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All rings contains 1g and 1 # Og; all ring homomorphism takes 1 to 1.
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If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal
subgroup of G.

False. A typical situation is when H is abelian, e.g. G = (Z,)* x Sy, H = (Z,)* the
standard normal subgroup; here the semi-direction product is by letting Sy to permute the
two factors. If we take K to be the first factor Z, of H, then K is clearly normal in H yet
not normal in G.

2. X i=1,2, % H; & G, WMIEMFH L Hy = Hy M Gy 2 Gy, W G1/Hy = Gy/ Hs.

For i = 1,2, let H; be a normal subgroup of G; satisfying H; = Hy and G; = G, then
G1/H, = Gy/Hs.

False. If one wants G/ H; = G/ H,, one needs the isomorphism ¢ : G; = G5 to induce
the corresponding isomorphism H; = H,. A typical example is to take G; = Gy = Z and
H, = 4Z and Hy = 2Z. Clearly H; and H, are abstractly isomorphic, but G;/H; = Z,; and
Go/Hy =
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All nontrivial subgroups of a nontrivial cyclic group is cyclic.

True. Say we consider a subgroup H < G = (o), then it suffices to find the minimal
n € N such that 0" € H, then ¢" would generate H.

4. R N RS G RIERTHEE, W G2 N ATG/N KRR

If N is a normal subgroup of G, then G is a semi-direct product of N with G/N.

False. It is not true in general that one can embed G /N back to G. Semi-direct product
requires that G/N can be realized as a subgroup of G. (This is a hard T/F question.)
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If P is a Sylow p-subgroup of GG, then the normalizer of P in G is normal in G.

False. A corollary of Sylow’s theorem says that, for a Sylow p-subgroup P, Ng(Ng(P)) =
Ng(P). So as long as Ng(P) # G (when P is not a normal Sylow p-subgroup), Ng(P) is
NOT normal in G.
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A semi-direct product of two finite abelian groups is solvable.

True. Say this semi-direct product is G = H; x Hj then [G, G| C H; which is abelian.
So G is solvable.

7. REAR o Zip — Zss IR LI

A homomorphism ¢ : Z15 — Z35 of groups must be the trivial homomorphism.

True. This is because #Im(G)|#Z35 and #Im(G)|#Z12. So #Im(G) = 0.

8. MM FHR— it AL HH,

A subring of an integral domain is an integral domain.

True. This is because if the big ring does not have zero-divisors, the subring cannot
have zero-divisors.

0. BRI LR S 5.

The direct product of two integral domains is again an integral domain.

False. The direct product of two integral domain is never an integral domain, because
(1,0) - (0,1) = (0,0) gives zero-divisors.
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If R is a PID, then R[z] is a PID.

False. R =Z is a PID, but Z[z] is not a PID, e.g. the ideal (2, ).
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Prove that no simple group has order 132.
JEBA. 132 =3 x4 x 11.

Suppose that there exists a simple group G of order 132. In particular G does not
contain any normal Sylow p-subgroups.

We apply Sylow’s theorems to each of the primes 3 and 11. For p = 3, 11, write n,, for
the number of Sylow p-subgroups of G.

ny1 = 1 mod 11 and ny1[12. As nyy # 1, so ny; = 12. We count the number of elements
of order precisely 11: as each Sylow 11-subgroup is isomorphic to Z;;, so each Sylow 11-
subgroup contains exactly 10 elements of order 11. Yet two Sylow 11-subgroup can only
intersect at the identity elements of the groups. So there are 12 x 10 = 120 elements of order
11.

n3 = 1 mod 3 and ng|d x 11. As ng # 1, so ng = 4 or 22. By exactly the same argument
above, we see that there are at least 2 x 4 = 8 elements of order 3.

This then leaves 4 elements whose order are not 3 or 11. Yet there is always a Sylow
2-group which has order 4. So this group must consist of exactly the 4 elements whose order
are not 3 or 11. This Sylow 2-group must be normal, contradicting to our assumption on GG

being simple. 0]
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Let ¢ : R — S be a homomorphism of commutative rings.

(1) Prove that if P is a prime ideal of S, then ¢ ~!(P) is a prime ideal of R.
(2) Prove that if M is a maximal ideal of S and ¢ is surjective, then ¢~ !(M) is a maximal
ideal of R.

(3) Give an example to show that (2) does not hold without assuming ¢ to be surjective.

PEA. (1) First show that ¢~ 1(P) is an ideal. Indeed, if a,b € ¢ }(P) and ¢ € R, then
ola—0b) = p(a) — @(b) € P and ¢(ca) = p(c)p(a) € P. So a—b,ca € p~*(P).

We need to show that if a,b € R satisfies ab € ¢ '(P), then either a € ¢~ *(P) or
b € ¢ '(P). Indeed, the condition implies ¢(ab) € P, so ¢(a)p(b) € P. As P is a prime
ideal, either ¢(a) € P or ¢(b) € P; so either a € o~ !(P) or b € ¢~ '(P).

(2) If ¢ : R — S is surjective, we may view S as the quotient ring R/ker¢. As M is
a maximal ideal, S/M is a field. By Second Isomorphism Theorem, R/o (M) = S/M, so
the former is a field. Thus ¢~*(M) is a maximal ideal of R.

(3) Consider the natural inclusion ¢ : Z — Q. The ideal (0) € Q is a maximal ideal (as
Q only has two ideals (0) and (1)). Yet ¢=*(0) = (0) is a prime ideal but not a maximal
ideal. O
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(1) $EW: I, JE3F R 0 EE.
(2) Wit R=Z[V=3] l q=(1—-v=3)/2=2/1+/=3) € F. iE¥]: I, A2THE.
Let R be an integral domain and F' be its quotient field. For any element ¢ € F', define
I,:={r e R|rqe R}
(1) Show that each I, is a nonzero ideal of R.
(2) Now suppose that R = Z[v/=3] and let ¢ = (1 —/=3)/2 = 2/(1 ++/-3) € F. Show
that I, is not a principal ideal.

HEBH. (1) For ry, 75 € I, namely riqg € R and roq € R, we must have (r;—r3)q = rig—r2q € R
and thus r — o € I,. Similarly, if r € I, and a € R, then (ar)¢ =a-rq € R. So ar € I,.
From this, I, is an ideal.

To see that I, # (0), we may write ¢ = a/b € F with a,b € R and b # 0. Then b € I;
so I, is nonzero.

(2) First of all, 2 € I, because 2¢ = 1 — /=3 € R, and 1 + /=3 € I, because
(1++/=3)qg = 2 € R. Suppose that I, is principal, say I, = (a) with o € R, then 2 = af3
for some 8 = x + /—3y € R (with x,y € Z). Consider the norm map N : Z[v/—3] — Z;
N(z) = zz, where Z is the complex conjugation. We have

1= N(2) = N(@)N(8).
So N(a) = 2 + 3y? is a divisor of 4. There are only two options:
e cither o = %1, in which case, 1 € [, meaning ¢ € R, but it is not,
e or N(a) =4, then N(3) = 1 forcing 3 = £1 and thus o = £2. But then 1+ /-3 €
I, = (2) is absurd, as %TB ¢ R.

To sum up, I, is not a principal ideal. O
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Let R = Z + 2Q[z] C Q|z] be the set of polynomials in x with rational coefficients

whose constant term is an integer.

(1) Prove that R is an integral domain and its units are £1.

(2) Show that the irreducibles in R are +p where p is a prime in Z and the polynomials
f(z) that are irreducible in Q[z] and have constant term +1. Prove that these
irreducibles are prime in R.

(3) Show that = cannot be written as a product of irreducibles in R and conclude that
R is not a U.F.D.

TEBH. (1) Since R is a subring of an integral domain Q|x], zero-divisors of R are automatically
zero-divisors of Q[z], where there is none. So R is an integral domain. For the same reasoning,
a unit of R must be a unit of Q[z] which are precisely nonzero constant polynomials. Yet
polynomials in R have constants in 7Z, so the units in R can only be those constants a € 7Z
whose inverse a™! are also in Z. So R* = {+£1}.

(2) First consider the constant polynomials f(x) = a with a € Z; it is irreducible if and
only if a is irreducible in Z and thus if and only if a = +p.

Now consider a polynomial f(z) € R with degree > 1. There are three cases:

(i) If the constant term f(0) # +1, then we may take n = f(0) if f(0) # 0 and n = 2
if f(0) =0. Then f(z) = n-+f(z)is a factorization of f(z) into product of two
non-unit elements in R; so f(x) is not irreducible.

(ii) If the constant term of f(x) is 1, and if f(x) factors as a(z)b(z) in Q[x] with
dega(x) > 1 and degb(xz) > 1, then we may modify a(xz) and b(x) so that their
constant terms are both in {1}, and thus f(z) is not irreducible in R.

(iii) If the constant term of f(x)is £1 and if f(z) is irreducible in Q[z], we claim that f(x)
is also irreducible. Suppose not, f(z) = a(x)b(x). If both functions have degree > 1,
this would then show that f(x) is not irreducible in Q[z], which is a contradiction.

So WLOG, we may assume that a(x) is a constant polynomial. But then comparing



the constant coefficients f(z) = a(z)b(z), we see that a(x) = £1, which means that

a(x) is a unit. This shows that such f(z) is irreducible.

We now show that the irreducible elements above are prime elements, starting with
+p: if £p divides f(z)g(z), then the constant term of either f(z) or g(z) is divisible by p.
WLOG it is f(x), then f(z) = (£p) - (:I:%f(x)) is a factorization in R, so £p divides f(x).

Next, if p(x) is an irreducible polynomial in Q[z] with constant +1, and suppose that
p(z)|a(x)b(x) in R. Then in Q[z], p(z) divides a(x) or b(x). WLOG, say it is a(z), then
a(z) = p(z)c(x). Comparing the constant term, the constant term of ¢(z) is plus-minus of
the constant of a(x). So ¢(x) € R as well. So p(z) divides a(z) in R. This shows that all
elements above are prime elements.

(3) If z is factored as a product of polynomials in R (or even in Q[z]), one of the factors
must be a nonzero multiple of . But such an element does not belong to the list in (2). So

x cannot be written as a product of irreducible elements. So R is not a UFD. U]
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Let H be a subgroup of GG. Define
K = ﬂ gHg™!
9eG

to be the intersection of all conjugates of H.

(1) Show that K is a normal subgroup of G.
(2) Show that if [G : H] is finite, then [G : K] is finite. (Hint: first show that the
intersection above defining K is essentially a finite intersection.)
1EBA. (1) We check that for any s € G,
sKs™! = s< ﬂ gHg’l)s’l = m sgHg 's™! = ﬂ JHy ' =K
e e g'eG
with ¢’ = sg in the notation. So K is a normal subgroup of G.
(2) We start with a lemma: if H; and Hy are subgroups of G of finite index. Then
H, N Hy is a subgroup of G of finite index. The easiest way to see this is to let H; act on the
left cosets G/ Hj by left multiplication. Then the stabilizer group at H, is precisely Hy; N Hs.
We know that the index of Hy N H inside H; is precisely the number of elements in the orbit
of the identity coset Hy in G /H under this action. In particular, [Hy : Hy N Hs] < #(G/Hy).
It then follows that [G : Hy N Hy| < [G: Hy] - [G : Hyl.
Now, we come back to the proof of (2). As [G : H] is assumed to be finite, we may
choose a finite set of coset representatives g1 H,...,g.H of G/H. Then for every element

g € g;H (writing g = g;h), we have
gHg ™' = ghHh™'g;" = g;Hg; "
So K is the intersection §
(g:Hg ",
i=1

which is the intersection of finitely many finite index subgroups. By the lemma above,
|G : K] is finite as well. O
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A a,be€ R: D(a+b) = D(a)+ D(b) f D(ab) = aD(b) + D(a)b.
(1) ZJEIR Rlz]/(2?), WEM: FFE— U
{FHHET D: R—> R} +— {HFAZF ¢: R— R[z]/(2”) #1713 o mod z £1EH[F}.
(2) WHE D £ R EM—ANEHHETHec RE ARSI (M e=e?), iEW: D(e) =0.
Let R be a commutative ring. A derivation D : R — R is a map satisfying D(a + b) =
D(a) + D(b) and D(ab) = aD(b) + D(a)b for all a,b € R.
(1) Consider the ring R[z]|/(z?), show that there is a bijection

Ring h hi ‘R— R 2
{Derivations D:R— R} — { g HOMOMOTPRISIMS (» 2]/ () }

such that ¢ mod z = id
(2) If D is a derivation of R and e € R is an idempotent (i.e. e = €?), prove that
D(e) =0.

1EBA. (1) The derivation automatically satisfies the condition that D(0) = 0 and D(1) = 0
(by setting @ = b =0 and a = b = 1 in the first and the second equation, respectively.)
The bijection is given by, sending a derivation D : R — R to the homomorphism

¢p(a) = a+ xD(a),
for every a € R. The condition that ¢p is a homomorphism is equivalent to, for a,b € R

wp(ab) = ¢p(a)pp(b) and pp(a +b) = ¢p(a) + ¢p(b), equivalently,
ab+ xD(ab) = (a +2D(a))(b+2D(b)) = ab + bxD(a) + axD(b) + 2> D(a) D(b)
and a + b+ x(D(a+b)) =a+xD(a) + b+ xD(b).
Noting that 2% = 0, this is clearly equivalent to the condition that D(ab) = aD(b)+bD(a) and
D(a+b) = D(a)+ D(b) for a,b € R. Conversely, given a homomorphism ¢ : R — R[x]/(z?),
we may recover the derivation D(a) for a € R by taking the x-coefficient of ¢(a) — a.
(2) Note that D(e) = D(e?) = 2eD(e). So (1 —2¢e)D(e) = 0. Yet we observe
(1—2e)? =1—4e+4e* = 1.

So D(e) = (1 —2¢)*D(e) = (1 —2¢) - 0= 0.

(Remark: applying (1 — 2e) to the equation might seem a little tricky, indeed, it is not.
Note that an idempotent e splits R into the product eR x (1—¢e)R. And 1 —2e = (1—¢)—e¢
corresponds to the element (—1,1). In order to turn that into the identity element (1, 1), we

need to multiply with (—1, 1), namely 1 — 2e.) O



BEBE (15 77) 2 p A—AHRE. & G RZ—TWN plp+1) WAEREE, HER G &
AIERMKT S p THE.

(1) 3K G HEAN p KITTRBADEL

(2) WEW: G IR p T BRI AL,

(3) UEM: p+ 1 /& 2 R,

Let p be an odd prime number, and let G be a finite group of order p(p + 1). Assume

that G does not have a normal Sylow p-subgroup.

(1) Find the number of elements of G with order different from p.
(2) Show that the set of elements of G whose order does not divide p form exactly one
conjugacy class.

(3) Prove that p+ 1 is a power of 2.

1EH. (1) Let n, denote the number of Sylow p-subgroups. By Third Sylow Theorem, n,|p+1
and n, = 1 mod p. As G has no normal Sylow p-subgroups, n, = p + 1. Note that each
Sylow p-subgroup has order p so is isomorphic to Z,. It follows that the number of elements
of order p in each Sylow p-subgroups is p — 1, and the order p elements in different Sylow
p-subgroups are different as they generate different Sylow p-subgroups. So the total number
of order p elements is (p — 1)(p + 1) = p*> — 1. So the number of elements in G whose order
does not divide p is p(p+ 1) — (p* — 1) — 1 =p.

(2) The set A of elements in G whose order does not divide p is p. Let P be a Sylow p-
subgroup. Consider the conjugation action of P on A. We claim that this action is nontrivial.
Then it would follow that one orbit has size at least p. So the entire A is already a conjugacy
class under the P-action. (2) follows from this.

Let a € A. Consider the action of G on Syl,(G), especially the stabilizer group K at P.
Clearly, P is contained in the stabilizer group K. If P commutes with a, then a also belongs
to the stabilizer group K. Then the stabilizer group K would be bigger than p elements,
and then n, cannot be as big as p + 1.

So the conjugation action of P on a is nontrivial, proving (2).

(3) Fix a € A. Then G acts on A by conjugation by (2). Let H denote the stabilizer
group at a. As proved in (2), none of the nontrivial elements in P fixes a. So H C AU {e}.
But looking at the size of elements, we deduce that H = A U {e}; and elements in H
commutes with every element in A. Thus H is an abelian group.

Yet as nontrivial elements in H are conjugate, they have the same order, which must be
a factor of p + 1 (and taking any prime factors of p + 1 at least once). It follows that p + 1

must be a prime power. Already p + 1 is an even number. So p + 1 is a power of 2. O



Remark: it seems that the problem is modeled on the following example: let p be a
prime of the form 2V — 1; consider the finite field Fonv of 2V-elements (there is a unique
such field). Then FJy is a cyclic group of order p. The group in the problem can be the

semi-direct product Fon x Fly.
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(1) WEH]: H fEILHEEH M RFF Cq(K) A8 (Co(K) & K £ G PRI T).
(2) W H>G M Cy(K)=1,iEM: H5 Cg(K) &ZHe.

Let G be a group and let K C H be subgroups of G with K < H.

(1) Prove that H normalizes C(K) (the centralizer of K in G).
(2) If H< G and Cy(K) =1, prove that H centralizes Cq(K).

JEAA. (1) We need to show that for any ¢ € Cq(K) and h € H, we have hch™' € Cg(K).

For this we need to prove that for any k£ € K, we have

hch™k = khch™".
This is equivalent to

ch™'kh = h™'khe
As K < H, we have h~'kh € K, so ¢ must commute with h='kh, proving the equality above.

(2) It suffices to show that for any h € H and ¢ € Cg(K), we have hch™'c™! = 1. As
Cyu(K) = 1, it suffices to check that hch~'c™ € Cy(K). As H is normal in G, ch™'c™! € H;
so hch™'c™' € H. As proved in (1), H normalizes Cg(K); so hch™' € Cg(K). Thus
heh™te™! € Cq(K). Combining these two gives
heh et € HNCg(K) = Cy(K) = {1}.

The problem is solved. U
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(1) Wk S M T 2 Syl (G) TARMTTHRME #(SNT) BAGHEAKE. IEY]: Ne(SNT)
B IEMPES p-1 1.
(2) WE: SAT = L M S,T € SyL(G) (S £ T) Bars BACAHHE— ¢ WAETR
p-FEE P, No(P) 85— EMPE 7.
Let G be a finite group and let Syl,(G) denote its set of Sylow p-subgroups.
(1) Suppose that S and T" are distinct members of Syl,(G) chosen so that #(SNT) is

maximal among all such intersections. Prove that the normalizer Ng(SNT) does not
admit normal Sylow p-subgroup.

(2) Show that SNT =1 for all S,T € Syl,(G), with S # T, if and only if Ng(P) has
exactly one Sylow p-subgroup for every nonidentity p-subgroup P of G.

1EBA. (1) We shall exhibit two Sylow p-subgroups of Ng(S NT) as follows:
S = {s es | sTs_lﬂS:TﬂS},

T={teT|tSt'NnT=SNT}.

Clearly, both S" and T" contain S N'T. We shall show that each S" and T” strictly contains
S'NT and that they are indeed Sylow p-subgroups of N¢ (S NT); part (1) would then follow
from this because we have exhibited two different Sylow p-subgroups of Ng(S N T). By
symmetry, it suffices to treat one of them, say S’.

First of all, Ng(SNT) is contained in S”. Yet S is a p-group, so the normalizer of SNT
is strictly larger than S NT. So S’ strictly contains S NT.

We next show that S’ is a Sylow p-subgroup of Ng(S NT). Suppose not, then S’ is
strictly contained in a Sylow p-subgroup P C Ng(S N T), which in turn is contained in a
Sylow p-subgroup P of G. We note that P # S, this is because

Ne(SNT)NS =5 CPCPAN(SNT).

Yet PNS contains S which is strictly bigger than SNT'. This contradicts with the maximality
of SNT. Therefore, we see that S’ is a Sylow p-subgroup of Ng (S NT'). This completes the
proof of (1).

(2) We first show the sufficiency: suppose that Ng(P) contains exactly one Sylow p-
subgroup of every nonidentity p-subgroup P of GG, and suppose that it is not true that SNT =
1 for all S,T" € Syl (G) with S # T. Then take S, T € Syl (G) so that #(SNT) is maximal,
by (1), Ng(SNT) does not admit normal Sylow p-subgroups. This is a contradiction, proving

the necessity.



We now prove the necessity. As the intersection any two distinct Sylow p-subgroups is
trivial, each nonidentity p-subgroup P is contained in a unique Sylow p-subgroup S of G.
Then any element g € G that normalizes P must force P = gPg~' C gSg~'. This then
forces S = gSg~'. So we deduce that Ng(P) < Ng(S). It is well-known that S is a normal
Sylow p-subgroup of Ng(S). So SN Ng(P) is a normal subgroup of Ng(P). Moreover, there

is a natural injective homomorphism
Ng(P)/(Na(P)nS) < Na(S)/S

this then implies that [Ng(P) : Ng(P) N S] divides [Ng(S) : S] which is prime-to-p. So
N¢g(P)N S is a normal Sylow p-subgroup of Ng(P). O



