Topics in Number theory: Special values of L-functions Exercise 1 (due on September 26)

Choose 4 out of 8 problems to submit, must including Exercise 1.5 (The problems are chronically ordered by the materials, not necessarily by difficulties. I do recommend to at least read all problems.)

Exercise 1.1 (Gauss sums). Let η : $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a (not necessarilty primitive) Dirichlet character of conductor $N \geq 2$, we define the Gauss sum of η as follows:

(1.1.1)
$$
G(\eta) := \sum_{a=1}^{N-1} \eta(a) e^{2\pi i \cdot a/N} \in \mathbb{C}.
$$

Prove the following properties of the Gauss sum.

(1) If η' is another Dirichlet character of conductor *N'* with $(N, N') = 1$, then $\eta\eta'$ may be viewed as a Dirichlet character of conductor NN' . Show that in this case

$$
G(\eta \eta') = \eta(N')\eta'(N)G(\eta)G(\eta').
$$

- (2) If η is primitive, then $|G(\eta)| =$ *√ N*.
- (3) When η and η' are both Dirichlet characters of same conductor *N* such that $\eta\eta'$ is a primitive Dirichlet character of conductor *N*, show that

(1.1.2)
$$
G(\eta)G(\eta') = G(\eta\eta') \cdot J(\eta, \eta'),
$$

where $J(\eta, \eta')$ is the *Jacobi sum*

$$
J(\eta, \eta') := \sum_{a \in \mathbb{Z}/N\mathbb{Z}} \eta(a) \eta'(1-a),
$$

where we use the convention that $\eta(a) = 0$ if $(a, N) \neq 1$.

Remark 1. It would be interesting to compare the Gauss sums with the Gamma functions. In some sense, the definition of ([1.1.1\)](#page-0-0) may be viewed as an integral of the product of an additive character $e^{2\pi i(\cdot)/N}$ of $\mathbb{Z}/N\mathbb{Z}$ and a multiplicative character η of $(\mathbb{Z}/N\mathbb{Z})^{\times}$. Similarly, the definition of Gamma function

$$
\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}
$$

can also be viewed as an integral of the product of the additive character *e [−]^t* and the multiplicative character *t s* .

Analogous to the relation ([1.1.2\)](#page-0-1) between the Gauss sums and the (finite) Jacobi sums, Gamma functions satisfy a similar property: for $s, s' \in \mathbb{C}$

$$
B(s, s') = \frac{\Gamma(s)\Gamma(s')}{\Gamma(s+s')},
$$

where $B(s, s')$ is a beta function

$$
B(s,s') = \int_0^1 t^{s-1} (1-t)^{s'-1} dt, \qquad (\Re(s) > 0, \Re(s') > 0).
$$

Solution. (1) We need to be careful about the precise isomorphism $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N'\mathbb{Z} \cong$ $\mathbb{Z}/NN'\mathbb{Z}$. Then

$$
G(\eta)G(\eta') = \sum_{a \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \sum_{a' \in (\mathbb{Z}/N'\mathbb{Z})^{\times}} \eta(a)\eta'(a')e^{2\pi i \cdot a/N}e^{2\pi i \cdot a/N'}
$$

=
$$
\sum_{a \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \sum_{a' \in (\mathbb{Z}/N'\mathbb{Z})^{\times}} \eta(a)\eta'(a')e^{2\pi i \cdot (aN'+a'N)/NN'}
$$

Note that $\eta \eta'(aN' + a'N) = \eta(aN')\eta'(a'N) = \eta(N')\eta'(N)\eta(a)\eta'(a')$. From this, we see that

$$
G(\eta)G(\eta')\eta(N')\eta'(N)=\sum_{a\in(\mathbb{Z}/N\mathbb{Z})^\times}\sum_{a'\in(\mathbb{Z}/N'\mathbb{Z})^\times}\eta\eta'(aN'+a'N)e^{2\pi i\cdot(aN'+a'N)/NN'}=G(\eta\eta').
$$

(2) Using (1), we may immediately reduce to the case when $N = p^r$ is a power of a prime *p*. Now we compute

$$
G(\eta)\overline{G(\eta)} = \sum_{a,b \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \eta(a)e^{2\pi i \cdot a/p^r} \overline{\eta}(b)e^{-2\pi i \cdot b/p^r}
$$

$$
= \sum_{\substack{a,b \in (\mathbb{Z}/p^r\mathbb{Z})^\times \\ a \equiv bc}} \eta(ab^{-1})e^{2\pi i \cdot (a-b)/p^r}
$$

$$
(\text{1.1.3})
$$

$$
\sum_{b,c \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \eta(c)e^{2\pi i \cdot b(c-1)/p^r}.
$$

Now the valuation $v_p(c-1) = s$ matters.

• When
$$
s < r - 1
$$
,
\n
$$
\sum_{b \in (\mathbb{Z}/p^r\mathbb{Z})^\times} e^{2\pi i \cdot (c-1)b/p^r} = \sum_{b \in (\mathbb{Z}/p^r\mathbb{Z})^\times} e^{2\pi i \cdot b/p^{r-s}} = -\sum_{b \in \mathbb{Z}/p^r\mathbb{Z}} e^{2\pi i \cdot b/p^{r-s}} = -\sum_{b \in \mathbb{Z}/p^{r-1}\mathbb{Z}} e^{2\pi i \cdot b/p^{r-s-1}} = 0,
$$

because the sums of all powers of $e^{2\pi i/p^{r-s+1}}$ and all powers of $e^{2\pi i/p^{r-s+1}}$ are both zero.

• When $s = r - 1$, the same discussion above shows that the sum [\(1.1.4\)](#page-1-0) is equal to $-p^{r-1}$. Thus, the contribution of these terms to [\(1.1.3](#page-1-1)) is

$$
\sum_{\substack{c=1+dp^{r-1} \\ d=1,\dots,p-1}} \eta(c)p^{r-1} = (-1) \cdot (-p^{r-1}) = p^{r-1}.
$$

• When *c* = 1, the contribution to [\(1.1.3](#page-1-1)) is $\#\{b \in (\mathbb{Z}/p^r\mathbb{Z})^{\times}\} = (p-1)p^{r-1}$. To sum up, we see that $G(\eta) \overline{G(\eta)} = p^{r-1} + (p-1)p^{r-1} = p^r$.

(3) We first observe that for Dirichlet characters η_1, η'_1 of conductor N_1 and η_2, η'_2 of conductor N_2 with $(N_1, N_2) = 1$, we have

$$
J(\eta_1\eta_2, \eta'_1\eta'_2) = J(\eta_1, \eta'_1)J(\eta_2, \eta'_2).
$$

It then follows that we need only to prove $(1.1.2)$ $(1.1.2)$ when $N = p^r$ is a power of a prime.

In this case, we compute this directly.

$$
G(\eta)G(\eta') = \sum_{a,b \in \mathbb{Z}/p^r\mathbb{Z}} \eta(a)\eta'(b)e^{2\pi i \cdot (a+b)/p^r} \stackrel{c=a+b}{=} \sum_{a,c \in \mathbb{Z}/p^r\mathbb{Z}} \eta(a)\eta'(c-a)e^{2\pi i \cdot c/p^r}
$$

=
$$
\sum_{a \in \mathbb{Z}/p^r\mathbb{Z}} \sum_{c \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \eta(c \cdot \frac{a}{c})\eta'(c(1-\frac{a}{c}))e^{2\pi i \cdot c/p^r} + \sum_{a \in \mathbb{Z}/p^r\mathbb{Z}} \sum_{c \in p\mathbb{Z}/p^r\mathbb{Z}} \eta(a)\eta'(c-a)e^{2\pi i \cdot c/p^r}.
$$

The first sum is equal to $G(\eta\eta')J(\eta,\eta')$, whereas for the second sum, we may rewrite it as

$$
\sum_{a \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \sum_{c \in p\mathbb{Z}/p^r\mathbb{Z}} \eta \eta'(a) \cdot \eta(\frac{c}{a} - 1) e^{2\pi i c/p^r}.
$$

If we change *a* into $a \cdot (1 + dp^{r-1})$ for some $d \in \mathbb{Z}$, the second term does not change as $p|c$. But $\eta \eta'$ is a primitive character, so the sum is zero. \Box

Exercise 1.2 (Modified Mahler basis)**.** In this problem, we give a different orthonormal basis of $\mathcal{C}^0(\mathbb{Z}_p, \mathbb{Z}_p)$. Consider the function $f(z) = \frac{z^p - z}{p}$ $rac{-z}{p}$ on \mathbb{Z}_p .

(1) Show that $f \in C^0(\mathbb{Z}_p, \mathbb{Z}_p)$.

Consider the following inductively defined functions:

$$
f^{(0)}(z) = z, \quad f^{(1)}(z) = f(z) = \frac{z^p - z}{p}, \quad f^{(2)}(z) = f^{(1)}\left(\frac{z^p - z}{p}\right) = \frac{\left(\frac{z^p - z}{p}\right)^p - \frac{z^p - z}{p}}{p},
$$

$$
f^{(k+1)}(z) = f(f^{(k)}(z)), \qquad \text{for } k \ge 1.
$$

For $n \geq 0$, write $n = n_0 + n_1p + n_2p^2 + \cdots$ for the *p*-adic expansion of *n*, i.e. each $a_i \in$ *{*0*,* 1*, . . . , p −* 1*}*, put

$$
e_n(z) = (f^{(0)}(z))^{n_0} (f^{(1)}(z))^{n_1} (f^{(2)}(z))^{n_2} \cdots
$$

We call $\{e_n(z)\}\$ a *modified Mahler basis.*

- (2) Prove that $e_p(z) + \binom{z}{n}$ $\binom{z}{p} \in \mathbb{Z}_p[z].$
- (3) Prove that each $e_n(z)$ may be written as a \mathbb{Z}_p -linear combination of binomial functions *z* $\binom{z}{m}$'s, and show that the change of basis matrix from the Mahler basis to $e_n(z)$ is upper triangular with all entries in \mathbb{Z}_p and diagonal entries in \mathbb{Z}_p^{\times} .
- (4) Deduce that $\{e_n(z) | n \geq 0\}$ form an orthonormal basis of $C^0(\mathbb{Z}_p, \mathbb{Z}_p)$.
- (5) Assume that $p \ge 3$. Recall that $\mathbb{Z}_p^{\times} \cong \mu_{p-1} \times (1 + p\mathbb{Z}_p)^{\times}$, where μ_{p-1} is the subgroup of $(p-1)$ th roots of unity in \mathbb{Q}_p . The group μ_{p-1} acts naturally on $\mathcal{C}^0(\mathbb{Z}_p, \mathbb{Z}_p)$ such that for $\zeta \in \mu_{p-1}$, it sends $h(z)$ to $h(\zeta z)$. Show that each of $e_n(z)$ is an eigenfunction for this action.

Remark 2. We call $e_n(z)$'s the *modified Mahler basis*. As (2) suggested, $e_n(z)$ is essentially the "leading terms" of $\binom{z}{n}$ $\binom{z}{n}$ up to a constant multiple.

The disadvantage of modified Mahler basis is that it is not compatible with the Amice transform. However, part (5) shows that the modified Mahler basis is formed by μ_{p-1} eigenfunctions, which is useful in some applications.

Solution. (1) The Fermat's Little Theorem shows that $z^p \equiv z \mod p$ for $z \in \mathbb{Z}$. Then $f(z) \in \mathbb{Z}_p$ for every $z \in \mathbb{Z}_p$.

(2) We expand $\binom{z}{n}$ $\binom{z}{p}$ as follows.

$$
\binom{z}{p} = \frac{z(z-1)\cdots(z-(p-1))}{p!} \in \frac{z^p}{p!} + \frac{z}{p} + \mathbb{Z}_p[z] = -\frac{z^p-z}{p} + \mathbb{Z}_p[z].
$$

(3) Since $f(z)$ defines a continuous function $f(z): \mathbb{Z}_p \to \mathbb{Z}_p$, its iteration $f^{(k)}$ is also a \mathbb{Z}_p valued continuous function on \mathbb{Z}_p , so is each $e_n(z)$ as a product of these $f^{(k)}$'s. In particular, each $e_n(z)$ is a \mathbb{Z}_p -linear combination of $1, z, \ldots, \binom{z}{n}$ $\binom{z}{n}$, as its Mahler expansion:

$$
\mathsf{e}_n(z) = \sum_{i=0}^n m_{ni} \binom{z}{i}, \qquad \text{with } m_{ni} \in \mathbb{Z}_p,
$$

where we only need to add up to $\binom{z}{n}$ $\binom{z}{n}$ because $1, z, \ldots, \binom{z}{n}$ $\binom{z}{n}$ form a \mathbb{Q}_p -basis of $\mathbb{Q}_p[z]^{\deg \leq n}$. This way, we have $(e_0, e_1, \dots) = (1, z, \zeta)$ $\binom{z}{2}, \ldots$)*M* for the change of basis matrix $M = (m_{ij})_{i,j \geq 0}$. Clearly, *M* has entries in \mathbb{Z}_p , and is upper triangular.

To see the diagonal entry of M, it suffices to compare the leading coefficients of $e_n(z)$ with *z* n_n^2 . If $n = n_0 + pn_1 + p^2n_2 + \cdots$, we have

$$
e_n(z) = p^{-(n_1 + (p+1)n_2 + (p^2 + p+1)n_3 + \cdots)} z^n + \cdots
$$
, and $\binom{z}{n} = \frac{1}{n!} z^n + \cdots$

It is clear that the two leading coefficients differ by some element of \mathbb{Z}_p^{\times} . Part (3) is proved.

(4) Since M is upper triangular, with all entries in \mathbb{Z}_p and diagonal entries in \mathbb{Z}_p^{\times} , it is integrally invertible, i.e. M^{-1} is also upper triangular, with all entries in \mathbb{Z}_p and diagonal entries in \mathbb{Z}_p^{\times} . This implies that the modified Mahler basis is indeed an orthonormal basis of $\mathcal{C}^0(\mathbb{Z}_p,\mathbb{Z}_p).$

(5) We note that by the inductive definition of $f^{(k)}(z)$, the monomials in every $f^{(k)}(z)$ have degree \equiv 1 mod *p* − 1. It then follows that every monomials in $e_n(z)$ has exponent congruent to $n_0 + n_1 + \cdots$ modulo $p - 1$, which is further congruent to *n* modulo $p - 1$. It then follows that for every $\zeta \in \mu_{p-1}$, $e_n(\zeta z) = \zeta^n e_n(z)$ for every $n \in \mathbb{Z}_{\geq 0}$, i.e. each modified Mahler basis element is an eigenfunction for the μ_{p-1} -action. □

Exercise 1.3 (Orthonormal basis of $C^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$). Let \mathbb{Q}_{p^r} be the unramified extension of \mathbb{Q}_p of degree r , and \mathbb{Z}_{p^r} be its ring of integers. In this exercise, we will produce an orthonormal basis of $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$ similar to the modified Mahler basis defined in the previous exercise.

Let σ denote the (arithmetic) Frobenius on \mathbb{Z}_{p^r} , i.e. the automorphism of \mathbb{Z}_{p^r} whose reduction modulo *p* sends \bar{x} to \bar{x}^p . Write z_0 : $\mathbb{Z}_{p^r} \to \mathbb{Z}_{p^r}$ for the identify function, i.e. $z_0(a) = a$. We then inductively define

$$
z_{j+1}(a) = \sigma(z_j(a)) \quad \text{for } j \ge 0.
$$

Clearly, $z_{j+r} = z_j$ for $j \ge 0$. It is also clear that $\mathbb{Q}_{p^r}[z_0, \ldots, z_{r-1}]$ is a dense subring of $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Q}_{p^r})$ (but $\mathbb{Z}_p[z_0, \ldots, z_{r-1}]$ is not dense in $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$).

We define inductively

$$
f_0 := 1, \quad f_1 := z_0, \quad f_p := \frac{z_0^p - z_1}{p}, \quad f_{p^{i+1}} = f_p \circ f_{p^r} = \frac{f_{p^i}^p - \sigma(f_{p^i})}{p}, \text{ with } i = 1, 2, ...
$$

For example, $f_{p^2} = \frac{\left(\frac{z_0^p - z_1}{p}\right)^p - \frac{z_1^p - z_2}{p}}{p}.$

If $m = m_0 + pm_1 + p^2m_2 + \cdots$ is the *p*-adic expansion of a positive integer (with $s_i \in$ *{*0*, . . . , p −* 1*}*), we set

$$
f_m:=f_1^{m_0}f_p^{m_1}f_{p^2}^{m_2}\cdots
$$

Finally, if $\mathbf{n} = (n_0, \ldots, n_{r-1}) \in \mathbb{Z}_{\geq 0}^r$ is an *r*-tuple of index, we set

$$
\mathbf{f}_{\mathbf{n}} := f_{n_0} \cdot \sigma(f_{n_1}) \cdots \sigma^{r-1}(f_{n_{r-1}}).
$$

- (1) Show that each function f_n is a continuous function in $C^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$, and compute its leading coefficients, as a polynomial in z_0, \ldots, z_{r-1} .
- (2) Show that f_n 's form an orthonormal basis of $C^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$. (Hint: it might be helpful to compare this to a "known" (noncanonical) Mahler basis: choose a Z*p*-linear isomorphism

$$
c: \mathbb{Z}_{p^r} \longrightarrow \mathbb{Z}_p^r
$$

$$
a \longmapsto (\mathsf{c}_0^*(a), \dots, \mathsf{c}_{r-1}^*(a)).
$$

Here we may view each c_j^* as a function \mathbb{Z}_{p^r} with values in \mathbb{Z}_p . Then the functions $\mathbf{u_n}: a \mapsto {c_0^*(a) \choose n_0}$ $\binom{a}{n_0} \cdots \binom{ \mathsf{c}^*_{r-1}(a)}{n_{r-1}}$ *nr−*¹ for $\mathbf{n} \in \mathbb{Z}_{\geq 0}^r$ form an orthonormal basis of $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$ with respect to the maximal norm $|| \cdot ||$. It is then a question to compare the two bases f_n and u_n .)

Solution. (1) We note that for every $a \in \mathbb{Z}_{p^r}$, $a^p \equiv \sigma(a) \mod p$, so $f_p = \frac{z_0^p - z_1}{p}$ $\frac{-z_1}{p}$ defines a continuous function from \mathbb{Z}_{p^r} to \mathbb{Z}_{p^r} . Iteration and multiplication of continuous functions in $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$ still gives continuous function in $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$. It then follows that all $\mathbf{f}_n \in$ $\mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Z}_{p^r})$. Note that for $m = m_0 + pm_1 + p^2m_2 + \cdots$ written in its *p*-adic expansion, the leading term of *f^m* is

$$
z_0^m \cdot p^{-m_1 - (p+1)m_2 - (p^2 + p + 1)m_3 - \dots} = z_0^m \cdot p^{-v_p(m!)}.
$$

So for $\mathbf{n} = (n_0, \ldots, n_{r-1}) \in \mathbb{Z}_{\geq 0}^r$, the leading term of $\mathbf{f}_{\mathbf{n}}$ is

$$
\frac{z_0^{n_0}z_1^{n_1}\cdots z_{r-1}^{n_{r-1}}}{p^{v_p(n_0!)+v_p(n_1!)+\cdots+v_p(n_{r-1}!)}}.
$$

(2) In what follows, for $\mathbf{n} = (n_0, ..., n_{r-1}) \in \mathbb{Z}_{\geq 0}^r$, we write $\mathbf{z}^{\mathbf{n}} = z_0^{n_0} z_1^{n_1} \cdots z_{r-1}^{n_{r-1}}$, and $|\mathbf{n}| = n_0 + n_1 + \cdots + n_{r-1}.$

Keep the notation of c_j and u_n as given in the hint. Consider the subspace F_n := $\mathbb{Q}_{p^r}[\mathbf{z}]^{\deg \leq n} \subset \mathcal{C}^0(\mathbb{Z}_{p^r}, \mathbb{Q}_{p^r})$ of polynomial functions of total degree $\leq n$ (with $n \in \mathbb{N}$), which has a natural \mathbb{Q}_{p^r} -basis given by $\{z^n\}_{|n|\leq n}$ and a \mathbb{Q}_{p^r} -basis given by $\{f_n\}_{|n|\leq n}$. On the other hand, every element in $\{\mathbf{u}_n \mid |\mathbf{n}| \leq n\}$ belongs to F_n and the set is \mathbb{Z}_{p^r} -linearly independent; so ${\bf u}_n\}_{|n|\leq n}$ also forms a \mathbb{Q}_p -basis of F_n . It then follows that each ${\bf f}_n$ with $|{\bf n}|\leq n$ is a \mathbb{Q}_p -linear combination and hence also a \mathbb{Z}_p -linear combination of $\{\mathbf{u}_n\}_{|n|\leq n}$. As this works for all *n*, the change of basis matrix from ${\bf f_n}$ to ${\bf u_n}$ is a matrix with coefficients in \mathbb{Z}_{p^r} and is block-upper-triangular with blocks labeled by total degree *n*.

It remains to show that each block component is invertible in \mathbb{Z}_{p^r} , or equivalently the change of basis matrix $M_{f,u}^{(n)}$ $\mathbf{f}_{\mathbf{n}}^{(n)}$ on F_n/F_{n-1} from the basis $\{\mathbf{f}_{\mathbf{n}}\}_{|\mathbf{n}|=n}$ to the basis $\{\mathbf{u}_{\mathbf{n}}\}_{|\mathbf{n}|=n}$ has determinant in $\mathbb{Z}_{p^r}^{\times}$ (as opposed to just in \mathbb{Z}_{p^r}). We have already shown that $M_{\mathbf{f},\mathbf{u}}^{(n)}$ $f_{\mathbf{f},\mathbf{u}}^{(n)}$ has entries in \mathbb{Z}_p ; so it is enough to show that det $M_{\mathbf{f},\mathbf{u}}^{(n)} \in \mathbb{Z}_{p^r}^{\times}$.

The change of basis matrix $M_{f, z}^{(n)}$ $f_{\mathbf{r},\mathbf{z}}^{(n)}$ from $\{f_{\mathbf{n}}\}_{|\mathbf{n}|=n}$ to $\{\mathbf{z}^{\mathbf{n}}\}_{|\mathbf{n}|=n}$ is the diagonal matrix with 1 $\frac{1}{p^{v_p(n!)}}$ on the diagonal. On the other hand, the change of basis matrix $M_{\mathbf{u},\mathbf{z}}^{(n)}$ from ${\{\mathbf{u_n}\}}_{|\mathbf{n}|=n}$ to $\{z^n\}_{|n|=n}$ has its **n**th column in $\frac{1}{n!}\mathbb{Z}_{p^r}^{\times}$. As $M_{f,z}^{(n)} = M_{u,z}^{(n)}M_{f,u}^{(n)}$ $f_{\mathbf{f},\mathbf{u}}^{(n)}$, we deduce that det $M_{\mathbf{f},\mathbf{u}}^{(n)} \in \mathbb{Z}_{p^r}^{\times}$. From this, we see that $M_{f,u}^{(n)}$ $f_{\mathbf{r},\mathbf{u}}^{(n)}$ is integrally invertible over \mathbb{Z}_{p^r} . Part (2) of the exercise is proved. \Box

Exercise 1.4 (An explicit formula for ψ -operator). Let *p* be a prime number. Recall that on $\mathbb{Z}_p[[T]]$, we have defined an operator φ such that $\varphi(T) = (1+T)^p - 1$. There is a left inverse to φ , given as follows: each $F \in \mathbb{Z}_p[[T]]$ can be written uniquely as $F =$ *p*^{−1} *i*=0 $(1+T)^i \varphi(F_i);$

then $\psi(F) = F_0$.

(1) Let ζ_p denote a primitive *p*-th root of unity. Prove that the *ψ*-operator admits the following characterization: for $F \in \mathbb{Z}_p[[T]]$, $\psi(F)$ is the unique power series in $\mathbb{Z}_p[[T]]$ such that

(1.4.1)
$$
\psi(F)((1+T)^p - 1) = \frac{1}{p} \sum_{i=0}^{p-1} F((1+T)\zeta_p^i - 1).
$$

- (2) Show that φ and ψ can be naturally extended to the *p*-adic completion of $\mathbb{Z}_p((T))$, denoted by A^Q*^p* .
- (3) Show that $\psi\left(\frac{1}{\pi}\right)$ *T* $=$ 1 *T* . (One might find [\(1.4.1\)](#page-5-0) useful, but there is a "better" proof without using it.)
- **Remark 3.** (1) Without going into details, let us simply remark that the actions of φ , ψ , and $\Gamma \cong \mathbb{Z}_p^{\times}$ on $\mathbb{Z}_p[[T]]$ and their extensions to $\mathbb{A}_{\mathbb{Q}_p}$ defines the most important ground ring for (φ, Γ) -modules; this is a very useful tool in studying *p*-adic Hodge theory of local fields. We will further discuss this in future lectures.
	- (2) The right hand side of formula ([1.4.1](#page-5-0)) may be viewed as taking the trace from $\mathbb{Z}_p[[T]]$ to $\varphi(\mathbb{Z}_p[\![T]\!])$; it is a (non-étale) Galois extension, and the conjugates of $T+1$ are $\zeta_p^i(T+1)$ for $i = 0, 1, \ldots, p-1$.

Solution. (1) (Continued with the discussion in Remark 3, we may view the extension $\mathbb{Z}_p[[T]]$ over $\varphi(\mathbb{Z}_p[[T]])$ as a (non-étale) Galois extension with Galois group $\mathbb{Z}/p\mathbb{Z}$ and $1 \in \mathbb{Z}/p\mathbb{Z}$ sends $f(T)$ to $f(\zeta_p(1+T)-1)$.) For the proof of (1), we compare the two formulas. Write $F \in \mathbb{Z}_p[[T]]$ as $F =$ *p*^{−1} *j*=0 $(1 + T)^{j} \varphi(F_{j})$ for $F_{0}, F_{1}, \ldots, F_{p-1} \in \mathbb{Z}_{p}[[T]]$, then $\psi(F) = F_{0}$. We

compute

$$
\frac{1}{p} \sum_{i=0}^{p-1} F\big((1+T)\zeta_p^i - 1\big) = \frac{1}{p} \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} (1+T)^j \zeta_p^{ij} \cdot \varphi(F_j) \big((1+T)\zeta_p^i - 1\big)
$$

$$
= \frac{1}{p} \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} (1+T)^j \zeta_p^{ij} \cdot F_j \big((1+T)^p - 1\big)
$$

$$
= F_0 \big((1+T)^p - 1\big),
$$

where the last equality uses the equality $\frac{1}{1}$ *p p*^{−1} *i*=0 $\zeta_p^{ij} =$ $\int 1$ when $j \neq 0$, 0 when $j = 0$. Part (1) is proved.

(2) First consider the *φ*-action: $\varphi(T) = (1+T)^p - 1 = T^p + pQ(T)$, for a polynomial $Q(T) \in \mathbb{Z}_p[T]$. From this, we see that

$$
\varphi\Big(\frac{1}{T}\Big) = \frac{1}{T^p + pQ(T)} = T^{-p} + pT^{-2p}Q(T) + p^2T^{-3p}Q(T) + \cdots
$$

This converges *p*-adically. From this, we see that if an expression $f = \sum_{n=1}^{\infty}$ *n*=0 $a_n(T)p^n \in \mathbb{A}_{\mathbb{Q}_p}$ with $a_n(T) \in T^{-r_n} \mathbb{Z}_p[[T]]$ for some $r_n \in \mathbb{Z}$, then

$$
\varphi(f) = \sum_{n=0}^{\infty} \varphi(T)^{-r_n} \cdot \varphi(T^{r_n} a_n(T)) p^n.
$$

It converges well in $\mathbb{A}_{\mathbb{Q}_p}$.

The definition of ψ is similar as we may write each $F \in A_{\mathbb{Q}_p}$ uniquely as a linear combination $F =$ *p*^{−1} *i*=0 $(1+T)^{i}\varphi(F_{i}),$ and then define $\psi(F) = F_{0}.$

(3) (Direct calculation) Using the formula [\(1.4.1](#page-5-0)), it suffices to show that

$$
\frac{1}{(1+T)^p - 1} = \frac{1}{p} \sum_{i=0}^{p-1} \frac{1}{(1+T)\zeta_p^i - 1},
$$

or equivalently,

$$
\sum_{i=0}^{p-1} \frac{(1+T)^p - 1}{(1+T)\zeta_p^i - 1} = p.
$$

The left hand side is a polynomial in *T* of degree $\leq p-1$. We need only to check this equality when $T = \zeta_p^i - 1$ for every $i = 0, \ldots, p-1$. Plugging in $T = \zeta_p^{-j} - 1$ (for some $j = 0, \ldots, p-1$), the left hand side is nonzero only when $i = j$, in which case, the term is equal to

$$
\prod_{i=0, i \neq j}^{p-1} (\zeta_p^{-j} \cdot \zeta_p^i - 1) = \prod_{k=1}^{p-1} (\zeta_p^k - 1) = p.
$$

Part (3) is proved.

(3) ("Better" proof) Note that the φ -action preserves the subring $\mathbb{Z}_p[T]$ and the subfield $\mathbb{Z}_p(T)$ (without taking any completion); and the map ψ can be defined similarly via the same recipe. Now we may make change of variable $S := 1 + T$ and it is clear that $\varphi(S) = S^p$, and $\mathbb{Z}_p(T) = \mathbb{Z}_p(S)$. This φ -action extends to a "different completion of $\mathbb{Z}_p(S)$ ", namely $\mathbb{Z}_p((S))$. (Note that one cannot compare $\mathbb{Z}_p((S))$ directly with $\mathbb{Z}_p((T))$.) Over $\mathbb{Z}_p((S))$, the ψ -operator can be made explicit: every $F(S) \in \mathbb{Z}_p((S))$ can be written as $F(S) =$ *p*^{−1} *i*=0 $S^i\varphi(F_i),$ then $\psi(F) = F_0$.

Now it suffices to check $\psi(\frac{1}{S-1})$ $\frac{1}{S-1}$) = $\frac{1}{S-1}$ in $\mathbb{Z}_p((S))$. But this is easy:

$$
\frac{1}{1-S} = 1 + S + S^2 + \dots = \sum_{i=0}^{p-1} S^i \varphi (1 + S + S^2 + \dots) = \sum_{i=0}^{p-1} S^i \varphi \left(\frac{1}{1-S} \right).
$$

It then follows that $\psi(\frac{1}{1-})$ $\frac{1}{1-S}$ = $\frac{1}{1-S}$. Part (3) is proved. □

Exercise 1.5 ("Miraculous congruence" encoded in *p*-adic L-functions). Assume $p \geq 3$ for simplicity. We have constructed *p*-adic Dirichlet L-functions as *p*-adic measures on \mathbb{Z}_p^{\times} that interpolate special values of (*p*-modified) Dirichlet L-functions. It is natural to ask: is the *p*-adic Dirichlet L-function uniquely determined by these interpolation values? In fact, the answer is that these values "overdetermine" the *p*-adic L-functions. (We will discuss this in lectures at a later stage.) Assume that $p \geq 3$ is an odd prime number.

(1) Let *G* be a general profinite group and let $\chi : G \to R^\times$ be a continuous *p*-adic character with values in a *p*-adically complete ring *R*, then it induces a continuous ring homomorphism $\tilde{\chi}: \mathbb{Z}_p[[G]] \to R$. Alternatively, χ can be viewed as a R-valued function on *G*, so one can integrate against a *p*-adic measure on *G*.

Prove that we have the following commutative diagram

- (2) Write $\Delta := \mathbb{F}_p^{\times}$, which may be viewed as a subgroup of \mathbb{Z}_p^{\times} via Teichmüller character ω . Give an canonical isomorphism $\Phi : \mathbb{Z}_p[\![\mathbb{Z}_p^{\times}]\!] \cong \mathbb{Z}_p[\![\Delta]\!] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![X]\!]$, so that $X =$ $[\exp(p)] - 1$, where $\exp(p) = 1 + p + \frac{p^2}{2!} + \cdots$ is the formal expansion.
- (3) Prove that $\mathbb{Z}_p[\mathbb{Z}_p^{\times}]$ is canonical isomorphic to a product of *p* − 1 rings:

(1.5.1)
$$
\mathbb{Z}_p[\mathbb{Z}_p^{\times}] \cong \mathbb{Z}_p[\Delta] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![X]\!] \cong \prod_{i=0}^{p-2} \mathbb{Z}_p[\![X]\!]
$$

$$
(a, f(X)) \longmapsto (\omega^i(a) f(X))_{i=0,\dots,p-2}.
$$

(4) Let $\eta: (\mathbb{Z}/p^r\mathbb{Z})^{\times} \to \overline{\mathbb{Q}}_p^{\times}$ be a finite character and let $n \in \mathbb{Z}_{\geq 0}$; we may form the *p*-adic character

.

$$
\chi_{\eta,n} : \mathbb{Z}_p^{\times} \longrightarrow \overline{\mathbb{Q}}_p^{\times}
$$

$$
a \longmapsto \eta(a)a^n
$$

If we denote by $\bar{\chi}_{\eta,n}$ the restriction of $\chi_{\eta,n}$ to Δ , then for any $\mu \in \mathcal{D}_0(\mathbb{Z}_p^{\times}, \mathbb{Z}_p)$,

$$
\int_{\mathbb{Z}_p^{\times}} \eta(x) x^n d\mu(x) = \Phi(\mu)|_{\Delta = \bar{\chi}_{\eta,n}, T = \chi_{\eta,n}(\exp(p))-1}.
$$

(5) Prove that two *p*-adic measures $\mu_1, \mu_2 \in \mathcal{D}_0(\mathbb{Z}_p^{\times}, \mathbb{Z}_p)$ are equal if for any $n \in \mathbb{Z}_{\geq 0}$,

$$
\int_{\mathbb{Z}_p^\times} x^n d\mu_1(x) = \int_{\mathbb{Z}_p^\times} x^n d\mu_2(x).
$$

(Hint: Show that the difference $\mu_1 - \mu_2$ is divisible by some infinite product.)

(6) Prove that two *p*-adic measures $\mu_1, \mu_2 \in \mathcal{D}_0(\mathbb{Z}_p^{\times}, \mathbb{Z}_p)$ are equal if for a *fixed* $n \in \mathbb{Z}_{\geq 0}$ but for all finite characters $\eta : (\mathbb{Z}/p^r\mathbb{Z})^{\times} \to \overline{\mathbb{Q}}_p^{\times}$ \hat{p} for all *r*, we have

$$
\int_{\mathbb{Z}_p^\times} \eta(x) x^n d\mu_1(x) = \int_{\mathbb{Z}_p^\times} \eta(x) x^n d\mu_2(x).
$$

Hint: For (4) and (5), you may find the following Weierstrass preparation theorem useful: for a complete noetherian local ring (A, \mathfrak{m}) , if $f(x) \in A[[x]]$ is a power series that does not lie in $\mathfrak{m}[x]$, then we may factor $f(x) = g(x)u(x)$, with $g(x)$ a monic polynomial (of finite degree) and $u(x) \in A[[x]]^{\times}$ is a unit. In the case of $A = \mathbb{Z}_p$, the Weierstrass preparation
theorem has the following ventions system parameters payer same $f(x) \in \mathbb{Z}$ $[[x]]$ are hadred theorem has the following version: every nonzero power series $f(x) \in \mathbb{Z}_p[\![x]\!]$ can be factored as $f(x) = p^r g(x)u(x)$, with $r \in \mathbb{Z}_{\geq 0}$, $g(x)$ a monic polynomial, and $u(x) \in A[\![x]\!]^\times$ a unit.

Solution. (1) Suppose that *R* is *I*-adically complete for an ideal *I* of *R*. We may replace *R* by R/I^n and thus reduce to the case when *G* is finite. In this case, write $\Psi : R[G] \stackrel{\cong}{\longrightarrow} \mathcal{D}_0(G, R)$ for the isomorphism. We have, for any $\mu \in R[G]$,

$$
\tilde{\eta}(\mu) = \sum_{g \in G} \eta(g)\mu(g) = \int_G \eta(g)d\Psi(\mu)(g).
$$

Part (1) is proved.

(2) Take the isomorphism $\mathbb{Z}_p^{\times} \cong \Delta \times (1 + p\mathbb{Z}_p)^{\times}$, where we embed Δ into \mathbb{Z}_p^{\times} via the Teichmüller character ω . We may identify $(1 + p\mathbb{Z}_p)^{\times}$ with \mathbb{Z}_p via *p*-adic logarithm and thus we deduce that

$$
\mathbb{Z}_p[\![\mathbb{Z}_p^\times]\!] \cong \mathbb{Z}_p[\Delta] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![(1+p\mathbb{Z}_p)^\times]\!] \cong \mathbb{Z}_p[\Delta] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![X]\!],
$$

where *X* stands for $[\exp(p)] - 1$.

(3) is clear.

(4) follows from combining (1) an (2).

(5) Write $\mu := \mu_1 - \mu_2$, we have by (3) that

$$
\Phi(\mu)\big|_{\Delta=\bar{x}^n, T=\exp(np)-1} = 0.
$$

For the element $\Phi(\mu) \in \mathbb{Z}_p[\Delta] \otimes \mathbb{Z}_p[\![X]\!],$ write $(h_0, h_1, \ldots, h_{p-2}) \in$ *p*^{−2}
∏ $\prod_{i=0}$ $\mathbb{Z}_p[[X]]$ for its image under the isomorphism ([1.5.1\)](#page-7-0). The condition implies that $h_a(\exp(np) - 1) = 0$ for $n \equiv$ *a* mod *p*−1. But no function in $\mathbb{Z}_p[[X]]$ has infinitely many zeros, except for the zero function, by Weierstrass preparation theorem. It follows that $h_0 = \cdots = h_{p-2} = 0$. Thus $\mu_1 = \mu_2$.

(6) The argument is similar to (5), except that the zeros of h_a for each $a = 0, \ldots, p-2$ are precisely $\eta(\exp(p)) - 1$ for those η for which $\eta|_{\Delta} = \omega^i$. There are infinitely many such η 's. By Weierstrass preparation theorem, we have $\mu_1 = \mu_2$.

Exercise 1.6. (Kubota–Leopoldt *p*-adic L-function) In the second and the third lectures, we have constructed the *p*-adic Dirichlet L-function when the (tame) Dirichlet character *η* is nontrivial. For the case when $\eta = 1$, we should also construct the corresponding *p*-adic zetafunction, traditionally called the *Kubota–Leopoldt p-adic L-function*. Unfortunately, this will not be a *p*-adic measure on \mathbb{Z}_p^{\times} , but only a "quasi-measure", which is philosophically reflects the fact that the Riemann zeta function has a pole at $s = 1$ (so should the *p*-adic zeta have). For this reason, we need some technical maneuver for its construction.

Assume $p \geq 3$ for simplicity. Pick $a \in \mathbb{Z}_{>1}$ relatively prime to p. Consider

$$
\zeta_a(s) := (1 - a^{1-s}) \cdot \zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} - a \cdot \sum_{\substack{n \ge 1 \\ a|n}} \frac{1}{n^s},
$$

$$
A_a(T) = (1 - a\gamma_a) \left(\frac{1+T}{1 - (1+T)} \right) = \frac{1+T}{1 - (1+T)} - a \cdot \frac{(1+T)^a}{1 - (1+T)^a},
$$

where $\gamma_a \in \Gamma = \mathbb{Z}_p^{\times}$ is the element corresponding to $a \in \mathbb{Z}_p^{\times}$, which acts on $\mathbb{Z}_p[\![T]\!]$ by sending *T* to $(1+T)^a - 1$.

(1) Show that $A_a(T) \in \mathbb{Z}_p[[T]]$ defines a *p*-adic measure; so does $A_a^{\{p\}}(T) := (1 - \varphi \psi)(A_a(T))$.

Define $\mu_a^{\{p\}}$ to be the *p*-adic measure associated to $A_a^{\{p\}}(T)$ via Amice transform. For any primitive character $\eta_p : (\mathbb{Z}/p^r\mathbb{Z})^{\times} \to \mathbb{Q}^{\text{alg},\times},$ define

$$
L^{\{p\}}(\eta_p, s) = \begin{cases} (1 - p^{-s}) \cdot \zeta(s) & \text{if } \eta_p = 1, \\ L(\eta_p, s) & \text{if } \eta_p \neq 1, \end{cases}
$$

$$
L_a^{\{p\}}(\eta_p, s) = (1 - a^{1-s}) \cdot L^{\{p\}}(\eta_p, s) = \sum_{\substack{n \ge 1 \\ (n, p) = 1}} \frac{\eta_p(n)}{n^s} - a \cdot \sum_{\substack{n \ge 1 \\ (n, p) = 1}} \frac{\eta_p(an)}{(an)^s}
$$

(2) Show that for any character $\eta_p : (\mathbb{Z}/p^r\mathbb{Z})^{\times} \to \mathbb{Q}^{\text{alg},\times}$ and any $n \in \mathbb{Z}_{\geq 0}$, we have

$$
\int_{\mathbb{Z}_p^\times} \eta_p(x) x^n d\mu_a^{\{p\}}(x) = L_a^{\{p\}}(\eta_p, -n).
$$

(3) Recall the identification $\mathbb{Z}_p[\mathbb{Z}_p^\times] \cong \mathbb{Z}_p[\Delta] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![X]\!]$. We may define the *Kubota–*
LevelH *n* adja L function to be the elements *Leopoldt p-adic L-function* to be the element

$$
\mu_{\text{KL}} := \frac{\mu_a^{\{p\}}}{(1 - a[\gamma_a])} \in \mathbb{Z}_p[\Delta] \otimes \frac{1}{X - \exp(-p) + 1} \mathbb{Z}_p[\![X]\!].
$$

Sometimes, this is called a *pseudo-measure*; show that μ_{KL} is independent of the choice of $a \in \mathbb{Z}_p^{\times}$. (Hint: We need only to prove that $(1-b\gamma_b)(\mu_a^{\{p\}}) = (1-a\gamma_a)(\mu_b^{\{p\}})$ b^{p}) for two different $a, b \in \mathbb{Z}_{\geq 1}$ relatively prime to p . One can make use of Exercise [1.5](#page-7-1)(4)(5).)

Remark 4. Our definition of pseudo-measure slightly differs from that of Jacinto–Williams' note, who shifted the *p*-adic Kubota–Leopolds L-function so that the pole is at *s* = 0.

Solution. (1) To see that $A_a(T) \in \mathbb{Z}_p[[T]]$, it suffices to show that it has no pole at $T = 0$, or equivalently

$$
res_{T=0}\left(\frac{1+T}{1-(1+T)}\right) = res_{T=0}\left(a \cdot \frac{(1+T)^a}{1-(1+T)^a}\right)
$$

But this is clear. From this, it is clear that $A_a^{\{p\}}(T) \in \mathbb{Z}_p[[T]]$.
(2) This construction is constitutely the cause of the construction

(2) This construction is essentially the same as the construction of the *p*-adic Dirichlet Lfunctions presented in the lecture. In accordance with the definition of $L_{a}^{\{p\}}(\eta_p, s)$, we define for $\eta_p : (\mathbb{Z}/p^r\mathbb{Z})^{\times} \to \mathbb{Q}^{\text{alg},\times}$ (primitive if $\eta_p \neq 1$ and put $r = 1$ if $\eta_p = 1$),

$$
A_{\eta_p,a}^{\{p\}}(T) := \frac{\sum_{n=1}^{np^r-1} \eta_p(n)(1+T)^n - a \cdot \sum_{n=1}^{p^r-1} \eta(an)(1+T)^{an}}{1 - (1+T)^{ap^r}}
$$

=
$$
\sum_{\substack{n \geq 1 \\ (n,ap)=1}} \eta(n)(1+T)^n - a \cdot \sum_{\substack{n \geq 1 \\ (n,p)=1}} \eta(an)(1+T)^{an},
$$

and
$$
f_{\eta_p,a}^{\{p\}}(t) := A_{\eta_p,a}^{\{p\}}(e^{-t} - 1)
$$
. Then $L^{\{p\}}(\eta_p, s) = \frac{1}{\Gamma(s)} \int_0^\infty f_{\eta_p,a}^{\{p\}}(t) t^s \cdot \frac{dt}{t}$ and
\n
$$
L^{\{p\}}(\eta_p, -n) = \left(-\frac{d}{dt}\right)^n \left(f_{\eta_p,a}^{\{p\}}\right)\Big|_{t=0} = \left((1+T)\frac{d}{dT}\right)^n \left(A_{\eta_p,a}^{\{p\}}\right)\Big|_{T=0} = \int_{\mathbb{Z}_p^\times} x^n d\mu_{\eta_p,a}^{\{p\}}(x),
$$

where $\mu_{\eta_p,a}^{\{p\}}$ is the *p*-adic measure associated to $A_{\eta_p,a}^{\{p\}}$ via the Amice transform. It remains to prove that

$$
\mu_{\eta_p,a}^{\{p\}} = \sum_{i \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \eta_p(i) \cdot \text{Res}_{i+p^r\mathbb{Z}_p}(\mu_a^{\{p\}}).
$$

But this is clear by checking the corresponding $(1 + T)$ -expansion of the Amice transforms. Indeed, the Amice transform of the right hand side is equal to

$$
\sum_{i \in (\mathbb{Z}/p^r\mathbb{Z})^{\times}} \eta_p(i) \cdot \left(\sum_{\substack{n \geq 1 \\ n \equiv i \bmod p^r \\ (n, ap) = 1}} (1+T)^n - a \cdot \sum_{\substack{n \geq 1 \\ n \geq 1 \\ (n, p) = 1}} (1+T)^{an} \right)
$$
\n
$$
= \sum_{\substack{n \geq 1 \\ (n, ap) = 1}} \eta_p(n) (1+T)^n - a \cdot \sum_{\substack{n \geq 1 \\ (n, p) = 1}} \eta_p(an) (1+T)^{an} = A_{\eta_p, a}^{\{p\}}(T).
$$

This completes the proof of the interpolation formula for *p*-adic L-functions.

(3) We first check that $\mu_{KL} \in \mathbb{Z}_p[\Delta] \otimes \frac{1}{X-\exp(-p)+1}\mathbb{Z}_p[X]$. For this, we may take *a* so that \overline{a} is a generator of \mathbb{F}_p^{\times} . Write $a = \omega(\bar{a}) \cdot \langle a \rangle$ with $\bar{a} \in \Delta$ and $\langle a \rangle \in (1 + p\mathbb{Z}_p)^{\times}$. We consider the image of $1 - a\gamma_a$ under the isomorphism $\mathbb{Z}_p[\mathbb{Z}_p] \cong \prod^{p-2}$ $\prod_{i=0}$ $\mathbb{Z}_p[\![X]\!]$ using the characters $\omega^i : \Delta \to \mathbb{Z}_p^\times$ with *i* ∈ {0, . . . , *p* − 2}. When *i* \neq *p* − 2,

$$
\omega^{i}(1 - a\gamma_a) = 1 - a\omega^{i}(a)(1 + X)^{\langle a \rangle} \in \mathbb{Z}_p[[X]]^{\times}.
$$

When $i = p - 2$, we have

$$
\omega^{p-2}(1-a\gamma_a) = 1 - \langle a \rangle (1+X)^{(\log_p\langle a \rangle)/p} = 1 - \langle a \rangle \cdot \langle a \rangle^{(\log_p(1+X))/p}.
$$

This function has as simple pole at $X = \exp(-p) - 1$. From this, we deduce that

$$
\mu_{\mathrm{KL}} \in \mathbb{Z}_p[\Delta] \otimes \frac{1}{X - \exp(-p) + 1} \mathbb{Z}_p[\![X]\!].
$$

It suffices to compare for $a, b \in \mathbb{Z}_{>1}$, that $(1 - b\gamma_b)(\mu_a^{\{p\}}) = (1 - a\gamma_a)(\mu_b^{\{p\}})$ $b^{\{p\}}$). By Exercise $1.5(4)$ $1.5(4)$, it suffices to verify that

$$
\int_{\mathbb{Z}_p^{\times}} x^n d((1 - b\gamma_b) (\mu_a^{\{p\}}))(x) = \int_{\mathbb{Z}_p^{\times}} x^n d((1 - a\gamma_a) (\mu_b^{\{p\}}))(x).
$$

But the action on the measures can be turned into an action on the functions, i.e.

$$
\int_{\mathbb{Z}_p^{\times}} (x^n - b \cdot b^n x^n) d\mu_a^{\{p\}}(x) = (1 - b^{n+1}) \int_{\mathbb{Z}_p^{\times}} x^n d\mu_a^{\{p\}}(x) = (1 - b^{n+1})(1 - a^{n+1})\zeta(-n).
$$

This expression is clearly symmetric in a, b . Part (3) is proved. \Box

Exercise 1.7 (A more classical version of *p*-adic L-function)**.** Historically, there is also an old version of *p*-adic L-function which is really just *p*-adic functions. In this exercise, we recover the classical *p*-adic L-function from the *p*-adic measures, and we will see that the *p*-adic measures contains stronger congruence relations than classical *p*-adic L-functions.

(To avoid talking about pseudo-measures, we again work with *p*-adic Dirichlet L-functions.) Let η be a primitive Dirichlet character of conductor *N* (with $p \nmid N$). We have constructed a *p*-adic measure $\mu_{\eta}^{\{p\}}$ such that

$$
\int_{\mathbb{Z}_p^\times} x^n d\mu_\eta^{\{p\}}(x) = L^{\{p\}}(\eta, -n).
$$

(This measure also interpolates Dirichlet L-functions for varying the character at *p*; we will not use it here.)

We are interested in understanding the *p*-adic function $\zeta_{p,i}$ on \mathbb{Z}_p for $i = 0, 1, \ldots, p-2$, defined by for $s \in \mathbb{Z}$ such that $s \equiv i \mod p - 1$,

$$
\zeta_{p,i}(s):=\int_{\mathbb{Z}_p^\times}x^sd\mu_\eta^{\{ \!\!\!\ p \ \!\!\!\}}(x)=L^{\{ \!\!\!\ p \ \!\!\!\}}(\eta,-s).
$$

(1) Show that $\zeta_{p,i}(s)$ extends naturally to a continuous function on $s \in \mathbb{Z}_p$. (So far, this is weaker than a function on $s \in \mathcal{O}_{\mathbb{C}_p}$.)

Now we study these functions $\zeta_{p,i}$ more carefully. Abstractly by Exercise [1.5,](#page-7-1) we may view $\mu_{\eta}^{\{p\}}$ as an element in $\mathbb{Z}_p[\Delta] \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\![X]\!]$, where $X = [\exp(p)] - 1$. (Here we view $\Delta = \mathbb{F}_p^{\times}$ as a subgroup of \mathbb{Z}_p^{\times} via the Teichmüller character ω .) For $i = 0, \ldots, p-2$, write $\mu_{\eta,i}(X) \in \mathcal{O}[\![X]\!]$ for the image of $\mu_{\eta}^{\{p\}}$ under the map $\Delta \to \mathbb{Z}_p^{\times}$ sending *x* to $\omega(x)^i$.

(2) Show that (formally)

$$
(1.7.1) \qquad \qquad \zeta_{p,i}(s) = \mu_{\eta,i}(\exp(ps)).
$$

(3) From (2), deduce that $\zeta_{p,i}(s)$ extends to a *p*-adic analytic function for $s \in p^{-\frac{p-2}{p-1}} \mathfrak{m}_{\mathbb{C}_p}$. **Remark 5.** One sees from this exercise that the classical *p*-adic L-function only captures part of the information provided. Even knowing the convergence of $\zeta_{p,i}(s)$ for $s \in p^{-\frac{p-2}{p-1}} \mathfrak{m}_{\mathbb{C}_p}$, it is far from enough to deduce the integrality of $\mu_{\eta}^{\{p\}}$. For more discussion in this direction, see the post

https://mathoverflow.net/questions/435265/why-p-adic-measures.

Solution. (1) This is obvious, because whenever $s_1 \equiv s_2 \mod p^{k-1}(p-1)$ for some $k \in \mathbb{Z}_{\geq 1}$, we have $x^{s_1} \equiv x^{s_2} \mod p^k$, then $\zeta_{p,i}(s_1) \equiv \zeta_{p,i}(s_2) \mod p^k$. So each $\zeta_{p,i}(s)$ extends to a continuous function in $s \in \mathbb{Z}_p$.

(2) By Exercise [1.5](#page-7-1)(1), integration against a character x^s is the same as evaluating the measure μ_{η} at the ring homomorphism $\mathcal{O}[\![\mathbb{Z}_p^{\times}]\!] \to \mathcal{O}$ defined by x^s . In particular, this means that when $s \equiv i \mod p - 1$, Z \mathbb{Z}_p^\times $x^{i} d\mu_{\eta}^{\{p\}}(x) = \mu_{\eta,i}(\exp(ps)).$ (The condition $s \equiv i \mod p - 1$ ensures that we use the factor $\eta_{p,i}$.) The equality ([1.7.1\)](#page-11-0) follows from the interpolation properties of *p*-adic Dirichlet L-functions.

(3) As $\mu_{\eta,i} \in \mathbb{Z}_p[\![X]\!]$, for $\mu_{\eta,i}(\exp(ps))$ to make sense, we need $|\exp(ps)| < 1$, which forces at $ps \in p^{\frac{1}{p-1}}\mathfrak{m}_{\mathbb{C}}$ or equivalently, $s \in p^{-\frac{p-2}{p-1}}\mathfrak{m}_{\mathbb{C}}$. that $ps \in p^{\frac{1}{p-1}} \mathfrak{m}_{\mathbb{C}_p}$ or equivalently, $s \in p^{-\frac{p-2}{p-1}} \mathfrak{m}_{\mathbb{C}_p}$. □ □ **Exercise 1.8** (Volume of ideles class group versus residue of Dedekind zeta values)**.** Let *F* be a number field with r_1 real embeddings and r_2 pairs of complex embeddings. Let \mathbb{A}_F^{\times} be the group of ideles and $\mathbb{A}_F^{\times,1}$ $E_F^{\times,1} := \{ x \in \mathbb{A}_F^{\times} | |x| = 1 \}$ be the subgroup of norm one elements. We have stated (and proved in the quadratic case) of the analytic class number formula, for the Dedekind zeta function $\zeta_F(s)$ at $s = 1$:

(1.8.1)
$$
\lim_{s \to 1} (s-1)\zeta_F(s) = \frac{2^{r_1}(2\pi)^{r_2} \cdot h_F \text{Reg}_F}{w_F \sqrt{|\Delta_F|}},
$$

where h_F is the class number, Reg_F is the regulator for units of F , w_F is the number of roots of unity contained in *F*, and Δ_F is the discriminant of *F*.

(1) Using the functional equation of Dedekind zeta function to deduce from ([1.8.1\)](#page-12-0) the following analytic class number formula at $s = 0$:

$$
\lim_{s \to 0} s^{-r_1 - r_2 + 1} \zeta_F(s) = -\frac{h_F \cdot \text{Reg}_F}{w_F}.
$$

- (2) Show that the right hand side of ([1.8.1\)](#page-12-0) can be interpreted as $Vol(A_F^{\times,1})$ $_{F}^{\times,1}/F^{\times}$), if we provide the Haar measure on $\mathbb{A}_F^{\times,1}$ $\chi_F^{\times,1}$ so that under the product decomposition \mathbb{A}_F^{\times} = $\mathbb{A}_F^{\times,1} \times \mathbb{R}^\times$ (where \mathbb{R}^\times is provided with the measure $\frac{dx}{x}$) admits the following Haar measure:
	- at a real place *v* of *F*, the Haar measure on F_v^{\times} is $\frac{dx}{|x|}$,
	- at a complex place *v* of *F*, the Haar measure on $F_v^{\times} \simeq \mathbb{C}^{\times}$ is $\frac{2dx \wedge dy}{|x^2 + y^2|} = \frac{2dr d\theta}{r}$ $\frac{rd\theta}{r},$
	- at a *p*-adic place *v* of *F* with different ideal $\mathfrak{d}_v \subseteq F_v$, the Haar measure on F_v^{\times} is so that volume of $\mathcal{O}_{F_s}^{\times}$ $\sum_{F_v}^{\times}$ is $||\mathfrak{d}_v||^{-\frac{1}{2}}$, where $||\mathfrak{d}_v|| = #(\mathcal{O}_{F_v}/\mathfrak{d}_v)$.

Solution. (1) Recall the functional equation for Dedekind zeta function. Let

$$
\Lambda_F(s) = \Gamma_{\mathbb{R}}(s)^{r_1} \cdot \Gamma_{\mathbb{C}}(s)^{r_2} \cdot \zeta_F(s)
$$

denote the complete Dedekind zeta function. Then the functional equation is given by

$$
\Lambda_F(s) = |\Delta_F|^{\frac{1}{2}-s} \Lambda_F(1-s).
$$

Considering this equality near $s = 0$, we have

$$
\zeta_F(s) \underbrace{\left(\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)\right)^{r_1}}_{\approx (\frac{2}{s})^{r_1}} \underbrace{\left(2(2\pi)^{-s} \Gamma(s)\right)^{r_2}}_{\approx (\frac{2}{s})^{r_2}} = \underbrace{\left|\Delta_F\right|^{\frac{1}{2}-s}_{\approx} \cdot \zeta_F(1-s) \cdot \underbrace{\left(\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right)\right)^{r_1}}_{\approx \pi^{-\frac{1}{2}} \cdot \sqrt{\pi})^{r_1}}_{\approx \pi^{-\frac{1}{2}} \cdot \sqrt{\pi})^{r_1}} \underbrace{\left(2(2\pi)^{s-1} \Gamma(1-s)\right)^{r_2}}_{\approx (\frac{2}{2\pi})^{r_2}}.
$$

$$
\begin{split} \zeta_F(s) &\approx \left(\frac{s}{2}\right)^{r_1+r_2} \pi^{-r_2} |\Delta_F|^{\frac{1}{2}} \cdot \zeta_F(1-s) \\ &\approx \left(\frac{s}{2}\right)^{r_1+r_2} \pi^{-r_2} |\Delta_F|^{\frac{1}{2}} \cdot \left(-\frac{1}{s}\right) \frac{2^{r_1} (2\pi)^{r_2} \text{Re} g_F \cdot h_F}{w_F |\Delta_F|^{\frac{1}{2}}} .\end{split}
$$

From this, we deduce that

$$
\lim_{s \to 0} s^{r_1 + r_2 - 1} \zeta_F(s) = -\frac{\text{Reg}_F h_F}{w_F}.
$$

.

(2) Let M_F denote the the set of places of F , and $M_{F,f}$ the subset of finite places. We consider the following exact sequence:

$$
0 \to \prod_{v \in \mathsf{M}_{F,f}} \mathcal{O}_{F_v}^\times \to \mathrm{Cl}(\mathcal{O}_F) \to 0
$$

□