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All rings contain 1x and 1g # Og; all ring homomorphisms take 1 to 1.
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If the field K is a finite Galois extension of the field F' whose Galois group is simple,
then there is no intermediate fields F of K/F for which K is Galois over E, except K and
F' themselves.
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Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a
subgroup of the center of G.
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Every subgroup of GG; x G5 is of the form H; x H, for subgroups H; < G and Hy < Go.
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Let p be a prime number and o € N. Then every group of order 2p“ is solvable.
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Let o : R — R’ be a surjective ring homomorphism, and assume that R is an integral
domain. Then R’ is an integral domain.
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Agedof 2 and 3in Qs 1.
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Let K be an extension of QQ that is contained in Q(u,) for some n, then K is Galois

over Q.
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If K is a finite inseparable field extension of a field F' of characteristic p > 0, then for
every a € K satisfying K = F(«), the minimal polynomial of @ can be written as f(z?) for

some f(z) € F|x]. 1
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Let K be a finite extension of degree n of a finite field F', then the number of intermediate
fields between K and F (including F' and K themselves) is the same as the (positive) divisors

of n.
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Let 2 be an indeterminate variable. Then Q(z) is a quadratic extension of Q(%L),
T

BEB— (10 7)) 4 G 22— 1MARE, K 2HLENTH P& K 11N p-7#
(p NEH). IEHH: G = KNg(P), XH Ng(P) & P 1E G HHIIERAL T

Let G be a finite group, K a normal subgroup, and P a p-Sylow subgroup of K for some
prime p. Prove that G = K Ng(P), where Ng(P) is the normalizer of P in G.
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How many prime ideals are there in the ring Z[z]/(z* + 1,6)? Why? (If you make use
of a known theorem or a well-known result, please state clearly which theorem or result you

are using, and please verify the needed conditions.)
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Let n be a square-free integer greater than 3. Let R denote the subring Z[/—n| =
{a+by/—n|a,b € Z} of the field of complex numbers C.

(1) Show that v/—n and 1+ y/—n are irreducible in R.

(2) Prove that R is not a unique factorization domain (UFD).

(3) Construct an ideal in R that is not principal; prove it.
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Let Q = Ky C K; C Ky C--- C K, be a sequence of subfields of C such that K;,; is
Calois over K; of degree 3 for each i > 0. Show that Q(+/2) is not contained in K.
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Let p be a prime number and let F' be a field containing p-th roots of unity. Let K be
a Galois extension of F' with Galois group Z, x Z,.

(1) Show that there exist two elements o, € K* such that K = F(«, ) and a =
a?,b = P € F. (You can use Artin’s theorem on independence of characters. But if you
want to use Kummer theory, prove it.)

(2) List all intermediate fields between K and F' and express each field in the form of
F(n) for some element 7 € K in terms of o and . Moreover, give the corresponding Galois

subgroups, in terms of generators.
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N(z) = zo(z)o*(z)--- o™ ().
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Let p be a prime integer, and g be a power of p. Let [F, be the finite field with ¢ elements,
and Fy» be the degree n extension of F,.

(1) Prove that the g-Frobenius o(z) = 2? generates Gal(F,» /F,) as a cyclic group.
(2) Consider the norm map N : F» — F, defined by

N(z) = zo(z)o*(z) - - o™ ().

Prove that N is surjective.

(3) Prove that N7'(1) spans F» as an F,-vector space.
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Prove that the polynomial 2*+1 is not irreducible over any field of positive characteristic.
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Let F be a field and let f(x) € F[z] be an irreducible polynomial. Suppose that K is
a splitting field for f(x) over F' and assume that there exists an element o € K such that
both o and « + 1 are roots of f(x).
(1) Show that the characteristic of F' is not zero.
(2) Prove that there exists an intermediate field E between K and F such that [K : F]

is equal to the characteristic of F.



