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LAEEANEE G M G ZHHAFAE AN ¢ : G — G
For any two groups G and G’, there exists a homomorphism ¢ : G — G'.

Ne}

True. There is always the trivial homomorphism ¢ : G — G'.

2. M R FoRPTA LB BRI AE, B— N IEE n, iC nR = {nr|r € R}. P4
R/nR Z&— n M PEHHE.

Let R denote the group of real numbers, n a positive integer, and put nR = {nr |r € R}.
Then R/nR is a cyclic group of order n.

False. nR is in fact the entire R as every element in R is divisible by n. So R/nR is

trivial.

3. Sg PAAE—DITRBIPHELF 2 18.
S contains an element of order exactly 18.
False. If we want an element of order exactly 18, then we need a cycle of length at least

9 and we have no place to put the 2-cycle.

4. MR G WS HTRE (BT TR REHC, B4 G B

If the commutator subgroup of a group G is G itself, then G is a simple group.

False. If GG is the direct product of two simple non-commutative groups H; and Hs,
then [G,G]| = G.

5. W H 28 G WIEMTHHE H &8 ¢ WIENT78, BX H AT H H G [F
W ¢ A G/H AT 1.

If H is a normal subgroup of G and H' is a normal subgroup of G', and suppose that
H is isomorphic to H' and G is isomorphic to G’, then G/H is isomorphic to G'/H’.

False. For a counterexample, Z /47 is clearly not isomorphic to Z/27Z, yet all groups
Z, 27, A7 are isomorphic. If we wanted to get G/H ~ G'/H', we need the isomorphism
G = G’ to take H isomorphically to H'.

6. —MARWERLCIAY T CSARKZRE) 1ER.
1



A finite nilpotent group is the direct product of its Sylow subgroups (of different primes).
True. This is a theorem from the book.

7. BN R BCR R AT AR

Every group of prime-power order is solvable.

True. Every group of prime-power order is nilpotent and in particular solvable.

8. W p N—N&EE, P -—TAHRE G W% p-1H. B4, X G ¥tE—T8 H,
HNP & H K% p-18F.

Let p be a prime number and P a Sylow p-subgroup of a finite group GG. Then for any
subgroup H of G, H N P is a Sylow p-subgroup of H.

False. We need H to be normal for this to be correct. For example, if in a group G
with more than one Sylow p-subgroup, then take H to be one Sylow p-subgroup and P
another Sylow p-subgroup. Then H N P is a proper subgroup of H, which cannot be a Sylow
p-subgroup of H.

9. W G & MAMRZHEE. W G RN IRYEA AT LR IRER & — 4.

Let G be a finite abelian group. Every finite dimensional irreducible representation of
G is one-dimensional.

True. This is an exercise from the course.

10. —MEIREE G fE—AMEIRE X FHSEER. NFE CX) = { Y alz]
rzeX
BRI G MFERRAR LI,

Let G be a finite group acting transitively on a finite set X. The induced representation

of G on C[X] = { > aglx]|a, € C} is irreducible.
zeX
False. The space C[X] is clearly not irreducible, as it contains the subspace C-)___[x].

a;EEC}




FRER— (15 77) WEWL: Broy 175 WOBF— e S #dlE. i (AR E) By
175 WORE. (A0 R R BT B2 AS B IX AR 4518, 1FIEW].)

Prove that a group of order 175 must be commutative. List all groups of order 175,
up to isomorphisms. (If you need to use a statement that a group of prime square order is

abelian, you need to provide a proof.)

JEF. 175 = 7 x 52. Let G be a group of order 175.

We first analyze the Sylow 5-subgroups. Let n5 be the number of such groups. Then
Sylow’s theorem implies that ns = 1 mod 5 and n5|7. We deduce that ns = 1. Thus the
Sylow 5-subgroup Ps is a normal subgroup.

Next, we consider the Sylow 7-subgroups. Let n; be the number of such groups. Then
ny = 1mod 7 and n7|25. We have n; = 1. Thus the Sylow 7-subgroup P; is a normal
subgroup.

Yet Ps N P; = {1}. We have

G =DP; x Pr.

Next, we show that P; (with order 25) is commutative. Suppose that P5 is not com-
mutative, then Z(P5) has order 5 (as the center of a 5-group is non trivial.) Let o be a
generator of Z(Ps), and let 7 be an element of Ps\Z(Ps5). If 7 has order 25, then Ps ~ Zos
is commutative; contradiction! If 7 has order 5, then ¢ and 7 generate a subgroup of Ps
isomorphic to Zs x Zs as ¢ commutes with 7. By studying the order, Ps ~ Zj5 X Zj is
commutative; contradiction! So Ps5 is commutative.

To sum up, G is an abelian group of order 175. By classification of finitely generated

abelian group, such group is isomorphic to

either Z175 or Z5 X Z35.



REBZ (15 77)
W (p, V) ——MHWREF G WARYE C-Fox. ZEHY G-AZ 1750

“={veV ‘ p(g)(v) =v for all g € G}.

(1) IEM: dim VE £?%@ﬂﬁ%/?f V ) E L
(2) iEH: dim VY = pr

gGG
(3) iEH plg) (g € G) LR AN HH ¢V = VO Ei1F ¢ =¢ (A1 ¢ 22—
M) B o RERFEL.
Let (p,V) be a finite dimensional C-representation of a finite group G. Consider the

G-invariant subspace
“:={veV|plg)(v) =vforall g € G}.

(1) Show that dim V¢ is the same as the multiplicity of the trivial representation ap-
pearing in V.
G _
(2) Show that dim V' € pr

geG
(3) Construct a surjective map ¢ : V — VY expressed in terms of a linear combination

of linear operators p(g) for ¢ € G, such that ¢* = ¢ (i.e. ¢ is a projection) and ¢ is a

homomorphism.
1EBA. (1) Write V' as a direct sum of irreducible subrepresentations:
V=WaeW,& - -aW,.

Then VE =WF oW @ - dWE. But W is always a subrepresentation of W;. If some
W; is irreducible and nontrivial, W must be trivial. Yet if some W; is trivial, W& = W;.

To sum up, we have V¢ is the direct sum of all trivial factors of V, and thus dim V¢ is
the same as the multiplicity of trivial representation in V.

(2) By character formula, the multiplicity of trivial representation in V' is

v, Z Xo(g
gEG
(3) Consider the homomorphism

e 720l

geG

For each v € V and h € G,

p(W)(0) (‘G, > o)) = 17 Zp 0 = 15 L pk)(0) = 6(0).



So ¢(v) € VE. Yet, for v € V¥, we have
1 1
¢(v) = Gl ZP(Q)(U) =Gl ZU = .
Gl 2= Gl 2=
Thus ¢ restricted to V¢ is the identity. In particular, this says that ¢ is surjective and

¢* = 0.
Finally, we check that ¢ is a homomorphism, i.e. for h € G,

$op(h) = |—Cl;| > p(g)p(h) = ﬁ > plgh) = é > p(hk) = p(h) 0 ¢,
geG gelG keG

where the change of variable is that k = h~!gh. 0



REB= (15 57) (1) % G Z2— 8. IEHWT IR NMESR [ —— X M

(a) G HHRECH 2 T8 H,

(b) FEFNMIFZ ¢ 0 G — Zo.

(2) X IE#EE n > 3, 45 H ZIHAKRRE Doy, HETETRECH 2 T (HAEMTTERSE).

Let G be a group. Show that there is a bijection between
subgroups H of G of index 2; and

~—~~ —~
5
— ~— ~—

b
(2) Let n > 3 be a positive integer. Describe all subgroups of the dihedral group Ds,

nontrivial homomorphism ¢ : G — Zs.

of index 2, by providing their generators. Justify your answers.

1EBH. (1) Given a subgroup H of G of index 2, it must be normal. Then we have a natural
quotient homomorphism
¢:G— G/H ~7Zs.
Conversely, given a nontrivial homomorphism ¢ : G — Zs, its kernel H is a subgroup
of G of index 2.
It is clear that the two maps are inverse of each other.
(2) We use (1) to find subgroups of Dy, = (r,s|r" = s* = 1,srs = r~!) of index 2.

When n is odd, to give a homomorphism ¢ : Dy, — Zs, we must have

ng(r) = ¢(r") =0

Thus ¢(r) = 0. To get a nontrivial homomorphism, we are forced to take ¢(s) = 1. It is easy
to verify that ¢(s?) =0 and ¢(srs) = ¢(r~'). This defines a homomorphism ¢ : Dy, — Zs.
Its kernel is precisely all elements of the form r* for some 4, namely (r). So in this case, Do,
has a unique subgroup of index 2, namely (r).

When n is even, we want to find all homomorphisms ¢ : Dy, — Zs. If ¢(r) = 0, we
may argue as above to see that ¢(s) = 1 and ker ¢ = (r) is a subgroup of Ds, of index 2. If
o(r) = 1, we can check that for either ¢(s) = 0 or 1, the condition

¢(r") = ¢(s*) =0 and  ¢(srs) = o(r™")

holds. So either case gives a homomorphism ¢ : Dy, — Zs. In the case when ¢(s) = 0,
é(r's’) = i, and thus ker¢ = (r?,s) is a subgroup of Dy, of index 2. In the case when
o(s) =1, ¢(r's?) =i+ j, and thus ker ¢ = (r?,rs) is a subgroup of Ds, of index 2. O



BEBI (15 77) W G _—MAREE, H &2 G WETH (M H < G). iEW: JfE
U gHg™ ' ARENIEE G

geG
For G a finite group and H a proper subgroup (i.e. H < G). Show that the union

U gHg ! cannot be equal to the entire G.
geG

1E 8. We simply note that for any two elements ¢, g» € G, if g; = goh, then

g Hg ' = ghHh gyt = g2 Hgy'!

1

are the same set. Thus, when taking the union |J gHg™', it is enough to take the union

gelG
over all representatives of the cosets G/H. There are |G|/|H| such representatives, yet each

set gHg ! has size equal to |H|. So totally, in the union UG gHg™! (counting multiplicity)
ge

there are |G| elements. Clearly, the element 1 belongs to each of gHg~'. So the union is not
disjoint. So the total union has strictly less that |G| elements, and thus cannot be equal to
the entire G. O



RERBD (16 7o) B G RS X (TR LRE) L1FH, H 28 G TiREHIR
M7 Xz e X, ll H, M G, 2HIFoREE H MG 1E o AR SE THF.

(1) R H £ X FAARAHE.

(2) UEBH: WREE H /£ X ERER 2@ HNE e X H, =G, Il H =G.

(3) WEH: Wk H & —AIERCTRE, MTEE (G, - H) (NEAREE) AT « 1k
B

Suppose that G is a group acting transitively on a set X (which may be infinite) and
that H is a finite index subgroup of G. For x € X, write H, and G, for its stabilizers in H
and G, respectively.

(1) Show that H has finitely many orbits on X.

(2) Show that, if the action of H on X is transitive and for some x € X, H, = G,; then
H is all of G.

(3) Show that if H is normal, then [G, : H,] (finite or not) is independent of z.

1EBA. (1) Write G as the union of right cosets of H: G = Hg; U Hgo U - - - LU Hg, for some
gi,---,9r € Gand r = [G : H|. Fix x € X. We show that every point 2’ € X is in the

same H-orbit of at least one of {¢1x, g2z, ..., g-x}. Indeed, since G acts transitively on X,
x' = g -z for some g € G. In the coset decomposition, g = hg; for some i € {1,...,r} and
h € H. Thus

¥ = gr = hgw

lies in the same H-orbit of g;x. So there are only finitely many H-orbits on X.

(2) We keep the notation as in (1) and assume that z is the chosen point. Suppose
that » > 1 and hence we may assume that go ¢ H. Consider the point g,z € X. By the
transitivity of the action of H, gox = hx for some h € H. Thus, h™'g,x = x. Thus, h™lg, €
G, = H,. This in particular implies that g, € H, contradicting our earlier assumption. So
H=G.

(3) Once again, keep the notation as in (1). For 2’ = gz for some g € GG, we note that
Gy = ¢gG,g~ " indeed,

heGy & ha! =2’ & hgr=gr < g 'hgr=a < ¢ 'hge G, & h e gGg "
Similarly, as H is normal,

Hy =9G,g'NH=gG,g ' NgHg " =g(G,NH)g™" = gH,g".

1 send-

There is obviously a one-to-one correspondence between G, /H, and ¢G.g ' /gH,g~
ing aH, to gag™' - gH,g~'. In particular, |G, : H,] = |Gy : H,] and therefore, [G, : H,] is

independent of x. O



FREEN (10 47)

— M G EES X ERERR A # e, R AMMERRLIER, H G £ X x
X—A EWEAREEN, XH A C X x X ZNALEES (BIX 21,1, 22,12 € X (21 # 1,
Ty # Yo), FAIETLE g € G U118 gz = 20 H gy1 = 1), W p B—NEE, g G = GLy(F,).

(1) &8 G KI—AI% p-TRE, IR ER EAL T

(2) iE: G H p+ 1 MAFEBITEE p-FHF.

(3) IEM): G AEFTA TS p-TREM IR S X BRI XU 3 1.

Recall that a permutation action of a group G on a set X is doubly transitive if the
action on X is transitive and the action on X x X — A is transitive where A C X x X is the
diagonal (i.e., for xq,y1, zo,y2 € X with x1 # y; and x5 # y, there exists g € G such that
gxr1 = x9 and gy; = ya). Let p be a prime number and let G = GLy(F,).

(1) Find a Sylow p-subgroup of G and compute its normalizer.
(2) Show that G has p + 1 distinct Sylow p-subgroups.
(3) Show the action of G on the set X of Sylow p-subgroups is doubly transitive.

JEAA. (1) We know that |GLa(F,)| = (p* — 1)(p* — p). So a Sylow p-subgroup of GLy(F,)

has order p. For example,

N={(s1)[neF,}.
We compute its normalizer: for (¢%) € Ng(N), we need (at least)
(8 (D) (e8) " eN
or equivalently, for some m € [F),
(¢a)(61) = (61)(28), ie (taa) = (o).
By looking at the (2,2)-entry, we see that ¢ = 0. On the other hand, for
B-{(s})|ed e, beR,)

it is clear that B normalize N, forcing Ng(N) = B.
(2) As all Sylow p-subgroups of G are conjugate, so the set of Sylow p-subgroups can

2 1 2
be identified with G/Ng(N) = G/ B, which is of size (p : )%2 p)
p—= p
(3) Sylow’s theorem shows that G acts on X transitively. So clearly, A is an orbit of

the G-action. It is enough to show that G acts on X x X\A transitively. For this, it is

=p—+1

enough to compute the stabilizer of some pair of Sylow subgroups. We consider N = ((1) Flp)

and N = (]Flp (1]) (both of them have cardinality p, so a Sylow subgroups). The stabilizer



of the pair (N, N°P) is the intersection

Ng(N)N Ng(N®) = BN B® = (7 0 ) =T,

0 Fy

where B = (Ff ]gi ) From this we see that the orbit containing the pair (B, BP) is
p

e = D ) = X - 4

From this, we see that X x X — A is one orbit under G-action and thus G acts doubly
transitively on X. O]



BB (10 4)

WG R—MHN n KIAREE. MAFREN T —NFRE 7 G — S, X ge G, X
WE G ERIEBRN 7(x) = gz (2 € X).

(1) EW): my R — B HAE g K2 EEHE (G (9)] 27

(2) B WER G —AP % -7 REEF LERIEIREE, W G A —MEECOY 2 TEE.

Let G be a finite group of order n. There is a homomorphism 7 : G — S,,, where g € G
maps to the permutation 7 : for any = € G, m,(x) = gz.

(1) Show that 7, is an odd permutation if and only if g has even order and [G : (g)] is
odd.

(2) Show that if a Sylow 2-subgroup of G is nontrivial and cyclic, then G has a subgroup
H with [G: H] = 2.
1EBA. (1) Let 7 be the order of g. Then for any x € G, the permutation w, takes

Tg Tg 2 Tg Tg r

x > gT > gox b >y g =,

and it is clear that for any i € {1,...,r — 1}, g’z # z. Thus 7, breaks up G into disjoint
union of [G : (g)] cycles, each is a r-cycle.

But we know that r-cycle is the product of r — 1 transpositions; so for 7, to be an odd
permutation, we need and only need (r — 1) - [G : (g)] to be an odd number, i.e. r is even
and [G : (g)] is odd.

(2) Consider the homomorphism 7 : G — §,, given by left translation action of G on
itself. There is a natural homomorphism sgn : S, — {£1} sending even permutations to 1

and odd permutation to —1. The composition is
(%) G = S, 2 {1}

We need to show that the composition is surjective, then the kernel would give a subgroup
of G of index 2.

For this, we need to show that for some g € G, 71, is an odd permutation. Since the
Sylow 2-subgroup P, of GG is nontrivial and cyclic; let oy be its generator. Then o5 has even
order and [G : (09)] = [G : P,] is odd. By (1), 7, is an odd permutation and hence (%) is

surjective. We are done. U



AT\ (5 5)

WEE: R G B LR, B4 BB E FEAHRE Aut(G) B O L.

Let G be a group. Show that if G has trivial center, then its automorphism group
Aut(G) has trivial center.

HEBH. If ¢ € Z(Aut(G)) is a nontrivial element in the center of the automorphism group of
G. In particular, ¢» must commute with any automorphism induced by conjugation by an

element of G. Namely, as automorphisms of G, for each g € GG, we have
Ad, o =1 o Ad,.
Applying this to an element h € G, we deduce that

g(h)g™" = (ghg™") = v(g)v(h)(g) ™"

for any g, h € G. (Last equality is because 1 is a homomorphism.)

Rearranging terms, we deduce that

Y(h)g(g) = g b(g)p(h).

This means that g~ (g) comes with any element (k) and hence g~ '¢(g) € Z(G) = {1}.
Thus ¢(g) = g. O



