
2021 秋: 代数学一 (实验班) 期中考试

姓名: 院系: 学号: 分数:

时间：110 分钟 满分：100 分

所有的环都有乘法单位元, 且与其加法单位元不相等; 所有环同态把 1 映到 1.

All rings contains 1R and 1R 6= 0R; all ring homomorphism takes 1 to 1.

判断题 在下表中填写 T 或 F (10 分)

1 2 3 4 5 6 7 8 9 10

F F T F F T T T F F

1. 如果 H 是群 G 的正规子群, K 是 H 的正规子群, 那么 K 是 G 的正规子群.

If H is a normal subgroup of G and K is a normal subgroup of H, then K is a normal

subgroup of G.

False. A typical situation is when H is abelian, e.g. G = (Zp)
2 o S2, H = (Zp)

2 the

standard normal subgroup; here the semi-direction product is by letting S2 to permute the

two factors. If we take K to be the first factor Zp of H, then K is clearly normal in H yet

not normal in G.

2. 对 i = 1, 2, 设 Hi 是 Gi 的正规子群满足 H1
∼= H2 和 G1

∼= G2, 则 G1/H1
∼= G2/H2.

For i = 1, 2, let Hi be a normal subgroup of Gi satisfying H1
∼= H2 and G1

∼= G2, then

G1/H1
∼= G2/H2.

False. If one wants G1/H1
∼= G2/H2, one needs the isomorphism ϕ : G1

∼= G2 to induce

the corresponding isomorphism H1
∼= H2. A typical example is to take G1 = G2 = Z and

H1 = 4Z and H2 = 2Z. Clearly H1 and H2 are abstractly isomorphic, but G1/H1
∼= Z4 and

G2/H2
∼= Z2.

3. 任一非平凡的循环群的非平凡子群一定是循环群.

All nontrivial subgroups of a nontrivial cyclic group is cyclic.

True. Say we consider a subgroup H < G = 〈σ〉, then it suffices to find the minimal

n ∈ N such that σn ∈ H, then σn would generate H.

4. 如果 N 是群 G 的正规子群, 则 G 是 N 和 G/N 的半直积.

If N is a normal subgroup of G, then G is a semi-direct product of N with G/N .

False. It is not true in general that one can embed G/N back to G. Semi-direct product

requires that G/N can be realized as a subgroup of G. (This is a hard T/F question.)

5. 若 P 是群 G 的一个西罗 p-子群, 则 P 在 G 中的正规化子是 G 的正规子群.
1



If P is a Sylow p-subgroup of G, then the normalizer of P in G is normal in G.

False. A corollary of Sylow’s theorem says that, for a Sylow p-subgroup P , NG(NG(P )) =

NG(P ). So as long as NG(P ) 6= G (when P is not a normal Sylow p-subgroup), NG(P ) is

NOT normal in G.

6. 两个有限交换群的半直积是可解群.

A semi-direct product of two finite abelian groups is solvable.

True. Say this semi-direct product is G = H1 oH2 then [G,G] ⊆ H1 which is abelian.

So G is solvable.

7. 群同态 ϕ : Z12 → Z35 必然是平凡的.

A homomorphism ϕ : Z12 → Z35 of groups must be the trivial homomorphism.

True. This is because #Im(G)|#Z35 and #Im(G)|#Z12. So #Im(G) = 0.

8. 整环的子环一定是整环.

A subring of an integral domain is an integral domain.

True. This is because if the big ring does not have zero-divisors, the subring cannot

have zero-divisors.

9. 两个整环的直积还是整环.

The direct product of two integral domains is again an integral domain.

False. The direct product of two integral domain is never an integral domain, because

(1, 0) · (0, 1) = (0, 0) gives zero-divisors.

10. 若 R 是一个主理想整环, 则 R[x] 是一个主理想整环.

If R is a PID, then R[x] is a PID.

False. R = Z is a PID, but Z[x] is not a PID, e.g. the ideal (2, x).



解答题一 (10 分) 证明: 阶为 132 的群不是单群.

Prove that no simple group has order 132.

证明. 132 = 3× 4× 11.

Suppose that there exists a simple group G of order 132. In particular G does not

contain any normal Sylow p-subgroups.

We apply Sylow’s theorems to each of the primes 3 and 11. For p = 3, 11, write np for

the number of Sylow p-subgroups of G.

n11 ≡ 1 mod 11 and n11|12. As n11 6= 1, so n11 = 12. We count the number of elements

of order precisely 11: as each Sylow 11-subgroup is isomorphic to Z11, so each Sylow 11-

subgroup contains exactly 10 elements of order 11. Yet two Sylow 11-subgroup can only

intersect at the identity elements of the groups. So there are 12×10 = 120 elements of order

11.

n3 ≡ 1 mod 3 and n3|4×11. As n3 6= 1, so n3 = 4 or 22. By exactly the same argument

above, we see that there are at least 2× 4 = 8 elements of order 3.

This then leaves 4 elements whose order are not 3 or 11. Yet there is always a Sylow

2-group which has order 4. So this group must consist of exactly the 4 elements whose order

are not 3 or 11. This Sylow 2-group must be normal, contradicting to our assumption on G

being simple. �



解答题二 (10 分) 设 ϕ : R→ S 为两个交换环之间的同态.

(1) 证明: 若 P 是一个 S 的素理想, 则 ϕ−1(P ) 是 R 的一个素理想.

(2) 证明: 若 M 是 S 的一个极大理想且 ϕ 是满射, 则 ϕ−1(M) 是 R 的一个极大理想.

(3) 给出一个例子说明 (2) 在不假设 ϕ 满射时不成立.

Let ϕ : R→ S be a homomorphism of commutative rings.

(1) Prove that if P is a prime ideal of S, then ϕ−1(P ) is a prime ideal of R.

(2) Prove that if M is a maximal ideal of S and ϕ is surjective, then ϕ−1(M) is a maximal

ideal of R.

(3) Give an example to show that (2) does not hold without assuming ϕ to be surjective.

证明. (1) First show that ϕ−1(P ) is an ideal. Indeed, if a, b ∈ ϕ−1(P ) and c ∈ R, then

ϕ(a− b) = ϕ(a)− ϕ(b) ∈ P and ϕ(ca) = ϕ(c)ϕ(a) ∈ P . So a− b, ca ∈ ϕ−1(P ).

We need to show that if a, b ∈ R satisfies ab ∈ ϕ−1(P ), then either a ∈ ϕ−1(P ) or

b ∈ ϕ−1(P ). Indeed, the condition implies ϕ(ab) ∈ P , so ϕ(a)ϕ(b) ∈ P . As P is a prime

ideal, either ϕ(a) ∈ P or ϕ(b) ∈ P ; so either a ∈ ϕ−1(P ) or b ∈ ϕ−1(P ).

(2) If ϕ : R → S is surjective, we may view S as the quotient ring R/ kerϕ. As M is

a maximal ideal, S/M is a field. By Second Isomorphism Theorem, R/ϕ−1(M) ∼= S/M , so

the former is a field. Thus ϕ−1(M) is a maximal ideal of R.

(3) Consider the natural inclusion ϕ : Z→ Q. The ideal (0) ∈ Q is a maximal ideal (as

Q only has two ideals (0) and (1)). Yet ϕ−1(0) = (0) is a prime ideal but not a maximal

ideal. �



解答题三 (10 分) 记 R 为一整环, F 为其分式域. 对 F 中任一元素 q, 定义 Iq := {r ∈
R | rq ∈ R}.

(1) 证明: Iq 是环 R 的一个理想.

(2) 现设 R = Z[
√
−3] 及 q = (1−

√
−3)/2 = 2/(1 +

√
−3) ∈ F . 证明: Iq 不是主理想.

Let R be an integral domain and F be its quotient field. For any element q ∈ F , define

Iq := {r ∈ R | rq ∈ R}.

(1) Show that each Iq is a nonzero ideal of R.

(2) Now suppose that R = Z[
√
−3] and let q = (1−

√
−3)/2 = 2/(1 +

√
−3) ∈ F . Show

that Iq is not a principal ideal.

证明. (1) For r1, r2 ∈ Iq, namely r1q ∈ R and r2q ∈ R, we must have (r1−r2)q = r1q−r2q ∈ R
and thus r1 − r2 ∈ Iq. Similarly, if r ∈ Iq and a ∈ R, then (ar)q = a · rq ∈ R. So ar ∈ Iq.
From this, Iq is an ideal.

To see that Iq 6= (0), we may write q = a/b ∈ F with a, b ∈ R and b 6= 0. Then b ∈ Iq;
so Iq is nonzero.

(2) First of all, 2 ∈ Iq because 2q = 1 −
√
−3 ∈ R, and 1 +

√
−3 ∈ Iq because

(1 +
√
−3)q = 2 ∈ R. Suppose that Iq is principal, say Iq = (α) with α ∈ R, then 2 = αβ

for some β = x +
√
−3y ∈ R (with x, y ∈ Z). Consider the norm map N : Z[

√
−3] → Z;

N(z) = zz̄, where z̄ is the complex conjugation. We have

4 = N(2) = N(α)N(β).

So N(α) = x2 + 3y2 is a divisor of 4. There are only two options:

• either α = ±1, in which case, 1 ∈ Iq, meaning q ∈ R, but it is not,

• or N(α) = 4, then N(β) = 1 forcing β = ±1 and thus α = ±2. But then 1 +
√
−3 ∈

Iq = (2) is absurd, as 1+
√
−3

2
/∈ R.

To sum up, Iq is not a principal ideal. �



解答题四 (15 分) 记 R = Z + xQ[x] ⊂ Q[x] 是由常数项为整数的有理系数多项式构成

的集合.

(1) 证明: R 是一个整环, 且它的可逆元只有 ±1.

(2) 证明: R 中的不可约元恰为

• ±p (对所有素数 p),

• 常数项为 ±1 的且在 Q[x] 中不可约的多项式 f(x).

证明这些不可约元都是 R 中的素元.

(3) 证明 x 不可以被写成 R 中不可约元的乘积, 从而证明 R 不是唯一分解整环.

Let R = Z + xQ[x] ⊂ Q[x] be the set of polynomials in x with rational coefficients

whose constant term is an integer.

(1) Prove that R is an integral domain and its units are ±1.

(2) Show that the irreducibles in R are ±p where p is a prime in Z and the polynomials

f(x) that are irreducible in Q[x] and have constant term ±1. Prove that these

irreducibles are prime in R.

(3) Show that x cannot be written as a product of irreducibles in R and conclude that

R is not a U.F.D.

证明. (1) Since R is a subring of an integral domain Q[x], zero-divisors of R are automatically

zero-divisors of Q[x], where there is none. SoR is an integral domain. For the same reasoning,

a unit of R must be a unit of Q[x] which are precisely nonzero constant polynomials. Yet

polynomials in R have constants in Z, so the units in R can only be those constants a ∈ Z
whose inverse a−1 are also in Z. So R× = {±1}.

(2) First consider the constant polynomials f(x) = a with a ∈ Z; it is irreducible if and

only if a is irreducible in Z and thus if and only if a = ±p.
Now consider a polynomial f(x) ∈ R with degree ≥ 1. There are three cases:

(i) If the constant term f(0) 6= ±1, then we may take n = f(0) if f(0) 6= 0 and n = 2

if f(0) = 0. Then f(x) = n · 1
n
f(x) is a factorization of f(x) into product of two

non-unit elements in R; so f(x) is not irreducible.

(ii) If the constant term of f(x) is ±1, and if f(x) factors as a(x)b(x) in Q[x] with

deg a(x) ≥ 1 and deg b(x) ≥ 1, then we may modify a(x) and b(x) so that their

constant terms are both in {±1}, and thus f(x) is not irreducible in R.

(iii) If the constant term of f(x) is ±1 and if f(x) is irreducible in Q[x], we claim that f(x)

is also irreducible. Suppose not, f(x) = a(x)b(x). If both functions have degree ≥ 1,

this would then show that f(x) is not irreducible in Q[x], which is a contradiction.

So WLOG, we may assume that a(x) is a constant polynomial. But then comparing



the constant coefficients f(x) = a(x)b(x), we see that a(x) = ±1, which means that

a(x) is a unit. This shows that such f(x) is irreducible.

We now show that the irreducible elements above are prime elements, starting with

±p: if ±p divides f(x)g(x), then the constant term of either f(x) or g(x) is divisible by p.

WLOG it is f(x), then f(x) = (±p) · (±1
p
f(x)) is a factorization in R, so ±p divides f(x).

Next, if p(x) is an irreducible polynomial in Q[x] with constant ±1, and suppose that

p(x)|a(x)b(x) in R. Then in Q[x], p(x) divides a(x) or b(x). WLOG, say it is a(x), then

a(x) = p(x)c(x). Comparing the constant term, the constant term of c(x) is plus-minus of

the constant of a(x). So c(x) ∈ R as well. So p(x) divides a(x) in R. This shows that all

elements above are prime elements.

(3) If x is factored as a product of polynomials in R (or even in Q[x]), one of the factors

must be a nonzero multiple of x. But such an element does not belong to the list in (2). So

x cannot be written as a product of irreducible elements. So R is not a UFD. �



解答题五 (15 分) 设 H 是 G 的子群, 令

K :=
⋂
g∈G

gHg−1

为群 H 所有共轭的交.

(1) 证明: K 是 G 的正规子群.

(2) 证明: 若 [G : H] 是有限的, 则 [G : K] 也是有限的.

Let H be a subgroup of G. Define

K :=
⋂
g∈G

gHg−1

to be the intersection of all conjugates of H.

(1) Show that K is a normal subgroup of G.

(2) Show that if [G : H] is finite, then [G : K] is finite. (Hint: first show that the

intersection above defining K is essentially a finite intersection.)

证明. (1) We check that for any s ∈ G,

sKs−1 := s
( ⋂

g∈G

gHg−1
)
s−1 =

⋂
g∈G

sgHg−1s−1 =
⋂
g′∈G

g′Hg′−1 = K

with g′ = sg in the notation. So K is a normal subgroup of G.

(2) We start with a lemma: if H1 and H2 are subgroups of G of finite index. Then

H1∩H2 is a subgroup of G of finite index. The easiest way to see this is to let H1 act on the

left cosets G/H2 by left multiplication. Then the stabilizer group at H2 is precisely H1∩H2.

We know that the index of H1∩H2 inside H1 is precisely the number of elements in the orbit

of the identity coset H2 in G/H2 under this action. In particular, [H1 : H1∩H2] ≤ #(G/H2).

It then follows that [G : H1 ∩H2] ≤ [G : H1] · [G : H2].

Now, we come back to the proof of (2). As [G : H] is assumed to be finite, we may

choose a finite set of coset representatives g1H, . . . , grH of G/H. Then for every element

g ∈ giH (writing g = gih), we have

gHg−1 = gihHh
−1g−1i = giHg

−1
i .

So K is the intersection
r⋂

i=1

giHg
−1
i ,

which is the intersection of finitely many finite index subgroups. By the lemma above,

[G : K] is finite as well. �



解答题六 (15 分) 设 R 为一交换环. 一个导数算子是指一个映射 D : R→ R 满足对所

有 a, b ∈ R: D(a+ b) = D(a) +D(b) 和 D(ab) = aD(b) +D(a)b.

(1) 考虑环 R[x]/(x2), 证明: 存在一个双射{
导数算子 D : R→ R

}
←→

{
环同态 ϕ : R→ R[x]/(x2) 使得 ϕ mod x 是恒同

}
.

(2) 如果 D 是 R上的一个导数算子且 e ∈ R是一个幂等元 (即 e = e2),证明: D(e) = 0.

Let R be a commutative ring. A derivation D : R→ R is a map satisfying D(a+ b) =

D(a) +D(b) and D(ab) = aD(b) +D(a)b for all a, b ∈ R.

(1) Consider the ring R[x]/(x2), show that there is a bijection{
Derivations D : R→ R

}
←→

{
Ring homomorphisms ϕ : R→ R[x]/(x2)

such that ϕ mod x = id

}
.

(2) If D is a derivation of R and e ∈ R is an idempotent (i.e. e = e2), prove that

D(e) = 0.

证明. (1) The derivation automatically satisfies the condition that D(0) = 0 and D(1) = 0

(by setting a = b = 0 and a = b = 1 in the first and the second equation, respectively.)

The bijection is given by, sending a derivation D : R→ R to the homomorphism

ϕD(a) = a+ xD(a),

for every a ∈ R. The condition that ϕD is a homomorphism is equivalent to, for a, b ∈ R

ϕD(ab) = ϕD(a)ϕD(b) and ϕD(a+ b) = ϕD(a) + ϕD(b), equivalently,

ab+ xD(ab) = (a+ xD(a))(b+ xD(b)) = ab+ bxD(a) + axD(b) + x2D(a)D(b)

and a+ b+ x(D(a+ b)) = a+ xD(a) + b+ xD(b).

Noting that x2 = 0, this is clearly equivalent to the condition that D(ab) = aD(b)+bD(a) and

D(a+ b) = D(a)+D(b) for a, b ∈ R. Conversely, given a homomorphism ϕ : R→ R[x]/(x2),

we may recover the derivation D(a) for a ∈ R by taking the x-coefficient of ϕ(a)− a.

(2) Note that D(e) = D(e2) = 2eD(e). So (1− 2e)D(e) = 0. Yet we observe

(1− 2e)2 = 1− 4e+ 4e2 = 1.

So D(e) = (1− 2e)2D(e) = (1− 2e) · 0 = 0.

(Remark: applying (1− 2e) to the equation might seem a little tricky, indeed, it is not.

Note that an idempotent e splits R into the product eR× (1− e)R. And 1−2e = (1− e)− e
corresponds to the element (−1, 1). In order to turn that into the identity element (1, 1), we

need to multiply with (−1, 1), namely 1− 2e.) �



解答题七 (15 分) 令 p 为一奇素数. 设 G 是一个阶为 p(p+ 1) 的有限群, 且假设 G 没

有正规的西罗-p 子群.

(1) 求 G 中阶不为 p 的元素的个数.

(2) 证明: G 中阶不整除 p 的元素构成一个共轭类.

(3) 证明: p+ 1 是 2 的幂.

Let p be an odd prime number, and let G be a finite group of order p(p + 1). Assume

that G does not have a normal Sylow p-subgroup.

(1) Find the number of elements of G with order different from p.

(2) Show that the set of elements of G whose order does not divide p form exactly one

conjugacy class.

(3) Prove that p+ 1 is a power of 2.

证明. (1) Let np denote the number of Sylow p-subgroups. By Third Sylow Theorem, np|p+1

and np ≡ 1 mod p. As G has no normal Sylow p-subgroups, np = p + 1. Note that each

Sylow p-subgroup has order p so is isomorphic to Zp. It follows that the number of elements

of order p in each Sylow p-subgroups is p − 1, and the order p elements in different Sylow

p-subgroups are different as they generate different Sylow p-subgroups. So the total number

of order p elements is (p− 1)(p+ 1) = p2 − 1. So the number of elements in G whose order

does not divide p is p(p+ 1)− (p2 − 1)− 1 = p.

(2) The set A of elements in G whose order does not divide p is p. Let P be a Sylow p-

subgroup. Consider the conjugation action of P on A. We claim that this action is nontrivial.

Then it would follow that one orbit has size at least p. So the entire A is already a conjugacy

class under the P -action. (2) follows from this.

Let a ∈ A. Consider the action of G on Sylp(G), especially the stabilizer group K at P .

Clearly, P is contained in the stabilizer group K. If P commutes with a, then a also belongs

to the stabilizer group K. Then the stabilizer group K would be bigger than p elements,

and then np cannot be as big as p+ 1.

So the conjugation action of P on a is nontrivial, proving (2).

(3) Fix a ∈ A. Then G acts on A by conjugation by (2). Let H denote the stabilizer

group at a. As proved in (2), none of the nontrivial elements in P fixes a. So H ⊆ A ∪ {e}.
But looking at the size of elements, we deduce that H = A ∪ {e}; and elements in H

commutes with every element in A. Thus H is an abelian group.

Yet as nontrivial elements in H are conjugate, they have the same order, which must be

a factor of p+ 1 (and taking any prime factors of p+ 1 at least once). It follows that p+ 1

must be a prime power. Already p+ 1 is an even number. So p+ 1 is a power of 2. �



Remark: it seems that the problem is modeled on the following example: let p be a

prime of the form 2N − 1; consider the finite field F2N of 2N -elements (there is a unique

such field). Then F×
2N

is a cyclic group of order p. The group in the problem can be the

semi-direct product F2N o F×
2N

.



附加题一 (+5 分) 设 K ⊆ H 为群 G 的子群满足 K �H.

(1) 证明: H 在共轭作用下保持 CG(K) 不动 (CG(K) 是 K 在 G 中的中心化子).

(2) 设 H �G 和 CH(K) = 1, 证明: H 与 CG(K) 交换.

Let G be a group and let K ⊆ H be subgroups of G with K �H.

(1) Prove that H normalizes CG(K) (the centralizer of K in G).

(2) If H �G and CH(K) = 1, prove that H centralizes CG(K).

证明. (1) We need to show that for any c ∈ CG(K) and h ∈ H, we have hch−1 ∈ CG(K).

For this we need to prove that for any k ∈ K, we have

hch−1k = khch−1.

This is equivalent to

ch−1kh = h−1khc

As K�H, we have h−1kh ∈ K, so c must commute with h−1kh, proving the equality above.

(2) It suffices to show that for any h ∈ H and c ∈ CG(K), we have hch−1c−1 = 1. As

CH(K) = 1, it suffices to check that hch−1c−1 ∈ CH(K). As H is normal in G, ch−1c−1 ∈ H;

so hch−1c−1 ∈ H. As proved in (1), H normalizes CG(K); so hch−1 ∈ CG(K). Thus

hch−1c−1 ∈ CG(K). Combining these two gives

hch−1c−1 ∈ H ∩ CG(K) = CH(K) = {1}.

The problem is solved. �



附加题二 (+5 分) 设 G 是一个有限群, 记 Sylp(G) 为它的西罗 p-子群的集合.

(1) 如果 S 和 T 是 Sylp(G) 中不同的元素使得 #(S ∩ T ) 取得最大值. 证明: NG(S ∩ T )

没有正规的西罗 p-子群.

(2) 证明: S ∩ T = 1 对所有 S, T ∈ Sylp(G) (S 6= T ) 成立当且仅当对任一 G 的非平凡

p-子群 P , NG(P ) 包含一个正规西罗 p-子群.

Let G be a finite group and let Sylp(G) denote its set of Sylow p-subgroups.

(1) Suppose that S and T are distinct members of Sylp(G) chosen so that #(S ∩ T ) is

maximal among all such intersections. Prove that the normalizer NG(S∩T ) does not

admit normal Sylow p-subgroup.

(2) Show that S ∩ T = 1 for all S, T ∈ Sylp(G), with S 6= T , if and only if NG(P ) has

exactly one Sylow p-subgroup for every nonidentity p-subgroup P of G.

证明. (1) We shall exhibit two Sylow p-subgroups of NG(S ∩ T ) as follows:

S ′ :=
{
s ∈ S

∣∣ sTs−1 ∩ S = T ∩ S
}
,

T ′ :=
{
t ∈ T

∣∣ tSt−1 ∩ T = S ∩ T
}
.

Clearly, both S ′ and T ′ contain S ∩ T . We shall show that each S ′ and T ′ strictly contains

S ∩ T and that they are indeed Sylow p-subgroups of NG(S ∩ T ); part (1) would then follow

from this because we have exhibited two different Sylow p-subgroups of NG(S ∩ T ). By

symmetry, it suffices to treat one of them, say S ′.

First of all, NS(S ∩T ) is contained in S ′. Yet S is a p-group, so the normalizer of S ∩T
is strictly larger than S ∩ T . So S ′ strictly contains S ∩ T .

We next show that S ′ is a Sylow p-subgroup of NG(S ∩ T ). Suppose not, then S ′ is

strictly contained in a Sylow p-subgroup P ⊆ NG(S ∩ T ), which in turn is contained in a

Sylow p-subgroup P̃ of G. We note that P̃ 6= S; this is because

NG(S ∩ T ) ∩ S = S ′ ( P ⊆ P̃ ∩NG(S ∩ T ).

Yet P̃∩S contains S ′ which is strictly bigger than S∩T . This contradicts with the maximality

of S ∩ T . Therefore, we see that S ′ is a Sylow p-subgroup of NG(S ∩ T ). This completes the

proof of (1).

(2) We first show the sufficiency: suppose that NG(P ) contains exactly one Sylow p-

subgroup of every nonidentity p-subgroup P of G, and suppose that it is not true that S∩T =

1 for all S, T ∈ Sylp(G) with S 6= T . Then take S, T ∈ Sylp(G) so that #(S ∩T ) is maximal,

by (1), NG(S∩T ) does not admit normal Sylow p-subgroups. This is a contradiction, proving

the necessity.



We now prove the necessity. As the intersection any two distinct Sylow p-subgroups is

trivial, each nonidentity p-subgroup P is contained in a unique Sylow p-subgroup S of G.

Then any element g ∈ G that normalizes P must force P = gPg−1 ⊆ gSg−1. This then

forces S = gSg−1. So we deduce that NG(P ) 6 NG(S). It is well-known that S is a normal

Sylow p-subgroup of NG(S). So S ∩NG(P ) is a normal subgroup of NG(P ). Moreover, there

is a natural injective homomorphism

NG(P )
/(
NG(P ) ∩ S

)
↪→ NG(S)/S

this then implies that [NG(P ) : NG(P ) ∩ S] divides [NG(S) : S] which is prime-to-p. So

NG(P ) ∩ S is a normal Sylow p-subgroup of NG(P ). �


