
Topics in Number theory: Special values of L-functions
Exercise 1 (due on September 26)

Choose 4 out of 8 problems to submit, must including Exercise 1.5 (The problems
are chronically ordered by the materials, not necessarily by difficulties. I do recommend to
at least read all problems.)

Exercise 1.1 (Gauss sums). Let η : (Z/NZ)× → C× be a (not necessarilty primitive)
Dirichlet character of conductor N ≥ 2, we define the Gauss sum of η as follows:

(1.1.1) G(η) :=
N−1∑
a=1

η(a)e2πi·a/N ∈ C.

Prove the following properties of the Gauss sum.
(1) If η′ is another Dirichlet character of conductor N ′ with (N,N ′) = 1, then ηη′ may

be viewed as a Dirichlet character of conductor NN ′. Show that in this case

G(ηη′) = η(N ′)η′(N)G(η)G(η′).

(2) If η is primitive, then |G(η)| =
√
N .

(3) When η and η′ are both Dirichlet characters of same conductor N such that ηη′ is a
primitive Dirichlet character of conductor N , show that

(1.1.2) G(η)G(η′) = G(ηη′) · J(η, η′),

where J(η, η′) is the Jacobi sum

J(η, η′) :=
∑

a∈Z/NZ

η(a)η′(1− a),

where we use the convention that η(a) = 0 if (a,N) 6= 1.
Remark 1. It would be interesting to compare the Gauss sums with the Gamma functions.
In some sense, the definition of (1.1.1) may be viewed as an integral of the product of an
additive character e2πi(·)/N of Z/NZ and a multiplicative character η of (Z/NZ)×. Similarly,
the definition of Gamma function

Γ(s) =

∫ ∞

0

e−tts
dt

t

can also be viewed as an integral of the product of the additive character e−t and the multi-
plicative character ts.

Analogous to the relation (1.1.2) between the Gauss sums and the (finite) Jacobi sums,
Gamma functions satisfy a similar property: for s, s′ ∈ C

B(s, s′) =
Γ(s)Γ(s′)

Γ(s+ s′)
,

where B(s, s′) is a beta function

B(s, s′) =

∫ 1

0

ts−1(1− t)s
′−1dt, (<(s) > 0,<(s′) > 0).
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Solution. (1) We need to be careful about the precise isomorphism Z/NZ × Z/N ′Z ∼=
Z/NN ′Z. Then

G(η)G(η′) =
∑

a∈(Z/NZ)×

∑
a′∈(Z/N ′Z)×

η(a)η′(a′)e2πi·a/Ne2πi·a
′/N ′

=
∑

a∈(Z/NZ)×

∑
a′∈(Z/N ′Z)×

η(a)η′(a′)e2πi·(aN
′+a′N)/NN ′

Note that ηη′(aN ′ + a′N) = η(aN ′)η′(a′N) = η(N ′)η′(N)η(a)η′(a′). From this, we see that

G(η)G(η′)η(N ′)η′(N) =
∑

a∈(Z/NZ)×

∑
a′∈(Z/N ′Z)×

ηη′(aN ′ + a′N)e2πi·(aN
′+a′N)/NN ′

= G(ηη′).

(2) Using (1), we may immediately reduce to the case when N = pr is a power of a prime
p. Now we compute

G(η)G(η) =
∑

a,b∈(Z/prZ)×
η(a)e2πi·a/p

r

η̄(b)e−2πi·b/pr

=
∑

a,b∈(Z/prZ)×
η(ab−1)e2πi·(a−b)/pr

a=bc
=

∑
b,c∈(Z/prZ)×

η(c)e2πi·b(c−1)/pr .(1.1.3)

Now the valuation vp(c− 1) = s matters.
• When s < r − 1,

(1.1.4)∑
b∈(Z/prZ)×

e2πi·(c−1)b/pr =
∑

b∈(Z/prZ)×
e2πi·b/p

r−s

= −
∑

b∈pZ/prZ

e2πi·b/p
r−s

= −
∑

b∈Z/pr−1Z

e2πi·b/p
r−s−1

= 0,

because the sums of all powers of e2πi/pr−s+1 and all powers of e2πi/pr−s+1 are both
zero.

• When s = r − 1, the same discussion above shows that the sum (1.1.4) is equal to
−pr−1. Thus, the contribution of these terms to (1.1.3) is∑

c=1+dpr−1

d=1,...,p−1

η(c)pr−1 = (−1) · (−pr−1) = pr−1.

• When c = 1, the contribution to (1.1.3) is #{b ∈ (Z/prZ)×} = (p− 1)pr−1.
To sum up, we see that G(η)G(η) = pr−1 + (p− 1)pr−1 = pr.

(3) We first observe that for Dirichlet characters η1, η′1 of conductor N1 and η2, η
′
2 of con-

ductor N2 with (N1, N2) = 1, we have

J(η1η2, η
′
1η

′
2) = J(η1, η

′
1)J(η2, η

′
2).

It then follows that we need only to prove (1.1.2) when N = pr is a power of a prime.
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In this case, we compute this directly.

G(η)G(η′) =
∑

a,b∈Z/prZ

η(a)η′(b)e2πi·(a+b)/pr c=a+b
=

∑
a,c∈Z/prZ

η(a)η′(c− a)e2πi·c/p
r

=
∑

a∈Z/prZ

∑
c∈(Z/prZ)×

η(c · a
c
)η′(c(1− a

c
))e2πi·c/p

r

+
∑

a∈Z/prZ

∑
c∈pZ/prZ

η(a)η′(c− a)e2πi·c/p
r

.

The first sum is equal to G(ηη′)J(η, η′), whereas for the second sum, we may rewrite it as∑
a∈(Z/prZ)×

∑
c∈pZ/prZ

ηη′(a) · η( c
a
− 1)e2πic/p

r

.

If we change a into a · (1 + dpr−1) for some d ∈ Z, the second term does not change as p|c.
But ηη′ is a primitive character, so the sum is zero. □

Exercise 1.2 (Modified Mahler basis). In this problem, we give a different orthonormal
basis of C0(Zp,Zp). Consider the function f(z) = zp−z

p
on Zp.

(1) Show that f ∈ C0(Zp,Zp).
Consider the following inductively defined functions:

f 〈0〉(z) = z, f 〈1〉(z) = f(z) =
zp − z

p
, f 〈2〉(z) = f 〈1〉

(zp − z

p

)
=

(
zp−z
p

)p − zp−z
p

p
,

f 〈k+1〉(z) = f
(
f 〈k〉(z)

)
, for k ≥ 1.

For n ≥ 0, write n = n0 + n1p + n2p
2 + · · · for the p-adic expansion of n, i.e. each ai ∈

{0, 1, . . . , p− 1}, put

en(z) =
(
f 〈0〉(z)

)n0
(
f 〈1〉(z)

)n1
(
f 〈2〉(z)

)n2 · · ·

We call {en(z)} a modified Mahler basis.
(2) Prove that ep(z) +

(
z
p

)
∈ Zp[z].

(3) Prove that each en(z) may be written as a Zp-linear combination of binomial functions(
z
m

)
’s, and show that the change of basis matrix from the Mahler basis to en(z) is

upper triangular with all entries in Zp and diagonal entries in Z×
p .

(4) Deduce that {en(z) |n ≥ 0} form an orthonormal basis of C0(Zp,Zp).
(5) Assume that p ≥ 3. Recall that Z×

p
∼= µp−1 × (1 + pZp)

×, where µp−1 is the subgroup
of (p − 1)th roots of unity in Qp. The group µp−1 acts naturally on C0(Zp,Zp) such
that for ζ ∈ µp−1, it sends h(z) to h(ζz). Show that each of en(z) is an eigenfunction
for this action.

Remark 2. We call en(z)’s the modified Mahler basis. As (2) suggested, en(z) is essentially
the “leading terms” of

(
z
n

)
up to a constant multiple.

The disadvantage of modified Mahler basis is that it is not compatible with the Amice
transform. However, part (5) shows that the modified Mahler basis is formed by µp−1-
eigenfunctions, which is useful in some applications.

Solution. (1) The Fermat’s Little Theorem shows that zp ≡ z mod p for z ∈ Z. Then
f(z) ∈ Zp for every z ∈ Zp.
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(2) We expand
(
z
p

)
as follows.(

z

p

)
=
z(z − 1) · · · (z − (p− 1))

p!
∈ zp

p!
+
z

p
+ Zp[z] = −z

p − z

p
+ Zp[z].

(3) Since f(z) defines a continuous function f(z) : Zp → Zp, its iteration f 〈k〉 is also a Zp-
valued continuous function on Zp, so is each en(z) as a product of these f 〈k〉’s. In particular,
each en(z) is a Zp-linear combination of 1, z, . . . ,

(
z
n

)
, as its Mahler expansion:

en(z) =
n∑

i=0

mni

(
z

i

)
, with mni ∈ Zp,

where we only need to add up to
(
z
n

)
because 1, z, . . . ,

(
z
n

)
form a Qp-basis of Qp[z]

deg≤n. This
way, we have (e0, e1, . . . ) = (1, z,

(
z
2

)
, . . . )M for the change of basis matrix M = (mij)i,j≥0.

Clearly, M has entries in Zp, and is upper triangular.
To see the diagonal entry of M , it suffices to compare the leading coefficients of en(z) with(

z
n

)
. If n = n0 + pn1 + p2n2 + · · · , we have

en(z) = p−(n1+(p+1)n2+(p2+p+1)n3+··· )zn + · · · , and
(
z

n

)
=

1

n!
zn + · · ·

It is clear that the two leading coefficients differ by some element of Z×
p . Part (3) is proved.

(4) Since M is upper triangular, with all entries in Zp and diagonal entries in Z×
p , it is

integrally invertible, i.e. M−1 is also upper triangular, with all entries in Zp and diagonal
entries in Z×

p . This implies that the modified Mahler basis is indeed an orthonormal basis of
C0(Zp,Zp).

(5) We note that by the inductive definition of f 〈k〉(z), the monomials in every f 〈k〉(z) have
degree ≡ 1 mod p−1. It then follows that every monomials in en(z) has exponent congruent
to n0 + n1 + · · · modulo p− 1, which is further congruent to n modulo p− 1. It then follows
that for every ζ ∈ µp−1, en(ζz) = ζnen(z) for every n ∈ Z≥0, i.e. each modified Mahler basis
element is an eigenfunction for the µp−1-action. □

Exercise 1.3 (Orthonormal basis of C0(Zpr ,Zpr)). Let Qpr be the unramified extension of Qp

of degree r, and Zpr be its ring of integers. In this exercise, we will produce an orthonormal
basis of C0(Zpr ,Zpr) similar to the modified Mahler basis defined in the previous exercise.

Let σ denote the (arithmetic) Frobenius on Zpr , i.e. the automorphism of Zpr whose
reduction modulo p sends x̄ to x̄p. Write z0 : Zpr → Zpr for the identify function, i.e.
z0(a) = a. We then inductively define

zj+1(a) = σ(zj(a)) for j ≥ 0.

Clearly, zj+r = zj for j ≥ 0. It is also clear that Qpr [z0, . . . , zr−1] is a dense subring of
C0(Zpr ,Qpr) (but Zp[z0, . . . , zr−1] is not dense in C0(Zpr ,Zpr)).

We define inductively

f0 := 1, f1 := z0, fp :=
zp0 − z1
p

, fpi+1 = fp ◦ fpr =
f p
pi
− σ(fpi)

p
, with i = 1, 2, . . .

For example, fp2 =

(
zp0−z1

p

)p
− zp1−z2

p

p
.
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If m = m0 + pm1 + p2m2 + · · · is the p-adic expansion of a positive integer (with si ∈
{0, . . . , p− 1}), we set

fm := fm0
1 fm1

p fm2

p2 · · ·
Finally, if n = (n0, . . . , nr−1) ∈ Zr

≥0 is an r-tuple of index, we set

(1.3.1) fn := fn0 · σ(fn1) · · · σr−1(fnr−1).

(1) Show that each function fn is a continuous function in C0(Zpr ,Zpr), and compute its
leading coefficients, as a polynomial in z0, . . . , zr−1.

(2) Show that fn’s form an orthonormal basis of C0(Zpr ,Zpr).
(Hint: it might be helpful to compare this to a “known” (noncanonical) Mahler

basis: choose a Zp-linear isomorphism

c : Zpr (Zp)
r

a (c∗0(a), . . . , c
∗
r−1(a)).

∼=

Here we may view each c∗j as a function Zpr with values in Zp. Then the functions
un : a 7→

(
c∗0(a)
n0

)
· · ·
(
c∗r−1(a)
nr−1

)
for n ∈ Zr

≥0 form an orthonormal basis of C0(Zpr ,Zpr)

with respect to the maximal norm || · ||. It is then a question to compare the two
bases fn and un.)

Solution. (1) We note that for every a ∈ Zpr , ap ≡ σ(a) mod p, so fp =
zp0−z1

p
defines a

continuous function from Zpr to Zpr . Iteration and multiplication of continuous functions
in C0(Zpr ,Zpr) still gives continuous function in C0(Zpr ,Zpr). It then follows that all fn ∈
C0(Zpr ,Zpr). Note that for m = m0 + pm1 + p2m2 + · · · written in its p-adic expansion, the
leading term of fm is

zm0 · p−m1−(p+1)m2−(p2+p+1)m3−··· = zm0 · p−vp(m!).

So for n = (n0, . . . , nr−1) ∈ Zr
≥0, the leading term of fn is

zn0
0 z

n1
1 · · · znr−1

r−1

pvp(n0!)+vp(n1!)+···+vp(nr−1!)
.

(2) In what follows, for n = (n0, . . . , nr−1) ∈ Zr
≥0, we write zn = zn0

0 z
n1
1 · · · znr−1

r−1 , and
|n| = n0 + n1 + · · ·+ nr−1.

Keep the notation of cj and un as given in the hint. Consider the subspace Fn :=
Qpr [z]

deg≤n ⊂ C0(Zpr ,Qpr) of polynomial functions of total degree ≤ n (with n ∈ N), which
has a natural Qpr -basis given by {zn}|n|≤n and a Qpr -basis given by {fn}|n|≤n. On the other
hand, every element in {un | |n| ≤ n} belongs to Fn and the set is Zpr -linearly independent;
so {un}|n|≤n also forms a Qpr -basis of Fn. It then follows that each fn with |n| ≤ n is a
Qpr -linear combination and hence also a Zpr -linear combination of {un}|n|≤n. As this works
for all n, the change of basis matrix from {fn} to {un} is a matrix with coefficients in Zpr

and is block-upper-triangular with blocks labeled by total degree n.
It remains to show that each block component is invertible in Zpr , or equivalently the

change of basis matrix M
(n)
f ,u on Fn/Fn−1 from the basis {fn}|n|=n to the basis {un}|n|=n has

determinant in Z×
pr (as opposed to just in Zpr). We have already shown that M(n)

f ,u has entries
in Zp; so it is enough to show that detM

(n)
f ,u ∈ Z×

pr .
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The change of basis matrix M
(n)
f ,z from {fn}|n|=n to {zn}|n|=n is the diagonal matrix with

1
pvp(n!) on the diagonal. On the other hand, the change of basis matrix M

(n)
u,z from {un}|n|=n to

{zn}|n|=n has its nth column in 1
n!
Z×

pr . As M
(n)
f ,z = M

(n)
u,zM

(n)
f ,u, we deduce that detM

(n)
f ,u ∈ Z×

pr .
From this, we see that M

(n)
f ,u is integrally invertible over Zpr . Part (2) of the exercise is

proved. □

Exercise 1.4 (An explicit formula for ψ-operator). Let p be a prime number. Recall that on
ZpJT K, we have defined an operator φ such that φ(T ) = (1 + T )p − 1. There is a left inverse

to φ, given as follows: each F ∈ ZpJT K can be written uniquely as F =
p−1∑
i=0

(1 + T )iφ(Fi);

then ψ(F ) = F0.
(1) Let ζp denote a primitive p-th root of unity. Prove that the ψ-operator admits the

following characterization: for F ∈ ZpJT K, ψ(F ) is the unique power series in ZpJT K
such that

(1.4.1) ψ(F )((1 + T )p − 1) =
1

p

p−1∑
i=0

F ((1 + T )ζ ip − 1).

(2) Show that φ and ψ can be naturally extended to the p-adic completion of Zp((T )),
denoted by AQp .

(3) Show that ψ
( 1
T

)
=

1

T
. (One might find (1.4.1) useful, but there is a “better” proof

without using it.)
Remark 3. (1) Without going into details, let us simply remark that the actions of φ,

ψ, and Γ ∼= Z×
p on ZpJT K and their extensions to AQp defines the most important

ground ring for (φ,Γ)-modules; this is a very useful tool in studying p-adic Hodge
theory of local fields. We will further discuss this in future lectures.

(2) The right hand side of formula (1.4.1) may be viewed as taking the trace from ZpJT K
to φ(ZpJT K); it is a (non-étale) Galois extension, and the conjugates of T + 1 are
ζ ip(T + 1) for i = 0, 1, . . . , p− 1.

Solution. (1) (Continued with the discussion in Remark 3, we may view the extension ZpJT K
over φ(ZpJT K) as a (non-étale) Galois extension with Galois group Z/pZ and 1 ∈ Z/pZ
sends f(T ) to f(ζp(1 + T ) − 1).) For the proof of (1), we compare the two formulas. Write

F ∈ ZpJT K as F =
p−1∑
j=0

(1 + T )jφ(Fj) for F0, F1, . . . , Fp−1 ∈ ZpJT K, then ψ(F ) = F0. We

compute

1

p

p−1∑
i=0

F
(
(1 + T )ζ ip − 1

)
=

1

p

p−1∑
i=0

p−1∑
j=0

(1 + T )jζ ijp · φ(Fj)
(
(1 + T )ζ ip − 1

)
=

1

p

p−1∑
i=0

p−1∑
j=0

(1 + T )jζ ijp · Fj

(
(1 + T )p − 1

)
= F0

(
(1 + T )p − 1

)
,
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where the last equality uses the equality 1

p

p−1∑
i=0

ζ ijp =

{
1 when j 6= 0,

0 when j = 0.
Part (1) is proved.

(2) First consider the φ-action: φ(T ) = (1 + T )p − 1 = T p + pQ(T ), for a polynomial
Q(T ) ∈ Zp[T ]. From this, we see that

φ
( 1
T

)
=

1

T p + pQ(T )
= T−p + pT−2pQ(T ) + p2T−3pQ(T ) + · · ·

This converges p-adically. From this, we see that if an expression f =
∞∑
n=0

an(T )p
n ∈ AQp

with an(T ) ∈ T−rnZpJT K for some rn ∈ Z, then

φ(f) =
∞∑
n=0

φ(T )−rn · φ(T rnan(T ))p
n.

It converges well in AQp .
The definition of ψ is similar as we may write each F ∈ AQp uniquely as a linear combination

F =
p−1∑
i=0

(1 + T )iφ(Fi), and then define ψ(F ) = F0.

(3) (Direct calculation) Using the formula (1.4.1), it suffices to show that

1

(1 + T )p − 1
=

1

p

p−1∑
i=0

1

(1 + T )ζ ip − 1
,

or equivalently,
p−1∑
i=0

(1 + T )p − 1

(1 + T )ζ ip − 1
= p.

The left hand side is a polynomial in T of degree ≤ p−1. We need only to check this equality
when T = ζ ip−1 for every i = 0, . . . , p−1. Plugging in T = ζ−j

p −1 (for some j = 0, . . . , p−1),
the left hand side is nonzero only when i = j, in which case, the term is equal to

p−1∏
i=0, i 6=j

(
ζ−j
p · ζ ip − 1

)
=

p−1∏
k=1

(
ζkp − 1

)
= p.

Part (3) is proved.
(3) (“Better” proof) Note that the φ-action preserves the subring Zp[T ] and the subfield

Zp(T ) (without taking any completion); and the map ψ can be defined similarly via the same
recipe. Now we may make change of variable S := 1 + T and it is clear that φ(S) = Sp,
and Zp(T ) = Zp(S). This φ-action extends to a “different completion of Zp(S)”, namely
Zp((S)). (Note that one cannot compare Zp((S)) directly with Zp((T )).) Over Zp((S)), the

ψ-operator can be made explicit: every F (S) ∈ Zp((S)) can be written as F (S) =
p−1∑
i=0

Siφ(Fi),

then ψ(F ) = F0.
Now it suffices to check ψ( 1

S−1
) = 1

S−1
in Zp((S)). But this is easy:

1

1− S
= 1 + S + S2 + · · · =

p−1∑
i=0

Siφ(1 + S + S2 + · · · ) =
p−1∑
i=0

Siφ
( 1

1− S

)
.

It then follows that ψ( 1
1−S

) = 1
1−S

. Part (3) is proved. □



8

Exercise 1.5 (“Miraculous congruence” encoded in p-adic L-functions). Assume p ≥ 3 for
simplicity. We have constructed p-adic Dirichlet L-functions as p-adic measures on Z×

p that
interpolate special values of (p-modified) Dirichlet L-functions. It is natural to ask: is the
p-adic Dirichlet L-function uniquely determined by these interpolation values? In fact, the
answer is that these values “overdetermine” the p-adic L-functions. (We will discuss this in
lectures at a later stage.) Assume that p ≥ 3 is an odd prime number.

(1) Let G be a general profinite group and let χ : G → R× be a continuous p-adic
character with values in a p-adically complete ring R, then it induces a continuous
ring homomorphism χ̃ : ZpJGK → R. Alternatively, χ can be viewed as a R-valued
function on G, so one can integrate against a p-adic measure on G.

Prove that we have the following commutative diagram

ZpJGK D0(G,Zp)

R

∼=

η̃ µ 7→
∫
G η(g)dµ(g)

(2) Write ∆ := F×
p , which may be viewed as a subgroup of Z×

p via Teichmüller character
ω. Give an canonical isomorphism Φ : ZpJZ×

p K ∼= Zp[∆] ⊗Zp ZpJXK, so that X =

[exp(p)]− 1, where exp(p) = 1 + p+ p2

2!
+ · · · is the formal expansion.

(3) Prove that ZpJZ×
p K is canonical isomorphic to a product of p− 1 rings:

(1.5.1) ZpJZ×
p K Zp[∆]⊗Zp ZpJXK p−2∏

i=0

ZpJXK
(a, f(X)) (ωi(a)f(X))i=0,...,p−2.

∼= ∼=

(4) Let η : (Z/prZ)× → Q×
p be a finite character and let n ∈ Z≥0; we may form the p-adic

character
χη,n : Z×

p Q×
p

a η(a)an.

If we denote by χ̄η,n the restriction of χη,n to ∆, then for any µ ∈ D0(Z×
p ,Zp),∫

Z×
p

η(x)xndµ(x) = Φ(µ)|∆=χ̄η,n, T=χη,n(exp(p))−1.

(5) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×
p ,Zp) are equal if for any n ∈ Z≥0,∫

Z×
p

xndµ1(x) =

∫
Z×
p

xndµ2(x).

(Hint: Show that the difference µ1 − µ2 is divisible by some infinite product.)
(6) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×

p ,Zp) are equal if for a fixed n ∈ Z≥0

but for all finite characters η : (Z/prZ)× → Q×
p for all r, we have∫

Z×
p

η(x)xndµ1(x) =

∫
Z×
p

η(x)xndµ2(x).
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Hint: For (4) and (5), you may find the following Weierstrass preparation theorem useful:
for a complete noetherian local ring (A,m), if f(x) ∈ AJxK is a power series that does not
lie in mJxK, then we may factor f(x) = g(x)u(x), with g(x) a monic polynomial (of finite
degree) and u(x) ∈ AJxK× is a unit. In the case of A = Zp, the Weierstrass preparation
theorem has the following version: every nonzero power series f(x) ∈ ZpJxK can be factored
as f(x) = prg(x)u(x), with r ∈ Z≥0, g(x) a monic polynomial, and u(x) ∈ AJxK× a unit.
Solution. (1) Suppose that R is I-adically complete for an ideal I of R. We may replace R by
R/In and thus reduce to the case when G is finite. In this case, write Ψ : R[G]

∼=−−→ D0(G,R)
for the isomorphism. We have, for any µ ∈ R[G],

η̃(µ) =
∑
g∈G

η(g)µ(g) =

∫
G

η(g)dΨ(µ)(g).

Part (1) is proved.
(2) Take the isomorphism Z×

p
∼= ∆ × (1 + pZp)

×, where we embed ∆ into Z×
p via the

Teichmüller character ω. We may identify (1 + pZp)
× with Zp via p-adic logarithm and thus

we deduce that
ZpJZ×

p K ∼= Zp[∆]⊗Zp ZpJ(1 + pZp)
×K ∼= Zp[∆]⊗Zp ZpJXK,

where X stands for [exp(p)]− 1.
(3) is clear.
(4) follows from combining (1) an (2).
(5) Write µ := µ1 − µ2, we have by (3) that

Φ(µ)
∣∣
∆=x̄n, T=exp(np)−1

= 0.

For the element Φ(µ) ∈ Zp[∆] ⊗ ZpJXK, write (h0, h1, . . . , hp−2) ∈
p−2∏
i=0

ZpJXK for its image

under the isomorphism (1.5.1). The condition implies that ha(exp(np) − 1) = 0 for n ≡
a mod p−1. But no function in ZpJXK has infinitely many zeros, except for the zero function,
by Weierstrass preparation theorem. It follows that h0 = · · · = hp−2 = 0. Thus µ1 = µ2.

(6) The argument is similar to (5), except that the zeros of ha for each a = 0, . . . , p − 2
are precisely η(exp(p)) − 1 for those η for which η|∆ = ωi. There are infinitely many such
η’s. By Weierstrass preparation theorem, we have µ1 = µ2. □
Exercise 1.6. (Kubota–Leopoldt p-adic L-function) In the second and the third lectures,
we have constructed the p-adic Dirichlet L-function when the (tame) Dirichlet character η is
nontrivial. For the case when η = 1, we should also construct the corresponding p-adic zeta-
function, traditionally called the Kubota–Leopoldt p-adic L-function. Unfortunately, this will
not be a p-adic measure on Z×

p , but only a “quasi-measure”, which is philosophically reflects
the fact that the Riemann zeta function has a pole at s = 1 (so should the p-adic zeta have).
For this reason, we need some technical maneuver for its construction.

Assume p ≥ 3 for simplicity. Pick a ∈ Z>1 relatively prime to p. Consider

ζa(s) := (1− a1−s) · ζ(s) =
∑
n≥1

1

ns
− a ·

∑
n≥1
a|n

1

ns
,

Aa(T ) = (1− aγa)
( 1 + T

1− (1 + T )

)
=

1 + T

1− (1 + T )
− a · (1 + T )a

1− (1 + T )a
,
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where γa ∈ Γ = Z×
p is the element corresponding to a ∈ Z×

p , which acts on ZpJT K by sending
T to (1 + T )a − 1.

(1) Show thatAa(T ) ∈ ZpJT K defines a p-adic measure; so doesA{p}
a (T ) := (1−φψ)(Aa(T )).

Define µ{p}
a to be the p-adic measure associated to A{p}

a (T ) via Amice transform. For any
primitive character ηp : (Z/prZ)× → Qalg,×, define

L{p}(ηp, s) =

{
(1− p−s) · ζ(s) if ηp = 1,

L(ηp, s) if ηp 6= 1,

L{p}
a (ηp, s) = (1− a1−s) · L{p}(ηp, s) =

∑
n≥1

(n,p)=1

ηp(n)

ns
− a ·

∑
n≥1

(n,p)=1

ηp(an)

(an)s

(2) Show that for any character ηp : (Z/prZ)× → Qalg,× and any n ∈ Z≥0, we have∫
Z×
p

ηp(x)x
ndµ{p}

a (x) = L{p}
a (ηp,−n).

(3) Recall the identification ZpJZ×
p K ∼= Zp[∆] ⊗Zp ZpJXK. We may define the Kubota–

Leopoldt p-adic L-function to be the element

µKL :=
µ
{p}
a

(1− a[γa])
∈ Zp[∆]⊗ 1

X − exp(−p) + 1
ZpJXK.

Sometimes, this is called a pseudo-measure; show that µKL is independent of the choice
of a ∈ Z×

p . (Hint: We need only to prove that (1−bγb)(µ{p}
a ) = (1−aγa)(µ{p}

b ) for two
different a, b ∈ Z>1 relatively prime to p. One can make use of Exercise 1.5(4)(5).)

Remark 4. Our definition of pseudo-measure slightly differs from that of Jacinto–Williams’
note, who shifted the p-adic Kubota–Leopolds L-function so that the pole is at s = 0.

Solution. (1) To see that Aa(T ) ∈ ZpJT K, it suffices to show that it has no pole at T = 0, or
equivalently

resT=0

( 1 + T

1− (1 + T )

)
= resT=0

(
a · (1 + T )a

1− (1 + T )a

)
But this is clear. From this, it is clear that A{p}

a (T ) ∈ ZpJT K.
(2) This construction is essentially the same as the construction of the p-adic Dirichlet L-

functions presented in the lecture. In accordance with the definition of L{p}
a (ηp, s), we define

for ηp : (Z/prZ)× → Qalg,× (primitive if ηp 6= 1 and put r = 1 if ηp = 1),

A{p}
ηp,a(T ) :=

apr−1∑
n=1

(n,ap)=1

ηp(n)(1 + T )n − a ·
pr−1∑
n=1

η(an)(1 + T )an

1− (1 + T )apr

=
∑
n≥1

(n,ap)=1

η(n)(1 + T )n − a ·
∑
n≥1

(n,p)=1

η(an)(1 + T )an,
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and f
{p}
ηp,a(t) := A

{p}
ηp,a(e

−t − 1). Then L{p}(ηp, s) =
1

Γ(s)

∫ ∞

0

f {p}
ηp,a(t)t

s · dt
t

and

L{p}(ηp,−n) =
(
− d

dt

)n(
f {p}
ηp,a

)∣∣∣
t=0

=
(
(1 + T )

d

dT

)n(
A{p}

ηp,a

)∣∣∣
T=0

=

∫
Z×
p

xndµ{p}
ηp,a(x),

where µ{p}
ηp,a is the p-adic measure associated to A{p}

ηp,a via the Amice transform. It remains to
prove that

µ{p}
ηp,a =

∑
i∈(Z/prZ)×

ηp(i) · Resi+prZp(µ
{p}
a ).

But this is clear by checking the corresponding (1 + T )-expansion of the Amice transforms.
Indeed, the Amice transform of the right hand side is equal to∑

i∈(Z/prZ)×
ηp(i) ·

( ∑
n≥1

n≡i mod pr

(1 + T )n − a ·
∑
n≥1

an≡i mod pr

(1 + T )an

)

=
∑
n≥1

(n,ap)=1

ηp(n)(1 + T )n − a ·
∑
n≥1

(n,p)=1

ηp(an)(1 + T )an = A{p}
ηp,a(T ).

This completes the proof of the interpolation formula for p-adic L-functions.
(3) We first check that µKL ∈ Zp[∆]⊗ 1

X−exp(−p)+1
ZpJXK. For this, we may take a so that ā

is a generator of F×
p . Write a = ω(ā) · 〈a〉 with ā ∈ ∆ and 〈a〉 ∈ (1 + pZp)

×. We consider the

image of 1−aγa under the isomorphism Zp[Zp] ∼=
p−2∏
i=0

ZpJXK using the characters ωi : ∆ → Z×
p

with i ∈ {0, . . . , p− 2}. When i 6= p− 2,

ωi(1− aγa) = 1− aωi(a)(1 +X)〈a〉 ∈ ZpJXK×.
When i = p− 2, we have

ωp−2(1− aγa) = 1− 〈a〉(1 +X)(logp〈a〉)/p = 1− 〈a〉 · 〈a〉(logp(1+X))/p.

This function has as simple pole at X = exp(−p)− 1. From this, we deduce that

µKL ∈ Zp[∆]⊗ 1

X − exp(−p) + 1
ZpJXK.

It suffices to compare for a, b ∈ Z>1, that (1 − bγb)
(
µ
{p}
a

)
= (1 − aγa)

(
µ
{p}
b

)
. By Exer-

cise 1.5(4), it suffices to verify that∫
Z×
p

xnd
(
(1− bγb)

(
µ{p}
a

))
(x) =

∫
Z×
p

xnd
(
(1− aγa)

(
µ
{p}
b

))
(x).

But the action on the measures can be turned into an action on the functions, i.e.∫
Z×
p

(xn − b · bnxn)dµ{p}
a (x) = (1− bn+1)

∫
Z×
p

xndµ{p}
a (x) = (1− bn+1)(1− an+1)ζ(−n).

This expression is clearly symmetric in a, b. Part (3) is proved. □
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Exercise 1.7 (A more classical version of p-adic L-function). Historically, there is also an
old version of p-adic L-function which is really just p-adic functions. In this exercise, we
recover the classical p-adic L-function from the p-adic measures, and we will see that the
p-adic measures contains stronger congruence relations than classical p-adic L-functions.

(To avoid talking about pseudo-measures, we again work with p-adic Dirichlet L-functions.)
Let η be a primitive Dirichlet character of conductor N (with p ∤ N). We have constructed
a p-adic measure µ{p}

η such that∫
Z×
p

xndµ{p}
η (x) = L{p}(η,−n).

(This measure also interpolates Dirichlet L-functions for varying the character at p; we will
not use it here.)

We are interested in understanding the p-adic function ζp,i on Zp for i = 0, 1, . . . , p − 2,
defined by for s ∈ Z such that s ≡ i mod p− 1,

ζp,i(s) :=

∫
Z×
p

xsdµ{p}
η (x) = L{p}(η,−s).

(1) Show that ζp,i(s) extends naturally to a continuous function on s ∈ Zp. (So far, this
is weaker than a function on s ∈ OCp .)

Now we study these functions ζp,i more carefully. Abstractly by Exercise 1.5, we may view
µ
{p}
η as an element in Zp[∆]⊗Zp ZpJXK, where X = [exp(p)]− 1. (Here we view ∆ = F×

p as a
subgroup of Z×

p via the Teichmüller character ω.) For i = 0, . . . , p− 2, write µη,i(X) ∈ OJXK
for the image of µ{p}

η under the map ∆ → Z×
p sending x to ω(x)i.

(2) Show that (formally)
(1.7.1) ζp,i(s) = µη,i(exp(ps)).

(3) From (2), deduce that ζp,i(s) extends to a p-adic analytic function for s ∈ p−
p−2
p−1mCp .

Remark 5. One sees from this exercise that the classical p-adic L-function only captures
part of the information provided. Even knowing the convergence of ζp,i(s) for s ∈ p−

p−2
p−1mCp ,

it is far from enough to deduce the integrality of µ{p}
η . For more discussion in this direction,

see the post
https://mathoverflow.net/questions/435265/why-p-adic-measures.

Solution. (1) This is obvious, because whenever s1 ≡ s2 mod pk−1(p−1) for some k ∈ Z≥1, we
have xs1 ≡ xs2 mod pk, then ζp,i(s1) ≡ ζp,i(s2) mod pk. So each ζp,i(s) extends to a continuous
function in s ∈ Zp.

(2) By Exercise 1.5(1), integration against a character xs is the same as evaluating the
measure µη at the ring homomorphism OJZ×

p K → O defined by xs. In particular, this means

that when s ≡ i mod p− 1,
∫
Z×
p

xidµ{p}
η (x) = µη,i(exp(ps)). (The condition s ≡ i mod p− 1

ensures that we use the factor ηp,i.) The equality (1.7.1) follows from the interpolation
properties of p-adic Dirichlet L-functions.

(3) As µη,i ∈ ZpJXK, for µη,i(exp(ps)) to make sense, we need | exp(ps)| < 1, which forces
that ps ∈ p

1
p−1mCp or equivalently, s ∈ p−

p−2
p−1mCp . □
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Exercise 1.8 (Volume of ideles class group versus residue of Dedekind zeta values). Let F
be a number field with r1 real embeddings and r2 pairs of complex embeddings. Let A×

F be
the group of ideles and A×,1

F := {x ∈ A×
F | |x| = 1} be the subgroup of norm one elements.

We have stated (and proved in the quadratic case) of the analytic class number formula, for
the Dedekind zeta function ζF (s) at s = 1:

(1.8.1) lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2 · hFRegF

wF

√
|∆F |

,

where hF is the class number, RegF is the regulator for units of F , wF is the number of roots
of unity contained in F , and ∆F is the discriminant of F .

(1) Using the functional equation of Dedekind zeta function to deduce from (1.8.1) the
following analytic class number formula at s = 0:

lim
s→0

s−r1−r2+1ζF (s) = −hF · RegF
wF

.

(2) Show that the right hand side of (1.8.1) can be interpreted as Vol(A×,1
F /F×), if we

provide the Haar measure on A×,1
F so that under the product decomposition A×

F =

A×,1
F × R× (where R× is provided with the measure dx

x
) admits the following Haar

measure:
• at a real place v of F , the Haar measure on F×

v is dx
|x| ,

• at a complex place v of F , the Haar measure on F×
v ' C× is 2dx∧dy

|x2+y2| =
2drdθ

r
,

• at a p-adic place v of F with different ideal dv ⊆ Fv, the Haar measure on F×
v is

so that volume of O×
Fv

is ||dv||−
1
2 , where ||dv|| = #(OFv/dv).

Solution. (1) Recall the functional equation for Dedekind zeta function. Let

ΛF (s) = ΓR(s)
r1 · ΓC(s)

r2 · ζF (s)

denote the complete Dedekind zeta function. Then the functional equation is given by

ΛF (s) = |∆F |
1
2
−sΛF (1− s).

Considering this equality near s = 0, we have

ζF (s)
(
π− s

2Γ
(s
2

))r1︸ ︷︷ ︸
≈( 2

s
)r1

(
2(2π)−sΓ(s)

)r2︸ ︷︷ ︸
≈( 2

s
)r2

= |∆F |
1
2
−s︸ ︷︷ ︸

|∆F |
1
2

·ζF (1−s)·
(
π− 1−s

2 Γ
(1− s

2

))r1︸ ︷︷ ︸
≈π− 1

2 ·
√
π)r1

(
2(2π)s−1Γ(1− s)

)r2︸ ︷︷ ︸
≈( 2

2π
)r2

.

ζF (s) ≈
(s
2

)r1+r2
π−r2 |∆F |

1
2 · ζF (1− s)

≈
(s
2

)r1+r2
π−r2 |∆F |

1
2 ·
(
− 1

s

)2r1(2π)r2RegF · hF
wF |∆F |

1
2

.

From this, we deduce that

lim
s→0

sr1+r2−1ζF (s) = −RegFhF
wF

.
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(2) Let MF denote the the set of places of F , and MF,f the subset of finite places. We
consider the following exact sequence:

0 →
∏

v∈MF,f

O×
Fv

→ Cl(OF ) → 0

□


