2021 秋：代数学一（实验班）期中考试

姓名： \qquad院系： \qquad学号： \qquad分数：

时间： 110 分钟 满分： 100 分

所有的环都有乘法单位元，且与其加法单位元不相等；所有环同态把 1 映到 1 。
All rings contains 1_{R} and $1_{R} \neq 0_{R}$ ；all ring homomorphism takes 1 to 1 ．
判断题 在下表中填写 T 或 F（10 分）

1	2	3	4	5	6	7	8	9	10
F	F	T	F	F	T	T	T	F	F

1．如果 H 是群 G 的正规子群，K 是 H 的正规子群，那么 K 是 G 的正规子群。
If H is a normal subgroup of G and K is a normal subgroup of H ，then K is a normal subgroup of G ．

False．A typical situation is when H is abelian，e．g．$G=\left(Z_{p}\right)^{2} \rtimes S_{2}, H=\left(Z_{p}\right)^{2}$ the standard normal subgroup；here the semi－direction product is by letting S_{2} to permute the two factors．If we take K to be the first factor Z_{p} of H ，then K is clearly normal in H yet not normal in G ．

2．对 $i=1,2$ ，设 H_{i} 是 G_{i} 的正规子群满足 $H_{1} \cong H_{2}$ 和 $G_{1} \cong G_{2}$ ，则 $G_{1} / H_{1} \cong G_{2} / H_{2}$ ．
For $i=1,2$ ，let H_{i} be a normal subgroup of G_{i} satisfying $H_{1} \cong H_{2}$ and $G_{1} \cong G_{2}$ ，then $G_{1} / H_{1} \cong G_{2} / H_{2}$.

False．If one wants $G_{1} / H_{1} \cong G_{2} / H_{2}$ ，one needs the isomorphism $\varphi: G_{1} \cong G_{2}$ to induce the corresponding isomorphism $H_{1} \cong H_{2}$ ．A typical example is to take $G_{1}=G_{2}=\mathbb{Z}$ and $H_{1}=4 \mathbb{Z}$ and $H_{2}=2 \mathbb{Z}$ ．Clearly H_{1} and H_{2} are abstractly isomorphic，but $G_{1} / H_{1} \cong Z_{4}$ and $G_{2} / H_{2} \cong Z_{2}$ ．

3．任一非平凡的循环群的非平凡子群一定是循环群。

All nontrivial subgroups of a nontrivial cyclic group is cyclic．
True．Say we consider a subgroup $H<G=\langle\sigma\rangle$ ，then it suffices to find the minimal $n \in \mathbb{N}$ such that $\sigma^{n} \in H$ ，then σ^{n} would generate H ．

4．如果 N 是群 G 的正规子群，则 G 是 N 和 G / N 的半直积．
If N is a normal subgroup of G ，then G is a semi－direct product of N with G / N ．
False．It is not true in general that one can embed G / N back to G ．Semi－direct product requires that G / N can be realized as a subgroup of G ．（This is a hard T / F question．）

5．若 P 是群 G 的一个西罗 p－子群，则 P 在 G 中的正规化子是 G 的正规子群．

If P is a Sylow p－subgroup of G ，then the normalizer of P in G is normal in G ．
False．A corollary of Sylow＇s theorem says that，for a Sylow p－subgroup $P, N_{G}\left(N_{G}(P)\right)=$ $N_{G}(P)$ ．So as long as $N_{G}(P) \neq G$（when P is not a normal Sylow p－subgroup），$N_{G}(P)$ is NOT normal in G ．

6．两个有限交换群的半直积是可解群。
A semi－direct product of two finite abelian groups is solvable．
True．Say this semi－direct product is $G=H_{1} \rtimes H_{2}$ then $[G, G] \subseteq H_{1}$ which is abelian． So G is solvable．

7．群同态 $\varphi: Z_{12} \rightarrow Z_{35}$ 必然是平凡的．
A homomorphism $\varphi: Z_{12} \rightarrow Z_{35}$ of groups must be the trivial homomorphism．
True．This is because $\# \operatorname{Im}(G) \mid \# Z_{35}$ and $\# \operatorname{Im}(G) \mid \# Z_{12}$ ．So $\# \operatorname{Im}(G)=0$ ．
8．整环的子环一定是整环。
A subring of an integral domain is an integral domain．
True．This is because if the big ring does not have zero－divisors，the subring cannot have zero－divisors．

9．两个整环的直积还是整环。
The direct product of two integral domains is again an integral domain．
False．The direct product of two integral domain is never an integral domain，because $(1,0) \cdot(0,1)=(0,0)$ gives zero－divisors．

10．若 R 是一个主理想整环，则 $R[x]$ 是一个主理想整环．
If R is a PID，then $R[x]$ is a PID．
False．$R=\mathbb{Z}$ is a PID，but $\mathbb{Z}[x]$ is not a PID，e．g．the ideal $(2, x)$ ．

解答题一（10 分）证明：阶为 132 的群不是单群。
Prove that no simple group has order 132.
证明． $132=3 \times 4 \times 11$ ．
Suppose that there exists a simple group G of order 132．In particular G does not contain any normal Sylow p－subgroups．

We apply Sylow＇s theorems to each of the primes 3 and 11．For $p=3,11$ ，write n_{p} for the number of Sylow p－subgroups of G ．
$n_{11} \equiv 1 \bmod 11$ and $n_{11} \mid 12$ ．As $n_{11} \neq 1$ ，so $n_{11}=12$ ．We count the number of elements of order precisely 11：as each Sylow 11－subgroup is isomorphic to Z_{11} ，so each Sylow 11－ subgroup contains exactly 10 elements of order 11．Yet two Sylow 11－subgroup can only intersect at the identity elements of the groups．So there are $12 \times 10=120$ elements of order 11.
$n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 4 \times 11$ ．As $n_{3} \neq 1$ ，so $n_{3}=4$ or 22 ．By exactly the same argument above，we see that there are at least $2 \times 4=8$ elements of order 3 ．

This then leaves 4 elements whose order are not 3 or 11．Yet there is always a Sylow 2－group which has order 4 ．So this group must consist of exactly the 4 elements whose order are not 3 or 11．This Sylow 2－group must be normal，contradicting to our assumption on G being simple．

解答题二（10 分）设 $\varphi: R \rightarrow S$ 为两个交换环之间的同态。
（1）证明：若 P 是一个 S 的素理想，则 $\varphi^{-1}(P)$ 是 R 的一个素理想。
（2）证明：若 M 是 S 的一个极大理想且 φ 是满射，则 $\varphi^{-1}(M)$ 是 R 的一个极大理想。
（3）给出一个例子说明（2）在不假设 φ 满射时不成立。
Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings．
（1）Prove that if P is a prime ideal of S ，then $\varphi^{-1}(P)$ is a prime ideal of R ．
（2）Prove that if M is a maximal ideal of S and φ is surjective，then $\varphi^{-1}(M)$ is a maximal ideal of R ．
（3）Give an example to show that（2）does not hold without assuming φ to be surjective．
证明．（1）First show that $\varphi^{-1}(P)$ is an ideal．Indeed，if $a, b \in \varphi^{-1}(P)$ and $c \in R$ ，then $\varphi(a-b)=\varphi(a)-\varphi(b) \in P$ and $\varphi(c a)=\varphi(c) \varphi(a) \in P$ ．So $a-b, c a \in \varphi^{-1}(P)$ ．

We need to show that if $a, b \in R$ satisfies $a b \in \varphi^{-1}(P)$ ，then either $a \in \varphi^{-1}(P)$ or $b \in \varphi^{-1}(P)$ ．Indeed，the condition implies $\varphi(a b) \in P$ ，so $\varphi(a) \varphi(b) \in P$ ．As P is a prime ideal，either $\varphi(a) \in P$ or $\varphi(b) \in P$ ；so either $a \in \varphi^{-1}(P)$ or $b \in \varphi^{-1}(P)$ ．
（2）If $\varphi: R \rightarrow S$ is surjective，we may view S as the quotient ring $R / \operatorname{ker} \varphi$ ．As M is a maximal ideal，S / M is a field．By Second Isomorphism Theorem，$R / \varphi^{-1}(M) \cong S / M$ ，so the former is a field．Thus $\varphi^{-1}(M)$ is a maximal ideal of R ．
（3）Consider the natural inclusion $\varphi: \mathbb{Z} \rightarrow \mathbb{Q}$ ．The ideal $(0) \in \mathbb{Q}$ is a maximal ideal（as \mathbb{Q} only has two ideals (0) and $(1))$ ．Yet $\varphi^{-1}(0)=(0)$ is a prime ideal but not a maximal ideal．

解答题三（10 分）记 R 为一整环，F 为其分式域。对 F 中任一元素 q ，定义 $I_{q}:=\{r \in$ $R \mid r q \in R\}$ 。
（1）证明：I_{q} 是环 R 的一个理想。
（2）现设 $R=\mathbb{Z}[\sqrt{-3}]$ 及 $q=(1-\sqrt{-3}) / 2=2 /(1+\sqrt{-3}) \in F$ 。证明：I_{q} 不是主理想。
Let R be an integral domain and F be its quotient field．For any element $q \in F$ ，define $I_{q}:=\{r \in R \mid r q \in R\}$ ．
（1）Show that each I_{q} is a nonzero ideal of R ．
（2）Now suppose that $R=\mathbb{Z}[\sqrt{-3}]$ and let $q=(1-\sqrt{-3}) / 2=2 /(1+\sqrt{-3}) \in F$ ．Show that I_{q} is not a principal ideal．

证明．（1）For $r_{1}, r_{2} \in I_{q}$ ，namely $r_{1} q \in R$ and $r_{2} q \in R$ ，we must have $\left(r_{1}-r_{2}\right) q=r_{1} q-r_{2} q \in R$ and thus $r_{1}-r_{2} \in I_{q}$ ．Similarly，if $r \in I_{q}$ and $a \in R$ ，then $(a r) q=a \cdot r q \in R$ ．So $a r \in I_{q}$ ． From this，I_{q} is an ideal．

To see that $I_{q} \neq(0)$ ，we may write $q=a / b \in F$ with $a, b \in R$ and $b \neq 0$ ．Then $b \in I_{q}$ ； so I_{q} is nonzero．
（2）First of all， $2 \in I_{q}$ because $2 q=1-\sqrt{-3} \in R$ ，and $1+\sqrt{-3} \in I_{q}$ because $(1+\sqrt{-3}) q=2 \in R$ ．Suppose that I_{q} is principal，say $I_{q}=(\alpha)$ with $\alpha \in R$ ，then $2=\alpha \beta$ for some $\beta=x+\sqrt{-3} y \in R$（with $x, y \in \mathbb{Z}$ ）．Consider the norm map $N: \mathbb{Z}[\sqrt{-3}] \rightarrow \mathbb{Z}$ ； $N(z)=z \bar{z}$ ，where \bar{z} is the complex conjugation．We have

$$
4=N(2)=N(\alpha) N(\beta)
$$

So $N(\alpha)=x^{2}+3 y^{2}$ is a divisor of 4 ．There are only two options：
－either $\alpha= \pm 1$ ，in which case， $1 \in I_{q}$ ，meaning $q \in R$ ，but it is not，
－or $N(\alpha)=4$ ，then $N(\beta)=1$ forcing $\beta= \pm 1$ and thus $\alpha= \pm 2$ ．But then $1+\sqrt{-3} \in$ $I_{q}=(2)$ is absurd，as $\frac{1+\sqrt{-3}}{2} \notin R$.
To sum up，I_{q} is not a principal ideal．

解答题四（15 分）记 $R=\mathbb{Z}+x \mathbb{Q}[x] \subset \mathbb{Q}[x]$ 是由常数项为整数的有理系数多项式构成的集合。
（1）证明：R 是一个整环，且它的可逆元只有 ± 1 ．
（2）证明：R 中的不可约元恰为

- $\pm p$（对所有素数 p ），
- 常数项为 ± 1 的且在 $\mathbb{Q}[x]$ 中不可约的多项式 $f(x)$ ．

证明这些不可约元都是 R 中的素元。
（3）证明 x 不可以被写成 R 中不可约元的乘积，从而证明 R 不是唯一分解整环。
Let $R=\mathbb{Z}+x \mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer．
（1）Prove that R is an integral domain and its units are ± 1 ．
（2）Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials $f(x)$ that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 ．Prove that these irreducibles are prime in R ．
（3）Show that x cannot be written as a product of irreducibles in R and conclude that R is not a U．F．D．

证明．（1）Since R is a subring of an integral domain $\mathbb{Q}[x]$ ，zero－divisors of R are automatically zero－divisors of $\mathbb{Q}[x]$ ，where there is none．So R is an integral domain．For the same reasoning， a unit of R must be a unit of $\mathbb{Q}[x]$ which are precisely nonzero constant polynomials．Yet polynomials in R have constants in \mathbb{Z} ，so the units in R can only be those constants $a \in \mathbb{Z}$ whose inverse a^{-1} are also in \mathbb{Z} ．So $R^{\times}=\{ \pm 1\}$ ．
（2）First consider the constant polynomials $f(x)=a$ with $a \in \mathbb{Z}$ ；it is irreducible if and only if a is irreducible in \mathbb{Z} and thus if and only if $a= \pm p$ ．

Now consider a polynomial $f(x) \in R$ with degree ≥ 1 ．There are three cases：
（i）If the constant term $f(0) \neq \pm 1$ ，then we may take $n=f(0)$ if $f(0) \neq 0$ and $n=2$ if $f(0)=0$ ．Then $f(x)=n \cdot \frac{1}{n} f(x)$ is a factorization of $f(x)$ into product of two non－unit elements in R ；so $f(x)$ is not irreducible．
（ii）If the constant term of $f(x)$ is ± 1 ，and if $f(x)$ factors as $a(x) b(x)$ in $\mathbb{Q}[x]$ with $\operatorname{deg} a(x) \geq 1$ and $\operatorname{deg} b(x) \geq 1$ ，then we may modify $a(x)$ and $b(x)$ so that their constant terms are both in $\{ \pm 1\}$ ，and thus $f(x)$ is not irreducible in R ．
（iii）If the constant term of $f(x)$ is ± 1 and if $f(x)$ is irreducible in $\mathbb{Q}[x]$ ，we claim that $f(x)$ is also irreducible．Suppose not，$f(x)=a(x) b(x)$ ．If both functions have degree ≥ 1 ， this would then show that $f(x)$ is not irreducible in $\mathbb{Q}[x]$ ，which is a contradiction． So WLOG，we may assume that $a(x)$ is a constant polynomial．But then comparing
the constant coefficients $f(x)=a(x) b(x)$, we see that $a(x)= \pm 1$, which means that $a(x)$ is a unit. This shows that such $f(x)$ is irreducible.
We now show that the irreducible elements above are prime elements, starting with $\pm p$: if $\pm p$ divides $f(x) g(x)$, then the constant term of either $f(x)$ or $g(x)$ is divisible by p. WLOG it is $f(x)$, then $f(x)=(\pm p) \cdot\left(\pm \frac{1}{p} f(x)\right)$ is a factorization in R, so $\pm p$ divides $f(x)$.

Next, if $p(x)$ is an irreducible polynomial in $\mathbb{Q}[x]$ with constant ± 1, and suppose that $p(x) \mid a(x) b(x)$ in R. Then in $\mathbb{Q}[x], p(x)$ divides $a(x)$ or $b(x)$. WLOG, say it is $a(x)$, then $a(x)=p(x) c(x)$. Comparing the constant term, the constant term of $c(x)$ is plus-minus of the constant of $a(x)$. So $c(x) \in R$ as well. So $p(x)$ divides $a(x)$ in R. This shows that all elements above are prime elements.
(3) If x is factored as a product of polynomials in R (or even in $\mathbb{Q}[x]$), one of the factors must be a nonzero multiple of x. But such an element does not belong to the list in (2). So x cannot be written as a product of irreducible elements. So R is not a UFD.

解答题五（15 分）设 H 是 G 的子群，令

$$
K:=\bigcap_{g \in G} g H g^{-1}
$$

为群 H 所有共轭的交。
（1）证明：K 是 G 的正规子群。
（2）证明：若 $[G: H]$ 是有限的，则 $[G: K]$ 也是有限的．
Let H be a subgroup of G ．Define

$$
K:=\bigcap_{g \in G} g H g^{-1}
$$

to be the intersection of all conjugates of H ．
（1）Show that K is a normal subgroup of G ．
（2）Show that if $[G: H]$ is finite，then $[G: K]$ is finite．（Hint：first show that the intersection above defining K is essentially a finite intersection．）

证明．（1）We check that for any $s \in G$ ，

$$
s K s^{-1}:=s\left(\bigcap_{g \in G} g H g^{-1}\right) s^{-1}=\bigcap_{g \in G} s g H g^{-1} s^{-1}=\bigcap_{g^{\prime} \in G} g^{\prime} H g^{\prime-1}=K
$$

with $g^{\prime}=s g$ in the notation．So K is a normal subgroup of G ．
（2）We start with a lemma：if H_{1} and H_{2} are subgroups of G of finite index．Then $H_{1} \cap H_{2}$ is a subgroup of G of finite index．The easiest way to see this is to let H_{1} act on the left cosets G / H_{2} by left multiplication．Then the stabilizer group at H_{2} is precisely $H_{1} \cap H_{2}$ ． We know that the index of $H_{1} \cap H_{2}$ inside H_{1} is precisely the number of elements in the orbit of the identity coset H_{2} in G / H_{2} under this action．In particular，$\left[H_{1}: H_{1} \cap H_{2}\right] \leq \#\left(G / H_{2}\right)$ ． It then follows that $\left[G: H_{1} \cap H_{2}\right] \leq\left[G: H_{1}\right] \cdot\left[G: H_{2}\right]$ ．

Now，we come back to the proof of（2）．As $[G: H]$ is assumed to be finite，we may choose a finite set of coset representatives $g_{1} H, \ldots, g_{r} H$ of G / H ．Then for every element $g \in g_{i} H$（writing $g=g_{i} h$ ），we have

$$
g H g^{-1}=g_{i} h H h^{-1} g_{i}^{-1}=g_{i} H g_{i}^{-1}
$$

So K is the intersection

$$
\bigcap_{i=1}^{r} g_{i} H g_{i}^{-1},
$$

which is the intersection of finitely many finite index subgroups．By the lemma above， $[G: K]$ is finite as well．

解答题六（15 分）设 R 为一交换环。一个导数算子是指一个映射 $D: R \rightarrow R$ 满足对所有 $a, b \in R: D(a+b)=D(a)+D(b)$ 和 $D(a b)=a D(b)+D(a) b$ 。
（1）考虑环 $R[x] /\left(x^{2}\right)$ ，证明：存在一个双射
$\{$ 导数算子 $D: R \rightarrow R\} \longleftrightarrow\left\{\right.$ 环同态 $\varphi: R \rightarrow R[x] /\left(x^{2}\right)$ 使得 $\varphi \bmod x$ 是恒同 $\}$ ．
（2）如果 D 是 R 上的一个导数算子且 $e \in R$ 是一个幂等元（即 $e=e^{2}$ ），证明：$D(e)=0$ ．
Let R be a commutative ring．A derivation $D: R \rightarrow R$ is a map satisfying $D(a+b)=$ $D(a)+D(b)$ and $D(a b)=a D(b)+D(a) b$ for all $a, b \in R$ ．
（1）Consider the ring $R[x] /\left(x^{2}\right)$ ，show that there is a bijection
$\{$ Derivations $D: R \rightarrow R\} \longleftrightarrow\left\{\begin{array}{l}\text { Ring homomorphisms } \varphi: R \rightarrow R[x] /\left(x^{2}\right) \\ \text { such that } \varphi \bmod x=\mathrm{id}\end{array}\right\}$.
（2）If D is a derivation of R and $e \in R$ is an idempotent（i．e．$e=e^{2}$ ），prove that $D(e)=0$ ．

证明．（1）The derivation automatically satisfies the condition that $D(0)=0$ and $D(1)=0$ （by setting $a=b=0$ and $a=b=1$ in the first and the second equation，respectively．）

The bijection is given by，sending a derivation $D: R \rightarrow R$ to the homomorphism

$$
\varphi_{D}(a)=a+x D(a)
$$

for every $a \in R$ ．The condition that φ_{D} is a homomorphism is equivalent to，for $a, b \in R$

$$
\begin{aligned}
\varphi_{D}(a b)= & \varphi_{D}(a) \varphi_{D}(b) \text { and } \varphi_{D}(a+b)=\varphi_{D}(a)+\varphi_{D}(b), \quad \text { equivalently, } \\
a b+x D(a b)= & (a+x D(a))(b+x D(b))=a b+b x D(a)+a x D(b)+x^{2} D(a) D(b) \\
& \text { and } a+b+x(D(a+b))=a+x D(a)+b+x D(b)
\end{aligned}
$$

Noting that $x^{2}=0$ ，this is clearly equivalent to the condition that $D(a b)=a D(b)+b D(a)$ and $D(a+b)=D(a)+D(b)$ for $a, b \in R$ ．Conversely，given a homomorphism $\varphi: R \rightarrow R[x] /\left(x^{2}\right)$, we may recover the derivation $D(a)$ for $a \in R$ by taking the x－coefficient of $\varphi(a)-a$ ．
（2）Note that $D(e)=D\left(e^{2}\right)=2 e D(e)$ ．So $(1-2 e) D(e)=0$ ．Yet we observe

$$
(1-2 e)^{2}=1-4 e+4 e^{2}=1
$$

So $D(e)=(1-2 e)^{2} D(e)=(1-2 e) \cdot 0=0$ ．
（Remark：applying $(1-2 e)$ to the equation might seem a little tricky，indeed，it is not． Note that an idempotent e splits R into the product $e R \times(1-e) R$ ．And $1-2 e=(1-e)-e$ corresponds to the element $(-1,1)$ ．In order to turn that into the identity element $(1,1)$ ，we need to multiply with $(-1,1)$ ，namely $1-2 e$ ．）

解答题七（15 分）令 p 为一奇素数．设 G 是一个阶为 $p(p+1)$ 的有限群，且假设 G 没有正规的西罗－p 子群。
（1）求 G 中阶不为 p 的元素的个数．
（2）证明：G 中阶不整除 p 的元素构成一个共轭类．
（3）证明：$p+1$ 是 2 的幂．
Let p be an odd prime number，and let G be a finite group of order $p(p+1)$ ．Assume that G does not have a normal Sylow p－subgroup．
（1）Find the number of elements of G with order different from p ．
（2）Show that the set of elements of G whose order does not divide p form exactly one conjugacy class．
（3）Prove that $p+1$ is a power of 2 ．
证明．（1）Let n_{p} denote the number of Sylow p－subgroups．By Third Sylow Theorem，$n_{p} \mid p+1$ and $n_{p} \equiv 1 \bmod p$ ．As G has no normal Sylow p－subgroups，$n_{p}=p+1$ ．Note that each Sylow p－subgroup has order p so is isomorphic to Z_{p} ．It follows that the number of elements of order p in each Sylow p－subgroups is $p-1$ ，and the order p elements in different Sylow p－subgroups are different as they generate different Sylow p－subgroups．So the total number of order p elements is $(p-1)(p+1)=p^{2}-1$ ．So the number of elements in G whose order does not divide p is $p(p+1)-\left(p^{2}-1\right)-1=p$ ．
（2）The set A of elements in G whose order does not divide p is p ．Let P be a Sylow p－ subgroup．Consider the conjugation action of P on A ．We claim that this action is nontrivial． Then it would follow that one orbit has size at least p ．So the entire A is already a conjugacy class under the P－action．（2）follows from this．

Let $a \in A$ ．Consider the action of G on $\operatorname{Syl}_{p}(G)$ ，especially the stabilizer group K at P ． Clearly，P is contained in the stabilizer group K ．If P commutes with a ，then a also belongs to the stabilizer group K ．Then the stabilizer group K would be bigger than p elements， and then n_{p} cannot be as big as $p+1$ ．

So the conjugation action of P on a is nontrivial，proving（2）．
（3）Fix $a \in A$ ．Then G acts on A by conjugation by（2）．Let H denote the stabilizer group at a ．As proved in（2），none of the nontrivial elements in P fixes a ．So $H \subseteq A \cup\{e\}$ ． But looking at the size of elements，we deduce that $H=A \cup\{e\}$ ；and elements in H commutes with every element in A ．Thus H is an abelian group．

Yet as nontrivial elements in H are conjugate，they have the same order，which must be a factor of $p+1$（and taking any prime factors of $p+1$ at least once）．It follows that $p+1$ must be a prime power．Already $p+1$ is an even number．So $p+1$ is a power of 2 ．

Remark: it seems that the problem is modeled on the following example: let p be a prime of the form $2^{N}-1$; consider the finite field $\mathbb{F}_{2^{N}}$ of 2^{N}-elements (there is a unique such field). Then $\mathbb{F}_{2^{N}}^{\times}$is a cyclic group of order p. The group in the problem can be the semi-direct product $\mathbb{F}_{2^{N}} \rtimes \mathbb{F}_{2^{N}}^{\times}$.

附加题一（＋5 分）设 $K \subseteq H$ 为群 G 的子群满足 $K \triangleleft H$ ．
（1）证明：H 在共轭作用下保持 $C_{G}(K)$ 不动 $\left(C_{G}(K)\right.$ 是 K 在 G 中的中心化子）．
（2）设 $H \triangleright G$ 和 $C_{H}(K)=1$ ，证明：H 与 $C_{G}(K)$ 交换．
Let G be a group and let $K \subseteq H$ be subgroups of G with $K \triangleleft H$ ．
（1）Prove that H normalizes $C_{G}(K)$（the centralizer of K in G ）．
（2）If $H \triangleleft G$ and $C_{H}(K)=1$ ，prove that H centralizes $C_{G}(K)$ ．
证明．（1）We need to show that for any $c \in C_{G}(K)$ and $h \in H$ ，we have $h c h^{-1} \in C_{G}(K)$ ． For this we need to prove that for any $k \in K$ ，we have

$$
h c h^{-1} k=k h c h^{-1} .
$$

This is equivalent to

$$
c h^{-1} k h=h^{-1} k h c
$$

As $K \triangleleft H$ ，we have $h^{-1} k h \in K$ ，so c must commute with $h^{-1} k h$ ，proving the equality above．
（2）It suffices to show that for any $h \in H$ and $c \in C_{G}(K)$ ，we have $h c h^{-1} c^{-1}=1$ ．As $C_{H}(K)=1$ ，it suffices to check that $h c h^{-1} c^{-1} \in C_{H}(K)$ ．As H is normal in $G, c h^{-1} c^{-1} \in H$ ； so $h c h^{-1} c^{-1} \in H$ ．As proved in（1），H normalizes $C_{G}(K)$ ；so $h c h^{-1} \in C_{G}(K)$ ．Thus $h c h^{-1} c^{-1} \in C_{G}(K)$ ．Combining these two gives

$$
h c h^{-1} c^{-1} \in H \cap C_{G}(K)=C_{H}(K)=\{1\} .
$$

The problem is solved．

附加题二（＋5 分）设 G 是一个有限群，记 $\operatorname{Syl}_{p}(G)$ 为它的西罗 p－子群的集合。
（1）如果 S 和 T 是 $\operatorname{Syl}_{p}(G)$ 中不同的元素使得 $\#(S \cap T)$ 取得最大值。证明：$N_{G}(S \cap T)$没有正规的西罗 p－子群。
（2）证明：$S \cap T=1$ 对所有 $S, T \in \operatorname{Syl}_{p}(G)(S \neq T)$ 成立当且仅当对任一 G 的非平凡 p－子群 $P, N_{G}(P)$ 包含一个正规西罗 p－子群。
Let G be a finite group and let $\operatorname{Syl}_{p}(G)$ denote its set of Sylow p－subgroups．
（1）Suppose that S and T are distinct members of $\operatorname{Syl}_{p}(G)$ chosen so that $\#(S \cap T)$ is maximal among all such intersections．Prove that the normalizer $N_{G}(S \cap T)$ does not admit normal Sylow p－subgroup．
（2）Show that $S \cap T=1$ for all $S, T \in \operatorname{Syl}_{p}(G)$ ，with $S \neq T$ ，if and only if $N_{G}(P)$ has exactly one Sylow p－subgroup for every nonidentity p－subgroup P of G ．

证明．（1）We shall exhibit two Sylow p－subgroups of $N_{G}(S \cap T)$ as follows：

$$
\begin{aligned}
S^{\prime} & :=\left\{s \in S \mid s T s^{-1} \cap S=T \cap S\right\} \\
T^{\prime} & :=\left\{t \in T \mid t S t^{-1} \cap T=S \cap T\right\}
\end{aligned}
$$

Clearly，both S^{\prime} and T^{\prime} contain $S \cap T$ ．We shall show that each S^{\prime} and T^{\prime} strictly contains $S \cap T$ and that they are indeed Sylow p－subgroups of $N_{G}(S \cap T)$ ；part（1）would then follow from this because we have exhibited two different Sylow p－subgroups of $N_{G}(S \cap T)$ ．By symmetry，it suffices to treat one of them，say S^{\prime} ．

First of all，$N_{S}(S \cap T)$ is contained in S^{\prime} ．Yet S is a p－group，so the normalizer of $S \cap T$ is strictly larger than $S \cap T$ ．So S^{\prime} strictly contains $S \cap T$ ．

We next show that S^{\prime} is a Sylow p－subgroup of $N_{G}(S \cap T)$ ．Suppose not，then S^{\prime} is strictly contained in a Sylow p－subgroup $P \subseteq N_{G}(S \cap T)$ ，which in turn is contained in a Sylow p－subgroup \widetilde{P} of G ．We note that $\widetilde{P} \neq S$ ；this is because

$$
N_{G}(S \cap T) \cap S=S^{\prime} \subsetneq P \subseteq \widetilde{P} \cap N_{G}(S \cap T)
$$

Yet $\widetilde{P} \cap S$ contains S^{\prime} which is strictly bigger than $S \cap T$ ．This contradicts with the maximality of $S \cap T$ ．Therefore，we see that S^{\prime} is a Sylow p－subgroup of $N_{G}(S \cap T)$ ．This completes the proof of（1）．
（2）We first show the sufficiency：suppose that $N_{G}(P)$ contains exactly one Sylow p－ subgroup of every nonidentity p－subgroup P of G ，and suppose that it is not true that $S \cap T=$ 1 for all $S, T \in \operatorname{Syl}_{p}(G)$ with $S \neq T$ ．Then take $S, T \in \operatorname{Syl}_{p}(G)$ so that $\#(S \cap T)$ is maximal， by（1），$N_{G}(S \cap T)$ does not admit normal Sylow p－subgroups．This is a contradiction，proving the necessity．

We now prove the necessity. As the intersection any two distinct Sylow p-subgroups is trivial, each nonidentity p-subgroup P is contained in a unique Sylow p-subgroup S of G. Then any element $g \in G$ that normalizes P must force $P=g P g^{-1} \subseteq g S g^{-1}$. This then forces $S=g S g^{-1}$. So we deduce that $N_{G}(P) \leqslant N_{G}(S)$. It is well-known that S is a normal Sylow p-subgroup of $N_{G}(S)$. So $S \cap N_{G}(P)$ is a normal subgroup of $N_{G}(P)$. Moreover, there is a natural injective homomorphism

$$
N_{G}(P) /\left(N_{G}(P) \cap S\right) \hookrightarrow N_{G}(S) / S
$$

this then implies that $\left[N_{G}(P): N_{G}(P) \cap S\right]$ divides $\left[N_{G}(S): S\right]$ which is prime-to- p. So $N_{G}(P) \cap S$ is a normal Sylow p-subgroup of $N_{G}(P)$.

