Fall 2024: Topics in Number Theory: Special Values of L-functions

Instructor: Liang Xiao (肖梁) E-mail: lxiao@bicmr.pku.edu.cn Meeting time: Tuesday 5-6 (odd weeks) and Thursday 7-8 Lecture room: Lecture Building #1, Room 204 (一教 204) Office hours: by appointment Webpage: http://bicmr.pku.edu.cn/~lxiao/24fall/24fall.htm

Goal of this course: The course will focus on the arithmetic properties of special values of L-functions. More precisely, we hope to cover the following aspects in this course:

- (1) Kubota–Leopoldt *p*-adic L-function.
- (2) Cyclotomic units and Euler system argument for Iwasawa Main Conjecture.
- (3) General definition of L-functions, and Tate thesis
- (4) Deligne's conjecture on special values of L-functions and periods, and periods of modular forms.
- (5) A quick introduction to Waldspurger formula and Gross–Zagier formula.
- (6) Introduction to Beilinson Conjecture, and examples.

I do not know of a good reference that covers all material. I will be hopefully latexing notes while posting hand-written notes.

Prerequisite:

- Very well versed with algebraic number theory, such as adeles and ideles, knows the statement of class field theory, and comfortable for talking about Galois cohomology.
- Expect to be quite familiar with Tate's thesis.
- Solid algebraic geometry (Hartshorne Chapter 2 and 3); some exposure to étale cohomology.
- Modular forms; better to have some exposure to adelic version, but not completely necessary.
- Reasonably familiar with elliptic curves, and some exposure to the concept of abelian varieties.

Grade Distribution:

Homeworks: 60%, due on Thursdays of Week 3, 6, 8, 10, 12, 14, 16, in total 7 times, with lowest grade dropped.

Take-home final exam: 40%, to be announced (probably one or two French-style long problems).

Homework: Homework problems will be posted on the course webpage. You are welcome and encouraged to work with other students on the problems, but you should write up your homework independently.

Lecture	Dates	Content	
1	9/10	Introduction and special values of Dirichlet L-functions (algebraicity)	
2	9/12	Kummer congruences and p -adic analysis over \mathbb{Z}_p	
3	9/19	$p\mbox{-}adic$ Dirichlet L-functions, and L-functions for Galois representations	
4	9/24	Analytic class number formula	
5	9/26	Cyclotomic units, regulators	
Happy National's Day!			
6	10/8	(φ, Γ) -modules and Galois cohomology.	
7	10/10	Coleman power series.	
8	10/17	Iwasawa Main Conjecture.	
9	10/22	Iwasawa Main Conjecture II.	
10	10/24	A light introduction to motives.	
11	10/31	Hodge structures and Deligne's conjecture	
12	11/5	Periods of Hecke characters, and p -adic analogue	
13	11/7	L-functions attached to modular forms, periods.	
14	11/14	Introduction to Waldspurger's formula? (Xiao away, sub by Yuan)	
15	11/19	Weak Mordell–Weil theorem for elliptic curves.	
16	11/21	Height of points on an elliptic curve.	
17	11/28	Introduction to Gross–Zagier's formula (LX away, sub by Yuan)	
18	12/3	Overflow	
19	12/5	Introduction to Beilinson's conjecture.	
20	12/12	Examples of Beilinson's conjecture: K_2 of modular curves	

Syllabus (Tentative)

21	12/17	Examples of Beilinson's conjecture: Rankin–Selberg case
22	12/19	Borel's regulator theorem
23	12/26	An overview of development on the study of special values of L-functions
	TBA	Final Exam