
2023 Fall Honors Algebra Exercise 6 (due on December 7)

For submission of homework, please finish the 20 True/False problems, 5 exam-
ples/counterexample problems, and choose 7 problems from the standard ones
and 5 problems from the more difficult ones. Mark the question numbers clearly.

[A] = Artin, [DF] = Dummit and Foote, [DN] = Ding and Nie (Chinese), [H] =
Hungerford.

6.1. True/False questions. (Only write T or F when submitting the solutions.)

(1) A field extension of degree 2 is always normal.
(2) A field extension of degree 2 is always separable.
(3) For a finite field extension K over F , one can find always find an element α ∈ K such

that K = F (α).
(4) A finite extension of a perfect field can be generated by one element.
(5) If L/K is the splitting field of f(x) ∈ K[x], then for any intermediate field E of L/K,

L is a splitting field of f(x) over E.
(6) Let p be a prime number. The additive group of a finite field of pn elements is a cyclic

group of order pn.
(7) If p is a prime number, there exists an irreducible polynomial of degree p in Fp[x].
(8) Every finite extension of a finite field is separable.
(9) If all finite extensions of F are separable, then F is a perfect field.
(10) If F is a perfect field, then any field extension of F is a perfect field.
(11) LetK/F be a finite Galois extension of fields with Galois group G. Then G is a simple

group if and only if there is no intermediate field E that is Galois over F (except for
K and F themselves).

(12) Let K/F be a finite Galois extension of fields with Galois group G. Then G is a
simple group if and only if there is no intermediate field E such that K is Galois over
E (except for K and F themselves).

(13) The Galois group of a finite extension of finite fields is always abelian.
(14) The Galois group of the splitting field of Φn(x) over Q is cyclic.
(15) Let K1 and K2 be two Galois extensions of F such that Gal(K1/F ) ∼= Gal(K2/F ),

then K1
∼= K2.

(16) Let K be a finite Galois extension of F . If two intermediate fields K1 and K2 satisfies
Gal(K/K1) is isomorphic to Gal(K/K2), then K1 = K2.

(17) Let K/F be a finite cyclic extension of fields of degree n. Then for each divisor d of
n, there is a unique intermediate field of K/F that has degree d over F .

(18) F5(y) is a separable extension of F5(y
10).

(19) If f(x) ∈ F [x] is an irreducible polynomial and if α is a simple zero of f(x) in some
field extension of F , then the splitting field of f(x) over F is separable over F .

(20) Let K be a finite extension of degree n of a finite field F . Then for each positive
integer d|n, there is a unique subfield E of K containing F such that E is a finite
extension of F of degree d.
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6.2. Warm-up questions. (Do not submit solutions for the following questions)

Problem 6.2.1. Prove that the cardinality of every finite field is a power of a prime.

Problem 6.2.2. List all subfields of Q(
√
2,
√
3,
√
5).

List all subfields of Q( 3
√
2, ζ3).

Write these fields as a tower of fields.

Problem 6.2.3. Determine the splitting field of x6 + 2x3 + 2 over F3.

Problem 6.2.4 (DN, page 234, problem 6). Find a basis of the following field extensions:
(1) K = Q(

√
2,
√
3)

(2) K = Q(
√
3,
√
−1, ω) with ω = 1

2
(−1 +

√
−3).

Problem 6.2.5. If F is a field that is not perfect, show that F has a nontrivial purely
inseparable extension.

Problem 6.2.6. [DF, page 551, problem 6]
Let p be a prime number and n ∈ N. Prove that xpn−1 − 1 =

∏
α∈F×

pn
(x − α). Conclude

that
∏

α∈F×
pn
α = (−1)p

n
.

Derive from this the Wilson’s Theorem: for odd prime p, (p− 1)! ≡ −1 (mod p).

Problem 6.2.7. [H, page 268, problem 12]
Let K/E/F be algebraic field extensions.

(1) If u ∈ K is separable over F , then u is separable over E.
(2) If K is separable over F , then K is separable over E and E is separable over F .

Problem 6.2.8. Let F be a field of characteristic p > 0. Prove that

(1) Let f(x) ∈ F [x] be an irreducible polynomial with degree relatively prime to p. Then
f(x) is separable over F .

(2) Show that if an extension K/F has degree [K : F ] relatively prime to p, then K/F is
separable.

Problem 6.2.9. [DF, page 555, probem 6]
Prove that for n odd, n > 1, Φ2n(x) = Φn(−x).

Problem 6.2.10. Let K/F be a finite separable extension. Then a normal closure of K/F
is also separable over F .

Problem 6.2.11. Let ζ = ζ11. Show that α := ζ + ζ3 + ζ4 + ζ5 + ζ9 generates a field of
degree 2 over Q and find its equation.

(Is there a reason to understand why this sum of powers of ζ is special?)
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6.3. Examples and counterexamples. (Answer all 5 problems below. Only give the ex-
amples; no need to explain why.)

Problem 6.3.1. Give an example of a perfect field of positive characteristic that is not finite.

Problem 6.3.2. Give an example of a field extension that is algebraic but not finite.

Problem 6.3.3. Give an example of an extension of degree 2 that is not separable.

Problem 6.3.4. Give an example of a field extension K over F and two intermediate fields
K1 and K2 of F such that

[K1K2 : F ] ̸= [K1 : F ] · [K2 : F ].

Problem 6.3.5. Give an example of a field F and two finite extensions K1 and K2 such that

• [K1 : F ] ̸= [K2 : F ]
• K1 is abstractly isomorphic to K2.
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6.4. Standard questions. (Please choose 8 problems from the following questions)

Problem 6.4.1. [DF, page 545, problems 3, 4]
Determine the splitting field and its degree over Q of x4 + x2 + 1, and of x6 − 4.

Problem 6.4.2. [DF, page 545, problems 5 and 6]
Let K be a finite extension of F and let K1 and K2 intermediate fields that are normal

extensions of F . Given one-line argument to show that both K1K2 and K1 ∩K2 are normal
extensions of F .

Problem 6.4.3. [DN, page 234, problem 14]
If F ⊆ K ⊆ L is a tower of field extensions and if K/F and L/K are normal extensions,

is it true that L/F is normal? If true, prove it, otherwise, give a counterexample.

Problem 6.4.4. [DN, page 234, problems 17 and 18]
Let K and L be two intermediate fields of the field extension E/F . Show that

(1) if K/F is normal, then the composite KL is normal over L; and
(2) if K/F and L/F are both normal, then the composite KL and the intersection K ∩L

are both normal in F .

Problem 6.4.5. [DN, page 235, problem 19]
Let E/F be a finite normal extension and let f(x) ∈ F [x] be an irreducible polynomial.

Prove that f(x) factors on E as the product

f(x) = (f1(x)f2(x) · · · fr(x))p
e

with e ≥ 0 and all fi(x) having the same degree.

Problem 6.4.6. [DN, page 235, problem 22]
Let Fp be the finite field of p elements (p a prime number), and f(x) ∈ Fp[x] an irreducible

polynomial of degree n. Let Pd(x) denote the product of all monic irreducible polynomials
of degree d. Prove that

(1) f(x)|xpm − x if and only if n|m;
(2) (xpn − x)|(xpm − x) if and only if n|m;

(3) xpn − x =
∏
d|n

Pd(x);

(4) Pn(x) =
∏
d|n

(xpd − x)µ(n/d), where µ(n) is the Mobius function;

(5) Show that the number of irreducible monic polynomials of degree n is

Nn =
1

n

∑
d|n

µ
(n
d

)
pd.

Problem 6.4.7. [DN, page 236, problem 27]
Let F be a field of characteristic p > 0 and let a ∈ F but a /∈ F p. Then xpe − a with e ≥ 1

is irreducible over F .

Problem 6.4.8. Write ζ13 = e2πi/13.
(1) Find a generator for the unique cubic subfield of Q(ζ13).
(2) Find the minimal polynomial of that generator over Q.
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Problem 6.4.9. [DF, page 556, problem 8]

Let ℓ be a prime and let Φℓ(x) =
xℓ−1
x−1

= xℓ−1+xℓ−2+· · ·+x+1 ∈ Z[x] be the ℓth cyclotomic
polynomial, irreducible in Z[x]. This exercise determines the factorization of Φℓ(x) modulo
p for any prime p. Let ζ denote any fixed primitive ℓth root of unity.

(1) Show that if p = ℓ then Φℓ(x) = (x− 1)ℓ−1 ∈ Fℓ[x].
(2) Suppose p ̸= ℓ and let f denote the order of p mod ℓ, i.e., f is the smallest power of

p with pf = 1 mod ℓ. Show that n = f is the smallest power pn of p that contains a
primitive ℓth root of unity ζ, i.e. a zero of Φℓ(x) mod p. Conclude that the minimal
polynomial of ζ over Fp has degree f .

(3) Show that Fp(ζ) = Fp(ζ
a) for any integer a not divisible by ℓ. Conclude using (2)

that, in Fp[x], Φℓ(x) is the product of ℓ−1
f

distinct irreducible polynomials of degree

f .
(4) In particular, prove that, viewed in Fp[x], Φ7(x) = x6 + x5 + · · · + 1 is (x − 1)6 for

p = 7, a product of distinct linear factors for p ≡ 1 mod 7, a product of 3 irreducible
quadratics for p ≡ 6 mod 7, a product of 2 irreducible cubics for p ≡ 2, 4 mod 7, and
is irreducible for p ≡ 3, 5 mod 7.

Problem 6.4.10. [DF, page 595, problem 3]
Let F be a field contained in the ring of n × n matrices over Q. Prove that [F : Q] ≤ n.

(Hint: Cayley–Hamilton theorem.)

Problem 6.4.11. [DF, page 603, problem 7]
Show that complex conjugation restricts to the automorphism σ−1 ∈ Gal(Q(ζn)/Q) of the

cyclotomic field of nth roots of unity. Show that the field K+ = Q(ζn + ζ−1
n ) is the subfield

of real elements in K = Q(ζn), called the maximal real subfield of K.

Problem 6.4.12. [DF, page 603, problem 11]
Prove that the primitive nth roots of unity form a basis over Q for the cyclotomic field of

nth roots of unity if and only if n is squarefree.

Problem 6.4.13. [DF, page 617, problem 3]
Prove that for any a, b ∈ Fpn that if x3 + ax+ b is irreducible then −4a3 − 27b2 is a square

in Fpn .

Problem 6.4.14. Let F ⊆ E be finite fields, where |F | = q < ∞ and [E : F ] = n.
(1) Prove that every monic irreducible polynomial in F [X] of degree dividing n is the

minimal polynomial over F of some element of E.
(2) Compute the product of all the monic irreducible polynomials in F [X] of degree dividing

n.
(3) Suppose |F | = 2. Determine the number of monic irreducible polynomials of degree 10

in F [X].

Problem 6.4.15. Let k be a perfect field of characteristic p > 0. Let F = k(t) be the field
of rational functions in one variable over k. Show that every finite extension E of F can be
generated by one element, that is, there exists α ∈ E such that E = F (α).
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6.5. More difficult questions. (Please choose 4 problems from the following questions)

Problem 6.5.1. [DN, page 220, Lemma 2]
Let F be a field of characteristic p > 0 and a ∈ F . Then xp − a is either irreducible or it

factors completely as xp − a = (x− b)p for some b ∈ F .

Problem 6.5.2. Let K/F be a finite extension.
(1) Show that Ks := {α ∈ K separable over F} is the maximal intermediate field that is

separable over F .
Define

[K : F ]s := [Ks : F ] and [K : F ]i := [K : Ks].

(2) Show that, if E is a normal extension of F that contains K, then

|HomF (K,E)| = |HomF (K
s, E)| = [K : F ]s.

(The latter equality is a theorem from the class; so no need to prove.)
(3) Show that if L/K/F be finite extensions, then

[L : F ]s = [L : K]s · [K : F ]s and [L : F ]i = [L : K]i · [K : F ]i.

Challenge: What if we only assume K/F is algebraic? (Tricky part: even if an extension
is infinite, the separable or the inseparable degrees could still be finite.)

Problem 6.5.3. [DF, page 551, problem 5] and Yau contest 2021
For any prime p and any nonzero a ∈ Fp prove that x

p − x+ a is irreducible and separable
over Fp.

(There are hints on the book.)

Problem 6.5.4. [H, page 282, problem 9]
If n ≥ 3, then x2n + x+ 1 is reducible in F2.

Problem 6.5.5. [DN, page 237, problems 38 and 39]
(1) Let K/F be a simple algebraic extension. Let K = F (θ). Let L be an intermediate

field of K/F . Show that the minimal polynomial of θ over L: g(x) = xr + α1x
r−1 + · · ·+ αr,

satisfies that F (α1, . . . , αr) = L. From this, deduce that a simple algebraic extension can
only have finitely many intermediate fields.

(2) Let F be an infinite field and K/F an algebraic extension. Show that if K/F has only
finitely many intermediate field, then for every elements α, β ∈ K, the composite of F (α)
and F (β) inside K is still a simple extension of F .

From this, deduce that if an algebraic extension K/F has only finitely many intermediate
fields, then K/F is a simple extension.

Problem 6.5.6. [DF, page 556, problems 10 and 12]
Let φ denote the Frobenius map x 7→ xp on the finite field Fpn . Prove that φn is the

identity map and no lower power of φ is the identity.
Determine the Jordan canonical form over Fp when viewing φ as an Fp-linear operator on

the n-dimensional Fp-vector space Fpn . (What if p|n?) Here, by Jordan canonical form, we
meant to first write φ in terms of an n × n matrix (with entries in Fp) and then take the
compute the canonical form in an extension FpN of Fp (for N sufficiently divisible).

Problem 6.5.7. [DF, page 556, problem 13] (Wedderburn’s Theorem on Finite Division
Rings)
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This exercises aim to prove Wedderburn’s Theorem that a finite division ring D is a field
(i.e. is commutative).

(1) Let Z denote the center of D. Prove that Z is a field containing Fp for some prime p.
If Z = Fq, prove that D has order qn for some integer n.
(2) The nonzero elements D× of D form a multiplicative group. For any x ∈ D× show

that the elements of D which commute with x form a division ring which contains Z.
Show that this division ring is of order qm for some integer m and that m < n if x is not

an element of Z.
Show that the class equation for the group D× is

qn − 1 = (q − 1) +
r∑

i=1

qn − 1

|CD×(xi)|
,

where x1, . . . , xr are representatives of the distinct conjugacy classes in D× not contained in
the center of D×.

Conclude from (2) that for each i, |CD×(xi)| = qmi − 1 for some mi < n.
(4) Prove that since qn−1

qmi−1
is an integer (being the index [D× : CD×(xi)]), then mi divides

n.
Conclude that the integer Φn(q) divides (q

n − 1)/(qmi − 1) for i = 1, . . . , r.
(5) Prove that (3) and (4) implies that Φn(q) =

∏
ζprimitive(q− ζ) divides q− 1. Prove that

|q − ζ| > q − 1 (in terms of complex absolute values) for any root of unity ζ ̸= 1. Conclude
that n− 1, i.e. D = Z is a field.

Problem 6.5.8. (Transcendental degree, following [Ar, page 525-526]) Let K be a field
extension of F . We say a set of elements {α1, . . . , αn} ⊂ K is algebraically independent over
F if there is a nonzero polynomial in n variables f(x1, . . . , xn) ∈ F [x1, . . . , xn] such that

f(α1, . . . , αn) = 0.

If no such nonzero polynomial f exist, we say that {α1, . . . , αn} is algebraically independent.
(1) Show that {

√
π, 4

√
π
√
π − 1} is algebraically dependent over Q.

(2) Show that if α1, . . . , αn are algebraically independent over F , then F (α1, . . . , αn) is
isomorphic to F (x1, . . . , xn) of rational functions in x1, . . . , xn.
We say that {α1, . . . , αn} is a transcendental basis of K over F if {α1, . . . , αn} is linearly

independent over F , and K is an algebraic extension over F (α1, . . . , αn).
(3) Let {α1, . . . , αm} and {β1, . . . , βn} be elements in an extension K of a field F . Assume

that K is algebraic over F (β1, . . . , βn) and that α1, . . . , αm are algebraically independent over
F . Then m ≤ n, and {α1, . . . , αm} can be completed into a transcendental basis for K by
adding at most (n−m) elements from {β1, . . . , βn}.
(Corollary of (3): when K has a (finite) transcendental basis over F , we may define its

transcendental degree over F to be, tr.deg(K/F ) the cardinality of a transcendental basis.
By (3), such number does not depend on the choice of transcendental bases.)

Note: examples of transcendental extensions to keep in minds include Q(x)(
√
x3 − x)

(having transcendental degree 1).

Problem 6.5.9 (Chevalley–Warning problem). Let Fq be a finite field of cardinality q = pr.
(a) Let 0 ≤ a < q − 1 be an integer. Show that

S(Xa) :=
∑
a∈F

xa
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is equal to 0. Here we adopt the convention that a0 = 1 in Fq even for x = 0.
(b) Let f1, . . . , fm ∈ Fq[X1, . . . , Xn] be polynomials in n variables satisfying

m∑
i=1

deg(fi) < n.

Show that P =
m∏
i=1

(1− f q−1
i ) satisfies

S(P ) :=
∑

(x1,...,xn)∈Fn
q

P (x1, . . . , xn)

Deduce that p divides the cardinality of the set

V =
{
(x1, . . . , xn) ∈ Fn

q

∣∣ fi(x1, . . . , xn) = 0, ∀i
}
.

(c) When fi are homogeneous polynomials satisfying fi(0, . . . , 0) = 0 for all i and
∑m

i=1 deg(fi) <
n, show that f1, . . . , fn has a common zero in the projective space Pn(Fq).
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