Erratum

It was communicated to us by Fred Diamond, Payman Kassaei, and Shu Sasaki that our proof of Proposition 3.19 in $\S 4.9$ is not correct as written. We thank them for pointing out this mistake. A major issue is the use of local model argument in the proof of statement (1) therein. In particular, it is not possible to trivialize \mathcal{H}_{τ} and $\mathcal{H}_{\tau}^{\prime}$ as stated so that the trivialization $\mathcal{H}_{\tau} \simeq \mathcal{O}_{\mathcal{V}, y}^{\wedge, \oplus 2}$ descends to $\mathcal{O}_{\mathcal{U}, x}$ (this is a statement we implicitly used) ${ }^{1}$ We here give a proof of the statement (1) in $\S 4.9$ using a crystallization argument to avoid the local model language. A similar argument is given in [2, §7.1-7.2] with more details (in the case when p is assumed to be unramified for their purposes).

Keep the notation as in $\S 4$ of the original paper. The idea of the new proof lies in (partially) untwisting the Frobenius factor morphism $g: \dot{Y}_{\mathrm{S}, \mathrm{s}^{c}}^{\circ} \rightarrow \dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{\prime}$ from Proposition 4.5, where we recall that $Y_{\mathrm{S}, \mathrm{S}^{c}}^{\prime}:=\prod_{\tau \in \mathrm{S} \backslash \theta(\mathrm{S})} \mathbb{P}\left(\mathcal{H}_{\tau}\right)$ is a \mathbb{P}^{1}-power-bundle over \dot{X}_{T}. To rigorously state the process of untwisting the partial Frobenius, we consider the following commutative diagram of relative Frobenius morphisms:

where $\mathrm{Fr}_{X}, \mathrm{Fr}_{\mathbb{P}}$, and Fr_{Y} are the absolute Frobenius morphisms, the two squares on the right are Cartesian (which define $\dot{Y}_{\mathrm{s}, \mathrm{s}^{c}}^{(p / X)}$ and $\dot{Y}_{\mathrm{s}, \mathrm{s}^{c}}^{\prime(p / X)}$), and $\operatorname{Fr}_{Y / X}$ and $\operatorname{Fr}_{\mathbb{P} / X}^{\prime} \circ \operatorname{Fr}_{\mathbb{P} / X}^{\prime \prime}$ are two relative Frobenius morphisms. We define $\tilde{Y}_{\mathrm{s}, \mathrm{S}^{c}}^{\prime}$ so that both $\operatorname{Fr}_{\mathbb{P} / X}^{\prime}$ and $\operatorname{Fr}_{\mathbb{P} / X}^{\prime \prime}$ are Frobenius factors and $\operatorname{Fr}_{\mathbb{P} / X}^{\prime}$ is the Frobenius on those \mathbb{P}^{1} fibers which are labeled by $\tau \in \mathrm{S} \backslash \theta(\mathrm{S})$ such that $\tau=\tau_{\mathfrak{p}, j}^{(\ell)}$ with $\ell=1$.

The following factorization result is the key.
Proposition 1. Keep the notation as in the paper. There is a natural morphism \tilde{g} as in (1) to make the diagram commute. Moreover, \tilde{g} induces an injection on relative differentials.

$$
\begin{equation*}
\tilde{g}^{*} \Omega_{\tilde{\mathrm{Y}}_{\mathrm{s}, \mathrm{c}}^{\prime} / \dot{X}_{\mathrm{T}}}^{1} \rightarrow \Omega_{\dot{Y}_{\mathrm{s}, \mathrm{sc}}^{(p / X)} / \dot{X}_{\mathrm{T}}}^{1} . \tag{2}
\end{equation*}
$$

Let us first show that this proposition implies the needed statement (1) in $\S 4.9$ of the original paper. Indeed, let $\eta_{\mathrm{T}}^{\prime}$ denote the generic point of \dot{X}_{T} and η_{T} the geometric generic

[^0]point of $\dot{X}_{\mathrm{T}} \cdot 2^{2}$ Then (2) implies that $\tilde{g}_{\eta_{\mathrm{T}}^{\prime}}: \dot{Y}_{\mathrm{S}, \mathrm{S}^{c}, \eta_{\mathrm{T}}^{\prime}}^{(p / X)} \rightarrow \tilde{Y}_{\mathrm{S}, \mathrm{S}^{c}, \eta_{\mathrm{T}}^{\prime}}^{\prime}$ is a Frobenius factor and
\[

$$
\begin{equation*}
\tilde{g}^{*} \Omega_{\tilde{\mathrm{Y}}_{\mathrm{s}, \mathrm{~s}^{c}, \eta_{\mathrm{T}}^{\prime}}^{\prime}}^{1} / \eta_{\mathrm{T}}^{\prime} \rightarrow \Omega_{\dot{Y}_{\mathrm{s}, \mathrm{~s},}^{(p)}, \eta_{\mathrm{T}}}^{1} / \eta_{\mathrm{T}}^{\prime} \tag{3}
\end{equation*}
$$

\]

is isomorphism. Let $\kappa_{\eta_{\mathrm{T}}^{\prime}}$ denote the residue field at $\eta_{\mathrm{T}}^{\prime}$, and then the function field of $\tilde{Y}_{\mathrm{S}, \mathrm{s}^{c}, \eta_{\mathrm{T}}^{\prime}}^{\prime}$ is injective to $\kappa_{\eta_{\mathrm{T}}^{\prime}}\left(x_{1}, \ldots, x_{n}\right)$. The injectivity of (3) implies that the function field of $\dot{Y}_{\mathrm{s}, \mathrm{s}^{c}, \eta_{\mathrm{T}}^{\prime}}^{(p / X)}$ is contained in $\kappa_{\eta_{\mathrm{T}}^{\prime}}^{\text {perf }}\left(x_{1}, \ldots, x_{n}\right)$, where $\kappa_{\eta_{\mathrm{T}}^{\prime}}^{\text {perf }}$ is the perfection of $\kappa_{\eta_{\mathrm{T}}^{\prime}}$, or equivalently the residue field at $\eta_{\mathrm{T}}^{\prime}$. From this it is easy to see that the natural map

$$
\tilde{g}_{\eta_{\mathrm{T}}}^{\mathrm{red}}:\left(\dot{Y}_{\mathrm{S}, \mathrm{~S}^{c}}\right)_{\eta_{\mathrm{T}}}^{\mathrm{red}} \cong\left(\dot{Y}_{\mathrm{S}, \mathrm{~S}^{c}}^{(p / X)}\right)_{\eta_{\mathrm{T}}}^{\mathrm{red}} \rightarrow\left(\tilde{Y}_{\mathrm{S}, \mathrm{~S}^{c}}^{\prime}\right)_{\eta_{\mathrm{T}}}
$$

is an isomorphism, and therefore the map $g_{\eta_{\mathrm{T}}}^{\mathrm{red}}:\left(\dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}\right)_{\eta_{\mathrm{T}}}^{\mathrm{red}} \rightarrow\left(\dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{\prime}\right)_{\eta_{\mathrm{T}}}$ is the base change of $\operatorname{Fr}_{\mathbb{P} / X}^{\prime}$, namely the p-Frobenius on the factor labeled by $\tau=\tau_{a}$ with $a \equiv 1 \bmod e$, and isomorphism on all other factors.

Proof of Proposition 1. We first investigate the situation at $\tau \in \mathrm{S} \backslash \theta(\mathrm{S})$ (where the projective bundle is taken), we have the following commutative diagram of locally free coherent sheaves over any S-point of $\dot{Y}_{\mathrm{S}, \mathrm{s}^{c}}\left(\right.$ for a noetherian \mathbb{F}_{p}-scheme S):

where following the convention of this section set forth in the proof of Proposition 4.5, if $\tau=\tau_{a}$ with $a \not \equiv 1 \bmod e$, we remove all the Frobenius twists on the modules at $\theta^{-1} \tau$. The condition $\theta^{-1} \tau \in \mathrm{~S}^{c}$ implies that $\psi_{\theta^{-1} \tau}^{(p) *}\left(\operatorname{Im}\left(\mathrm{Ha}_{\tau}\right)\right)=0$, so $\operatorname{Im}\left(\mathrm{Ha}_{\tau}\right)=\operatorname{Im}\left(\phi_{\theta^{-1} \tau}^{(p) *}\right)$.

Now, consider the situation of an S-point of $\dot{Y}_{\mathrm{S}, \mathrm{s}^{c}}^{(p / X)}$, then the composition $S \rightarrow \dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{(p)} \rightarrow$ $\dot{Y}_{\mathrm{S}, \mathrm{S}^{c}} \rightarrow \dot{X}_{\mathrm{T}}$ factors through the Frobenius $\mathrm{Fr}_{X}: \dot{X}_{\mathrm{T}} \rightarrow \dot{X}_{\mathrm{T}}$. Then on this S, A admits a Frobenius antecedent $A^{\left(p^{-1}\right)}$. In particular, \mathscr{H}_{τ} for each τ admits a canonical Frobenius untwist $\mathscr{H}_{\tau}^{\left(p^{-1}\right)}$. Then the lower right part of the diagram (4) admits a Frobenius antecedent:

in which $\operatorname{Im}\left(\mathrm{Ha}_{\tau}\right)=\operatorname{Im}\left(\phi_{\theta^{-1} \tau}^{*}\right)$.
Claim: There is a natural functorial isomorphism

$$
\zeta_{\tau}: \mathscr{H}_{\theta^{-1} \tau}^{\prime} \cong \begin{cases}\mathscr{H}_{\tau}^{\left(p^{-1}\right)} & \text { when } \tau=\tau_{a} \text { with } a \equiv 1 \bmod e \\ \left(\mathscr{H}_{\tau}^{\left(p^{-1}\right)}\right)^{(p)} & \text { when } \tau=\tau_{a} \text { with } a \not \equiv 1 \bmod e,\end{cases}
$$

so that the diagram (5) commutes.
Our argument is inspired by [1, Lemma 2.3] (which is similar to the crystallization process in [2, Lemma 7.2.1]). We assume that $\tau=\tau_{\mathfrak{p}, j}^{(1)}=\tau_{a}$ with $a \equiv 1 \bmod e$ (that is Ha_{τ} is

[^1]induced by a Verschiebung morphism as opposed to multiplication by ϖ), and the other case is similar. Consider the j th factor of contravariant Dieudonné module $\mathcal{H}_{\text {cris }}^{1}(-)_{\mathfrak{p}, j}$ of the \mathfrak{p} divisible groups of abelian varieties over the crystalline site of S (relative to \mathcal{O}), we upgrade the diagram (5) above to a commutative diagram of crystals:

where $\widetilde{\mathscr{H}}_{\tau}^{\left(p^{-1}\right)}:=\varpi_{\mathfrak{p}}^{e-1} \mathcal{H}_{\text {cris }}^{1}\left(A^{\left(p^{-1}\right)}\right)_{\mathfrak{p}, j}$ and the morphism $\widetilde{\mathrm{Ha}}_{\tau}$ is induced by $V / \varpi_{\mathfrak{p}}^{e-1}$. This diagram is related to (5) in terms of natural isomorphisms $\mathcal{H}_{\text {cris }}^{1}\left(A^{\prime}\right)_{\mathfrak{p}, j} / p \mathcal{H}_{\text {cris }}^{1}\left(A^{\prime}\right)_{\mathfrak{p}, j} \cong H_{\mathrm{dR}}^{1}\left(A^{\prime}\right)_{\mathfrak{p}, j}$ and $\mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j} / p \mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j} \cong H_{\mathrm{dR}}^{1}(A)_{\mathfrak{p}, j}$. Through the morphisms $\widetilde{\mathrm{Ha}}{ }_{\tau}$ and $\varphi_{\mathfrak{p}, j}^{*}$, we may identify $\widetilde{\mathrm{Ha}}_{\tau}\left(\widetilde{\mathscr{H}}_{\tau}^{\left(p^{-1}\right)}\right)+\varpi_{\mathfrak{p}} \mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j}$ and $\phi_{\mathfrak{p}, j}^{*} \mathcal{H}_{\text {cris }}^{1}\left(A^{\prime}\right)_{\mathfrak{p}, j}+\varpi_{\mathfrak{p}} \mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j}$ as subsheaves of $\mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j}$ corresponding to the preimage of $\operatorname{Im}\left(\operatorname{Ha}_{\tau}\right)=\operatorname{Im}\left(\phi_{\theta^{-1} \tau}^{*}\right)$ under the reduction
$$
\mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j} \rightarrow \mathcal{H}_{\mathrm{dR}}^{1}(A)_{\mathfrak{p}, j} \rightarrow \mathscr{H}_{\theta^{-1} \tau} .
$$

This in particular gives rise to an isomorphism of $\left(\mathcal{O}_{S}\right)_{\text {cris }}$-modules

$$
\tilde{\zeta}_{\tau}: \phi_{\mathfrak{p}, j}\left(\mathcal{H}_{\text {cris }}^{1}\left(A^{\prime}\right)_{\mathfrak{p}, j}\right)+\varpi_{\mathfrak{p}} \mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j} \cong \widetilde{\mathrm{Ha}}_{\tau}\left(\widetilde{\mathscr{H}}_{\tau}^{\left(p^{-1}\right)}\right)+\varpi_{\mathfrak{p}} \mathcal{H}_{\text {cris }}^{1}(A)_{\mathfrak{p}, j}
$$

which induces an isomorphism $\zeta_{\tau}: \mathscr{H}_{\theta^{-1} \tau}^{\prime} \stackrel{ }{\rightrightarrows} \mathscr{H}_{\tau}^{\left(p^{-1}\right)}$, proving the Claim.
Now we define the morphism $\tilde{g}: \dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{(p / X)} \rightarrow \tilde{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{\prime}$ to send an S-point of $\dot{Y}_{\mathrm{S}, \mathrm{S}^{c}}^{(p / X)}$ discussed above to a point of $\tilde{Y}_{\mathrm{S}, \mathrm{s}^{c}}^{\prime}$ (over \dot{X}_{T} through an additional Frobenius morphism) represented by the line bundles:

- $\zeta_{\tau}\left(\omega_{\theta^{-1} \tau}^{\prime}\right) \subseteq \mathscr{H}_{\tau}^{\left(p^{-1}\right)}$ for $\tau \in \mathrm{S} \backslash \theta(\mathrm{S})$ such that $\tau=\tau_{\mathfrak{p}, j}^{(1)}$,
- $\zeta_{\tau}\left(\omega_{\theta^{-1} \tau}^{\prime}\right)=\phi_{\tau}^{*}\left(\mathscr{H}_{\tau}^{\prime}\right) \subseteq \mathscr{H}_{\tau}$ for $\tau \in \mathrm{S} \backslash \theta(\mathrm{S})$ such that $\tau=\tau_{\mathfrak{p}, j}^{(i)}$ with $i \neq 1$.

Such defined morphism clearly makes the diagram (1) commute. To see that the induced morphism (2) on differential forms is injective, we recall from [3, Theorem 2.9] and the proof of Proposition 3.3 that

- $\Omega_{\dot{X}_{\mathrm{T}} / \mathcal{O}}^{1}$ is a successive extension of $\omega_{\tau} \otimes\left(\mathcal{H}_{\tau}^{\left(p^{-1}\right)} / \omega_{\tau}\right)$, corresponding to deformations of ω_{τ} inside \mathscr{H}_{τ}.
- $\Omega_{\tilde{Y}_{\mathrm{S}, \mathrm{sc}}^{\prime} / \dot{X}_{\mathrm{T}}}^{1}$ is the direct sum of $\mathcal{L}_{\tau} \otimes\left(\mathcal{H}_{\tau} / \mathcal{L}_{\tau}\right)$ for $\tau=\tau_{\mathfrak{p}, j}^{(\ell)} \in \mathrm{S} \backslash \theta(\mathrm{S})$ with $\ell \neq 1$ and $\mathcal{L}_{\tau} \otimes\left(\mathcal{H}_{\tau}^{\left(p^{-1}\right)} / \mathcal{L}_{\tau}\right)$ for $\tau=\tau_{\mathfrak{p}, j}^{(1)} \in \mathrm{S} \backslash \theta(\mathrm{S})$, corresponding to deformations of the canonical line bundle \mathcal{L}_{τ} inside \mathscr{H}_{τ} and \mathcal{L}_{τ} inside $\mathscr{H}_{\tau}^{\left(p^{-1}\right)}$, respectively.
- $\Omega_{\dot{Y}_{\mathrm{s}, \mathrm{sc}}^{(p / X)} / \mathcal{O}}^{1}$ is a successive extension of $\omega_{\tau} \otimes\left(\mathcal{H}_{\tau} / \omega_{\tau}\right)$ for $\tau \notin \mathrm{S}^{c}$ and $\omega_{\tau}^{\prime} \otimes\left(\mathcal{H}_{\tau}^{\prime} / \omega_{\tau}^{\prime}\right)$ for $\tau \in \mathrm{S}^{c}$, corresponding to deformations of ω_{τ} inside \mathscr{H}_{τ} and ω_{τ}^{\prime} inside $\mathscr{H}_{\tau}^{\prime}$, respectively. The natural map $\tilde{g}^{*} \Omega_{\tilde{Y}_{\mathrm{S}, \mathrm{s}^{c}}^{\prime} / \dot{X}_{\mathrm{T}}}^{1} \rightarrow \Omega_{\dot{Y}_{\mathrm{S}, \mathrm{sc}}^{(p / X)} / \dot{X}_{\mathrm{T}}}^{1}$ is induced by sending
- the deformation of $\omega_{\theta^{-1} \tau}^{\prime}$ inside $\mathscr{H}_{\theta^{-1} \tau}^{\prime}$ to the deformation of \mathcal{L}_{τ} inside \mathscr{H}_{τ} for $\tau=$ $\tau_{\mathfrak{p}, j}^{(\ell)} \in \mathrm{S} \backslash \theta(\mathrm{S})$ with $\ell \neq 1$, and
- the deformation of $\omega_{\theta^{-1} \tau}^{\prime}$ inside $\mathscr{H}_{\theta^{-1} \tau}^{\prime}$ to the deformation of \mathcal{L}_{τ} inside $\mathscr{H}_{\tau}^{\left(p^{-1}\right)}$ for $\tau=\tau_{\mathfrak{p}, j}^{(1)} \in \mathrm{S} \backslash \theta(\mathrm{S})$.

By our construction above, this is an injection. ${ }^{3}$
Additional typos in Proposition 4.5 The beginning part of the proof of Proposition 4.5 contains a few typos.

- Line 2 of the second paragraph, "For $\tau \in \mathrm{T}=\mathrm{S} \backslash \theta(\mathrm{S})$, namely $\tau \in \mathrm{S}$ and $\theta^{-1} \tau \in \mathrm{~S}^{c}$ " should be replaced by "For $\tau \in \mathrm{T}=\theta(\mathrm{S}) \backslash \mathrm{S}$, namely $\tau \in \mathrm{S}^{c}$ and $\theta^{-1} \tau \in \mathrm{~S}$ ".
- Line 2 after the diagram (4.5.2), $\theta^{-1} \tau \in \mathrm{~S}^{c}$ should be $\theta^{-1} \tau \in \mathrm{~S}$; and Line $5 \tau \in \mathrm{~S}$ should be $\tau \in \mathbf{S}^{c}$.

References

[1] J. de Jong, The moduli spaces of principally polarized abelian varieties with $\Gamma_{0}(p)$-level structure, Journal of Algebraic Geometry 2 (1993), 667-688.
[2] F. Diamond, P. Kassaei, and S. Sasaki, A mod p Jacquet-Langlands relation and Serre filtration via the geometry of Hilbert modular varieties: Splicing and dicing, arXiv:2001.00530.
[3] D. Reduzzi and L. Xiao, Partial Hasse invariants on splitting models of Hilbert modular varieties, Ann. Sci. de l'ENS 50 (2017), 579-607.

[^2]
[^0]: ${ }^{1}$ Indeed, suppose this is possible (say in the case when p is completely inert in F / \mathbb{Q}). Then we may choose
 sheaf ω_{τ} (resp. ω_{τ}^{\prime}) is generated by $u_{\tau} e_{\tau}^{(1)}+e_{\tau}^{(2)}$ (resp. by $e_{\tau}^{\prime(1)}+v_{\tau} e_{\tau}^{\prime(2)}$) in the given local basis of the trivialization. But this would imply that, modulo p, the differential sheaf ω_{τ} when $\tau \in S^{c}$ is generated by $e_{\tau}^{(1)}+\tau(\varpi) v_{\tau} e_{\tau}^{(2)} \equiv e_{\tau}^{(1)}$, which would then imply the image of $Y_{\mathrm{S}, \mathrm{S}^{c}}$ in X_{T} is contained in a subvariety of dimension \#S (namely ω_{τ} does not move), which contradicts for example Proposition 4.5.

[^1]: ${ }^{2}$ This choice of notation is to be consistent with the original paper.

[^2]: ${ }^{3}$ Rigorously speaking, we need to work, Zariski locally, to trivialize the successive extensions consisting of $\Omega_{\dot{X}_{\mathrm{T}} / \mathcal{O}}^{1}$ and $\Omega_{\dot{\mathrm{Y}}_{\mathrm{s}, \mathrm{sc}} / \mathcal{O}}^{1}$ above.

