成 \mathbb{F}_{q^n} .

Let p be a prime integer, and q be a power of p. Let \mathbb{F}_q be the finite field with q elements, and \mathbb{F}_{q^n} be the degree n extension of \mathbb{F}_q .

- (1) Prove that the q-Frobenius $\sigma(x) = x^q$ generates $Gal(\mathbb{F}_{q^n}/\mathbb{F}_q)$ as a cyclic group.
- (2) Consider the norm map $N: \mathbb{F}_{q^n} \to \mathbb{F}_q$ defined by

$$N(x) = x\sigma(x)\sigma^{2}(x)\cdots\sigma^{n-1}(x).$$

Prove that N is surjective.

(3) Prove that $N^{-1}(1)$ spans \mathbb{F}_{q^n} as an \mathbb{F}_q -vector space.

解答题七 $(10 \ f)$ 证明多项式 $x^4 + 1$ 在任何一个正特征域上是可约多项式.

Prove that the polynomial x^4+1 is not irreducible over any field of positive characteristic.

解答题八 $(10\ \mathcal{G})$ 令 F 是一个域且 $f(x)\in F[x]$ 是不可约多项式. 设 K 是 f(x) 在 F 上的分裂域并假设存在某个元素 $\alpha\in K$ 使得 α 和 $\alpha+1$ 都是 f(x) 的根.

- (1) 证明: F 不是特征 0 的域.
- (2) 证明:存在某个 K/F 的中间域 E 使得 [K:E] 等于 F 的特征.

Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial. Suppose that K is a splitting field for f(x) over F and assume that there exists an element $\alpha \in K$ such that both α and $\alpha + 1$ are roots of f(x).

- (1) Show that the characteristic of F is not zero.
- (2) Prove that there exists an intermediate field E between K and F such that [K : E] is equal to the characteristic of F.