
Erratum

It was communicated to us by Fred Diamond, Payman Kassaei, and Shu Sasaki that our
proof of Proposition 3.19 in §4.9 is not correct as written. We thank them for pointing out
this mistake. A major issue is the use of local model argument in the proof of statement
(1) therein. In particular, it is not possible to trivialize Hτ and H′τ as stated so that the
trivialization Hτ ' O∧,⊕2V,y descends to O∧U ,x (this is a statement we implicitly used).1 We here
give a proof of the statement (1) in §4.9 using a crystallization argument to avoid the local
model language. A similar argument is given in [2, §7.1-7.2] with more details (in the case
when p is assumed to be unramified for their purposes).

Keep the notation as in § 4 of the original paper. The idea of the new proof lies in
(partially) untwisting the Frobenius factor morphism g : Ẏ ◦S,Sc → Ẏ ′S,Sc from Proposition 4.5,

where we recall that Y ′S,Sc :=
∏

τ∈S\θ(S) P(Hτ ) is a P1-power-bundle over ẊT. To rigorously
state the process of untwisting the partial Frobenius, we consider the following commutative
diagram of relative Frobenius morphisms:

(1) ẎS,Sc
FrY/X //

g

��

FrY

**
Ẏ

(p/X)
S,Sc

//

g(p)

��

g̃

xx

ẎS,Sc

g

��

Ẏ ′S,Sc
Fr′′P/X //

++

FrP

44Ỹ ′S,Sc
Fr′P/X // Ẏ

′(p/X)
S,Sc

//

��

Ẏ ′S,Sc

��

ẊT

FrX // ẊT,

where FrX , FrP, and FrY are the absolute Frobenius morphisms, the two squares on the right

are Cartesian (which define Ẏ
(p/X)
S,Sc and Ẏ

′(p/X)
S,Sc ), and FrY/X and Fr′P/X ◦Fr′′P/X are two relative

Frobenius morphisms. We define Ỹ ′S,Sc so that both Fr′P/X and Fr′′P/X are Frobenius factors

and Fr′P/X is the Frobenius on those P1 fibers which are labeled by τ ∈ S\θ(S) such that

τ = τ
(`)
p,j with ` = 1.

The following factorization result is the key.

Proposition 1. Keep the notation as in the paper. There is a natural morphism g̃ as in (1)
to make the diagram commute. Moreover, g̃ induces an injection on relative differentials.

(2) g̃∗Ω1
Ỹ ′
S,Sc/ẊT

→ Ω1

Ẏ
(p/X)
S,Sc /ẊT

.

Let us first show that this proposition implies the needed statement (1) in § 4.9 of the
original paper. Indeed, let η′T denote the generic point of ẊT and ηT the geometric generic

1Indeed, suppose this is possible (say in the case when p is completely inert in F/Q). Then we may choose
an isomorphism between O∧

V,y
∼= OJ(uτ )τ∈S, (vτ )τ∈ScK such that, when τ ∈ S (resp. τ ∈ Sc), the differential

sheaf ωτ (resp. ω′
τ ) is generated by uτe

(1)
τ + e

(2)
τ (resp. by e

′(1)
τ + vτe

′(2)
τ ) in the given local basis of the

trivialization. But this would imply that, modulo p, the differential sheaf ωτ when τ ∈ Sc is generated by

e
(1)
τ + τ($)vτe

(2)
τ ≡ e

(1)
τ , which would then imply the image of YS,Sc in XT is contained in a subvariety of

dimension #S (namely ωτ does not move), which contradicts for example Proposition 4.5.
1
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point of ẊT.
2 Then (2) implies that g̃η′T : Ẏ

(p/X)

S,Sc,η′T
→ Ỹ ′S,Sc,η′T

is a Frobenius factor and

(3) g̃∗Ω1
Ỹ ′
S,Sc,η′T

/η′T
→ Ω1

Ẏ
(p/X)

S,Sc,η′T
/η′T

is isomorphism. Let κη′T denote the residue field at η′T, and then the function field of Ỹ ′S,Sc,η′T is

injective to κη′T(x1, . . . , xn). The injectivity of (3) implies that the function field of Ẏ
(p/X)

S,Sc,η′T
is

contained in κperfη′T
(x1, . . . , xn), where κperfη′T

is the perfection of κη′T , or equivalently the residue

field at η′T. From this it is easy to see that the natural map

g̃redηT : (ẎS,Sc)
red
ηT
∼= (Ẏ

(p/X)
S,Sc )redηT → (Ỹ ′S,Sc)ηT

is an isomorphism, and therefore the map gredηT : (ẎS,Sc)
red
ηT → (Ẏ ′S,Sc)ηT is the base change

of Fr′P/X , namely the p-Frobenius on the factor labeled by τ = τa with a ≡ 1 mod e, and
isomorphism on all other factors.

Proof of Proposition 1. We first investigate the situation at τ ∈ S\θ(S) (where the projective
bundle is taken), we have the following commutative diagram of locally free coherent sheaves
over any S-point of ẎS,Sc (for a noetherian Fp-scheme S):

(4) Hτ

ψ∗τ //

Haτ
��

H ′
τ

φ∗τ //

Ha′τ
��

Hτ

Haτ
��

H (p)

θ−1τ

ψ
(p)∗
θ−1τ // H ′(p)

θ−1τ

φ
(p)∗
θ−1τ // H (p)

θ−1τ ,

where following the convention of this section set forth in the proof of Proposition 4.5, if
τ = τa with a 6≡ 1 mod e, we remove all the Frobenius twists on the modules at θ−1τ . The

condition θ−1τ ∈ Sc implies that ψ
(p)∗
θ−1τ (Im(Haτ )) = 0, so Im(Haτ ) = Im(φ

(p)∗
θ−1τ ).

Now, consider the situation of an S-point of Ẏ
(p/X)
S,Sc , then the composition S → Ẏ

(p/X)
S,Sc →

ẎS,Sc → ẊT factors through the Frobenius FrX : ẊT → ẊT. Then on this S, A admits

a Frobenius antecedent A(p−1). In particular, Hτ for each τ admits a canonical Frobenius

untwist H (p−1)
τ . Then the lower right part of the diagram (4) admits a Frobenius antecedent:

(5) H (p−1)
τ

Haτ

��
Hθ−1τ

ψ∗
θ−1τ // H ′

θ−1τ

φ∗
θ−1τ //

ζτ

66

Hθ−1τ ,

in which Im(Haτ ) = Im(φ∗θ−1τ ).
Claim: There is a natural functorial isomorphism

ζτ : H ′
θ−1τ

∼=−→

{
H (p−1)

τ when τ = τa with a ≡ 1 mod e

(H (p−1)
τ )(p) when τ = τa with a 6≡ 1 mod e,

so that the diagram (5) commutes.
Our argument is inspired by [1, Lemma 2.3] (which is similar to the crystallization process

in [2, Lemma 7.2.1]). We assume that τ = τ
(1)
p,j = τa with a ≡ 1 mod e (that is Haτ is

2This choice of notation is to be consistent with the original paper.
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induced by a Verschiebung morphism as opposed to multiplication by $), and the other case
is similar. Consider the jth factor of contravariant Dieudonné module H1

cris(−)p,j of the p-
divisible groups of abelian varieties over the crystalline site of S (relative to O), we upgrade
the diagram (5) above to a commutative diagram of crystals:

H̃ (p−1)
τ

H̃aτ
��

H1
cris(A)p,j

ψ∗p,j // H1
cris(A

′)p,j
φ∗p,j //

ζ̃τ

77

H1
cris(A)p,j,

where H̃ (p−1)
τ := $e−1

p H1
cris(A

(p−1))p,j and the morphism H̃aτ is induced by V/$e−1
p . This dia-

gram is related to (5) in terms of natural isomorphisms H1
cris(A

′)p,j/pH1
cris(A

′)p,j ∼= H1
dR(A′)p,j

andH1
cris(A)p,j/pH1

cris(A)p,j ∼= H1
dR(A)p,j. Through the morphisms H̃aτ and ϕ∗p,j, we may iden-

tify H̃aτ (H̃
(p−1)
τ )+$pH1

cris(A)p,j and φ∗p,jH1
cris(A

′)p,j+$pH1
cris(A)p,j as subsheaves ofH1

cris(A)p,j
corresponding to the preimage of Im(Haτ ) = Im(φ∗θ−1τ ) under the reduction

H1
cris(A)p,j � H1

dR(A)p,j � Hθ−1τ .

This in particular gives rise to an isomorphism of (OS)cris-modules

ζ̃τ : φp,j(H1
cris(A

′)p,j) +$pH1
cris(A)p,j ∼= H̃aτ (H̃

(p−1)
τ ) +$pH1

cris(A)p,j,

which induces an isomorphism ζτ : H ′
θ−1τ

∼=−→H (p−1)
τ , proving the Claim.

Now we define the morphism g̃ : Ẏ
(p/X)
S,Sc → Ỹ ′S,Sc to send an S-point of Ẏ

(p/X)
S,Sc discussed

above to a point of Ỹ ′S,Sc (over ẊT through an additional Frobenius morphism) represented
by the line bundles:

• ζτ (ω′θ−1τ ) ⊆H (p−1)
τ for τ ∈ S\θ(S) such that τ = τ

(1)
p,j ,

• ζτ (ω′θ−1τ ) = φ∗τ (H
′
τ ) ⊆Hτ for τ ∈ S\θ(S) such that τ = τ

(i)
p,j with i 6= 1.

Such defined morphism clearly makes the diagram (1) commute. To see that the induced
morphism (2) on differential forms is injective, we recall from [3, Theorem 2.9] and the proof
of Proposition 3.3 that

• Ω1
ẊT/O

is a successive extension of ωτ ⊗ (H(p−1)
τ /ωτ ), corresponding to deformations of

ωτ inside Hτ .
• Ω1

Ỹ ′
S,Sc/ẊT

is the direct sum of Lτ ⊗ (Hτ/Lτ ) for τ = τ
(`)
p,j ∈ S\θ(S) with ` 6= 1 and

Lτ⊗(H(p−1)
τ /Lτ ) for τ = τ

(1)
p,j ∈ S\θ(S), corresponding to deformations of the canonical

line bundle Lτ inside Hτ and Lτ inside H (p−1)
τ , respectively.

• Ω1

Ẏ
(p/X)
S,Sc /O

is a successive extension of ωτ ⊗ (Hτ/ωτ ) for τ /∈ Sc and ω′τ ⊗ (H′τ/ω′τ ) for

τ ∈ Sc, corresponding to deformations of ωτ inside Hτ and ω′τ inside H ′
τ , respectively.

The natural map g̃∗Ω1
Ỹ ′
S,Sc/ẊT

→ Ω1

Ẏ
(p/X)
S,Sc /ẊT

is induced by sending

• the deformation of ω′θ−1τ inside H ′
θ−1τ to the deformation of Lτ inside Hτ for τ =

τ
(`)
p,j ∈ S\θ(S) with ` 6= 1, and

• the deformation of ω′θ−1τ inside H ′
θ−1τ to the deformation of Lτ inside H (p−1)

τ for

τ = τ
(1)
p,j ∈ S\θ(S).
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By our construction above, this is an injection.3 �

Additional typos in Proposition 4.5 The beginning part of the proof of Proposition
4.5 contains a few typos.

• Line 2 of the second paragraph, “For τ ∈ T = S\θ(S), namely τ ∈ S and θ−1τ ∈ Sc”
should be replaced by “For τ ∈ T = θ(S)\S, namely τ ∈ Sc and θ−1τ ∈ S”.
• Line 2 after the diagram (4.5.2), θ−1τ ∈ Sc should be θ−1τ ∈ S; and Line 5 τ ∈ S

should be τ ∈ Sc.
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3Rigorously speaking, we need to work, Zariski locally, to trivialize the successive extensions consisting of
Ω1
ẊT/O

and Ω1
ẎS,Sc/O

above.
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