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1. Introduction and special values of Dirichlet L-functions

1.1. Dirichlet L-functions and their special values.

Definition 1.1.1. The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
(Re(s) > 1)

Fact 1.1.2. The following is known regarding the algebraicity of the special values of zeta-
function.

• (Euler) ζ(2) = π2

6
, ζ(4) = π4

90
, . . . , ζ(2n) ∈ Q× · π2n for any n ∈ Z≥1.

• (Apéry 1978) ζ(3) is irrational.1

Conjecture 1.1.3. The numbers 1, π, ζ(3), ζ(5), ζ(7), . . . are algebraically independent,
i.e. if P (x, y) ∈ Q[x, y3, y5, y7, . . . ] is a polynomial such that P (π, ζ(3), ζ(5), ζ(7), . . . ) = 0,
then P ≡ 0.

The irrationality and transcendence question of zeta values is a very important and difficult
question in number theory. But we will not discuss this too much in this course.

Definition 1.1.4. Fix N ∈ Z>0, a character η : (Z/NZ)× → C× is called a Dirichlet
character of order N . It is called primitive if it does not factors through (Z/MZ)× for any
M |N .

For an Dirichlet character η : (Z/NZ)× → C×, define the Dirichlet L-function to be

L(η, s) =
∑

(n,N)=1

η(n)

ns
=

∏
p prime
p -N

1

1− η(p)p−s
, (Re(s) > 1).

Question 1.1.5. What are the special values of L(η, s)?

Example 1.1.6. Consider η : (Z/4Z)× → C× given by η(−1) = −1.

L(η, 1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · = arctan 1 =

π

4
.

Example 1.1.7. Consider η : (Z/8Z)× → C× given by η(3) = η(5) = −1 and η(−1) =
η(3)η(5) = 1. We want to compute

L(η, 1) = 1− 1

3
− 1

5
+

1

7
+

1

9
− 1

11
− 1

13
+

1

15
+ · · ·

The following approach is somewhat elementary. Consider the power series

f(x) = x− 1

3
x3 − 1

5
x5 +

1

7
x7 +

1

9
x9 − 1

11
x11 − 1

13
x13 +

1

15
x15 + · · ·

Then f ′(x) = 1− x2 − x4 + x6 + x8 − · · · = 1− x2 − x4 + x6

1− x8
.

1Following the work of Apéry, there have been some further developments, such as Zudilin proved that at
least one of ζ(3), ζ(5), ζ(7), and ζ(9) is irrational.
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(Using some computer software), we can show that

f(x) =

∫
1− x2 − x4 + x6

1− x8
dx =

√
2

4

(
ln
∣∣x2 +√2x+ 1

∣∣+ ln
∣∣x2 −√2x+ 1

∣∣).
This alternating series converges at x = 1; so we may evaluate at x = 1 to see

L(η, 1) = f(1) =

√
2

4
ln

(
2 +
√
2

2−
√
2

)
=

√
2

2
ln
(√

2 + 1
)
.

Remark 1.1.8. The number
√
2+ 1 is the fundamental unit in Z[

√
2], and the factor

√
2 is

related to
√
dQ(

√
2), for the discriminant of Q(

√
2).

We have already seen that the two examples above give very distinct answers. The dis-
tinction is the value of η(−1) ∈ {±1}.

Notation 1.1.9. We say a Dirichlet character η : (Z/NZ)× → C× is
• even if η(−1) = 1;
• odd if η(−1) = −1.

The following known results provide a good understanding of the algebraicity of special
values of Dirichlet L-functions.

Theorem 1.1.10. We have the following.
(1) If η is even, for m ∈ Z≥1, we have

L(η, 2m) ∈ Q× · π2m.

(2) If η is odd, for m ∈ Z≥1, we have

L(η, 2m− 1) ∈ Q× · π2m−1.

Theorem 1.1.11. If η : (Z/NZ)× → {±1} is a primitive quadratic character such that
η(−1) = 1, then η̃ : (Z/NZ)× ∼= Gal(Q(ζN)/Q)

η−→ {±1} corresponds to a real quadratic
field F . We have

L(η, 1) ∈ Q× ·
√
dF · ln |uF |,

where dF is the discriminant of F and uF ∈ O×
F is a fundamental unit.

Remark 1.1.12. (1) The element −1 in (Z/NZ)× corresponds to the complex con-
jugation in Gal(Q(ζN)/Q); so the subfield of Q(ζN) defined by the kernel of η :
(Z/NZ)× → {±1} is a real quadratic field.

(2) The theme of this course is to explain the philosophy behind the above two algebraic-
ity results, and possible generalizations. These two theorems are of very different
nature. Theorem 1.1.10 regarding powers of π is related to “periods” and will be
discussed in the general framework of Deligne’s conjecture. Theorem 1.1.11 relates
the L-values with the regulator of a fundamental unit and will be discussed in the
general framework of Beilinson’s conjecture.
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1.2. Functional equations of Dirichlet L-functions.
Definition 1.2.1. Let η : (Z/NZ)× → C× be a primitive character of conductor N . We
define the local L-factors as follows.

Lp(η, s) =

{
1 if p |N ;

1
1−η(p)p−s if p - N.

Then we have
L(η, s) =

∏
p prime

Lp(η, s).

For the purpose of functional equations, we put

L∞(η, s) :=

{
π− s

2Γ( s
2
) if η(−1) = 1,

π− s+1
2 Γ( s+1

2
) if η(−1) = −1.

Here Γ(s) =

∫ ∞

0

e−tts · dt
t

is the usual Gamma function. (Note that dt
t

is a Haar measure of

R×
>0.)
We may then define the complete Dirichlet L-function to be

Λ(η, s) = L(η, s) · L∞(η, s).

Notation 1.2.2. It is more convenient to put ΓR(s) = π− s
2Γ( s

2
).

δ =

{
0 if η(−1) = 1

1 if η(−1) = −1
⇝ η(−1) = (−1)δ.

In the above definition, we have L∞(η, s) = ΓR(s+ δ).
Theorem 1.2.3. Every Dirichlet L-function L(η, s) admits an holomorphic extension to
s ∈ C (except when η = 1, ζ(s) has a simple pole at s = 1), and a functional equation

Λ(η, s) = ε(η, s) · Λ(η−1, 1− s).

where ε(η, s) = G(η) ·N−s/iδ with G(η) =
N−1∑
a=1

η(a)e2πi·a/N being the Gauss sum.

The goal of this lecture is to prove the algebraicity Theorem 1.1.10 assuming the functional
equation in Theorem 1.2.3.
1.3. Special values of Dirichlet L-functions at nonpositive integers.
Notation-Proposition 1.3.1. Recall that the Gamma function is defined to be

Γ(s) :=

∫ ∞

0

e−tts · dt
t

(Re(s) > 1)

(1) For any s such that Re(s) > 1, we have Γ(s + 1) = sΓ(s). This gives rise to a
meromorphic continuation of Γ(s) with a simple pole at each of s ∈ Z≤0.

(2) For n ∈ Z≥1, we have Γ(n) = (n− 1)!.
(3) Γ(1

2
) =
√
π. Applying (1), we have for m ∈ Z≥1

Γ(m+ 1
2
) = (m− 1

2
)(m− 3

2
) · · · 1

2
·
√
π ∈ Q× ·

√
π,

Γ(−m+ 1
2
) = (−m+ 1

2
)−1(−m+ 3

2
)−1 · · · (−1

2
)−1 ·

√
π ∈ Q× ·

√
π.
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(4) The Gamma function Γ(s) has no zeros.

1.3.2. Apply this to Dirichlet L-functions. We note that∫ ∞

0

e−ntts · dt
t
= n−s · Γ(s).

Now, for a Dirichlet character η : (Z/NZ)× → C×, we have (setting η(n) = 0 if (n,N) 6= 1)

Γ(s)L(η, s) = Γ(s)
∑
n≥1

(n,N)=1

η(n)

ns
=

∫ ∞

0

∑
n≥1

(n,N)=1

η(n)e−ntts · dt
t

=

∫ ∞

0

N∑
n=1

η(n)e−nt

1− e−Nt
· tsdt

t
.

Thus, if we put2

(1.3.2.1) fη(t) :=

N∑
n=1

η(n)e−nt

1− e−Nt
,

then
L(η, s) =

1

Γ(s)

∫ ∞

0

fη(t)t
s · dt

t
.

Remark 1.3.3. Here the situation is a bit strange. For functional equations, one needs to
multiply the L-function by the archimedean L-factor which is roughly Γ( s

2
), but to reach the

values at negative integers, one needs to multiply the L-function by Γ(s).

The following is a key technical lemma, which we copied from Colmez’s lectures at Ts-
inghua University [Col].

Lemma 1.3.4. For a smooth function f(t) ∈ C∞([0,∞)) (e.g. t · fη above) that is rapidly
decreasing as t→ +∞, i.e.

tn∂mt (f)(t)→ 0 as t→ +∞ for any m,n ∈ Z≥0,

the function

L(f, s) :=
1

Γ(s)

∫ ∞

0

f(t)ts
dt

t
(Re(s) > 1)

has an analytic continuation to s ∈ C, and

L(f,−n) = (−1)nf (n)(0) for any n ∈ Z≥0.

Proof. We use integration by parts, viewing f(t)ts−1 as f(t) · ( ts
s
)′. So

L(f, s) =
1

Γ(s)

(
f(t)

ts

s

)∣∣∣∣+∞

0

− 1

sΓ(s)

∫ +∞

0

f ′(t)ts · dt.

2When η = 1, f1(t) = e−t

1−e−t .
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Note that the first term tends to 0 as t→ 0 because f(t) is continuous at t = 0, and it also
gives zero when t→ +∞ as f(t) is rapidly decreasing. So we deduce that

L(f, s) = − 1

sΓ(s)

∫ +∞

0

f ′(t)ts · dt = − 1

Γ(s+ 1)

∫ +∞

0

f ′(t)ts+1 · dt
t
= −L(f ′, s+ 1).

By induction, this gives the analytic continuation of L(f, s) to the entire s ∈ C. □

1.4. Algebraicity of Dirichlet L-values. For a primitive Dirichlet character η of conduc-
tor N , if we write

fη(t) :=

N∑
n=1

η(n)e−nt

1− e−Nt

as in (1.3.2.1), and apply Lemma 1.3.4 to t · fη we get3

L(η,−s) = 1

Γ(s)

∫ ∞

0

fη(t)t
sdt

t
=

1

(s− 1)Γ(s− 1)

∫ ∞

0

tfη(t)t
s−1dt

t
=
L(tfη, s− 1)

s− 1
.

Proposition 1.4.1. We have the following formula.

(1.4.1.1) L(η,−n) = L(tfη,−n− 1)

−n− 1
= −(−1)n+1

n+ 1
(tfη)

(n+1).

In particular, we have
L(η,−n) ∈ Q(η) for n ∈ Z≥0.

We may carefully study the function fη(t) to show that certain L(η,−n) are zero depending
on the parity of n.

Lemma 1.4.2. We have the following.
(1) When η(−1) = 1, fη is an odd function, so L(η,−n) = (−1)n+1(tfη)

(n+1) = 0 when
n ≥ 0 is even (except when η = 1, ζ(0) = −1

2
).

(2) When η(−1) = −1, fη is an even function, so L(η,−n) = (−1)n+1(tfη)
(n+1) = 0

when n ≥ 1 is odd.

Proof. When N 6= 1, recall that we have assumed that η(−1) = (−1)δ for δ ∈ {0, 1}. Then
we have

fη(−t) =

N−1∑
n=1

η(n)ent

1− eNt
=

eNt ·
N−1∑
n=1

η(n)e(n−N)t

eNt · (e−Nt − 1)

m=N−n
=

η(−1) ·
N−1∑
m=1

η(m)e−mt

−(1− e−Nt)
= −η(−1)fη(t).

This proves both (1) and (2).
3When η 6= 1, we may apply instead Lemma 1.3.4 to fη directly because fη is then a C∞-function on

[0,+∞) (note that the constant term of the sum
N−1∑
n=1

η(n)ent is zero), but f1(t) has a pole at t = 0; so we

need to consider tf1 instead.
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When N = 1 and η = 1, recall that f1(t) =
e−t

1− e−t
=

1

et − 1
and we have

f1(−t) =
1

e−t − 1
=
−et

et − 1
= −1− f1(t).

This proves (1) when n ≥ 2. When n = 0, we may compute directly that f1(t) = 1
t
− 1

2
+ · · ·

and thus ζ(0) = −1/2. □

1.4.3. Compatibility of Lemma 1.4.2 with functional equations. We explain Lemma 1.4.2 in
terms of the functional equation of Dirichlet L-functions. We first write out the functional
equation from Theorem 1.2.3 (recall η(−1) = (−1)δ):

π− s+δ
2 Γ

(s+ δ

2

)
· L(η, s) = ε(η, s) · L(η−1, 1− s) · π− 1−s+δ

2 Γ
(1− s+ δ

2

)
.

Reorganizing terms, we have

(1.4.3.1) Γ
(s+ δ

2

)
· L(η, s) = G(η) ·N−s

iδ
· L(η−1, 1− s) · πs− 1

2Γ
(1− s+ δ

2

)
.

Take s = −n with n ∈ Z≥0 in the above equation, we get

Γ
(−n+ δ

2

)
︸ ︷︷ ︸

pole if n≡δ mod 2

· L(η,−n) = G(η) ·Nn

iδ
· L(η−1, 1 + n)︸ ︷︷ ︸
6=0, unless η=1,s=0

· π−n− 1
2Γ

(1 + n+ δ

2

)
︸ ︷︷ ︸

no poles or zeros

.

By comparing both sides, we see that L(η,−n) must be zero when n ≡ δ mod 2 (except the
case when η = 1 and s = 0, in which case, the pole of ζ(s) at s = 1 implies that ζ(0) ∈ Q×).

Lemma 1.4.4. When n ∈ Z≥1 and n ≡ δ mod 2 (except for the case η = 1 and n = 1), we
have

L(η, n) ∈ Q×
cyc · πn,

where Qcyc is the cyclotomic extension of Q, i.e. Q(ζn;n ∈ Z≥1).

Proof. Apply s = n with n ∈ Z≥1 and n ≡ δ mod 2 to the equality (1.4.3.1), we get

(1.4.4.1) Γ
(n+ δ

2

)
︸ ︷︷ ︸

in Q×

· L(η, n) = G(η) ·N−n

iδ︸ ︷︷ ︸
belongs to Qcyc

· L(η−1, 1− n)︸ ︷︷ ︸
in Q(η)

· πn− 1
2 Γ

(1− n+ δ

2

)
︸ ︷︷ ︸

in Q×√
π

.

It then follows that L(η, n) ∈ Qcyc · πn (note that the Gauss sum G(η) belongs to Qcyc).
Finally, as L(η, n) admits a convergent product formula, L(η, n) 6= 0. □

Let Qalg denote the algebraic closure of Q inside C. Then the Galois group Gal(Qalg/Q)
acts on the set of Dirichlet characters η : (Z/NZ)× → Qalg,× ⊆ C×: for σ ∈ Gal(Qalg/Q), it
sends η to σ◦η. It is then nature to compare L(η, n) with L(σ◦η, n). We have the following.

Proposition 1.4.5. Let η : (Z/NZ)× → Qalg,× be a primitive Dirichlet character of con-
ductor N > 1.

(1) For σ ∈ Gal(Qalg/Q),
L(σ ◦ η,−n) = σ(L(η,−n)) when n ∈ Z≥0.
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(2) When n ∈ Z≥1 and n ≡ δ mod 2, if σ ∈ Gal(Qalg/Q(ζN)), we have

(1.4.5.1) L(σ ◦ η, n)
(2πi)n

= σ

(
L(η, n)

(2πi)n

)
.

Proof. (1) is clear from Proposition 1.4.1.
For (2), we use the functional equation when s = n with n ≡ δ mod 2, or rather (1.4.4.1)

to get

L(η, n) ∈ G(η)
iδ
· L(η−1, 1− n) · πn ·Q×.

Equivalently, we have (using n ≡ δ mod 2)

L(η, n)

(2πi)n
∈ G(η) · L(η−1, 1− n) ·Q×.

Comparing with (1), we need only to prove that σ(G(η)) = G(σ◦η) for σ ∈ Gal(Qalg/Q(ζN)).
But this is clear from the definition of Gauss sum. □

Remark 1.4.6. (1) In (2), it is “important” to divide the L-values by (2πi)n (as opposed
to πn), as it is the corresponding period. We will get to this point later in this course.

(2) For Proposition 1.4.5, it seems that the equality (1.4.5.1) does not hold for general
σ ∈ Gal(Qalg/Q), going back to the proof of Proposition 1.4.5, it is the Gauss sum
G(η) does not satisfy the relation G(σ ◦ η) = σ(G(η)) for a general element σ ∈
Gal(Qalg/Q). We cannot offer a better explanation at this stage.

1.5. Exercises.

Exercise 1.5.1 (Gauss sums). Let η : (Z/NZ)× → C× be a Dirichlet character of order
N ≥ 2, we define the Gauss sum of η as follows:

(1.5.1.1) G(η) :=
N−1∑
a=1

η(a)e2πi·a/N ∈ C.

Prove the following properties of the Gauss sum.
(1) If η′ is a Dirichlet character of order N ′ with (N,N ′) = 1, then ηη′ may be viewed as a

Dirichlet character of orderNN ′. Show that in this caseG(ηη′) = η(N ′)η′(N)G(η)G(η′).
(2) If η is primitive, then |G(η)| =

√
N .

(3) When η and η′ are both Dirichlet characters of same order N such that ηη′ is a
primitive Dirichlet character of order N , show that

(1.5.1.2) G(ηη′) =
G(η)G(η′)

J(η, η′)
,

where J(η, η′) is the Jacobi sum

J(η, η′) :=
∑

a∈Z/NZ

η(a)η′(1− a),

where we use the convention that η(a) = 0 if (a,N) 6= 1.
8



Remark 1.5.2. It would be interesting to compare Gauss sums with the Gamma functions.
In some sense, the definition of (1.5.1.1) may be viewed as an integral of the product of an
additive character e2πi(·)/N of Z/NZ and a multiplicative character η of (Z/NZ)×. Similarly,
the definition of Gamma function

Γ(s) =

∫ ∞

0

e−tts
dt

t

can also be viewed as an integral of the product of the additive character e−t and the
multiplicative character ts.

Analogous to the relation (1.5.1.2) between Gauss sum and the (finite) Jacobi sum, Gamma
functions satisfy a similar property:

B(s, s′) =
Γ(s)Γ(s′)

Γ(s+ s′)
,

where B(s, s′) is a beta function

B(s, s′) =

∫ 1

0

ts−1(1− t)s′−1dt.
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2. Kummer congruences and p-adic analysis on Zp

2.1. Introduction to Kummer congruences. In the previous lecture, we have deter-
mined the special values of Dirichlet L-functions, first up to Q×, and then up to Q× (by
considering equivariant properties under Gal(Qalg/Q)-action. In this lecture, we start to
understand special values of Dirichlet L-functions in terms of congruences of the points of
evaluation.
Notation 2.1.1. Recall that for a primitive Dirichlet character η : (Z/NZ)× → Qalg,× of
conductor N , we introduced

tfη(t) =

t ·
N∑

n=1

η(n)e−nt

1− e−Nt
=

∑
n≥0

Bn,η
tn

n!
,

where we have expanded the function into a Taylor expansion at t = 0. This polynomial is
called the η-Bernoulli polynomial.
Notation 2.1.2. For the rest of this lecture series, we will fix an embedding ιp : Qalg ↪→ Qp

(an algebraic closure of Qp). This amounts to fix a p-adic place of Qalg, and all of our result
will depend crucially on this choice.

In some literature, the authors are “lazy”, and typically write “choose an isomorphism
C ' Qp”, but if one looks into the argument and construction, typically, the result only
makes use of the embedding Qalg ↪→ Qp but not really the entire isomorphism C ' Qp.

The Kummer congruence is the following result. (In fact, Kummer only considered the
case when η = 1.)
Theorem 2.1.3. Let η be a primitive Dirichlet character of conductor N . Assume that
p - N . Let k ∈ Z≥1 and let integers n1, n2 ≥ k be such that n1 ≡ n2 mod (p − 1)pk−1 and
that p− 1 - n1 when η = 1. Then we have

L(η,−n1) = −
Bn1,η

n1

≡ −Bn2,η

n2

= L(η,−n2) mod pk.

The purpose of this and the next lecture is to prove this theorem by constructing a p-adic
L-function associated to the Dirichlet L-functions.
2.2. Overview of the concept of p-adic L-functions. Before giving any construction,
we need to discuss the following
Question 2.2.1. What is a p-adic L-function?
2.2.2. p-adic L-function, version I: p-adic interpolation. It is natural to decompose a general
Dirichlet character into the product ηηp with

η : (Z/NZ)× → Qalg,× and ηp : (Z/prZ)× → Qalg,×,

where p - N and we allow ηp to be trivial or nontrivial. We call η the tame character and ηp
the p-part of the character.

We will fix the tame character η for the rest of the discussion.
Then a p-adic L-function may be viewed as a “function” that interpolates all

L(η · ηp,−n)
10



for a fixed “tame” primitive Dirichlet character η and for all Dirichlet characters ηp at p
and all n ∈ Z≥1, where we want n to vary p-adically.

2.2.3. p-adic L-function, version II: interpretation via Galois representations. The next step
to give a more conceptual understanding of the Dirichlet character in terms of Galois rep-
resentations. Given a Dirichlet character of conductor N , we have the following p-adic
representation:

(2.2.3.1) η̃ : GalQ ↠ Gal(Q(ζN)/Q) ∼= (Z/NZ)× η−−→ Qalg,× ιp−−→ Q×
p .

We will learn in a few lectures about a general recipe to construct L-functions associated to a
representation of the Galois group of Q, and then the L-function associated to η̃ is precisely
the Dirichlet L-function L(η, s).

In terms of § 2.2.2, we may separate the tame part and the p-adic part:

η̃ : Gal(Q(ζN)/Q) ∼= (Z/NZ)× η−−→ Q×
p and η̃p : Gal(Q(µpr)/Q) ∼= (Z/prZ)× → Q×

p .

The next big step towards understanding p-adic L-function is to explain how one can
combine the p-adic variation of ηp and the p-adic variation of the integer n. This is an
important theme in p-adic number theory.

Definition 2.2.4. Let ηp : (Z/prZ)× → Qalg,×
p be a primitive character of p-power conductor

and let n ∈ Z≥0, we may combine the two information to obtain a p-adic continuous character

(2.2.4.1) (ηp, n) : Gal(Q(µp∞)/Q) Z×
p Q×

p

a ηp(a mod pr) · an,

∼=

where Q(µp∞) = Q(ζpr ; r ∈ Z≥1) is the p-cyclotomic extension of Q.
We may also view this as the function ηp(x)x

n on Z×
p .

2.2.5. p-adic L-function, version III: p-adic L-function is a measure. The “correct” math-
ematical object for a p-adic L-function is as a p-adic measure or a p-adic distribution (as
opposed to a p-adic function). In view of Definition 2.2.4, the p-adic L-function will need to
be able to “evaluate” on the continuous function ηp(x)xn. This means that the correct defi-
nition of a p-adic L-function is a p-adic measure on Z×

p , the dual of the space of continuous
p-adic functions on Z×

p .
Our target theorem is the following.

Theorem 2.2.6. Let η be a primitive Dirichlet character of prime-to-p conductor N .
Then there exists a “p-adic measure dµη on Z×

p such that, for any primitive character
ηp : (Z/prZ)× → Q×

p (allowing ηp = 1) and any n ∈ Z≥0, we have

(2.2.6.1)
∫
Z×
p

ηp(x)x
ndµη(x) = L{p}(η · ηp,−n),

where
∫
Z×
p

is a formal integration and its definition and the meaning of p-adic measures will
be carefully explained later in this lecture. The “p-deprived” L-function L{p}(η · ηp, s) is the

11



usual L-function but with the L-factor at p removed, namely,

L{p}(η · ηp, s) =
∏

q prime
(q,pN)=1

1

1− η(q)q−s
=

{
L(η · ηp, s) when ηp is nontrivial
L(η, s) · (1− η(p)p−s) when ηp = 1.

In one sentence, a p-adic L-function is in fact a p-adic measure (or a p-adic distribution
in some cases), whose evaluation at the continuous function formed by the finite character
and the integer n gives the special values of the corresponding L-functions (with slight
modification at p).

Remark 2.2.7. (1) We will prove a theorem when η = 1 too, but there is a slight
technical issue, related to the fact that ζ-function admits a pole at s = 1. Thus,
accordingly, one expect the p-adic ζ-function to also have a pole at s = 1; so it will
not be a p-adic measure any more.

(2) In general, when defining the p-adic version of the L-functions, it is very natural to
make modifications to the L-factor at p; the method of modification is not always
removing the entire L-factor at p.

2.2.8. Heuristic proof of Theorem 2.2.6 ⇒ Theorem 2.1.3. Even though we have not math-
ematically defined the p-adic measure yet, we feel it is helpful to explain why the existence
of the p-adic L-function implies the Kummer’s congruence relation.

Let k be a positive integer and let n1 and n2 are two integers greater than or equal to k.
If the interpolation property (2.2.6.1) holds, then we have∫

Z×
p

ηp(x)x
n1dµη(x)

∫
Z×
p

ηp(x)x
n2dµη(x)

L{p}(η,−n1) L{p}(η,−n2)≡?

Since we assumed that n1 ≥ k and n2 ≥ k, we must have for i = 1, 2,
L{p}(η,−ni) = L(η,−ni)(1 + η(p)pni) ≡ L(η,−ni) mod pk.

(This is where the condition n1, n2 ≥ k is used.)
If we want to prove Theorem 2.1.3: L(η,−n1) ≡ L(η,−n2) mod pk, we would have to

prove that

(2.2.8.1)
∫
Z×
p

ηp(x)x
n1dµη(x) ≡

∫
Z×
p

ηp(x)x
n2dµη(x) mod pk.

But note that condition for Kummer congruence is n1 ≡ n2 mod (p− 1)pk−1, which implies
that xn1 ≡ xn2 mod pk for any x ∈ Z×

p , that is to say the functions ηp(x)xn1 is congruent to
ηp(x)x

n2 modulo pk, as functions on Z×
p .

It is conceivable that the congruence ηp(x)xn1 ≡ ηp(x)x
n2 mod pk implies the congruence

of the integrals (2.2.8.1). From this, we deduce Theorem 2.1.3.

2.3. Continuous p-adic functions on Zp. As indicated in the previous subsection, we
need to develop a theory for integration of p-adic valued continuous functions over a p-adic
space.

12



Remark 2.3.1. We first point out that the naïve Haar measure and Riemann integral
technique does not work. Suppose that we give Zp volume 1, it is then conceivable to see
that every a+ prZp would have volume 1

pr
. Then we would have an equality

vol(Zp) =
∑

a∈Z/prZ

vol(a+ prZp).

Even though this is an equality, the partial sum converges seems to be quite bad because 1
pr

is p-adically very large.
We need some genuinely new setup. For this, we introduce some very basic concepts in

p-adic functional analysis.
Definition 2.3.2. Let K be a completely valued field over Qp (e.g. K = Qp) with valuation
ring OK . Write | · | : K → R≥0 for the norm.

A (p-adic) Banach space over K is a K-vector space V complete with respect to a norm
‖ · ‖ : V → R≥0, such that

(1) ‖av‖ = |a| · ‖v‖ for every a ∈ K and v ∈ V ,
(2) ‖v + w‖ ≤ max{‖v‖, ‖w‖} for every v, w ∈ V ,
(3) ‖v|‖ = 0 ⇔ v = 0.

Example 2.3.3. The following is considered “the dual of L∞ space”:
`∞ :=

{
(an)n≥0

∣∣ an ∈ K, such that an → 0 when n→ +∞
}
,

with ‖(an)‖ := maxn{|an|}. One can also write `∞ as

`∞ ∼=
( ⊕̂

n≥0

OK

)
⊗OK

K.

Example 2.3.4. For X a compact topological space, define
C0(X,OK) := {f : X → OK continuous}, C0(X,K) := C0(X,OK)⊗OK

K.

The norm is defined to be ‖f‖sup := sup
x∈X
|f(x)|.

In p-adic functional analysis, there is a condition on Banach spaces which makes it a little
like Hilbert spaces in real functional analysis.
Definition 2.3.5. For a Banach space V , an orthonormal basis is a family of elements
{ei}i∈I ⊂ V such that

(1) ‖ei‖ = 1 for any i ∈ I,
(2) every x ∈ V can be written uniquely as a sum x =

∑
i∈I
xiei with each xi ∈ K and

xi → 0 in the sense that, for any ε > 0, #{i | |xi| > ε} is finite, and
(3) ‖x‖ = maxi∈I

{
|xi|

}
.

We say such a Banach space V is ONable (short for orthonormalizable).
Notation 2.3.6. For the rest of this section, we mostly focus on one case

C0(Zp,Zp) :=
{

continuous functions f : Zp → Zp

}
, ‖f‖ := sup

x∈Zp

|f(x)|.

For a completely valued field K, we put
C0(Zp,OK) := C0(Zp,Zp) ⊗̂ZpOK , C0(Zp, K) := C0(Zp,OK)⊗OK

K.
13



We start by producing some norm 1 elements in C0(Zp,Zp).

Lemma 2.3.7. For n ∈ Z≥0, we define(
x

n

)
:=

{
1 when n ≥ 0
x(x−1)···(x−n+1)

n!
when n ≥ 1.

Then the binomial function
(
x

n

)
∈ C0(Zp,Zp) and

∥∥∥(x
n

)∥∥∥ ≤ 1.

Proof. It is clear that when x ∈ Z,
(
x
n

)
∈ Z. By density of Z in Zp, we see that for x ∈ Zp,

‖
(
x
n

)
‖ ≤ 1. Yet when x = n,

(
x
n

)
|x=n =

(
n
n

)
= 1. So ‖

(
x
n

)
‖ = 1. □

Theorem 2.3.8 (Mahler). Every f ∈ C0(Zp,Qp) admits a unique expansion, called Mahler
expansion,

(2.3.8.1) f(x) =
∞∑
n=0

an(f)

(
x

n

)
with an(f)→ 0 as n→∞.

Moreover, ‖f‖ = sup
n
|an(f)|. In other words,

{(
x
n

)}
n≥0

is an orthonormal basis of C0(Zp,Qp).
Alternatively speaking, the Mahler expansion gives an isomorphism

C0(Zp,Qp) `∞

f(x) (an(f))n≥0.

∼=

Proof. We first assume the Mahler expansion and see how f determines the coefficients an(f).
Setting x = 0 gives f(0) = a0(f), and then setting x = 1 gives f(1) = a0(f) + a1(f), . . . .
One can see that it is possible to solve all an(f) from this recursive process. We will do an
elaborated version of this.

For f ∈ C0(Zp,Qp), inductively define

f [0] := f, and f [k+1](x) := f [k](x+ 1)− f [k](x) for any k ≥ 0.

In particular, we have (f [k])[ℓ] = f [k+ℓ] for k, ` ∈ Z≥0.
Now, suppose that we have known f(x) =

∑
n≥0

an(f)
(
x
n

)
, then f [1](x) would be equal to∑

n≥0

an(f)
((

x+1
n

)
−

(
x
n

))
=

∑
n≥0

an(f)
(

x
n−1

)
. Inductively, we may show that for any k ∈ Z≥0,

f [k](x) =
∑
n≥0

an(f)
(

x
n−k

)
.

From this discussion, for f ∈ C◦(Zp,Qp), we put

ak(f) := f [k](0).

We have the following explicit formulas that we will use later.

f [n](x) =
n∑

k=0

(−1)k
(
n

k

)
f(x+ n− k)(2.3.8.2)

an(f) = f [n](0) =
n∑

k=0

(−1)k
(
n

k

)
f(n− k)(2.3.8.3)
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From now on, we may assume that ‖f‖ = 1, in particular, f ∈ C0(Zp,Zp). Then we
may determine the Mahler coefficients an(f) using (2.3.8.3). We need to prove the following
statements.

(1) sup
n
|an(f)| = 1.

(2) an(f)→ 0 as n→∞.
(3) f(x) =

∑
n≥0

an(f)
(
x
n

)
.

For (1), since f ∈ C0(Zp,Zp), the explicit formula (2.3.8.3) implies that |f(n)| ≤ 1 for
every n ≥ 0. Moreover, the condition ‖f‖ = 1 implies that there exists m ∈ Z≥0 such that
|f(m)| = 1 (such m exists because |f(−)| is locally constant.) We take the smallest such m,
then by the explicit formula (2.3.8.3), we see that |am(f)| = 1.

For (2), we need a lemma.
Lemma For every f ∈ C0(Zp,Zp), there exists k ∈ Z≥1 such that f [pk] ∈ p · C0(Zp,Zp).
Iteratively applying the Lemma, we see that there exists integers N1 < N2 < · · · such

that fNi ∈ piC0(Zp,Zp) for every i. This implies that vp(an(f)) ≥ i whenever n > Ni. Thus
an(f)→ 0 as n→∞.

Proof of Lemma: Consider the continuous function f̄ : Zp
f−−→ Zp

mod p−−−→ Fp. There exists
k ∈ Z≥1 such that f̄ is locally constant on each a+ pkZp. Then

f [pk](x) =

pk∑
j=0

(−1)j
(
pk

j

)
f(x+ pk − j)

= f(x+ pk)− f(x) + p · ∗

belongs to p · C0(Zp,Zp). The Lemma is proved, so is (2).
To prove (3), we simply note that (2) implies that the sum∑

n≥0

an(f)

(
x

n

)
∈ C0(Zp,Zp)

defines a continuous function on Zp. In addition, by definition, we know that

f(x)−
∑
n≥0

an(f)

(
x

n

)
∈ C0(Zp,Zp)

is zero at all x ∈ Z≥0. This implies that f(x) =
∑
n≥0

an(f)
(
x
n

)
. □

2.4. Distribution on Zp.

Definition 2.4.1. For a compact topological space, we define the space of p-adic measures
on X to be

D0(X,Zp) := Homcont

(
C0(X,Zp),Zp

)
.

For K a completely valued field, we define
D0(X,OK) := D(X,Zp) ⊗̂ZpOK

∼= Homcont

(
C0(X,OK),OK

)
and D0(X,K) := D0(X,OK)⊗OK

K.
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Remark 2.4.2. Regarding the terminology measures versus distributions, we follow the
convention that a measure is a bounded distribution. For the purpose of p-adic Dirichlet
L-functions, we only need p-adic measures. It is likely that we will come back for more
general p-adic distributions later in this semester.

2.4.3. Identification of D0(Zp,Zp). Since C0(Zp,Zp) admits an orthonormal basis given by{(
x
n

) ∣∣n ∈ Z≥0}, its dual may be identified with
∏
n≥0

OK . More precisely, for b = (bn)n≥0, the

functional b defines is: 〈∑
n≥0

an

(
x

n

)
, b

〉
:=

∑
n≥0

anbn.

We may alternatively organize the sequence b = (bn)n≥0 as a power series
∑
n≥0

bnT
n ∈ ZpJT K.

Notation-Proposition 2.4.4. For µ ∈ D0(Zp,Zp), the corresponding power series Aµ(T ) ∈
ZpJT K defined above admits an explicit formula, called the Amice transform:

Aµ(T ) =

∫
Zp

(1 + T )xdµ(x).

This defines a topological isomorphism D0(Zp,Zp) ∼= ZpJT K.
Proof. We compute this formally:∫

Zp

(1 + T )xdµ(x) =

∫
Zp

(∑
n≥0

(
x

n

)
T n

)
dµ(x)

=
∑
n≥0

(∫
Zp

(
x

n

)
dµ(x)

)
T n =

∑
n≥0

bnT
n = Aµ(T ).

□

2.5. Exercises.

Exercise 2.5.1. (Modified Mahler basis) In this problem, we give a different orthonormal
basis of C0(Zp,Zp). Consider the function f(z) = zp−z

p
on Zp.

(1) Show that f ∈ C◦(Zp,Zp).
Consider the following inductively defined functions:

f {0}(z) = z, f {1}(z) = f(z) =
zp − z
p

, f {2}(z) = f {1}
(zp − z

p

)
=

(
zp−z
p

)p − zp−z
p

p
,

f {k+1}(z) = f
(
f {k}(z)

)
, for k ≥ 1.

For n ≥ 0, write n = n0 + n1p + n2p
2 + · · · for the p-adic expansion of n, i.e. each

ai ∈ {0, 1, . . . , p− 1}, put

en(z) =
(
f {0}(z)

)n0
(
f {1}(z)

)n1
(
f {2}(z)

)n2 · · ·

We call {en(z)} a modified Mahler basis.
(2) Prove that ep(z) +

(
z
p

)
∈ Zp[z].
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(3) Prove that each en(z) may be written as a Zp-linear combination of binomial functions(
z
m

)
’s, and show that the change of basis matrix from the Mahler basis to en(z) is

upper triangular with all entries in Zp and diagonal entries in Z×
p .

(4) Deduce that {en(z) |n ≥ 0} form an orthonormal basis of C0(Zp,Zp).
(5) Assume that p ≥ 3. Recall that Z×

p
∼= µp−1× (1+ pZp)

×, where µp−1 is the subgroup
of (p − 1)th roots of unity in Qp. The group µp−1 acts naturally on C0(Zp,Zp) such
that for ζ ∈ µp−1, it sends h(z) to h(ζz). Show that each of en(z) is an eigenfunction
for this action.

Remark 2.5.2. We call en(z)’s the modified Mahler basis. As (2) suggested, en(z) is essen-
tially the “leading terms” of

(
z
n

)
up to a constant multiple.

The disadvantage of modified Mahler basis is that it is not compatible with the Amice
transform. However, part (5) shows that the modified Mahler basis are formed by µp−1-
eigenfunctions, which are useful in some applications.
Exercise 2.5.3. (Orthonormal basis of C0(Zpr ,Zpr)) Let Qpr be the unramified extension
of Qp of degree r, and Zpr be its ring of integers. In this problem, we will produce an
orthonormal basis of C0(Zpr ,Zpr) that is similar to the modified Mahler basis defined in the
previous problem.

Let σ denote the (arithmetic) Frobenius on Zpr , i.e. the automorphism of Zpr whose
reduction modulo p sends x̄ to x̄p. Write z0 : Zpr → Zpr for the identify function, i.e.
z0(a) = a. We then inductively define

zj+1(a) = σ(zj(a)) for j ≥ 0.

Clearly, zj+r = zj for j ≥ 0. It is also clear that Qpr [z0, . . . , zr−1] is a dense subring of
C0(Zpr ,Qpr) (but Zp[z0, . . . , zr−1] is not dense in C0(Zpr ,Zpr)).

We define inductively

f0 := 1, f1 := z0, fp :=
zp0 − z1
p

, fpi+1 = fp ◦ fpr =
f p
pi
− σ(fpi)
p

, with i = 1, 2, . . .

For example, fp2 =

(
zp0−z1

p

)p

− zp1−z2
p

p
.

If m = s0 + ps1 + p2s2 + · · · is the p-adic expansion of a positive integer (with si ∈
{0, . . . , p− 1}), we set

fm := f s0
1 f

s1
p f

s2
p2 · · ·

Finally, if m = (m0, . . . ,mr−1) ∈ Zr
≥0 is an r-tuple of index, we set

(2.5.3.1) fm := fm0 · ϕ(fm1) · · ·ϕr−1(fmr−1).

(1) Show that each function fm is a continuous function in C0(Zpr ,Zpr), and compute its
leading coefficients, as a polynomial in z0, . . . , zr−1.

(2) Show that fm’s form an orthonormal basis of C0(Zpr ,Zpr).
(Hint: it might be helpful to compare this to a “known” (noncanonical) Mahler

basis: choose a Zp-linear isomorphism
c : Zpr (Zp)

r

a (c∗0(a), . . . , c
∗
r−1(a)).

∼=
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Here we may view each c∗j as a function Zpr with values in Zp. Then the functions
um : a 7→

(
c∗0(a)
m0

)
· · ·

(
c∗r−1(a)
mr−1

)
for m ∈ Zr

≥0 form an orthonormal basis of C0(Zpr ,Zpr)

with respect to the maximal norm || · ||. It is then a question to compare the two
bases fm and um.)
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3. p-adic Dirichlet L-functions

Recall that every continuous function f ∈ C0(Zp,Zp) admits a canonical Mahler expansion

f(x) =
∞∑
n=0

an(f)

(
x

n

)
, with an(f) ∈ Zp.

The space of p-adic measures on Zp admits the following nice description (called the Amice
transform):

D0(Zp,Zp) ZpJT K
µ Aµ(T ) :=

∫
Zp
(1 + T )xdµ(x).

∼=

The goal of first part of this lecture is to give a more intrinsic definition of the Amice
transform, in terms of “Iwasawa algebras”.

3.1. Iwasawa algebras.

Definition 3.1.1. For a profinite group G = lim←−
H◁G finite

G/H, define the associated Iwasawa

algebra for G to be
ZpJGK = lim←−

H◁G finite
Zp[G/H].

Each g ∈ G defines an element [g] ∈ Zp[G]; the ring Zp[G] is dense inside ZpJGK.
Remark 3.1.2. The construction of Iwasawa algebra is functorial inG, namely, if ϕ : G→ H
is a continuous group homomorphism of profinite group, then it induces a continuous ring
homomorphism ϕ̃ : ZpJGK→ ZpJHK.
Remark 3.1.3. We explain why the definition of ZpJGK in Definition 3.1.1 is natural. For
G a discrete group, there is a natural equivalence of categories{

representations of G on Z-modules M
} {

Z[G]-modules M
}
.

∼=

Similarly, there is a natural equivalence of categories{
continuous representations of G on Z-modules M

} {
continuous ZpJGK-modules M

}
.

∼=

In particular, when G is a profinite abelian group that is topologically finitely generated,
there is a one-to-one correspondence among the following (setting Cp to be the completion
of Qp):

(1) continuous homomorphisms η : G→ C×
p ,

(2) continuous ring homomorphism ZpJGK→ Cp,
(3) Cp-point of (Spf ZpJGK)rig (the rigid analytic space associated to ZpJGK).

The key example in this lecture is the following.
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Example 3.1.4. Consider G = (Zp,+). Then we have

ZpJZpK = lim←−
m→∞

Zp[Z/pmZ] ∼= lim←−
m→∞

Zp[x]/(x
pm − 1) 1↔ [0], x↔ [1]

∼= lim←−
m→∞

Zp[T ]/((1 + T )p
m − 1) T ↔ [1]− 1

∼= lim←−
m→∞

Zp[T ]/(p, T )
m ∼= ZpJT K.

If η : Zp → C×
p is a continuous character, the Cp-point it corresponds on (Spf ZpJT K)rig is

η̃ : ZpJT K Cp

f(T ) f(η(1)− 1),

i.e. η̃ corresponds to the point T = η(1) − 1 on (Spf ZpJT K)rig (the rigid analytic open unit
disc).

3.2. Intrinsic definition of Amice transform. We explain the relation between the space
of p-adic measures and the Iwasawa algebra.

Notation-Lemma 3.2.1. If X = lim←−
i

Xi is a profinite set (and assume that in this inverse

system, each Xi is finite and Xj → Xi is surjective whenever j > i). Then the space of
p-adic measures on X defined by

D0(X,Zp) := Homcont

(
C0(X,Zp),Zp

)
admits a natural formula:

D0(X,Zp) ∼= lim←−
i

D0(Xi,Zp) = lim←−
i

Homcont

(
C0(Xi,Zp),Zp

)
= lim←−

i

Zp[Xi] =: ZpJXK.
where Zp[Xi] =

{ ∑
x∈Xi

cx[x]
}

is the space of all possible weights in Xi.

In the special case when X = G is a profinite group, we have a canonical isomorphism

(3.2.1.1) D0(G,Zp) ∼= ZpJGK.
When G is a profinite group, the canonical isomorphism (3.2.1.1) preserves some additional

structure.

Lemma 3.2.2. The multiplication for the ring structure on ZpJGK corresponds to the con-
volution product on D0(G,Zp): for µ1, µ2 ∈ D0(G,Zp),∫

G

f(g)d(µ1 ? µ2)(g) :=

∫
G

∫
G

f(gh)dµ1(g)dµ2(h).

Proof. By taking limits, it is enough to prove this when G is finite. In this case, we may
view µi as a (weight) function in Zp[G]. Write 〈−,−〉 for the pairing between the functions
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on G and the (weight) function on G, then for f ∈ C0(G,Zp) and µ1, µ2 ∈ Zp[G], we have〈
f, µ1 ? µ2

〉
=

∑
g∈G

f(g)(µ1 ? µ2)(g) =
∑
g∈G

f(g)
∑
h∈G

µ1(h)µ2(h
−1g)

h1=h−1g
=

∑
h∈G

∑
h1∈G

µ1(h)µ2(h1) · f(hh1). □

Now, we can give an intrinsic formulation of the Amice transform formula introduced in
Notation-Proposition 2.4.4.

Theorem 3.2.3. The Amice transform µ 7→ Aµ(T ) =
∫
Zp
(1 + T )xdµ(x) from D0(Zp,Zp) to

ZpJT K is exactly the composition of the following canonical isomorphisms

D0(Zp,Zp)
(3.2.1.1)∼= ZpJZpK ∼= ZpJT K.

Proof. We write out the sequence of isomorphisms explicit and compute the image of a p-adic
measure µ ∈ D0(Zp,Zp) at each stage.

D0(Zp,Zp) ∼= lim←−
m→∞

D0(Z/pm,Zp) µ

lim←−
m→∞

Zp[Z/pmZ] lim
m→∞

( ∑
a∈Z/pmZ

µ(a+ pmZp) · [a]
)

lim←−
m→∞

Zp[T ]
/(

(1 + T )p
m − 1

)
lim

m→∞

( ∑
a∈Z/pmZ

µ(a+ pmZp) · (1 + T )a
)
.

∼=

∼=

The last limit is clearly equal to
∫
Zp

(1 + T )xdµ(x) = Aµ(T ). □

3.3. Further operations on measures over Zp. We will first introduce a series of opera-
tors on the space of p-adic measures D0(Zp,Zp) and the corresponding analogues on ZpJT K.
We quickly recall from Remark 3.1.2 that a continuous homomorphism φ : G→ H between
two profinite groups induces a continuous ring homomorphism φ̃ : ZpJGK→ ZpJHK.
Notation-Lemma 3.3.1. The multiplication by p is a group homomorphism on Zp, it
induces a ring homomorphism ϕ : ZJZpK → ZpJZpK given by sending [1] = 1 + T to [p] =
(1 + T )p, i.e. ϕ : ZpJT K→ ZpJT K is a ring homomorphism such that

ϕ(f(T )) = f
(
(1 + T )p − 1

)
.

The same multiplication-by-p map induces a pushforward map of p-adic measures on Zp,
also denoted by ϕ. Explicitly, for f ∈ C0(Zp,Zp),∫

Zp

f(x)dϕ(µ)(x) :=

∫
Zp

f(px)dµ(x).
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Then the following diagram is commutative:

D0(Zp,Zp) ZpJT K
D0(Zp,Zp) ZpJT K.

Amice transform
∼=

φ φ

Amice transform
∼=

Proof. We verify the commutativity of the diagram, i.e. for µ ∈ D0(Zp,Zp), we have
ϕ(Aµ(T )) = Aφ(µ)(T ). Indeed,

Aφ(µ)(T ) =

∫
Zp

(1 + T )xdϕ(µ)(x) =

∫
Zp

(1 + T )pxdµ(x)

= ϕ
(∫

Zp

(1 + T )xdµ(x)
)
= ϕ(Aµ(T )). □

Notation-Lemma 3.3.2. Write Γ for the group Z×
p , and for a ∈ Z×

p , write γa for the
corresponding elements in Γ. For each a ∈ Z×

p , multiplication by a induces a continuous
group automorphism of Zp, which in turn induces an isomorphism γa of ZpJT K given by

γa(T ) = (1 + T )a − 1.

The same multiplication-by-a map induces an isomorphism of p-adic measures D0(Zp,Zp),
denoted by γa. Explicitly, for f ∈ C0(Zp,Zp),∫

Zp

f(x)dγa(µ)(x) :=

∫
Zp

f(ax)dµ(x).

We have the following commutative diagram.

D0(Zp,Zp) ZpJT K
D0(Zp,Zp) ZpJT K.

Amice transform
∼=

γa γa

Amice transform
∼=

Notation-Lemma 3.3.3. For each b ∈ Zp, shift-by-b: x 7→ x + b is an homeomorphism
of Zp, and induces an automorphism sb of D0(Zp,Zp), explicitly, for µ ∈ D0(Zp,Zp) and
f ∈ C0(Zp,Zp), ∫

Zp

f(x)dsb(µ)(x) :=

∫
Zp

f(x+ b)dµ(x).

Identifying D0(Zp,Zp) with ZpJT K via Amice transform, the operator sb sends Aµ(T ) ∈ ZpJT K
to

Asb(µ)(T ) =

∫
Zp

(1 + T )xdsb(µ)(x) =

∫
Zp

(1 + T )x+bdµ(x) = (1 + T )b · Aµ(T ).

In other words, sb is the multiplication-by-(1 + T )b map on ZpJT K.
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Notation-Lemma 3.3.4. Corresponding to the coset decomposition Zp =
p−1∐
i=0

(i+pZp), the

ring ZpJT K admits a direct sum decomposition as a free ϕ(ZpJT K)-module:

(3.3.4.1)
ZpJT K p−1⊕

i=0

(1 + T )iϕ
(
ZpJT K).

h
p−1∑
i=0

(1 + T )iϕ(hi),

∼=

for unique elements h0, . . . , hp−1 ∈ ZpJT K.
We define an ψ-operator ψ : ZpJT K → ZpJT K given by ψ(h) = h0 for the h0 in the

decomposition above.

Proof. We prove the decomposition (3.3.4.1). In fact, we show the inverse map is an isomor-
phism:

Φ : ZpJT K⊕p ZpJT K
(h0, . . . , hp−1)

p−1∑
i=0

(1 + T )iϕ(hi).

First consider Φ modulo p; in this case, ϕ is nothing but the Frobenius, and we have

Φ̄ : FpJT K⊕p ZpJT K
(h0, . . . , hp−1)

p−1∑
i=0

(1 + T )ihi(T
p)

This Φ̄ is clearly an isomorphism. From this, and that both the source and the target of Φ
is p-adically complete, we may easily deduce that Φ is an isomorphism. □
Remark 3.3.5. (1) The ψ-operator satisfies ψ ◦ ϕ = id, but it is NOT LINEAR (in

particular, we should avoid talking about matrix of ψ). It is somewhat φ−1-linear in
the sense that ψ(ϕ(f)h) = fψ(h) for f, h ∈ ZpJT K.

(2) Another way to think of ψ-operator is that ZpJT K is a free module of rank p over
ϕ(ZpJT K), and ψ maybe viewed as the composition

ψ : ZpJT K ϕ(ZpJT K) ZpJT K.1
p
TrZpJT K/φ(ZpJT K) φ−1

∼=

In the following exercise, we will revisit this point of view.

Lemma 3.3.6. Under the Amice transform D0(Zp,Zp) ∼= ZpJT K, the decomposition (3.3.4.1)
corresponds to

D0(Zp,Zp)
p−1⊕
i=0

D0(i+ pZp,Zp)
p−1⊕
i=0

D0(Zp,Zp)

µ
p−1∑
i=0

Resi+pZp(µ)

∼= ⊕si◦φ
∼=

23



where Resi+pZp(µ) is to restrict the measure to the given subset i + pZp, or more explicitly,

for f ∈ C0(Zp,Zp),
∫
Zp

f(x)Resi+pZp(µ)(x) :=

∫
Zp

f(x)1i+pZpdµ(x).

Proof. As already proved in Notation-Lemma 3.3.3 and 3.3.1, sending hi to (1 + T )iϕ(hi)
corresponds to µi 7→ si ◦ ϕ(µi) for p-adic measures, which is supported on the coset i+ pZp.

Therefore, decomposing h ∈ ZpJT K into the sum
p−1∑
i=0

(1 + T )iϕ(hi) precisely decomposing µ

into the sum
p−1∑
i=0

Resi+pZp(µ), such that each Resi+pZp(µ) takes the form of si ◦ϕ(µi) for some
p-adic measure µi on Zp. □

Notation-Lemma 3.3.7. For µ ∈ D0(Zp,Zp), its restriction to Z×
p is precisely

ResZ×
p
(µ) := (1− ϕψ)(µ).

Under the Amice transform, if we write Aµ(T ) =
∑p−1

i=0 (1 + T )iϕ(hi), then

AResZ×p
(µ)(T ) =

p−1∑
i=1

(1 + T )iϕ(hi).

Proof. We compute this directly, setting Aµ(T ) =
p−1∑
i=0

(1 + T )iϕ(hi), then

AResZ×p
(µ)(T ) =

p−1∑
i=1

AResi+pZp (µ)
(T ) =

p−1∑
i=1

(1 + T )iϕ(hi)

= Aµ(T )− ϕ(h0) = (1− ϕψ)(Aµ)(T ). □

Corollary 3.3.8. A p-adic measures µ ∈ D0(Zp,Zp) is supported on Z×
p if and only if

ψ(µ) = 0.

Proof. We have µ is supported on Z×
p ⇔ µ = ResZ×

p
(µ) ⇔ µ = (1 − ϕψ)(µ) ⇔ ϕψ(µ) = 0

⇔ ψ(µ) = 0. □

3.4. p-adic Dirichlet L-functions. The target of this subsection is the following.

Theorem 3.4.1. Let η 6= 1 be a primitive Dirichlet character of prime-to-p conductor N .
Then there exists a unique p-adic measure µ{p}

η on Z×
p with values in the ring of integer O

of Qp(η) such that for any primitive finite character ηp : (Z/prZ)× → Qalg,× ιp−→ Q×
p and any

n ∈ Z≥0, we have

(3.4.1.1)
∫
Z×
p

ηp(x)x
ndµ{p}

η (x) = L{p}(ηηp,−n).

Before proceeding, we explain a recipe that allows us to “compute” the p-adic Dirichlet
L-function satisfying the needed interpolation condition (3.4.1.1). We focus on the case when
ηp = 1.
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Lemma 3.4.2. If µ ∈ D0(Zp,Zp) corresponds to Aµ(T ) ∈ ZpJT K, we have

(3.4.2.1)
∫
Zp

xndµ(x) =
(
(1 + T )

d

dT

)n

Aµ(T )
∣∣∣
T=0

.

Proof. By Amice transform, we have∫
Zp

(1 + T )xdµ(x) = Aµ(T ).

Applying the operator (1 + T ) d
dT

to this equation, we get∫
Zp

x · (1 + T )xdµ(x) = (1 + T )
d

dT
Aµ(T ).

Iteratively apply the operator (1 + T ) d
dT

n times gives∫
Zp

xn(1 + T )xdµ(x) =
(
(1 + T )

d

dT

)n

Aµ(T ).

Setting T = 0 gives the equality in the lemma. □

3.4.3. Explicit construction of the p-adic measure. Recall that for η a primitive Dirichlet
character of conductor N (with p - N), we defined

fη(t) :=

N−1∑
a=1

η(a)e−at

1− e−Nt
, then L(η,−n) = (−1)nf (n)

η (0) =
(
− d

dt

)n

(fη)
∣∣∣
t=0
.

But we need the special values L{p}(η,−n); so we need to modify above to put

f {p}
η (t) :=

pN−1∑
a=1
p-a

η(a)e−at

1− e−pNt
=

∑
a≥1

(a,pN)=1

η(a)e−at.

Then L{p}(η, s) =
1

Γ(s)

∫ ∞

0

f {p}
η (t)ts · dt

t
, and thus

(3.4.3.1) L{p}(η,−n) =
(
− d

dt

)n(
f {p}
η

)∣∣∣
t=0
.

Comparing this with the equality in Lemma 3.4.2, we note that (1+T ) d
dT

=
d

d log(1 + T )
.

Thus, if we set 1 + T = e−t, then (1 + T )
d

dT
= − d

dt
. Moreover, for this change of variables,

we see that t = 0 corresponds to T = 0. Inspired by this, we put

Aη(T ) :=

N−1∑
a=1

η(a)(1 + T )a

1− (1 + T )N
, and A{p}

η (T ) :=

pN−1∑
a=1

(a,Np)=1

η(a)(1 + T )a

1− (1 + T )pN

Then clearly, we have Aη(e
−t − 1) = fη(t) and A

{p}
η (e−t − 1) = f

{p}
η (e−t − 1).
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Proposition 3.4.4. Keep the notation as above, let µη (resp. µ
{p}
η ) denote the measure

corresponding to Aη(T ) (resp. A{p}
η (T )) under the Amice transform. Then

(1) µη is a p-adic measure in D0(Zp,Zp) and µ{p}
η = (1− ϕψ)(µη). In particular, µ{p}

η is
supported on Z×

p .
(2) For any integer n ∈ Z≥0,∫

Z×
p

xndµ{p}
η (x) = L{p}(η,−n).

Proof. (1) To prove this rigorously, we need to make the following observation: both Aη(T )

and A
{p}
η (T ) lies in the field Qp(η)(T ) (intersected with ZpJT K). We may define the ϕ- and

ψ-operator on this field using the same formula. This field carries a different completion,
namely Qp(η)((1 + T )) (which is not comparable to ZpJT K. Thus, it is enough to verify the
equality A{p}

η = (1− ϕψ)(Aη) in this other completion. Now, we may write

Aη(T ) =

N−1∑
a=1

η(a)(1 + T )a

1− (1 + T )N
=

∑
a≥1

(a,N)=1

η(a)(1 + T )a.

So
(
1− ϕψ

)(
Aµ(T )

)
=

∑
a≥1

(a,pN)=1

η(a)(1 + T )a =

pN−1∑
a=1

(a,Np)=1

η(a)(1 + T )a

1− (1 + T )pN
= A{p}

η (T ).

By Amice transform, we have µ{p}
η = (1− ϕψ)(µη).

(2) We combine our earlier discussions together to deduce that∫
Z×
p

xnd{p}η (x)
(3.4.2.1)
=

(
(1 + T )

d

dT

)n(
A{p}

η

)∣∣∣
T=0

=
(
− d

dt

)n(
f {p}
η

)∣∣∣
t=0

(3.4.3.1)
= L{p}(η,−n).

□
We have proved above that the p-adic measure µ{p}

η satisfies the interpolation property
(3.4.1.1) when ηp is trivial. In fact, the same p-adic measure µ{p}

η also satisfies the interpo-
lation properties for all n and all ηp. This then completes the proof of Theorem 3.4.1.

Proposition 3.4.5. Keep the notation as above, for any nontrivial primitive character
ηp : (Z/prZ)× → Qalg,× ιp−→ Q×

p and any n ∈ Z≥0, we have

(3.4.5.1)
∫
Z×
p

ηp(x)x
ndµ{p}

η (x) = L{p}(ηηp,−n).

Proof. Consider the power series

fηηp(t) :=

prN−1∑
a=1

ηηp(a)e
−at

1− e−prNt
=

∑
a≥1

(a,pN)=1

ηηp(a)e
−at.
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Since ηp is nontrivial, we have

L(ηηp, s) = L{p}(ηηp, s) =
1

Γ(s)

∫ ∞

0

fηηp(t)t
s · dt

t
and L(ηηp,−n) =

(
− d

dt

)n(
fηηp

)∣∣∣
t=0
.

Similar to above, we put

Aηηp(T ) :=

prN−1∑
a=1

ηηp(a)(1 + T )a

1− (1 + T )prN
=

∑
a≥1

(a,pN)=1

ηηp(a)(1 + T )a.

It is clear that ψ(Aηηp(T )) = 0. Thus, we have an equality

(3.4.5.2) L(ηηp,−n) =
(
(1 + T )

d

dT

)n(
Aηηp

)∣∣∣
T=0

=

∫
Z×
p

xndµηηp(x)

for µηηp the distribution corresponding to Aηηp(T ) under the Amice transform.
Now, comparing (3.4.5.2) to (3.4.5.1), it remains to prove that

µηηp =

pr−1∑
a=1
p-a

ηp(a) · Resa+prZp(µ
{p}
η ).

But this is clear, because the Amice transform of the right hand side has formal expansion
in (1 + T ) given by

pr−1∑
a=1
p-a

ηp(a) ·
( ∑

i≥1
(i,N)=1

i≡a mod pr

η(i)(1 + T )i
)

=
∑
a≥1

(a,pN)=1

ηηp(a)(1 + T )a = Aηηp(T ).

The proposition is proved. □

Remark 3.4.6. (1) In fact, the interpolation conditions in Proposition 3.4.4 already de-
termines the p-adic measure µ{p}

η , and the additional interpolation properties given by
Proposition 3.4.5 signifies certain strong congruence among special values of Dirichlet
L-functions for characters that are differed by a power of p. We will prove this in the
exercises. One should think of this as some sort of miraculous p-adic congruences.

(2) One should interpret Z×
p as the Galois group Gal(Q(µp∞)/Q), the Galois group of

maximal p-abelian extension of Q. We will come back to this interpretation in the
next lecture.

3.5. Exercises.

Exercise 3.5.1 (An explicit formula for ψ-operator). Let p be a prime number. Recall that
on ZpJT K, we have defined an operator ϕ such that ϕ(T ) = (1+T )p−1. There is a left inverse

to ϕ, given as follows: each F ∈ ZpJT K can be written uniquely as F =
p−1∑
i=0

(1 + T )iϕ(Fi);

then ψ(F ) = F0.
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(1) Let ζp denote a primitive p-th root of unity. Prove that ψ-operator admits the
following characterization: for F ∈ ZpJT K, ψ(F ) is the unique power series in ZpJT K
such that

(3.5.1.1) ψ(F )((1 + T )p − 1) =
1

p

p−1∑
i=0

F ((1 + T )ζ ip − 1).

(2) Show that ϕ and ψ can be naturally extended to the p-adic completion of Zp((T )),
denoted by AQp .

(3) Show that ψ
( 1

T

)
=

1

T
. (One might find (3.5.1.1) useful, but there is a “better” proof

without using it.)

Remark 3.5.2. (1) Without going into details, let us simply remark that the actions of
ϕ, ψ, and Γ ∼= Z×

p on ZpJT K and their extensions to AQp defines the most important
ground ring for (ϕ,Γ)-modules; this is a very useful tool in studying p-adic Hodge
theory of local fields. We may encounter more of these constructions in the future (if
we decide to introduce Coleman’s power series).

(2) The right hand side of formula (3.5.1.1) may be viewed as taking the trace from
ZpJT K to ϕ(ZpJT K).

Exercise 3.5.3 (“Miraculous congruence” encoded in p-adic L-functions). Assume p ≥ 3
for simplicity. We have constructed p-adic Dirichlet L-functions as p-adic measures on Z×

p

that interpolates special values of (p-modified) Dirichlet L-functions. It is natural to ask: is
the p-adic Dirichlet L-function uniquely determined by these interpolation values? In fact,
the answer is that these values “overdetermine” the p-adic L-functions. (We will discuss this
in lectures at a later stage.) Assume that p ≥ 3 is an odd prime number.

(1) Let G be a general profinite group and let χ : G → R× be a continuous p-adic
character with values in a p-adically complete ring R, then it induces a continuous
ring homomorphism χ̃ : ZpJGK → R. Alternatively, χ can be viewed as a R-valued
function on G, so one can integrate against a p-adic measure on G.

Prove that we have the following commutative diagram

ZpJGK D0(G,Zp)

R

∼=

η̃ µ 7→
∫
G η(g)dµ(g)

(2) Write ∆ := F×
p , which may be viewed as a subgroup of Z×

p via Teichmüller character
ω. Give an canonical isomorphism Φ : ZpJZ×

p K ∼= Zp[∆] ⊗Zp ZpJXK, so that X =

[exp(p)]− 1, where exp(p) = 1 + p+ p2

2!
+ · · · is the formal expansion.

(3) Let η : (Z/prZ)× → Q×
p be a finite character and let n ∈ Z≥0; we may form the

p-adic character

χη,n : Z×
p Q×

p

a η(a)an.
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If we denote by χ̄η,n the restriction of χη,n to ∆, then for any µ ∈ D0(Z×
p ,Zp),∫

Z×
p

η(x)xndµ(x) = Φ(µ)|∆=χ̄η,n, T=χη,n(exp(p))−1.

(4) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×
p ,Zp) are equal if for any n ∈ Z≥0,∫

Z×
p

xndµ1(x) =

∫
Z×
p

xndµ2(x).

(Hint: Show that the difference µ1 − µ2 is divisible by some infinite product.)
(5) Prove that two p-adic measures µ1, µ2 ∈ D0(Z×

p ,Zp) are equal if for a fixed n ∈ Z≥0

but for all finite characters η : (Z/prZ)× → Q×
p for all r, we have∫

Z×
p

η(x)xndµ1(x) =

∫
Z×
p

η(x)xndµ2(x).

Exercise 3.5.4. (Kubota–Leopoldt p-adic L-function) In the second and the third lectures,
we have constructed the p-adic Dirichlet L-function when the (tame) Dirichlet character η is
nontrivial. For the case when η = 1, we should also construct the corresponding p-adic zeta-
function, traditionally called the Kubota–Leopoldt p-adic L-function. Unfortunately, this
will not be a p-adic measure on Z×

p , but only a “quasi-measure”, which is philosophically
related to that ζ-function has a pole at s = 1 (so should the p-adic zeta have). For this, we
need some technical maneuver.

Pick a ∈ Z>1 prime to p. Consider

ζa(s) := (1− a1−s) · ζ(s) =
∑
n≥1

(n,a)=1

1

ns
− a ·

∑
n≥1
a|n

1

ns

Aa(T ) = (1− aγa)
( 1 + T

1− (1 + T )

)
=

1 + T

1− (1 + T )
− a · (1 + T )a

1− (1 + T )a
,

where γa ∈ Γ = Z×
p is the element corresponds to a ∈ Z×

p , which acts on ZpJT K by sending
T to (1 + T )a − 1.

(1) Show that Aa(T ) ∈ ZpJT K defines a p-adic measure; so is A{p}
a (T ) := (1−ϕψ)(Aa(T )).

Define µ{p}
a to be the p-adic measure associated to A{p}

a (T ) via Amice transform. For any
primitive character η : (Z/prZ)× → Qalg,×, define

L{p}(η, s) = (1− η(p)p−s) · L(η, s).

L{p}
a (η, s) = (1− a1−s) · L{p}(η, s) =

∑
n≥1

(n,ap)=1

1

ns
− a ·

∑
n≥1

(n,p)=1

1

(an)s

(2) Show that for any character η and any n ∈ Z≥0, we have∫
Z×
p

η(x)xndµ{p}
a (x) = L{p}(η,−n).
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(3) Recall the identification ZpJZ×
p K ∼= Zp[∆] ⊗Zp ZpJXK. We may define the Kubota–

Leopoldt p-adic L-function to be the element

µKL :=
µ
{p}
a

(1− a[γa])
∈ Zp[∆]⊗ 1

X
ZpJXK.

Sometimes, this is called a pseudo-measure; show that µKL is independent of the choice
of a ∈ Z×

p . (Hint: We need only to prove that (1−bγb)(µ{p}
a ) = (1−aγa)(µ{p}

b ) for two
different a, b ∈ Z>1 relatively prime to p. One can make use of Exercise 3.5.3(4)(5).)

Remark 3.5.5. Our definition of pseudo-measure slightly differs from that of Jacinto–
Williams’ note, who shifted the p-adic Kubota–Leopolds L-function so that the pole is at
s = 0.
Exercise 3.5.6 (A more classical version of p-adic L-function). Historically, there is also
an old version of p-adic L-function which is really just p-adic functions. In this exercise, we
recover the classical p-adic L-function from the p-adic measures, and we will see that the
p-adic measures contains stronger congruence relations than classical p-adic L-functions.

(To avoid talking about pseudo-measures, we again work with p-adic Dirichlet L-functions.)
Let η be a primitive Dirichlet character of conductor N (with p - N). We have constructed
a p-adic measure µ{p}

η such that∫
Z×
p

xndµ{p}
η (x) = L{p}(η,−n).

(This measure also interpolates Dirichlet L-functions for varying the character at p; we will
not use it here.)

We are interested in understanding the p-adic function ζp,i on Zp for i = 0, 1, . . . , p − 2,
defined by for s ∈ Z such that s ≡ i mod p− 1,

ζp,i(s) :=

∫
Z×
p

xsdµ{p}
η (x) = L{p}(η,−s).

(1) Show that ζp,i(s) extends naturally to a continuous function on s ∈ Zp. (So far, this
is weaker than a function on s ∈ OCp .)

Now we study these functions ζp,i more carefully. Abstractly by Exercise 3.5.3, we may
view µ

{p}
η as an element in Zp[∆] ⊗Zp ZpJXK, where X = [exp(p)] − 1. (Here we view

∆ = F×
p as a subgroup of Z×

p via the Teichmüller character ω.) For i = 0, . . . , p − 2, write
µη,i(X) ∈ OJXK for the image of µ{p}

η under the map ∆→ Z×
p sending x to ω(x)i.

(2) Show that (formally)
(3.5.6.1) ζp,i(s) = µη,i(exp(ps)).

(3) From (2), deduce that ζp,i(s) extends to a p-adic analytic function for s ∈ p−
p−2
p−1mCp .

Remark 3.5.7. One sees from this exercise that the classical p-adic L-function only captures
part of the information provided. Even knowing the convergence of ζp,i(s) for s ∈ p−

p−2
p−1mCp ,

it is far from enough to deduce the integrality of µ{p}
η . For more discussion in this direction,

see the post https://mathoverflow.net/questions/435265/why-p-adic-measures.
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4. Class number formulas

4.1. L-functions associated to Galois representations.
Notation 4.1.1. Let F be a number field. Denote

MF =
{

all places of F
}
⊇ MF,f =

{
finite places of F

}
.

For each v ∈ MF,f , write Ov for the ring of integers of Fv, and $v a uniformizer. Put
kv := Ov/($v) for the residue field and qv := #kv. Write Iv for the inertia subgroup of GalFv

and GalFv/Iv
∼= Galkv . Write φv for a geometric Frobenius, i.e. an element in GalFv whose

image in Galkv acts on kv by sending x 7→ x1/qv .
If S ⊆ MF is a finite set of places, we write F S for the maximal extension of F that is

unramified outside S, and GalF,S := Gal(F S/F ) for the Galois group.
Write Qalg ⊆ C for the algebraic closure of Q. Fix a prime p and an embedding Qalg ↪→ Qp.

Notation 4.1.2. A continuous representation ρ : GalF → GLn(Qp) = GL(V ) is called
“nice” if the following condition holds.

(1) ρ is unramified outside of a finite subset S ⊆ MF of places. (Without loss of gen-
erality, S contains all archimedean places and p-adic places.) We may write the
representation as ρ : GalF,S → GLn(Qp) instead.

(2) For every place v ∈ MF,f that is not p-adic, the characteristic polynomial of the
geometric Frobenius ρ(φv) acting on V Iv belongs to Qalg[x].

(3) For a p-adic place v of F , ρv := ρ|GalFv
is De Rham and the action of ρ(φv) on

Dpst(ρv)
Iv has characteristic polynomial in Qalg[x]. (Here Dpst(−) is a p-adic Hodge

theory
Remark 4.1.3. We will not discuss now in details of the question where to find “nice” Galois
representations; they appear naturally in the étale cohomology of varieties over number fields.
We will come back to this in future lectures.
Definition 4.1.4. Let ρ : GalF → GLn(Qp) be a “nice” continuous representation. For each
v ∈ MF,f , define the local L-factor

Lv(ρv, s) =


1

det
(
1− ρv(φv)q−s

v ; V Iv
) if v is not p-adic,

1

det
(
1− φvq−s

v ; Dpst(ρv)Iv
) if v is p-adic.

We put
L(ρ, s) =

∏
v∈MF,f

Lv(ρv, s),

if the product converges (when Re(s)� 0).
Remark 4.1.5. (1) One expects a meromorphic continuation of L(ρ, s); and functional

equations relating L(ρ, s) with L(ρ∨, 1− s). But this is a very difficult question. The
solution to this question is to first associate an automorphic representation Πρ to ρ,
and use the analytic properties of Πρ to deduce the properties of L(ρ, s).

(2) When ρ has finite image, we call ρ an Artin representation. In this case, we may
ignore the p-adic Hodge theory construction of Dpst(−) and simply use ρIvv in Nota-
tion 4.1.2(3).
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(3) When ρ has finite image, the meromorphic continuation of L(ρ, s) can be proved
using the meromorphic continuations of finite Hecke characters and Brauer induction
theorem.

We now list a few properties of the construction of general L-functions.

Lemma 4.1.6 (Comparison with Dirichlet L-function). Let η be a primitive Dirichlet char-
acter of conductor N . Then we may associate a Galois representation

η̃ : GalQ ↠ Gal(Q(ζN)/Q) ∼= (Z/NZ)× η−−→ C×.

We have L(η̃, s) = L(η−1, s).

Proof. To compare the two L-functions, we make explicit the map η̃:

η̃ : GalQ ↠ Gal(Q(ζN)/Q) (Z/NZ)× C×

geometric Frobenius φp p−1 η(p)−1.

∼=
η

Then we can make computation:

L(η̃, s) =
∏
p-N

1

1− η̃(φp)p−s
=

∏
p-N

1

1− η(p)−1p−s
= L(η−1, s).

□

Remark 4.1.7. Note that conversely, we can associate a primitive Dirichlet character to a
finite Galois character η̃. Somehow, for η̃, the primitive condition is not needed, and we may
read off the conductor from the “ramification data” of η̃.

Notation 4.1.8. Write µp∞ for the group of all p-power roots of unity. We denote the p-adic
cyclotomic character

χcyc : GalF ↠ Gal
(
F (µp∞)/F

)
↪→ Z×

p ,

characterized by the properties that, for any p-power roots of unity ζ and any σ ∈ Gal(F (µp∞)/F ),
we have

σ(ζ) = ζχcyc(σ).

In particular, for a place v - p, χcyc(φv) = q−1
v .

Sometimes, we abbreviate χcyc into Zp(1) or Qp(1). Put Zp(n) := Zp(1)
⊗n for n ≥ 0 and

Zp(−n) = Hom(Zp(n),Zp).
For a representation V of GalF as above, define V (n) := V ⊗Zp Zp(n).

Lemma 4.1.9. The L-functions for V and for V (n) are related as follows:

L(V (n), s) = L(V, n+ s).

Proof. We compute each finite L-factor: for a finite place v - p

Lv(V (n), s) =
1

det
(
1− φvq−s

v ; V (n)
) =

1

det
(
1− φvq−n

v q−s
v ; V

) = Lv(V, n+ s).

Taking product, we get L(V (n), s) = L(V, s+ n). □
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4.1.10. Reinterpretation of p-adic Dirichlet L-functions. In view of L-functions associated
to Galois representations, we give the following reinterpretation of the p-adic Dirichlet L-
functions.

Recall that for a primitive Dirichlet character η : (Z/NZ)× → Qalg,× with p - N and
N 6= 1, we may associate a Galois representation η̃ : Gal(Q(ζN)/Q) ∼= (Z/NZ)× η−−→ Qalg,×.

Theorem 3.4.1 says that there exists a p-adic measure µ{p}
η ∈ D0(Z×

p ,O) such that, for any
finite character ηp : (Z/prZ)× → Qalg,× ⊂ Q×

p and any n ∈ Z≥0, we have∫
Z×
p

ηp(x)x
ndµ{p}

η (x) = L{p}(ηηp,−n).

On the other hand, for each ηp and n we may form a p-adic representation

χηp,n := η̃pχ
n
cyc : Gal(Q(ζN)(µp∞)/Q)→ Q×

p ,

where η̃p is the Galois representation of Gal(Q(ζpr)/Q) associated to ηp.
In view of Lemma 4.1.6, we have

L{p}(ηηp,−n) = L{p}(η̃−1η̃−1
p ,−n) = L{p}(η̃−1η̃−1

p χ−n
cyc, 0) = L{p}(η̃−1χ−1

ηp,n, 0).

So maybe the correct formulation of p-adic Dirichlet L-function is: for a nontrivial Ga-
lois representation η̃ : GalQ → Qalg,× unramified at p (associated to a primitive Dirichlet
character η of prime-to-p conductor), the p-adic L-function associated to η̃ is

µη̃ := ι∗
(
µ
{p}
η−1

)
∈ D0(Gal(Q(µp∞)/Q),O),

where ι : Z×
p → Z×

p is x 7→ x−1. The interpolation property can be written as: for a p-adic
character χ : Gal(Q(µp∞)/Q)→ Q×

p of the form η̃pχ
−n
cyc with η̃p a finite character and n ≥ 0,∫

Z×
p

χ(x)dµη̃(x) = L(η̃χ, 0).

Properties 4.1.11. The L-functions associated to Galois representations enjoy the following
two additional properties:

(1) If ρ = ρ1 ⊕ ρ2, then L(ρ, s) = L(ρ1, s) · L(ρ2, s).
(2) If ρ : GalF → GLn(Qp) is a “nice” representation, then Ind

GalQ
GalF

ρ is a “nice” repre-
sentation of GalQ, then

L(ρ, s) = L
(
Ind

GalQ
GalF

ρ, s
)
.

Notation 4.1.12. For an ideal a ⊆ OF , write ||a|| := #(OF/a).

Example 4.1.13. Consider the trivial representation 1F : GalF → Q×
p , the associated

L-function is called the Dedekind zeta function:

ζF (s) = L(1F , s) =
∏

p prime ideal

1

1− ||p||−s
=

∑
a 6=0 ideal

1

||a||s
(Re(s) > 1).

A special case is when F = Q(ζN). In this case,

Ind
GalQ
GalF

1F
∼=

⊕
η:Gal(F/Q)→C×

η,
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(where the right hand side is the same as the direct sum over all primitive Dirichlet characters
of conductor M dividing N .) We have

ζF (s) =
∏

η:(Z/NZ)×→C×

L(η, s).

4.2. Analytic class number formula.

4.2.1. Functional equation for Dedekind ζ-function ζF (s). Assume that F has r1 real em-
beddings τ1, . . . , τr1 and r2 pairs of complex embeddings τr1+1, τ̄r1+1, . . . , τr1+r2 , τ̄r1+r2 . Recall
that ΓR(s) = π− s

2Γ( s
2
) and ΓC(s) = 2(2π)−sΓ(s). Define the complete Dedekind zeta-function

to be
ΛF (s) := ΓR(s)

r1ΓC(s)
r2 · ζF (s).

Then ΛF (s) admits a meromorphic continuation satisfying a functional equation

ΛF (s) = |∆F |
1
2
−sΛF (1− s),

where ∆F is the discriminant of F/Q.

Theorem 4.2.2 (Analytic class number formula). If F is a number field, then the Dedekind
zeta function ζF (s) has a simple pole at s = 1 and satisfies

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2 · RegF · hF

wF · |∆F |
1
2

,

where hF = #Cl(OF ) is the class number of F , wF = #µ(F ) with µ(F ) being the set of roots
of unity in F , RegF is the regulator of F (with precise definition below).

We will give the proof of this theorem in the case when F is a quadratic extension of Q,
and leave the general proof as an exercise.

Definition 4.2.3. Let F be a number field as above. The Dirichlet unit theorem says that
O×

F ' µ(F )× Zr1+r2−1. The regulator map is given by

regF : O×
F (Rr1+r2)sum=0

u
(
ci log |τi(u)|

)
i=1,...,r1+r2

where ci =
{
1 if τi is real
2 if τi is complex.

If u1, . . . , ur1+r2−1 is a set of generators of O×
F /µ(F ), then

RegF =
∣∣∣ det (ci log ∣∣τi(uj)∣∣)i,j=1,...,r1+r2−1

∣∣∣
(This is equivalent to, in an imprecise way, the volume of (Rr1+r2)sum=0/regF (O×

F ).

We think maybe a better formulation of the analytic class number formula is the following.

Proposition 4.2.4 (Analytic class number formula at s = 0). We have

lim
s→0

sr1+r2−1ζF (s) = −
RegF · hF

wF

.

This follows from Theorem 4.2.2 and the functional equation for Dedekind zeta function.
We leave the details to Exercise 4.4.1(1).
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4.3. Proof of analytic class number formula in the quadratic case. A more advanced
proof makes use of Tate’s thesis, but we present here a simpler proof.

4.3.1. Case of ζQ(s). Consider s→ 1+, up to a bounded number, we may replace the infinite
sum by integration:

ζQ(s) =
∞∑
n=1

1

ns
=

∫ ∞

1

1

xs
dx+O(1) =

x1−s

1− s

∣∣∣∣x=∞

x=1

+O(1) =
1

1− s
+O(1).

4.3.2. Setup. We will only treat the case when F is quadratic (separating the real quadratic
case and the imaginary quadratic case), and the general case may be viewed as a general-
ization of the two cases.

We write [c] to denote a class in Cl(OF ). Then we have

(4.3.2.1) ζF (s) =
∑

a 6=0 ideal

1

||a||s
=

∑
[c]∈Cl(OF )

∑
a∈[c]

1

||a||s
.

4.3.3. Proof of class number formula when F is imaginary quadratic. We first compute the
case when [c] is the set of principal ideals, which corresponds to

(
OF\{0}

)
/O×

F . (In this case
O×

F = µ(F ).) ∑
a principal ideal

1

||a||s
=

1

wF

∑
a∈OF \{0}

1

|Nm(a)|s
.

We view OF as a lattice in C, then the number of lattice of points with norm between R2

and (R + δR)
2 is 2

|∆F |1/2
· 2πR · δR. (It is easy to test this in the case when Z[

√
−D] which

has discriminant −4D and density of lattice points
√
D.)

x

y

R
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So we have
1

wF

∑
a∈OF \{0}

1

|Nm(a)|s
=

1

wF

∫ ∞

R=1

2

|∆F |1/2
(
2πR +O(1)

)
· 1

R2s
dR

=
2

wF |∆F |1/2
·
∫ ∞

R=1

( 2π

R2s−1
+
O(1)

R2s

)
dR

=
2

wF |∆F |1/2
·
(

2π

2− 2s
R2−2s

∣∣∣∞
R=1

+
1

1− 2s
R1−2s

∣∣∣∞
R=1

)
=

2

wF |∆F |1/2
· π

s− 1
+O(1).

Now for a general ideal class [c], fix an ideal Ic ∈ [c]. Then every genuine ideal in [c] takes
the form of Ic · (α) for α ∈ I−1

c \{0}. So by the same argument as above, we have∑
a∈[c]

1

||a||s
=

∑
α∈I−1

c \{0}

1

||Ic||s · (Nα)s

=
1

||Ic||
· 2

wF |∆F |1/2
· π

s− 1
· ||Ic||+O(1)

=
2

wF |∆F |1/2
· π

s− 1
+O(1).

Combining all above, we see that

ζF (s) =
∑

[c]∈Cl(OF )

∑
a∈[c]

1

||a||s
= hF ·

2π

wF |∆F |1/2
· 1

s− 1
+O(1).

This proves Theorem 4.2.2 when F is an imaginary quadratic field.

4.3.4. Proof of class number formula when F is real quadratic.

x

y

4.4. Exercises.

Exercise 4.4.1 (Volume of ideles class group versus residue of Dedekind zeta values). Let
F be a number field with r1 real embeddings and r2 pairs of complex embeddings. Let A×

F
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be the group of ideles and A×,1
F := {x ∈ A×

F | |x| = 1} be the subgroup of norm one elements.
We have stated (and proved in the quadratic case) of the analytic class number formula, for
the Dedekind zeta function ζF (s) at s = 1:

(4.4.1.1) lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2 · hFRegF

wF

√
|∆F |

,

where hF is the class number, RegF is the regulator for units of F , wF is the number of roots
of unity contained in F , and ∆F is the discriminant of F .

(1) Using the functional equation of Dedekind zeta function to deduce from (4.4.1.1) the
following analytic class number formula at s = 0:

lim
s→0

s−r1−r2+1ζF (s) = −
hF · RegF

wF

.

(2) Show that the right hand side of (4.4.1.1) can be interpreted as Vol(A×,1
F /F×), if we

provide the Haar measure on A×,1
F so that under the product decomposition A×

F =

A×,1
F × R× (where R× is provided with the measure dx

x
) admits the following Haar

measure:
• at a real place v of F , the Haar measure on F×

v is dx
|x| ,

• at a complex place v of F , the Haar measure on F×
v ' C× is 2dx∧dy

|x2+y2| =
2drdθ

r
,

• at a p-adic place v of F with different ideal dv ⊆ Fv, the Haar measure on F×
v is

so that volume of O×
Fv

is ||dv||−
1
2 , where ||dv|| = #(OFv/dv).

5. Iwasawa main conjecture

Exercise I
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