Topics in Number theory: Introduction to p-adic Hodge theory Exercise 1 (due on October 9)

Choose 5 out of 7 problems to submit (The problems are chronically ordered by the materials, not necessarily by difficulties. I do recommend to at least read all problems.)

Exercise 1.1 ("Canonical forms" of Weil–Deligne representations). Let K be a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_q . Let (r, N, V) be a Weil–Deligne representation.

- (1) (Optional) There is a well-defined Frobenius semisimplification (r^{ss}, N, V) such that for any $g \in Gal_K$, we have $r^{ss}(g) = r(g)^{ss}$. (Note: I only have an ugly proof of this.)
 - (2) Let $|\cdot|_K : \operatorname{Gal}_K \to \mathbb{C}^\times$ be the character $|g| = q^{\operatorname{val}}(g)$.

There are two building blocks for Frobenius semisimple Weil–Deligne representations: (a) a Frobenius semisimple representation $\rho: \mathcal{W}_K \to \mathrm{GL}(U)$ with trivial monodromy operator N=0; (b) $\mathrm{sp}(n)=\mathbb{C}^{\oplus n}=|\cdot|_K^{(1-n)/2}\oplus|\cdot|_K^{(3-n)/2}\oplus\cdots\oplus|\cdot|_K^{(n-1)/2}$ and

$$N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Then any Frobenius Weil–Deligne representation can be written (noncanonically) as a direct sum

$$(r,N) = \bigoplus_{i=1}^{r} (r_i,0) \otimes \operatorname{sp}(n_i),$$

where $r_i: W_K \to GL(U_i)$ is a continuous Frobenius semisimple representation of W_K and $n_i \in \mathbb{Z}_{\geq 1}$.

(It might be possible to get a general description of Weil–Deligne representations without the Frobenius semisimple condition.)

Exercise 1.2 (WD($\underline{-}$) is well defined). Let ℓ and p be two distinct prime numbers. Fix an isomorphism $\iota_{\ell}: \overline{\mathbb{Q}}_{\ell} \cong \mathbb{C}$. Let K be a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_q , and let Gal_K , W_K , I_K , and I_K^t denote the Galois group, Weil group, inertia subgroup, and the tame inertia quotient of K. We choose a geometric Frobenius element ϕ_K and a nontrivial homomorphism $t_{\ell}: \mathrm{I}_K^t \to \mathbb{Q}_{\ell}$. We choose an element τ of I_K such that $t_{\ell}(\tau) = 1$.

Let $\rho: \operatorname{Gal}_K \to \operatorname{GL}_n(\overline{\mathbb{Q}}_{\ell})$ be a continuous representation. Define

(1.2.1)
$$N := \frac{1}{mt_{\ell}(\tau)} \log(\rho(\tau)^m) \in \operatorname{End}(V)(-1),$$

for m sufficiently divisible (which then is independent of the choice of τ as long as $t_{\ell}(\tau) = 1$). Define the associated Weil–Deligne representation associated to ρ to be (r, N, V): for $x \in \mathcal{I}_K$,

$$r(\phi_K^a \cdot x) := \iota_\ell(\rho(\phi_K^a \cdot x) \exp(-t_\ell(x) \cdot N)).$$

(Here $V=\mathbb{C}^{\oplus n}$ is the space for the representation r.)

(1) Check that (r, N) is a Weil-Deligne representation, i.e. r is a representation of W_K , and for $g \in \operatorname{Gal}_K$, $r(g)Nr(g)^{-1} = q^{-\operatorname{val}(g)}N$, where $\operatorname{val}: W_K \to \phi_K^{\mathbb{Z}} \cong \mathbb{Z}$ is the natural map.

(2) Suppose that we choose another geometric Frobenius element ϕ'_K and $t': \mathrm{I}_K^{\mathrm{t}} \to \mathbb{Q}_\ell$ another nontrivial homomorphism. Then the new $\mathrm{WD}'(\rho)$ is isomorphic to $\mathrm{WD}(\rho)$. (But $\mathrm{WD}(\rho)$ depends on the isomorphism ι_ℓ .) (This will use part of Exercise 1.1.)

Exercise 1.3 (Weierstrass preparation theorem). Let (R, \mathfrak{m}) be a complete local ring. Consider a power series in one variable x over R: $f(x) = \sum_{n\geq 0} c_n x^n$ with $c_n \in R$. Suppose that

there exists some $s \geq 0$ such that $c_s \in R \backslash \mathfrak{m}$.

There exists a unique factorization:

$$f(x) = U(x) \cdot P(x),$$

where $U(x) \in R[x]^{\times}$ is a unit, and $P(x) \in R[x]$ is a monic polynomial such that $P(x) \equiv x^N$ modulo $\mathfrak{m}[x]$ for some N.

Exercise 1.4 (Uniqueness of extension of norms). Let K be a complete valued field. In class, we have defined a valuation on K^{alg} : if $\alpha \in K^{\text{alg}}$ is contained in a finite extension L of K, then

$$v(\alpha) = \frac{1}{[L:K]} v(N_{L/K}(\alpha)).$$

Show that any valuation on K^{alg} extending v(-) on K is equal to the one above.

Exercise 1.5 (Newton above Hodge). Let K be a complete valued field. Let $A = (a_{ij})$ be an $n \times n$ -matrix with values in K.

(1) The Hodge polygon of A is the convex hull of points

$$(m, \min\{v(\text{all } m \times m\text{-minors})\}), \qquad m \in \{1, \dots, n\},$$

denote by HP(A). Show that if $P, Q \in GL_n(\mathcal{O}_K)$, then HP(PAQ) = HP(A).

- (2) The Newton polygon NP(A) of A is defined to be the Newton polygon of the characteristic power series $\det(I_n At)$. Show that the Newton polygon of A lies above the Hodge polygon of A.
- (3) Suppose that A has Hodge polygon with slopes $r_1 \leq r_2 \leq \cdots \leq r_n$ (counted with multiplicity). By standard argument, show that A can be written as PDQ with $P,Q \in GL_n(\mathcal{O}_K)$ and $D = \operatorname{diag}\{d_1, \ldots, d_n\}$ a diagonal matrix such that $v(d_i) = r_i$.
- (4) Conversely, suppose that $r_1 \leq r_2 \leq \cdots \leq r_n$ are real numbers, and suppose that we have

$$v(a_{ij}) \ge r_i$$
, for $i, j \in \{1, \dots, n\}$.

Then HP(A) lies above the polygon with slopes r_1, r_2, \ldots, r_n . (In particular, NP(A) lies above this polygon with slopes r_1, r_2, \ldots, r_n .

Exercise 1.6 (Duality between Newton polygon and valuation polygon). Let $f(t) = \sum_{n \in \mathbb{Z}} a_n t^n$

is a formal Laurent series with values in K. Suppose that NP(f) has vertices whose x-coordinates tend to both $-\infty$ and ∞ .

Recall that for $r \in \mathbb{R}$, we define

$$v_r(f) := \inf_{n \in \mathbb{Z}} \left(v(a_n) + nr \right)$$

whenever it is defined (e.g. if $f \in \mathcal{H}(I)$, $v_r(f)$ is defined for $r \in I$.

- (1) Prove that $r \mapsto v_r(f)$ is a concave polygon.
- (2) Show that we may recover NP(f) from the polygon $r \mapsto v_r(f)$.

Exercise 1.7 (Bounded function with infinitely many zeros). Let $\mathbb{C}_p := \widehat{\mathbb{Q}_p^{\mathrm{alg}}}$. Construct a function $f = \sum_{n \geq 0} a_n t^n \in \mathcal{B}((0, +\infty])$, i.e. a bounded analytic function on the open unit disc that has infinitely many zeros on the open unit disc.