2021 秋: 代数学一 (实验班) 期中考试

姓名:	院系:	学号:	分数:

时间: 110 分钟 满分: 100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contains 1_R and $1_R \neq 0_R$; all ring homomorphism takes 1 to 1.

判断题 在下表中填写 T 或 F (10 分)

1	2	3	4	5	6	7	8	9	10

1. 如果 H 是群 G 的正规子群, K 是 H 的正规子群, 那么 K 是 G 的正规子群.

If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal subgroup of G.

2. 对 i=1,2, 设 H_i 是 G_i 的正规子群满足 $H_1\cong H_2$ 和 $G_1\cong G_2$, 则 $G_1/H_1\cong G_2/H_2$. For i=1,2, let H_i be a normal subgroup of G_i satisfying $H_1\cong H_2$ and $G_1\cong G_2$, then $G_1/H_1\cong G_2/H_2$.

3. 任一非平凡的循环群的非平凡子群一定是循环群.

All nontrivial subgroups of a nontrivial cyclic group is cyclic.

- 4. 如果 N 是群 G 的正规子群, 则 G 是 N 和 G/N 的半直积.
- If N is a normal subgroup of G, then G is a semi-direct product of N with G/N.
- 5. 若 P 是群 G 的一个西罗 p-子群, 则 P 在 G 中的正规化子是 G 的正规子群.

If P is a Sylow p-subgroup of G, then the normalizer of P in G is normal in G.

6. 两个有限交换群的半直积是可解群.

A semi-direct product of two finite abelian groups is solvable.

- 7. 群同态 $\varphi: Z_{12} \to Z_{35}$ 必然是平凡的.
- A homomorphism $\varphi: Z_{12} \to Z_{35}$ of groups must be the trivial homomorphism.
- 8. 整环的子环一定是整环.

A subring of an integral domain is an integral domain.

9. 两个整环的直积还是整环.

The direct product of two integral domains is again an integral domain.

10. 若 R 是一个主理想整环, 则 R[x] 是一个主理想整环.

If R is a PID, then R[x] is a PID.

解答题一 (10 分) 证明: 阶为 132 的群不是单群.

Prove that no simple group has order 132.

解答题二 $(10 \ \mathcal{G})$ 设 $\varphi: R \to S$ 为两个交换环之间的同态.

- (1) 证明: 若 P 是一个 S 的素理想, 则 $\varphi^{-1}(P)$ 是 R 的一个素理想.
- (2) 证明: 若 M 是 S 的一个极大理想且 φ 是满射, 则 $\varphi^{-1}(M)$ 是 R 的一个极大理想.
- (3) 给出一个例子说明 (2) 在不假设 φ 满射时不成立.

Let $\varphi: R \to S$ be a homomorphism of commutative rings.

- (1) Prove that if P is a prime ideal of S, then $\varphi^{-1}(P)$ is a prime ideal of R.
- (2) Prove that if M is a maximal ideal of S and φ is surjective, then $\varphi^{-1}(M)$ is a maximal ideal of R.
- (3) Give an example to show that (2) does not hold without assuming φ to be surjective.

解答题三 (10 分) 记 R 为一整环, F 为其分式域. 对 F 中任一元素 q, 定义 $I_q := \{r \in R | rq \in R\}$.

- (1) 证明: I_q 是环 R 的一个理想.
- (2) 现设 $R = \mathbb{Z}[\sqrt{-3}]$ 及 $q = (1 \sqrt{-3})/2 = 2/(1 + \sqrt{-3}) \in F$. 证明: I_q 不是主理想.

Let R be an integral domain and F be its quotient field. For any element $q \in F$, define $I_q := \{r \in R \, | \, rq \in R\}$.

- (1) Show that each I_q is a nonzero ideal of R.
- (2) Now suppose that $R = \mathbb{Z}[\sqrt{-3}]$ and let $q = (1 \sqrt{-3})/2 = 2/(1 + \sqrt{-3}) \in F$. Show that I_q is not a principal ideal.

解答题四 (15 分) 记 $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ 是由常数项为整数的有理系数多项式构成的集合.

- (1) 证明: R 是一个整环, 且它的可逆元只有 ±1.
- (2) 证明: R 中的不可约元恰为
 - ±p (对所有素数 p),
 - 常数项为 ± 1 的且在 $\mathbb{Q}[x]$ 中不可约的多项式 f(x).

证明这些不可约元都是 R 中的素元.

(3) 证明 x 不可以被写成 R 中不可约元的乘积, 从而证明 R 不是唯一分解整环.

Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.

- (1) Prove that R is an integral domain and its units are ± 1 .
- (2) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 . Prove that these irreducibles are prime in R.
- (3) Show that x cannot be written as a product of irreducibles in R and conclude that R is not a U.F.D.

解答题五 (15 分) 设 $H \in G$ 的子群, 令

$$K:=\bigcap_{g\in G}gHg^{-1}$$

为群 H 所有共轭的交.

(1) 证明: *K* 是 *G* 的正规子群.

(2) 证明: 若 [G:H] 是有限的,则 [G:K] 也是有限的.

Let H be a subgroup of G. Define

$$K:=\bigcap_{g\in G}gHg^{-1}$$

to be the intersection of all conjugates of H.

(1) Show that K is a normal subgroup of G.

(2) Show that if [G:H] is finite, then [G:K] is finite. (Hint: first show that the intersection above defining K is essentially a finite intersection.)

解答题六 (15 分) 设 R 为一交换环. 一个导数算子是指一个映射 $D: R \to R$ 满足对所有 $a,b \in R$: D(a+b) = D(a) + D(b) 和 D(ab) = aD(b) + D(a)b.

(1) 考虑环 $R[x]/(x^2)$, 证明: 存在一个双射

 $\{$ 导数算子 $D: R \to R \} \longleftrightarrow \{$ 环同态 $\varphi: R \to R[x]/(x^2)$ 使得 $\varphi \mod x$ 是恒同 $\}$.

(2) 如果 $D \in \mathbb{R}$ 上的一个导数算子且 $e \in \mathbb{R}$ 是一个幂等元 (即 $e = e^2$), 证明: D(e) = 0.

Let R be a commutative ring. A derivation $D: R \to R$ is a map satisfying D(a+b) = D(a) + D(b) and D(ab) = aD(b) + D(a)b for all $a, b \in R$.

(1) Consider the ring $R[x]/(x^2)$, show that there is a bijection

$$\left\{ \text{Derivations } D: R \to R \right\} \; \longleftrightarrow \; \left\{ \begin{array}{l} \text{Ring homomorphisms } \varphi: R \to R[x]/(x^2) \\ \text{such that } \varphi \bmod x = \mathrm{id} \end{array} \right\}.$$

(2) If D is a derivation of R and $e \in R$ is an idempotent (i.e. $e = e^2$), prove that D(e) = 0.

解答题七 $(15 \, \mathcal{G})$ 令 p 为一奇素数. 设 G 是一个阶为 p(p+1) 的有限群, 且假设 G 没有正规的西罗-p 子群.

- (1) 求 G 中阶不为 p 的元素的个数.
- (2) 证明: G 中阶不整除 p 的元素构成一个共轭类.
- (3) 证明: p+1 是 2 的幂.

Let p be an odd prime number, and let G be a finite group of order p(p+1). Assume that G does not have a normal Sylow p-subgroup.

- (1) Find the number of elements of G with order different from p.
- (2) Show that the set of elements of G whose order does not divide p form exactly one conjugacy class.
- (3) Prove that p + 1 is a power of 2.

附加题一 $(+5 \ f)$ 设 $K \subseteq H$ 为群 G 的子群满足 $K \triangleleft H$.

- (1) 证明: H 在共轭作用下保持 $C_G(K)$ 不动 $(C_G(K)$ 是 K 在 G 中的中心化子).
- (2) 设 $H \triangleright G$ 和 $C_H(K) = 1$, 证明: $H \mathrel{\mbox{\iffill }{\vdash}\mbox{\iffill }{\vdash$

Let G be a group and let $K \subseteq H$ be subgroups of G with $K \triangleleft H$.

- (1) Prove that H normalizes $C_G(K)$ (the centralizer of K in G).
- (2) If $H \triangleleft G$ and $C_H(K) = 1$, prove that H centralizes $C_G(K)$.

附加题二 $(+5 \, f)$ 设 G 是一个有限群, 记 $Syl_p(G)$ 为它的西罗 p-子群的集合.

- (1) 如果 S 和 T 是 $\mathrm{Syl}_p(G)$ 中不同的元素使得 $\#(S\cap T)$ 取得最大值. 证明: $N_G(S\cap T)$ 没有正规的西罗 p-子群.
- (2) 证明: $S \cap T = 1$ 对所有 $S, T \in \mathrm{Syl}_p(G)$ $(S \neq T)$ 成立当且仅当对任一 G 的非平凡 p-子群 $P, N_G(P)$ 包含一个正规西罗 p-子群.

Let G be a finite group and let $\mathrm{Syl}_p(G)$ denote its set of Sylow p-subgroups.

- (1) Suppose that S and T are distinct members of $\operatorname{Syl}_p(G)$ chosen so that $\#(S \cap T)$ is maximal among all such intersections. Prove that the normalizer $N_G(S \cap T)$ does not admit normal Sylow p-subgroup.
- (2) Show that $S \cap T = 1$ for all $S, T \in \text{Syl}_p(G)$, with $S \neq T$, if and only if $N_G(P)$ has exactly one Sylow *p*-subgroup for every nonidentity *p*-subgroup *P* of *G*.