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Curve counting on abelian surfaces and threefolds
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Abstract

We study the enumerative geometry of algebraic curves on abelian surfaces and three-
folds. In the abelian surface case, the theory is parallel to the well-developed study
of the reduced Gromov–Witten theory of K3 surfaces. We prove complete results in
all genera for primitive classes. The generating series are quasi-modular forms of pure
weight. Conjectures for imprimitive classes are presented. In genus 2, the counts in all
classes are proven. Special counts match the Euler characteristic calculations of the
moduli spaces of stable pairs on abelian surfaces by Göttsche–Shende. A formula for
hyperelliptic curve counting in terms of Jacobi forms is proven (modulo a transversality
statement).

For abelian threefolds, complete conjectures in terms of Jacobi forms for the gen-
erating series of curve counts in primitive classes are presented. The base cases make
connections to classical lattice counts of Debarre, Göttsche, and Lange–Sernesi. Further
evidence is provided by Donaldson–Thomas partition function computations for abelian
threefolds. A multiple cover structure is presented. The abelian threefold conjectures
open a new direction in the subject.

1. Introduction

1.1 Vanishings

Let A be a complex abelian variety of dimension d. The Gromov–Witten invariants of A in
genus g and class β ∈ H2(A,Z) are defined by integration against the virtual class of the moduli
space of stable maps Mg,n(A, β),〈

τa1(γ1) · · · τan(γn)
〉A
g,β

=

∫
[Mg,n(A,β)]vir

ev∗1(γ1)ψa11 · · · ev∗n(γn)ψann ;

see [PT14] for an introduction. (Here, the domain of a stable map is always taken here to be
connected.) However, for abelian varieties of dimension d > 2, the Gromov–Witten invariants
often vanish for two independent reasons. Fortunately, both can be controlled. The result is a
meaningful and non-trivial enumerative geometry of curves in A.
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Curve counting on abelian surfaces and threefolds

The first source of vanishing is the obstruction theory of stable maps. For dimensions d > 2,
the cohomology H2,0(A,C) = H0

(
A,Ω2

A

)
does not vanish and yields a trivial quotient of the

obstruction sheaf. As a consequence, the virtual class vanishes [KL13] for non-zero classes β.

An alternative view of the first vanishing can be obtained by deformation invariance. A ho-
mology class β ∈ H2(A,Z) is a curve class if β is represented by an algebraic curve on A. The
Gromov–Witten invariants vanish if β is not a curve class since then the moduli space Mg,n(A, β)
is empty. After generic deformation of A, every non-zero curve class β acquires a part of
H2,0(A,C)∨ and is no longer the class of an algebraic curve. By deformation invariance, the
Gromov–Witten invariants of A then necessarily vanish for all non-zero β.

Second, an independent source of vanishing arises from the action of the abelian variety
A on the moduli space Mg,n(A, β) by translation: most stable maps f : C → A appear in d-
dimensional families. Integrands which are translation invariant almost always lead to vanishing
Gromov–Witten invariants. We must therefore impose a d-dimensional condition on the moduli
space which picks out a single or finite number of curves in each translation class.

Curve classes on A are equivalent to divisor classes on the dual abelian variety Â. Every
curve class β ∈ H2(A,Z) has a type(d1, . . . , ddimA) , di > 0 , obtained from the standard divisor
theory of Â. (If A = E1 × · · · × Ed is the product of elliptic curves Ei, the class β =

∑
i di[Ei]

has type (d1, . . . , ddimA). See Section 2.2 for a full discussion.) A curve class β is non-degenerate
if di > 0 for all i. Otherwise, β is a degenerate curve class. The degenerate case is studied by
reducing the dimension of A. (A detailed discussion of the degenerate case is given in Section 2.5.
In the introduction, we focus on the non-degenerate case.)

Various techniques have been developed in recent years to address the first vanishing. The
result in the non-degenerate case is a reduced virtual class [Mg,n(A, β)]red with dimension in-
creased by h2,0(A). Integrals against the reduced class are invariant under deformations of A for
which β stays algebraic. Up to translation, we expect the family of genus g curves in class β to
be of dimension

vdimMg(A, β) + h2,0(A)− d = (d− 3)(1− g) +
d(d− 1)

2
− d = (d− 3)

(d
2

+ 1− g
)
. (1.1)

Hence, for abelian varieties of dimension 1, 2, or 3, we expect families (modulo translation) of
dimension 2g − 3, g − 2, or 0, respectively.

For abelian varieties of dimension d > 4, the reduced virtual dimension (1.1) is non-negative
only if

g 6
d

2
+ 1 6 d− 1 .

In the non-degenerate case, a generic abelian variety A admits no proper abelian subvariety and
thus admits no map from a curve of genus less than d. Hence, all invariants vanish.

The Gromov–Witten theory of elliptic curves has been completely solved by Okounkov and
Pandharipande in [OP06a, OP06b]. Some special results are known about abelian surfaces [BL99,
Deb99, Göt98, Ros14]. We put forth here several results and conjectures concerning the complete
Gromov–Witten theory of abelian surfaces and threefolds.

1.2 Abelian surfaces

1.2.1 Basic curve counting. Let A be an abelian surface, and let β ∈ H2(A,Z) be a curve
class of type (d1, d2) with d1, d2 > 0. The moduli space

Mg,n(A, β)FLS ⊂Mg,n(A, β)
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is the closed substack of Mg,n(A, β) parameterizing maps with image in a fixed linear system
(FLS) on A. Given a curve C in class β, the FLS condition naturally picks out (d1d2)2 elements
in the translation class of C. The FLS moduli space carries a reduced virtual fundamental class
[KT14, MP13, STV15] [

Mg(A, β)FLS
]red

of virtual dimension g − 2.

Define λk to be the Chern class λk = ck(E) of the Hodge bundle E→ Mg,n(A, β) with fiber
H0(C,ωC) over the moduli point [f : C → A] ∈Mg,n(A, β).

There are no genus 0 or 1 curves on a general abelian surface A. The most basic genus g > 2
Gromov–Witten invariants of A are

NFLS
g,β =

∫
[Mg(A,β)FLS]red

(−1)g−2λg−2 . (1.2)

The integrand (−1)g−2λg−2 corresponds to the natural deformation theory of curves in A when
considered inside a Calabi–Yau threefold. The invariants (1.2) are therefore precisely the analogs
of the genus g− 2 Gromov–Witten invariants of K3 surfaces which appear in the Katz–Klemm–
Vafa formula; see [MP13, MPT10, PT16].

By deformation invariance, NFLS
g,β depends only on the type (d1, d2) of β. We write

NFLS
g,β = NFLS

g,(d1,d2) .

We have the following fully explicit conjecture for these counts.

Conjecture A. For all g > 2 and d1, d2 > 0,

NFLS
g,(d1,d2) = (d1d2)2 2(−1)g−2

(2g − 2)!

∑
k| gcd(d1,d2)

∑
m| d1d2/k2

k2g−1m2g−3 .

The right-hand side incorporates a multiple cover rule which expresses the invariants in
imprimitive classes in terms of primitive invariants.1 The multiple cover structure is discussed in
Section 3.3.

Theorem 1.1. Conjecture A is true in the following cases:

(i) for all g in case β is primitive,

(ii) for all β in case g = 2.

For part (i) concerning primitive β, our method relies on a degeneration formula for Gromov–
Witten invariants of abelian surfaces and calculations in [MPT10]. Via a version of the Gromov–
Witten/Pairs correspondence [PT09], the primitive case also yields an independent proof of
the Euler characteristic calculations of relative Hilbert schemes of points by Göttsche and
Shende [GS15].

For part (ii) concerning genus 2, the proof is reduced by a method of Debarre [Deb99],
Göttsche [Göt98], and Lange–Sernesi [LS02a] to a lattice count in abelian groups. Our results
reveal a new and surprising multiple cover structure in these counts.

Conjecture A is parallel to the full Katz–Klemm–Vafa (KKV) conjecture for K3 surfaces.
Part (i) of Theorem 1.1 is parallel to the primitive KKV conjecture proven in [MPT10]. Part (ii) is

1The class is primitive if and only if gcd(d1, d2) = 1 (or, equivalently, the class can be deformed to type (1, d));
see Section 2.2.
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Curve counting on abelian surfaces and threefolds

parallel to the full Yau–Zaslow conjecture for rational curves on K3 surfaces proven in [KMPS10].
While our proof of part (i) involves methods parallel to those appearing in the proof of the
primitive KKV conjecture, our proof of part (ii) is completely unrelated to the (much more
complicated) geometry used in the proof of the full Yau–Zaslow conjecture.

The full Katz–Klemm–Vafa conjecture is proven in [PT16]. However, most cases of Conjec-
ture A remain open.

1.2.2 Point insertions for primitive classes. Let p ∈ H4(A,Z) be the class of a point. Define
the λ-twisted Gromov–Witten invariants with k point insertions by

NFLS
g,k,(d1,d2) =

∫
[Mg,k(A,β)FLS]red

(−1)g−2−kλg−2−k

k∏
i=1

ev∗i (p) ,

where β is a curve class of type (d1, d2). Define the function

S(z, τ) = −
∑
d>1

∑
m|d

d

m

(
pm − 2 + p−m

)
qd ,

considered as a formal power series in the variables p = e2πiz and q = e2πiτ .

Theorem 1.2. After setting u = 2πz, we have∑
g>2

∑
d>1

NFLS
g,k,(1,d)u

2g−2qd = q
d

dq

(
S(z, τ)k+1

k + 1

)
.

For k = 0, by definition, NFLS
g,0,(1,d) = NFLS

g,(1,d). Hence, by Theorem 1.2,∑
g>2

∑
d>1

NFLS
g,(1,d)u

2g−2qd = q
d

dq
S(z, τ) ,

which is a restatement of the formula of Conjecture A for the classes (1, d). Theorem 1.2 special-
izes in the k = 0 case to the primitive part of Theorem 1.1.

1.2.3 Quasi-modular forms. Let γ1, . . . , γn ∈ H∗(A,Q) be cohomology classes. The primitive
descendent potential of A with insertions τa1(γ1), . . . , τan(γn) is defined2 by

FAg (τa1(γ1) · · · τan(γn)) =
∑
d>0

〈
τa1(γ1) · · · τan(γn)

〉A,red

g,(1,d)
qd ,

where the coefficients on the right-hand side denote the reduced invariants of A:〈
τa1(γ1) · · · τan(γn)

〉A,red

g,β
=

∫
[Mg,n(A,β)]red

n∏
i=1

ev∗i (γi)ψ
ai
i .

The ring QMod of holomorphic quasi-modular forms (of level 1) is the free polynomial algebra
in the Eisenstein series E2(τ), E4(τ), and E6(τ):

QMod = Q[E2, E4, E6] .

2Unlike in the FLS setting, the degenerate type (1, 0) is included here.
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(The Eisenstein series are defined by E2k(τ) = 1 − (4k/B2k)
∑

m|dm
2k−1qd, where B2k is the

Bernoulli number.) The ring QMod carries a grading by weight,

QMod =
⊕
k>0

QMod2k ,

where E2k has weight 2k. Let

QMod62k ⊂ QMod

be the linear subspace of quasi-modular forms of weight at most 2k.

The series vanish in g = 0. For g > 1 and arbitrary insertions, we have the following result.

Theorem 1.3. The series FAg (τa1(γ1) · · · τan(γn)) is the Fourier expansion in q = e2πiτ of a quasi-
modular form of weight at most 2(g − 2) + 2n,

FAg (τa1(γ1) · · · τan(γn)) ∈ QMod62(g−2)+2n .

A sharper formulation of Theorem 1.3 specifying the weight appears in Theorem 5.1.

1.2.4 Hyperelliptic curves. A non-singular curve C of genus g > 2 is hyperelliptic if C admits
a degree 2 map C → P1. A stable curve C is hyperelliptic if [C] ∈Mg is in the closure of the locus
of non-singular hyperelliptic curves. (The closure can be described precisely via the theory of
admissible covers [HM82].) An irreducible hyperelliptic curve C of genus g on an abelian surface A
is the image of a stable map f : Ĉ → C ⊂ A satisfying the following two conditions:

• Ĉ is an irreducible stable hyperelliptic curve of genus g;

• f : Ĉ → C is birational.

By [Pir89], for any abelian surface A and curve class β, the number of irreducible hyperelliptic
curves of genus g in a fixed linear system of class β is finite.3 We write hA,FLS

g,β for this finite count.

Unlike all other invariants considered in the paper, hA,FLS
g,β is defined by classical counting.

Since every genus 2 curve is hyperelliptic, for generic A and β of type (1, d), we have

hA,FLS
2,β = d2

∑
m|d

m

by the genus 2 part of Theorem 1.1. The following result calculates the genus 3 hyperelliptic
counts in generic primitive classes.

Proposition 1.4. For a generic abelian surface A with a curve class β of type (1, d),

hA,FLS
3,β = d2

∑
m|d

m(3m2 + 1− 4d)

4
.

Let Hg be the stack fundamental class of the closure of non-singular hyperelliptic curves
inside Mg. By [FP05], the class Hg is tautological of codimension g − 2 (see [FP13] for an
introduction to tautological classes on the moduli spaces of curves). While the restriction of Hg
to Mg is a known multiple of λg−2, a closed formula for Hg on Mg in terms of the standard
generators of the tautological ring is not known.

3On the other hand, generic abelian varieties of dimension at least 3 contain no hyperelliptic curve at all; see [Pir89].
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For β of type (d1, d2), we define a virtual count of hyperelliptic curves in class β by

HFLS
g,(d1,d2) =

∫
[Mg(A,β)FLS]red

π∗(Hg) , (1.3)

where π is the forgetful map π : Mg(A, β) → Mg. Because the integral (1.3) is deformation
invariant, the left side depends only upon g and (d1, d2).

For irreducible curve classes β of type (1, d) on an abelian surface A, consider the following
property:

(†) Every irreducible curve in P1 ×A of class

(2, β) = 2
[
P1
]

+ β ∈ H2

(
P1 ×A,Z

)
is non-singular.

We will prove property (†) for curves of genus 2 in case A and β are generic. Together with the
explicit expression [HM82] for H3 ∈ H2

(
M3,Q

)
, this implies Proposition 1.4. The existence of

classes β of type (1, d) satisfying (†) is not known for most d, but is expected generically for
dimension reasons.

Define the Jacobi theta function [Cha85]

K(z, τ) =
iϑ1(z, τ)

η(τ)3
= iu exp

(∑
k>1

(−1)kB2k

2k(2k)!
E2k(τ)u2k

)
, (1.4)

where u = 2πz.

Theorem 1.5. Let β be an irreducible class of type (1, d) on an abelian surface A satisfying (†).
Then the following hold:

(i)
∑
g>2

hA,FLS
g,β (2 sin(u/2))2g+2 =

∑
g>2

HFLS
g,(1,d)u

2g+2 .

(ii) After the change of variables u = 2πz and q = e2πiτ , we have∑
g>2

HFLS
g,(1,d)u

2g+2 = Coeffqd

[(
q
d

dq

)2 K(z, τ)4

4

]
,

where Coeffqd denotes the coefficient of qd.

Enumerative results on hyperelliptic curves via Gromov–Witten theory were first obtained
for P2 by Graber [Gra01] using the Hilbert scheme of points Hilb2(P2). The hyperelliptic curve
counts on abelian surfaces were first studied by Rose [Ros14] using the orbifold Gromov–Witten
theory of Sym2(A) and the geometry of the Kummer surface. Rose derives his results from
the crepant resolution conjecture (CRC) [BG09, Rua06] and certain geometric genericity as-
sumptions. While our approach is similar, the closed formula (ii) for HFLS

g,(1,d) via the theta func-

tion K(z, τ) is new.

Proposition 1.4 for hA,FLS
3,β and the formula of Theorem 1.5 for hA,FLS

g,β in higher genus (obtained
by combining parts (i) and (ii)) do not match Rose’s results. The errors in Rose’s genus 3 counts
can be repaired to agree with Proposition 1.4. We hope that the CRC approach will be able to
arrive exactly at the formula of Theorem 1.5 for hA,FLS

g,β .

The values of hA,FLS
g,β in low genus and degree are presented in Table 1. The distribution of the

non-zero values in Table 1 matches precisely the results of Knutsen, Lelli-Chiesa, and Mongardi
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g
d 1 2 3 4 5 6 7 8 9 10

2 1 12 36 112 150 432 392 960 1053 1800
3 0 6 90 456 1650 4320 9996 20640 36774 67500
4 0 0 9 192 1425 6732 23814 68352 173907 387900
5 0 0 0 4 150 1656 10486 48240 174474 539200
6 0 0 0 0 0 36 735 6720 41310 191400
7 0 0 0 0 0 0 0 96 1620 14700
8 0 0 0 0 0 0 0 0 0 100

Table 1. The first values for the counts hA,FLS
g,β of hyperelliptic curves of genus g and type (1, d)

in a FLS of a generic abelian surface A as predicted by Theorem 1.5

in [KLCM17, Theorem 1.6]: hA,FLS
g,β is non-zero if and only if

(g − 1) +

⌊
g − 1

4

⌋(
(g − 1)− 2

⌊
g − 1

4

⌋
− 2

)
6 d . (1.5)

The entries for (g, d) = (4, 3) and (g, d) = (5, 4) have recently been confirmed in [BS17, BO17].

1.3 Abelian threefolds

1.3.1 Donaldson–Thomas theory. Let X be an abelian threefold, and let β ∈ H2(X,Z) be
a curve class. The Hilbert scheme of curves

Hilbn(X,β) = {Z ⊂ X | [Z] = β, χ(OZ) = n}

parameterizes 1-dimensional subschemes of class β with holomorphic Euler characteristic n. The
group X acts on Hilbn(X,β) by translation.

If n 6= 0, no assumption on β is made. If n = 0, we assume that β is not of type (d, 0, 0) up to
permutation. Then, the action of X has finite stabilizers and the stack quotient Hilbn(X,β)/X
is a Deligne–Mumford stack.

We consider here two numerical invariants of Hilbn(X,β)/X, the topological Euler charac-
teristic

D̂T
X

n,β = e
(

Hilbn(X,β)/X
)

and the reduced Donaldson–Thomas invariant of X defined as the Behrend function weighted
Euler characteristic

DTXn,β = e
(

Hilbn(X,β)/X, ν
)

=
∑
k∈Z

k · e
(
ν−1(k)

)
.

While the Behrend function

ν : Hilbn(X,β)/X → Z
is integer valued, the topological Euler characteristic e is taken in the orbifold sense and so may
be a rational number. Hence,

DTXn,β ∈ Q , D̂T
X

n,β ∈ Q .

By results of Gulbrandsen [Gul13], we know that DTXn,β is invariant under deformations of the
pair (X,β) if n 6= 0. For n = 0, Gulbrandsen’s method breaks down, but deformation invariance

is still expected. The numbers D̂T
X

n,β are not expected to be deformation invariant.
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By deformation equivalence, we may compute DTXn,β after specialization to the product geo-

metry X = A × E. We compute D̂T
X

n,β for the product geometry, and we conjecture a simple

relationship there between DTXn,β and D̂T
X

n,β. We then obtain a formula for DTXn,β.

Let A be a generic abelian surface carrying a curve class βd′ of type (1, d′) with d′ > 0, and
let E be a generic elliptic curve. Consider the abelian threefold X = A× E. The curve class

(βd′ , d) = βd′ + d[E] ∈ H2(X,Z)

is of type (1, d′, d).

The following result determines the invariants D̂T
X

n,(βd′ ,d) in the first two non-trivial cases
d′ = 1 and d′ = 2.

Let K be the theta function which already appeared in Section 1.2.4,

K(p, q) =
(
p1/2 − p−1/2

) ∏
m>1

(1− pqm)(1− p−1qm)

(1− qm)2
.

Theorem 1.6. For the topological Euler characteristic theory, we have

(i)
∑
d>0

∑
n∈Z

D̂T
X

n,(β1,d) p
nqd = K(p, q)2 ,

(ii)
∑
d>0

∑
n∈Z

D̂T
X

n,(β2,d) p
nqd = K(p, q)4 ·

(
1

2
+

3p

(1− p)2
+
∑
d>1

∑
k|d

k ·
(

3
(
pk + p−k

)
qd + 12q2d

))
.

Assuming Conjecture D in Section 7.6, we obtain the following result for the invariants
DTXn,(βd′ ,d) in the cases d′ = 1 and d′ = 2.

Consider the Weierstrass elliptic function

℘(p, q) =
1

12
+

p

(1− p)2
+
∑
d>1

∑
m|d

m
(
pm − 2 + p−m

)
qd

expanded in the region |p| < 1.

Corollary* 1.7. Assume that Conjecture D holds. Then we have

(i)
∑
d>0

∑
n∈Z

DTXn,(β1,d) (−p)nqd = −K(p, q)2 ,

(ii)
∑
d>0

∑
n∈Z

DTXn,(β2,d)(−p)
nqd = −3

2
K(p, q)4℘(p, q)− 3

8
K
(
p2, q2

)2
.

Part (i) of Corollary* 1.7 verifies an earlier prediction of BPS counts on abelian threefolds
by Maldacena, Moore, and Strominger [MMS99].

Theorem 1.6 concerns the Hilbert schemes of curves onX. The Euler characteristics associated
with the Hilbert scheme of points of X (via the generalized Kummer construction) have been
calculated recently by Shen [She15], proving a conjecture of Gulbrandsen [Gul13].

1.3.2 Gromov–Witten theory. Let X be an abelian threefold, and let β be a curve class of
type (d1, d2, d3) with d1, d2 > 0. We consider curves of genus g > 2.

The translation action of X on Mg(X,β) has finite stabilizer. Hence, Mg(X,β)/X is a
Deligne–Mumford stack. In Section 8, we use methods of Kiem and Li [KL13] to construct a
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reduced virtual class
[
Mg(X,β)/X

]red
on Mg(X,β)/X of dimension 0. We define the reduced

quotient Gromov–Witten invariants of X by

Ng,β =

∫
[Mg(X,β)/X]red

1 .

By construction, Ng,β is deformation invariant and hence depends only on g and the type
(d1, d2, d3) of β. We write

Ng,β = Ng,(d1,d2,d3) .

The number Ng,β is a virtual count of translation classes of genus g curves of class β in X. In
Section 8, we show that Ng,β determines the full reduced descendent Gromov–Witten theory
of X in genus g and class β.

The following conjecture relates the Gromov–Witten invariants Ng,β to the Donaldson–
Thomas invariants DTXn,β defined above. Define the generating series

ZGW
β (u) =

∑
g>2

Ng,βu
2g−2 and ZDT

β (y) =
∑
n∈Z

DTXn,β y
n .

Conjecture B. The series ZDT
β (y) is the Laurent expansion of a rational function in y, and we

have

ZDT
β (y) = ZGW

β (u)

after the variable change y = −eiu.

Conjecture B is a Gromov–Witten/Donaldson–Thomas correspondence for reduced theories
[MNOP06, OP16]. In conjunction with part (i) of Corollary* 1.7 and the expansion (1.4), Con-
jecture B determines the invariants Ng,(1,1,d) for all d > 0 by the formula∑

d>0

∑
g>2

Ng,(1,1,d)u
2g−2qd = −K2(z, τ)|y=−e2πiz ,q=e2πiτ

=
(
y + 2 + y−1

) ∏
m>1

(1 + yqm)2(1 + y−1qm)2

(1− qm)4
.

To capture the invariants Ng,(1,d′,d) for higher d′, we conjecture an additional structure gov-
erning the counting. Let

f(d1,d2,d3)(u) =
∑
g>2

Ng,(d1,d2,d3)u
2g−2 .

The following multiple cover rule expresses the invariants of type (1, d′, d) in terms of those of
type (1, 1, d).

Conjecture C. For all d′, d > 0, we have

f(1,d′,d)(u) =
∑

k| gcd(d′,d)

1

k
f(

1,1,d′d/k2
)(ku) .

Conjecture C matches the counts of genus 3 curves by the lattice method of [Deb99, Göt98,
LS02a]. The deepest support for Conjecture C is a highly non-trivial match with part (ii) of
Corollary* 1.7. (Recently, further evidence has been obtained in [OS16a].)

Taken together, Corollary* 1.7 and Conjectures B and C determine the invariants Ng,β for
all primitive classes β (by definition, the class is primitive if and only if it can be deformed to
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type (1, d′, d); see Section 2.2). The discussion is parallel to [OP16, Conjecture A] concerning
the virtual enumeration of curves on K3×E in classes (β, d) where β ∈ H2(K3,Z) is primitive.
The latter has been computed for 〈β, β〉 ∈ {−2, 0} in Donaldson–Thomas theory in [Bry15]. The
proof of Theorem 1.6 in Section 7 closely follows the strategy of [Bry15].

For Theorem 1.6 and Conjecture B, the Hilbert scheme of curves can be replaced by the
moduli space of stable pairs [PT09]. For technical aspects of the proof of Theorem 1.6, ideal
sheaves are simpler, but there is no fundamental difference in the arguments required here.

A multiple cover formula for BPS counts in classes (1, d, d′) was proposed in [MMS99]. How-
ever, the formula in [MMS99] is different from ours and does not match the genus 3 counts or
Corollary* 1.7.

An extension of Conjecture C to all curve classes is discussed in Section 8.6.

1.4 Plan of the paper

In Section 2, we recall several classical facts concerning divisors and curves on abelian varieties.
Polarized isogenies, which play a central role in the enumeration of low-genus curves, are reviewed.
Reduced virtual classes are discussed in Section 2.4. Degenerate curves classes are analyzed in
Section 2.5.

Part I of the paper (Sections 3–6) concerns the enumeration of curves on abelian surfaces A.
In Section 3, the genus 2 part of Theorem 1.1 is proven. In Section 4, the proofs of Theo-
rems 1.1 and 1.2 for primitive classes are completed. A connection with the Euler characteristic
calculations of stable-pairs moduli spaces on A by Göttsche and Shende [GS15] is discussed in
Section 4.7. The quasi-modularity of the primitive descendent potentials of A is studied in Sec-
tion 5, where a refinement of Theorem 1.3 is proven. A parallel refined quasi-modularity result for
the reduced Gromov–Witten theory of K3 surfaces is presented in Section 5.6. The enumeration
of hyperelliptic curves on A and the proof of Theorem 1.5 are given in Section 6.

Part II of the paper (Sections 7–8) concerns the enumeration of curves on abelian threefoldsX.
In Section 7, the topological and Behrend weighted Euler characteristics of the Hilbert scheme
of curves in A × E are studied. For d′ ∈ {1, 2}, the topological Euler characteristic theory
is calculated and Theorem 1.6 is proven (except for genus 3 lattice counts, which appear in
Section 8.4). Conjecture D relating the two theories is presented in Section 7.6. In Section 8, the
foundations of the quotient Gromov–Witten theory are discussed and the full descendent theory
is expressed in terms of the invariants Ng,(d1,d2,d3). The relationship between Theorem 1.6 and
Conjectures B and C is studied in Section 8.5. Finally, a multiple cover formula for imprimitive
classes is proposed in Section 8.6.

2. Abelian varieties

2.1 Overview

We review here some basic facts about divisor classes and curve classes on abelian varieties. A
standard reference for complex abelian varieties is [BL04]. A treatment of polarized isogenies
is required for the lattice counting in Sections 3 and 8.4. Using results of Kiem–Li [KL13], we
define reduced virtual classes on the moduli spaces of stable maps to abelian varieties. Finally,
we show that the (reduced) Gromov–Witten theory of abelian varieties of arbitrary dimensions
is determined by the (reduced) theories in dimensions up to 3.

407



J. Bryan, G. Oberdieck, R. Pandharipande and Q. Yin

2.2 Curve classes

Let V = Cn. Let Λ ⊂ V be a rank 2n lattice for which A = V/Λ is an n-dimensional compact
complex torus. Let L be a holomorphic line bundle on A. The first Chern class c1(L) ∈ H2(A,Z)
induces a Hermitian form H : V × V → C and an alternating form E = ImH : Λ × Λ → Z. By
the elementary divisor theorem, there exists a symplectic basis of Λ in which E is given by the
matrix (

0 D
−D 0

)
,

where D = Diag(d1, . . . , dn) with integers di > 0 satisfying d1 | d2 | · · · | dn. The tuple (d1, . . . , dn)
is uniquely determined by L (in fact by c1(L)) and is called the type of L.

A polarization on A is a first Chern class c1(L) with positive-definite Hermitian form H (in
particular, di > 0). The polarization is principal if di = 1 for all i. The moduli space of polarized
n-dimensional abelian varieties of a fixed type is irreducible of dimension n(n+ 1)/2.

Let β ∈ H2(A,Z) be a curve class on A. The class corresponds to

β̂ = c1

(
L̂
)
∈ H2

(
Â,Z

)
,

where Â = Pic0(A) is the dual complex torus of A and L̂ is a line bundle on Â. We define the
type (d1, . . . , dn) of β to be the type of L̂. The class β is primitive if and only if d1 = 1. For
abelian surfaces, we may view β as either a curve class or a divisor class: the resulting types are
the same.

If β is of type (d1, . . . , dn) with di > 0 for all i, then β̂ is a polarization on Â. Hence, all curve
classes of a fixed type (d1, . . . , dn) with di > 0 for all i are deformation equivalent.

If di = 0 for some i, then we say that β is of degenerate type. Write k = max{i | di 6= 0}. By
[BL04, Theorem 3.3.3], there exist a subtorus B ⊂ Â of dimension n− k with quotient map

p : Â → Ā = Â/B

and a polarization

β̄ = c1

(
L̄
)
∈ H2

(
Ā,Z

)
of type (d1, . . . , dk) such that β̂ = p∗(β̄). The deformation of β is then governed by the defor-
mation of β̄. As a result, curve classes of a fixed type (d1, . . . , dk, 0, . . . , 0) are also deformation
equivalent.

Let A be the product of n elliptic curves E1 × · · · ×En. For integers a1, . . . , an > 0, consider
the curve class

β = a1[E1] + · · ·+ an[En] ∈ H2(A,Z) .

The type (d1, . . . , dn) of β is given by the rank and the invariant factors of the abelian group
associated with (a1, . . . , an):

n⊕
i=1

Z/ai ∼= Zm ⊕
k⊕
j=1

Z/d′j .

Here, k,m 6 n and

(d1, . . . , dn) = (1, . . . , 1︸ ︷︷ ︸
n−k−m

, d′1, . . . , d
′
k, 0, . . . , 0︸ ︷︷ ︸

m

) .

Later, we shall also say that β is of type (a1, . . . , an) without requiring a1|a2| · · · |an.
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Two tuples (a1, . . . , an) and (b1, . . . , bn) are deformation equivalent if and only if
n⊕
i=1

Z/ai ∼=
n⊕
i=1

Z/bi .

The primitivity of β is determined by gcd(a1, . . . , an).

2.3 Polarized isogenies

The following discussion is based on [Deb99, Göt98, LS02a]. Let f : C → A be a map from a
non-singular curve of genus g. Suppose that the curve class β = f∗[C] is of type (d1, . . . , dn) with
di > 0 for all i. The map f factors as

C
aj−→ J

π−→ A ,

where J is the Jacobian of C and aj is the Abel–Jacobi map, defined up to translation by J . By
duality, π corresponds to

π̂ : Â → J such that β̂ = π̂∗θ ,

where θ is the theta divisor class on J (here, we identify J with Ĵ). When g = n, the map π̂ is
a polarized isogeny.

More generally, consider the isogeny

φ
β̂

: Â → ̂̂
A ∼= A , x 7→ t∗xL̂⊗ L̂−1 ,

where β̂ = c1(L̂) for some line bundle L̂ and tx : Â→ Â is the translation by x. The finite kernel
of φ

β̂
admits a non-degenerate multiplicative alternating form

〈 , 〉 : Ker(φ
β̂
)×Ker(φ

β̂
) → C∗ ,

called the commutator pairing. By [BL04, Corollary 6.3.5], there is a bijective correspondence
between the following two sets:

• polarized isogenies from (Â, β̂) to principally polarized abelian varieties (B, θ),

• maximal totally isotropic subgroups of Ker(φ
β̂
).

The cardinality of both sets depends only on the type (d1, . . . , dn) of β and is denoted by
ν(d1, . . . , dn). In fact, under a suitable basis of Λ̂, we have

Ker(φ
β̂
) ∼= (Z/d1 × · · · × Z/dn)2 , (2.1)

and in terms of standard generators e1, . . . , en, f1, . . . , fn of (2.1),

〈ek, f`〉 = eδk` 2πi/dk .

The number ν(d1, . . . , dn) can be computed as follows.

Lemma 2.1 (Debarre [Deb99]). We have

ν(d1, . . . , dn) =
∑

K<Z/d1×···×Z/dn

# Homsym
(
K, K̂

)
, (2.2)

where K̂ = Hom(K,C∗) and Homsym stands for symmetric homomorphisms.

A straightforward analysis yields

ν(1, . . . , 1, d) = σ(d) =
∑
k|d

k . (2.3)
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A list of values of ν(d1, . . . , dn) can be found in [LS02a], but some of the entries are incorrect.
For example, the number ν(2, 4) should be 39 and not 51.

The counts of polarized isogenies are closely related to the counts of the lowest-genus curves
on abelian surfaces and threefolds. Moreover, this lattice method is also important in counting
higher-genus curves in a class of type (1, 2, d); see Sections 3 and 8.4.

2.4 Reduced virtual classes

Let A be an abelian variety of dimension n > 2, and let β ∈ H2(A,Z) be a curve class of type

(d1, . . . , dk, 0, . . . , 0︸ ︷︷ ︸
m

)

with di > 0 for all i. Here, k > 0, m > 0, and k +m = n.

By the discussion in Section 2.2, there exist a subtorus A′ ⊂ A of dimension k and a curve
class β′ ∈ H2(A′,Z) of type (d1, . . . , dk) such that β is the push-forward of β′. Write

π : A→ A′′ = A/A′

for the quotient map.

Consider the moduli space of stable maps Mg(A, β). Using the cosection localization method
of Kiem–Li [KL13], we define a (maximally) reduced virtual class[

Mg(A, β)
]red

on Mg(A, β). The case with marked points is done similarly. The result provides a foundation
for the reduced Gromov–Witten theory of abelian varieties.

By [KL13, Section 6], every holomorphic 2-form θ ∈ H0(A,Ω2
A) induces a map

σθ : ObMg(A,β) → OMg(A,β) ,

where ObMg(A,β) is the obstruction sheaf of Mg(A, β).

Lemma 2.2. The map σθ is trivial if θ ∈ π∗H0
(
A′′,Ω2

A′′
)

and surjective otherwise.

Proof. Let [f : C → A] ∈Mg(A, β) be a stable map in class β. After translation, we may assume
Im(C) ⊂ A′.

By [KL13, Proposition 6.4], the map σθ is trivial at [f ] if and only if the composition

TCreg

df−→ f∗TA|Creg

f∗θ̂−−→ f∗ΩA|Creg (2.4)

is trivial. Here, Creg is the regular locus of C and θ̂ : TA → ΩA is the map induced by θ. Since
Im(C) ⊂ A′, it is clear that (2.4) is trivial if θ ∈ π∗H0(A′′,Ω2

A′′).

For the surjectivity statement, we identify the tangent space TA,x at x ∈ A with TA,0A by
translation. Since β′ is of type (d1, . . . , dk) with di > 0, the curve Im(C) generates A′ as a group.
By [Deb05, Lemma 8.2], there exists an open dense subset U ⊂ Im(C)reg such that TA′,0A′ is
spanned by TIm(C)reg,x for x ∈ U . It follows that for any θ ∈ H0(A,Ω2

A) \ π∗H0(A′′,Ω2
A′′), there

exists a point x ∈ U with (2.4) non-trivial at x.

Hence, by taking a basis of the quotient H0(A,Ω2
A)/π∗H0(A′′,Ω2

A′′), we obtain a surjective
map

σ : ObMg(A,β) → O
⊕r(k,m)

Mg(A,β)
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with

r(k,m) =

(
k +m

2

)
−
(
m

2

)
=
k(k − 1)

2
+ km .

Then, by the construction of [KL13], the map σ yields a reduced virtual class [Mg(A, β)]red of
dimension

vdimMg(A, β) + r(k,m) = (k +m− 3)(1− g) +
k(k − 1)

2
+ km .

2.5 Gromov–Witten theory in degenerate curve classes

We now explore the possibilities of obtaining non-trivial reduced Gromov–Witten invariants for A
and β. By deformation invariance, the invariants depend only on the type

(d1, . . . , dk, 0, . . . , 0︸ ︷︷ ︸
m

) .

We may then assume A = A′×A′′ with A′ generic among abelian varieties carrying a curve class
of type (d1, . . . , dk) and A′′ a product of m elliptic curves, A′′ = E1×· · ·×Em. By the genericity
of A′, there are no stable maps of genus less than k = dimA′ in class β. Hence, all invariants in
genus less than k vanish.

We list four cases according to the number k of non-zero entries in the type of β.

Case k = 1. For g > 1, stable maps [f : C → A] ∈Mg(A, β) come in m-dimensional families
via the translation action of A′′. On the other hand, the translation by the elliptic curve A′

fixes Im(f). The expected dimension modulo the translation by A′′ is

vdimMg(A, β) + r(1,m)−m = (m− 2)(1− g) .

Integrals over the reduced class [Mg(A, β)]red can be evaluated by eliminating the E-factors.
In each step from

A′ × E1 × · · · × Ei+1 to A′ × E1 × · · · × Ei ,
we find a surjective map E∨ → O, where E is the Hodge bundle. We then obtain a copy of the
top Chern class of Ker

(
E∨ → O

)
, which is (−1)g−1λg−1. This follows from a close analysis of

the obstruction sheaf and the definition of the reduced class. In the end, we arrive at integrals
over [Mg(A

′, β′)]vir with
(
(−1)g−1λg−1

)m
in the integrand.

For m = 1 (dimA = 2), the theory becomes the study of λg−1-integrals on the elliptic
curve A′. Such Hodge integrals may be expressed [FP00] in terms of the descendent theory of an
elliptic curve [OP06a, OP06b].

For m > 2 (dimA > 3), all invariants in genus g > 2 vanish. By Mumford’s relation for g > 2,
we have λ2

g−1 = 2λgλg−2, and λg annihilates the virtual fundamental class of non-constant maps
to the elliptic curve A′. In genus 1, all invariants are multiples of∫

[M1(A′,β′)]vir
1 =

σ(d1)

d1
(2.5)

for β′ of type (d1).

Case k = 2. For g > 2, stable maps in Mg(A, β) come in (2 + m)-dimensional families via
the translation action of A. The expected dimension modulo translation is

vdimMg(A, β) + r(2,m)− (2 +m) = (m− 1)(2− g) .
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Similarly to the k = 1 case, by eliminating each E-factor, we find a surjective map E∨ → O⊕2

and obtain a copy of the top Chern class of Ker
(
E∨ → O⊕2

)
, which is (−1)g−2λg−2.

The reduced Gromov–Witten theory of the abelian surface A′ is the subject of Part I of the
paper. For m = 1 (dimA = 3), we find integrals of the form∫

[Mg(A′,β′)]red
(−1)g−2λg−2 · · · ,

where the dots stand for further terms in the integrand. Our interest in λg−2-integrals on an
abelian surface (see (1.2) and Theorem 1.1) is directly motivated by Gromov–Witten theory in
degenerate curve classes on abelian threefolds.

For m > 2 (dimA > 4), all invariants in genus g > 3 vanish for dimension reasons. We are
then reduced to the genus 2 invariants of A′ and β′.

Case k = 3. Similarly to the k = 2 case, for g > 3, the expected dimension modulo
translation is

vdimMg(A, β) + r(3,m)− (3 +m) = m(3− g) .

Here, by eliminating each E-factor, we find a surjective map E∨ → O⊕3 and obtain a copy of
the top Chern class of Ker

(
E∨ → O⊕3

)
, which is (−1)g−3λg−3.

The reduced Gromov–Witten theory of the abelian threefold A′ is studied in Part II of the
paper. For m > 1 (dimA > 4), all invariants in genus g > 4 vanish for dimension reasons. We
are reduced to the genus 3 invariants of A′ and β′.

Case k > 4. For g > k, the expected dimension modulo translation is

vdimMg(A, β) + r(k,m)− (k +m) = (k − 3)

(
k

2
+ 1− g

)
+m(k − g) . (2.6)

The right-hand side of (2.6) is always negative for g > k > 4. Hence, all invariants vanish.

In conclusion, the (reduced) Gromov–Witten theory of abelian varieties of arbitrary dimen-
sions is completely determined by the (reduced) Gromov–Witten theories of abelian varieties of
dimension d with 1 6 d 6 3. The analysis here justifies our focus on these low dimensions.

Furthermore, for abelian varieties of dimension at least 4, only genus g invariants with
1 6 g 6 3 can possibly survive. Exact formulas are available for these invariants: for genus 1,
the formula is (2.5); for genus 2, the formula is given by Theorem 1.1; for genus 3, the formula
appears in Lemma 8.5.

Part I. Abelian surfaces

3. The genus 2 case

3.1 Quotient Gromov–Witten invariants

Let A be an abelian surface, and let β ∈ H2(A,Z) be a curve class of type (d1, d2) with d1, d2 > 0.
In Section 1.2.1, we defined invariants

NFLS
g,β = NFLS

g,(d1,d2)
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counting genus g curves in a fixed linear system. It is sometimes more natural to count curves
up to translation. A reasonable path to the definition of such invariants is by integrating over
the quotient stack

Mg(A, β)/A . (3.1)

(See Section 8.2 for such a treatment for abelian threefolds.)

Classically, people have taken a simpler course. Let

p : Mg(A, β) → Picβ(A) ∼= Â ,

be the morphism which sends a curve [f : C → A] to the divisor class associated with its image
curve. (The construction of p relies upon the Hilbert–Chow morphism). The map p is equivariant
with respect to the actions of A on Mg(A, β) by translation and on Â by the isogeny

φβ : A→ Â .

An element x ∈ A fixes a linear system of type (d1, d2) if and only if x is an element of

Ker
(
φβ : A→ Â

) ∼= (Z/d1 × Z/d2)2 . (3.2)

The quotient space (3.1) equals the quotient of Mg(A, β)FLS by the finite group (3.2) with (d1d2)2

elements. Therefore, we define the invariants counting curves up to translation by

NQ
g,(d1,d2) =

1

(d1d2)2
NFLS
g,(d1,d2) . (3.3)

In genus 2, the invariants are related to the lattice counts considered in Section 2.3.

Lemma 3.1. For all d1, d2 > 0, we have NQ
2,(d1,d2) = ν(d1, d2).

Proof. Let β be of type (d1, d2) and assume EndQ(A) = Q. In particular, A is simple (contains
no elliptic curves) and Aut(A) = {±1}. It follows that every genus 2 stable map f : C → A in
class β has a non-singular domain C. As discussed in Section 2.3, with such a map f , we can
associate a polarized isogeny (

Â, β̂
)
→ (J, θ) ,

where J is the Jacobian of C.

Conversely, every simple principally polarized abelian surface (B, θ) is the Jacobian of a uni-
que non-singular genus 2 curve C. Hence, each polarized isogeny (Â, β̂)→ (B, θ) induces a map

f : C
aj−→ B → A .

The map f is unique up to translation and automorphism of A. Moreover, the automorphism −1
of A corresponds to the hyperelliptic involution of C.

The abelian surface A acts freely4 on M2(A, β) by translation. To prove this, we decompose
a genus 2 map f : C → A as

f : C
aj−→ J

π−→ A .

First, since
[
aj(C)

]
is a divisor class of type (1, 1), the only element in J fixing aj(C) is 0J .

Second, the preimage π−1
(
f(C)

)
is the union⋃

x∈Ker(π)

tx
(
aj(C)

)
, (3.4)

4The action is in general not free in genus greater than 2. For example, maps from non-singular genus 3 hyperelliptic
curves in a class of type (1, 2) have Z/2-stabilizers; see Sections 6.3 and 8.4.
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where tx : J → J is the translation by x. Suppose that a point a ∈ A fixes f(C), and let
b ∈ π−1{a}. By (3.4), we have

tb
(
aj(C)

)
= tx

(
aj(C)

)
for some x ∈ Ker(π). In other words, the element b − x ∈ J fixes aj(C). Hence, b − x = 0J and
a = π(b) = π(b− x) = 0A.

It follows that M2(A, β)/A is precisely a set of ν(d1, d2) isolated reduced points (or, equiva-
lently, M2(A, β)FLS is a set of (d1d2)2ν(d1, d2) isolated reduced points).

3.2 Genus 2 counts

For genus 2, the following result determines the counts in all classes.

Theorem 3.2. For all d1, d2 > 0, we have

NQ
2,(d1,d2) =

∑
k| gcd(d1,d2)

∑
`| d1d2/k2

k3` . (3.5)

The primitive case (where gcd(d1, d2) = 1) was proven in [Deb99, Göt98, LS02a] via the
lattice method discussed in Section 2.3 and in [BL99, Ros14] via geometric arguments. A closer
look at the lattice method actually yields a proof of Theorem 3.2 in the general case.

Proof of Theorem 3.2. To prove (3.5) for ν(d1, d2), we are immediately reduced to the case
ν(pm, pn), where p is a prime number and m 6 n. For m = 0, we have, by (2.3),

ν
(
1, pn

)
= σ

(
pn
)

=
n∑
k=0

pk .

It then suffices to prove the following recursion:

ν
(
pm, pn

)
= ν

(
1, pm+n

)
+ p3ν

(
pm−1, pn−1

)
(3.6)

for 1 6 m 6 n.

The proof uses (2.2). Consider the quotient map

π : Z/pm × Z/pn → Z/pm−1 × Z/pn−1 .

For 1 6 r 6 s, the map π induces a bijective correspondence between the following two sets:

• subgroups of Z/pm × Z/pn isomorphic to Z/pr × Z/ps,
• subgroups of Z/pm−1 × Z/pn−1 isomorphic to Z/pr−1 × Z/ps−1.

We also have

# Homsym
(
Z/pr × Z/ps, ̂Z/pr × Z/ps

)
= p3# Homsym

(
Z/pr−1 × Z/ps−1, ̂Z/pr−1 × Z/ps−1

)
.

The remaining subgroups of Z/pm×Z/pn are cyclic and isomorphic to Z/pk for some 0 6 k 6 n.
Moreover,

# Homsym
(
Z/pk, Ẑ/pk

)
= # Hom

(
Z/pk, Ẑ/pk

)
= pk .

Applying (2.2), we find

ν
(
pm, pn

)
=

n∑
k=0

pk#
{
Z/pk < Z/pm × Z/pn

}
+ p3ν

(
pm−1, pn−1

)
.
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The numbers of cyclic subgroups can be deduced from classical group theory (see [But94, Lem-
ma 1.4.1]):

#
{
Z/pk < Z/pm × Z/pn

}
=

∑
06i6m,06j6n

max(i,j)=k

ϕ
(
pmin(i,j)

)
,

where ϕ is Euler’s phi function (ϕ(1) = 1 and ϕ(pk) = pk − pk−1 for k > 1). We have

n∑
k=0

pk#
{
Z/pk < Z/pm × Z/pn

}
=

n∑
k=0

pk
∑

06i6m,06j6n
max(i,j)=k

ϕ
(
pmin(i,j)

)

=
m∑
k=0

pk
k∑
i=0

ϕ
(
pi
)

+
n∑

k=m+1

pk
m∑
i=0

ϕ(pi) +
m∑
k=1

pk
k−1∑
j=0

ϕ
(
pj
)

=

m∑
k=0

p2k +

n∑
k=m+1

pm+k +

m∑
k=1

p2k−1

=

m+n∑
k=0

pk = ν
(
1, pm+n

)
,

proving the recursion (3.6). Theorem 3.2 then follows from Lemma 3.1.

Since g = 2 is the minimal genus for curve counting on abelian surfaces, Theorem 3.2 may
be viewed as the analog of the Yau–Zaslow conjecture [YZ96] for g = 0 counting on K3 surfaces.
In the K3 case, primitive classes were handled first in [Bea99, BL00]. To treat the imprimitive
classes, a completely new approach [KMPS10] was required (it came a decade later). For abelian
surfaces, the lattice counting for the primitive case is much easier than the complete result of
Theorem 3.2. The perfect matching of the lattice counts in all cases with formula of Theorem 3.2
appears miraculous.

3.3 Multiple cover rule

A multiple cover formula in genus g = 2 can be extracted from Theorem 3.2. The result follows
the structure of the complete multiple cover formula for K3 surfaces [PT16]. We state here the
multiple cover conjecture for the invariants NQ

g,(d1,d2) for all g.

For d1, d2 > 0, define the generating series of the quotient invariants:

f(d1,d2)(u) =
∑
g>2

NQ
g,(d1,d2)u

2g−2 .

The quotient invariants are defined in terms of the FLS invariants in (3.3).

Conjecture A’. For all d1, d2 > 0, we have

f(d1,d2)(u) =
∑

k| gcd(d1,d2)

kf(
1, d1d2/k2

)(ku) .

Theorem 3.2 implies the g = 2 case of Conjecture A’. By an elementary check, Conjecture A
is equivalent to Conjecture A’ plus the k = 0 case of Theorem 1.2. Since Theorem 1.2 is proven
in Section 4, Conjectures A and A’ are equivalent.
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4. Primitive classes

4.1 Overview

Let A be an abelian surface, let g > 2 be the genus, and let β ∈ H2(A,Z) be a curve class of
type (d1, d2) with d1, d2 > 0. The class β is primitive if gcd(d1, d2) = 1.

The proof of Theorem 1.2 is presented here. We proceed in two steps. First, we relate the FLS
invariants to the reduced Gromov–Witten invariants of A with pure point insertions and λ classes,
in Sections 4.2 and 4.3. Next, we degenerate an elliptically fibered abelian surface A. Using the
degeneration formula in Sections 4.4 and 4.5, we reduce the calculation to an evaluation on P1×E.
The proof of Theorem 1.2 is completed in Section 4.6.

We conclude with an application in Section 4.7: a new proof is presented of a result by
Göttsche and Shende [GS15] concerning the Euler characteristics of the moduli spaces of stable
pairs on abelian surfaces in irreducible classes.

4.2 Notation

Let α ∈ H∗(Mg.n,Q) be a cohomology class on the moduli space of stable curves Mg,n, and let
γ1, . . . , γn ∈ H∗(A,Q) be cohomology classes on A. The classes α and γi can be pulled back to
the moduli spaces

Mg,n(A, β)FLS and Mg,n(A, β)

via the forgetful map π and the evaluation maps ev1, . . . , evn.

For each marking i ∈ {1, . . . , n}, let Li be the associated cotangent line bundle on Mg,n(A, β).
Let

ψi = c1(Li) ∈ H2
(
Mg,n(A, β),Q

)
be the first Chern class. Since we have the inclusion

Mg,n(A, β)FLS ⊂Mg,n(A, β) ,

the classes ψi restrict to Mg,n(A, β)FLS.

The reduced Gromov–Witten invariants of A are defined by〈
α ; τa1(γ1) · · · τan(γn)

〉A,red

g,β
=

∫
[Mg,n(A,β)]red

π∗(α)
n∏
i=1

ev∗i (γi)ψ
ai
i .

The FLS invariants of A are defined by〈
α ; τa1(γ1) · · · τan(γn)

〉A,FLS

g,β
=

∫
[Mg,n(A,β)FLS]red

π∗(α)
n∏
i=1

ev∗i (γi)ψ
ai
i .

The FLS invariants can be expressed in terms of the usual invariants by a result5 of Bryan
and Leung [BL99], as follows. Let

ξ1, ξ2, ξ3, ξ4 ∈ H1(A,Z)

be a basis for which the corresponding dual classes

ξ̂1, ξ̂2, ξ̂3, ξ̂4 ∈ H1
(
Â,Z

) ∼= H1(A,Z)

5See [KT14, Section 4] for an algebraic proof.
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satisfy the normalization ∫
Â
ξ̂1 ∪ ξ̂2 ∪ ξ̂3 ∪ ξ̂4 = 1 .

By first trading the higher descendents τk(γi) for classes pulled back from Mg,n up to boundary
terms, we may reduce to non-gravitational insertions τ0(γi). Then〈

α ;
n∏
i=1

τ0(γi)

〉A,FLS

g,β

=

〈
α ;

4∏
i=1

τ0(ξi) ·
n∏
i=1

τ0(γi)

〉A,red

g,β

, (4.1)

where α on the right side of (4.1) is viewed to be a cohomology class on Mg,n+4 via pull-back
along the map which forgets the four new points.

4.3 Odd and even classes

4.3.1 Trading FLS for insertions. We prove here the following simple rule which trades the
FLS condition for insertions in the reduced Gromov–Witten theory of A.

As in Section 1.2.2, let p ∈ H4(A,Z) be the class of a point.

Proposition 4.1. For g > 2 and d1, d2 > 0, we have〈
α ; τ0(p)k

〉A,FLS

g,(d1,d2)
=

d1d2

(k + 1)(k + 2)

〈
α ; τ0(p)k+2

〉A,red

g,(d1,d2)

for all α ∈ H∗(Mg,Q) and k > 0.

The proof uses the action of A on the moduli space Mg,n(A, β) to produce relations among
various Gromov–Witten invariants. The argument is a modification of an elliptic vanishing ar-
gument introduced in [OP06b].

4.3.2 Abelian vanishing. Let β ∈ H2(A,Z) be any curve class. For n > 1, let

ev1 : Mg,n(A, β) → A

be the first evaluation map. Denote the fiber of the identity element 0A ∈ A by

M
0
g,n(A, β) = ev−1

1 (0A) .

We have the product decomposition

Mg,n(A, β) = M
0
g,n(A, β)×A . (4.2)

The reduced virtual class on Mg,n(A, β) is pulled back from a class on M
0
g,n(A, β). Consider the

commutative diagram

Mg,n(A, β)

pr
��

ev // An

p

��
M

0
g,n(A, β) // An−1 ,

where pr is projection onto the first factor of (4.2) and

p(x1, . . . , xn) = (x2 − x1, . . . , xn − x1) .
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Lemma 4.2. Let α ∈ H∗(Mg,n,Q) and γ ∈ H∗(An−1,Q) be arbitrary classes. For any γ1 ∈
H∗(A,Q) of degree deg(γ1) 6 3, we have∫

[Mg,n(A,β)]red
π∗(α) ∪ ev∗1(γ1) ∪ ev∗ p∗(γ) = 0 .

Proof. The class (
π∗(α) ∪ ev∗ p∗(γ)

)
∩
[
Mg,n(A, β)

]red

is the pull-back via pr of a class θ on M
0
g,n(A, β). Using the push-pull formula, we have

pr∗
(
ev∗1(γ1) ∩ pr∗(θ)

)
= pr∗ ev∗1(γ1) ∩ θ = 0 .

The last equality holds for dimension reasons since γ1 ∈ H63(A,Q) and the fibers of pr are A.

4.3.3 Proof of Proposition 4.1. We study the split abelian surface A = E1 × E2, where E1

and E2 are two generic elliptic curves. Consider the curve class

(d1, d2) = d1[E1] + d2[E2] ∈ H2(A,Z) .

For i ∈ {1, 2}, let ωi ∈ H2(Ei,Z) be the class of a point on Ei, and let ai, bi ∈ H1(Ei,Z) be
a symplectic basis. We use freely the identification induced by the Künneth decomposition

H∗(E1 × E2,Z) = H∗(E1,Z)⊗H∗(E2,Z) .

The proof of Proposition 4.1 follows directly from (4.1) and the following two lemmas.

Lemma 4.3. For α ∈ H∗(Mg,Q), we have

d2

〈
α ; τ0(p)k+2

〉A,red

g,(d1,d2)
= (k + 2) ·

〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)
.

Proof. Consider the class γ = b1ω2 ⊗ p⊗k+1 ∈ H∗
(
Ak+2,Q

)
. In the notation of Section 4.3.2 for

n = k + 3, we have

p∗
(
1⊗i−1 ⊗ v ⊗ 1⊗k+2−i) = −v ⊗ 1⊗k+2 + 1⊗i ⊗ v ⊗ 1⊗k+2−i (4.3)

for all i = 1, . . . , k + 2 and all v ∈ {a1, b1, a2, b2}.
Denote the projection onto the first factor of Ak+3 by π1 : Ak+3 → A. Let u = a1ω2. Via

several applications of (4.3), we find

π∗1(u) ∪ p∗(γ) = a1ω2 ⊗ b1ω2 ⊗ p⊗k+1 − p⊗ ω2 ⊗ p⊗k+1

−
k+1∑
i=1

p⊗ b1ω2 ⊗ p⊗i−1 ⊗ a1ω2 ⊗ p⊗k+1−i .

After applying the abelian vanishing of Lemma 4.2, we obtain〈
α ; τ0(ω2)τ0(p)k+2

〉A,red

g,(d1,d2)
= (k + 2)

〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)
.

The lemma then follows from the divisor equation.

Lemma 4.4. For α ∈ H∗(Mg,Q), we have

d1

〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(p)k+1

〉A,red

g,(d1,d2)

= (k + 1)
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(ω1a2)τ0(ω1b2)τ0(p)k

〉A,red

g,(d1,d2)
.
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Proof. Consider the class γ = ω1b2⊗ a1ω2⊗ b1ω2⊗ p⊗k, and let u = ω1a2. We apply the abelian
vanishing just as in the proof of Lemma 4.3. Every term with an insertion of the form τ0(vw) for
v ∈ {a1, b1} and w ∈ {a2, b2} contributes 0 by the divisor equation. We obtain〈

α ; τ0(ω1)τ0(a1ω2)τ0(b1ω2)τ0(p)k+1
〉A,red

g,(d1,d2)

= (k + 1)
〈
α ; τ0(a1ω2)τ0(b1ω2)τ0(ω1a2)τ0(ω1b2)τ0(p)k

〉A,red

g,(d1,d2)
,

which yields the result by an application of the divisor equation.

4.4 Degeneration formula

Let the abelian surface A = E1×E2 be the product of two generic elliptic curves E1 and E2, and
let E = 0E1 × E2 be a fixed fiber of the projection to E1. The degeneration of A to the normal
cone of E ⊂ A is the family

ε : X = BlE×0

(
A× P1

)
→ P1 . (4.4)

For ξ ∈ P1 \ {0}, the fiber Xξ = ε−1(ξ) is isomorphic to A. For ξ = 0, we have

X0 = A ∪E
(
P1 × E

)
.

We will apply the degeneration formula of Gromov–Witten theory [Li01, Li02] to the family (4.4).

For our use, the degeneration formula must be modified for the reduced virtual class. More
precisely, the degeneration formula expresses the reduced Gromov–Witten theory of A in terms
of the reduced relative Gromov–Witten theory of A/E and standard relative Gromov–Witten
theory of (P1 ×E)/E. The technical point in the modification of the degeneration formula is to
define a reduced virtual class on the moduli space

Mg,n(ε, β)

of stable maps to the fibers of ε. Note that every fiber Xξ and every expanded degeneration X̂ξ

maps to the abelian surface A. The pull-back of the symplectic form of A to X̂ξ then yields

a 2-form on X̂ξ which vanishes on all components except A. With the usual arguments [MP13,
MPT10], we obtain a quotient of the obstruction sheaf which only changes the obstruction sheaf
on the A side. The outcome is the desired degeneration formula. A parallel argument can be
found in [MPT10, Section 6].

4.5 The surface P1 × E

For the trivial elliptic fibrations

p : A → E1 and p̂ : P1 × E → P1 ,

we denote the section class by B and the fiber class by E. We also write

(d1, d2) = d1B + d2E

for the corresponding classes in H2(A,Z) and H2(P1 × E,Z).

We will use the standard bracket notation〈
µ
∣∣∣α∏

i

τai(γi)
∣∣∣ ν〉P1×E

g,(1,d)
=

∫
[Mg,n((P1×E)/{0,∞},(1,d))µ,ν ]vir

α ∪
∏
i

ψaii ev∗i (γi)

for the Gromov–Witten invariants of P1 × E relative to the fibers over 0,∞ ∈ P1. The integral
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is over the moduli space of stable maps

Mg,n

((
P1 × E

)
/{0,∞}, (1, d)

)
relative to the fibers over 0,∞ ∈ P1 in class (1, d). Here,

µ ∈ H∗(0× E) and ν ∈ H∗(∞× E)

are cohomology classes on the relative divisors. The integrand contains α ∈ H∗(Mg,n,Q) and
the descendents.

We form the generating series of relative invariants〈
µ
∣∣∣α∏

i

τai(γi)
∣∣∣ ν〉P1×E

=
∑
g>0

∑
d>0

u2g−2qd
〈
µ
∣∣∣α∏

i

τai(γi)
∣∣∣ ν〉P1×E

g,(1,d)
.

Similar definitions apply also to the case of a single relative divisor and to the case of the abelian
surface A (with respect to the reduced virtual class).

We will require several exact evaluations. Let

E∨(1) = c
(
E∨
)

denote the total Chern class of the dual of the Hodge bundle, and let ω be the class of a point
on the relative divisors of A and E × P1.

Lemma 4.5. We have〈
1
∣∣E∨(1)τ0(p)

∣∣ 1〉P1×E
=

1

u2
,〈

1
∣∣E∨(1)τ0(p)

∣∣ω〉P1×E
=

1

u2

∑
d>1

∑
m|d

d

m

(
2 sin(mu/2)

)2
qd ,

〈
ω
∣∣E∨(1)τ0(p)

∣∣ω〉P1×E
= 0 .

Proof. The first equation is obtained by exactly following the proof of [MPT10, Lemma 24]. The
second equation follows from [MPT10, Lemmas 25 and 26]. For the third equality, the point
conditions on the relative divisors can be chosen to be different. Then, since the degree over P1

is 1 (and there are no non-constant maps from P1 to E), the moduli space with the relative
conditions imposed is empty.

Lemma 4.6. For g > 0 and d > 0, we have
〈
E∨(1)

∣∣ω〉A,red

g,(1,d)
= δg,1δd,0.

Proof. By dimension reasons, only the term (−1)g−1λg−1 = cg−1

(
E∨
)

contributes in the evalua-
tion of Lemma 4.6.

Case d > 0. We will prove the vanishing of λg−1 on Mg(A/E, β) by giving two linearly
independent sections of E.

Let γ, γ′ ∈ H0(A,ΩA) be the pull-backs to A of non-zero global differential forms on E1

and E2, respectively. Let π : C → Mg(A/E, β) be the universal curve, and let f : C → A be the
universal map. We have the induced sequence

O2
C

(γ,γ′)−−−→ f∗ΩA → Ωπ → ωπ .

By push-forward via π, we obtain the sequence

s : O2
Mg(A/E,β)

→ π∗ωπ = E .
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If s does not define a 2-dimensional subbundle of E, there exist a map f0 : C → A in class
(1, d) and non-zero elements c, c′ ∈ C such that

f∗0 (cγ + c′γ′) = 0 .

Thus f0 must map to a (translate of a) 1-dimensional abelian subvariety V inside E1 × E2.
Because f has degree (1, d), the subvariety V induces an isogeny between E1 and E2. But E1

and E2 were chosen generic, which gives a contradiction. Hence s is injective and λg−1 = 0.

Case d = 0. We have the factor R1π∗(f
∗TE2) inside the obstruction sheaf, which yields an

additional class (−1)g−1λg−1 after reduction. Therefore, we have〈
E∨(1)

∣∣ω〉A,red

g,(1,0)
=

∫
[Mg(E1/0,1)]vir

λ2
g−1 .

For g > 2, we have λ2
g−1 = 2λgλg−2 by Mumford’s relation. By pulling back the global non-zero

1-form from E1, we obtain a 1-dimensional subbundle of E. Therefore, we have λg = 0 and the
integral vanishes.

Finally, for g = 1 and d = 0, the moduli space M1(E1/0, 1) is a single point and the invariant
is 1.

4.6 Proof of Theorem 1.2

We are now able to evaluate the invariants NFLS
g,k,(1,d) of Section 1.2.2 and prove Theorem 1.2. By

definition, ∑
g>2

∑
d>1

NFLS
g,k,(1,d)u

2g−2qd =
∑
g>2

∑
d>1

u2g−2qd
〈
E∨(1)τ0(p)k

〉A,FLS

g,(1,d)
. (4.5)

By Proposition 4.1, the right side of (4.5) equals

q
d

dq

1

(k + 1)(k + 2)

∑
g>0

∑
d>0

u2g−2qd
〈
E∨(1)τ0(p)k+2

〉A,red

g,(1,d)
.

Next, we apply the degeneration formula. Only one term satisfies the dimension constraints:

q
d

dq

u2

(k + 1)(k + 2)
·
〈
E∨(1)

∣∣ω〉A,red ·
〈
1
∣∣E∨(1)τ0(p)k+2

〉P1×E
.

An application of Lemma 4.6 then yields

q
d

dq

u2

(k + 1)(k + 2)
·
〈
1
∣∣E∨(1)τ0(p)k+2

〉P1×E
.

We degenerate the base P1 to obtain a chain of k + 3 surfaces isomorphic to P1 × E. The first
k + 2 of these each receive a single insertion τ0(p). Using the vanishing of Lemma 4.5 and the
evaluation of the last P1 × E by [MPT10, Lemma 24], we obtain

q
d

dq

u2(k + 2)

(k + 1)(k + 2)
·
〈
1
∣∣E∨(1)τ0(p)

∣∣ 1〉P1×E ·
(
u2
〈
1
∣∣E∨(1)τ0(p)

∣∣ω〉P1×E)k+1
.

A further application of Lemma 4.5 yields

q
d

dq

1

k + 1

(∑
d>1

∑
m|d

d

m

(
2 sin(mu/2)

)2
qd
)k+1

.
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Rewriting the result in the variables p = e2πiz, q = e2πiτ , and u = 2πz, we obtain

q
d

dq

1

k + 1

(
−
∑
d>1

∑
m|d

d

m

(
pm − 2 + p−m

)
qd
)k+1

= q
d

dq

1

k + 1
S(z, τ)k+1 .

The proof of Theorem 1.2 is thus complete.

4.7 Relation to stable-pairs invariants

Let A be an abelian surface, and let β be an irreducible curve class of type (1, d). Let Pn(A, β)
be the moduli space of stable pairs (F, s) on A in class β and with Euler characteristic χ(F ) = n;
see [PT09]. The moduli spaces Pn(A, β) are isomorphic to the relative Hilbert scheme over the
universal family of curves in class β. It is non-singular of dimension 2d+ n+ 1.

Consider the Hilbert–Chow map

p : Pn(A, β) → Picβ(A) ∼= Â ,

which sends a stable pair (F, s) to the divisor class associated with the support of F . The map
is equivariant with respect to the action of A and is an isotrivial étale fibration. The fiber of p
over 0

Â
is denoted by

Pn(A, β)FLS = p−1(0
Â

) .

We define the FLS stable-pairs invariants in class β to be the signed Euler characteristic

PFLS
n,β = (−1)2d+n−1e

(
Pn(A, β)FLS

)
. (4.6)

The definition agrees with the definition of residue stable-pairs invariants of the threefold A×C
using torus localization; see [MPT10].

By the invariance of the Euler characteristic under deformations with smooth fibers, PFLS
n,β

only depends on the type (1, d) of the irreducible class β. We write

PFLS
n,β = PFLS

n,(1,d) .

The Euler characteristics (4.6) (in fact the χy-genus) have been computed by Göttsche and
Shende.

Theorem 4.7 (Göttsche–Shende [GS15]). We have∑
d>1

∑
n∈Z

PFLS
n,(1,d)(−p)

nqd = −
∑
d>1

∑
m|d

d2

m

(
pm − 2 + p−m

)
qd .

The k = 0 case of Theorem 1.2 yields a second proof of this result: using an analog of the
abelian vanishing relation (Lemma 4.2) for stable pairs, we may express the FLS condition by
point insertions on the full moduli space Pn(A, β), as in Proposition 4.1. After degenerating the
abelian surface A to P1 × E, we can apply the Gromov–Witten/Pairs correspondence [PP17],
which yields the result.

In [MPT10], a parallel study of the reduced invariants of K3 surfaces was undertaken.
The Gromov–Witten/Pairs correspondence and the Euler characteristic calculations of Kawai–
Yoshioka [KY00] were used together to evaluate the Gromov–Witten side to prove the primitive
Katz–Klemm–Vafa conjecture. The analog of the Kawai–Yoshioka calculation for abelian surfaces
is Theorem 4.7. However, for abelian surfaces, we are able to evaluate the Gromov–Witten side
directly without using input from the stable-pairs side.
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5. Quasi-modular forms

5.1 Descendent series

Let A = E1 × E2 be the product of two generic elliptic curves E1 and E2, and let

(d1, d2) = d1[E1] + d2[E2] ∈ H2(A,Z) .

For i ∈ {1, 2}, let ωi ∈ H2(Ei,Z) be the class of a point on Ei and let ai, bi ∈ H1(Ei,Z) be a
symplectic basis. As before, we use freely the identification induced by the Künneth decomposi-
tion

H∗(E1 × E2,Z) = H∗(E1,Z)⊗H∗(E2,Z) .

A class γ ∈ H∗(A,Q) is monomial if γ is a product

γ = ai1b
j
1a
k
2b
l
2 , i, j, k, l ∈ {0, 1} .

A basis of the cohomology of A is given by monomial classes. For a monomial class γ, we denote
by vs(γ) the exponent of s ∈ {a1, b1, a2, b2} in γ. Hence,

γ = a
va1 (γ)
1 b

vb1
(γ)

1 a
va2 (γ)
2 b

vb2
(γ)

2 .

Let γ1, . . . , γn ∈ H∗(A,Q) be monomial classes, and let a1, . . . , an ∈ Z>0 be non-negative
integers. The primitive descendent potential of A with insertions τa1(γ1), . . . , τan(γn) is defined
by

FAg
(
τa1(γ1) · · · τan(γn)

)
=
∑
d>0

〈
τa1(γ1) · · · τan(γn)

〉A,red

g,(1,d)
qd .

Theorem 1.3 states a modularityproperty for FAg (τa1(γ1) · · · τan(γn)). (The vector space of quasi-
modular forms was defined in Section 1.2.3.) The following refined result will be proven here.

Theorem 5.1. The primitive descendent potential satisfies the following properties for all g > 1:

(i) The series FAg (τa1(γ1) · · · τan(γn)) vanishes unless

n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} .

(ii) We have FAg (τa1(γ1) · · · τan(γn)) ∈ QMod2(g−2)+2` for ` =
∑n

k=1 va2(γk).

Part (i) of Theorem 5.1 is a basic balancing condition. Part (ii) is a homogeneity property
which refines the statement of Theorem 1.3.

Having the precise weight is useful in applications. For example, by part (ii) of Theorem 5.1,
the series FA2 (τ1(p)) is a quasi-modular form of weight 2, and hence a multiple of E2(τ). The
constant coefficient is given by∫

[M2,1(A,(1,0))]red
ev∗1(p)ψ1 =

∫
[M2,1(E1,1)]vir

(−λ1) ev∗1(ω1)ψ1 = − 1

12
.

We conclude

FA2 (τ1(p)) = − 1

12
E2(τ) = − 1

12
+ 2

∑
d>0

σ(d)qd .

For genus g = 1, both parts of Theorem 5.1 are easy to see. The contributions of curve classes
of type (1, d) with d > 0 vanish for g = 1 since the moduli space of maps is empty: an element of

M1,n(E1 × E2, (1, d)) , d > 0 ,
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would yield an isogeny between E1 and E2, contradicting the genericity of E1 and E2. The series
FA1 (τa1(γ1) · · · τan(γn)) therefore has only a constant term in q. For curve classes of degree (1, 0),
the moduli space factors as

M1,n(E1 × E2, (1, 0)) ∼= M1,n(E1, 1)× E2 .

The balancing condition of part (i) then follows by the separate balancing on the two factors. For

non-vanishing invariants
〈
τa1(γ1) · · · τan(γn)

〉A,red

1,(1,0)
, we must have ` =

∑n
k=1 va2(γk) = 1. Hence,

part (ii) correctly predicts a quasi-modular form of weight

2(g − 2) + 2` = 2(1− 2) + 2 · 1 = 0 .

5.2 Tautological classes

The first step in the proof of Theorem 5.1 is to recast the result in terms of tautological classes on
the moduli space of curves. For 2g− 2 + n > 0, let R∗(Mg,n) ⊂ H∗(Mg,n,Q) be the tautological
ring. Let π : Mg,n(A, β) → Mg,n be the forgetful map. For α ∈ R∗(Mg,n), we define α-twisted
reduced invariants of A by〈

α ; γ1, . . . , γn
〉A,red

g,β
=

∫
[Mg,n(A,β)]red

π∗(α) ∪
∏
i

ev∗i (γi) .

Here, β is a curve class on A and γ1, . . . , γn ∈ H∗(A,Q) are monomial classes. The associated
primitive potential is defined by

FAg (α ; γ1, . . . , γn) =
∑
d>0

〈
α ; γ1, . . . , γn

〉A,red

g,(1,d)
qd .

Proposition 5.2. The primitive α-twisted potential satisfies the following properties for all
g > 1:

(i) The series FAg (α ; γ1, . . . , γn) vanishes unless

n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} .

(ii) We have FAg (α ; γ1, . . . , γn) ∈ QMod2(g−2)+2` for ` =
∑n

k=1 va2(γk).

The cotangent line classes ψ1, . . . , ψn ∈ H2
(
Mg,n(A, β),Q

)
can be expressed as pull-backs

of the corresponding cotangent line classes from Mg,n up to boundary corrections.6 Integration
over the boundary corrections is governed by the splitting formula for reduced invariants. The
boundary corrections yield integrals of lower genus or fewer marked points. Arguing inductively,
the descendent series FAg (τa1(γ1) · · · τan(γn)) can therefore be expressed in terms of the series{

FAg′(α
′ ; γ′1, . . . , γ

′
n′)
}

for various α′, g′, γ′1, . . . , γ
′
n′ . By a simple verification, the splitting formula preserves the vanishing

and modularity statements of Theorem 5.1. Hence, Proposition 5.2 implies Theorem 5.1.

The balancing condition of part (i) of Proposition 5.2 follows easily from a Hodge-theoretic
argument. Alternatively, the balancing condition can be obtained inductively via the proof of
part (ii) of Proposition 5.2.

6The unstable g = 0 cases do not play a role. For abelian varieties, genus 0 invariants (standard or reduced) are
non-vanishing only in the constant map case where stability requires three special points.
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5.3 Proof of Proposition 5.2(i)

By [Tat65], or by a direct Mumford–Tate group calculation in case E1 and E2 are generic, the
subring of Hodge classes on An = (E1 × E2)n, denoted by Hdg∗(An) ⊂ H∗(An,Q), is generated
by divisor classes. (In particular, all Hodge classes on An are algebraic.)

Hence, under the Künneth decomposition, the ring Hdg∗(An) is generated by pull-backs of
divisors classes in

H2(Ei,Q) , H1(Ei,Q)⊗H1(Ei,Q) , H1(E1,Q)⊗H1(E2,Q) ,

for i = 1, 2. We have H2(Ei,Q) = 〈ωi〉 = 〈aibi〉. By the genericity of E1 and E2, all divisor
classes in H1(Ei,Q) ⊗ H1(Ei,Q) are multiples of ai ⊗ bi − bi ⊗ ai, and there are no non-zero
divisor classes in H1(E1,Q)⊗H1(E2,Q).

It follows that all classes in Hdg∗(An) are linear combinations of δ1 ⊗ · · · ⊗ δn, where δk ∈
H∗(A,Q) are monomial classes as defined in Section 5.1 such that

n∑
k=1

vai(δk) =

n∑
k=1

vbi(δk) , i ∈ {1, 2} .

Consider the evaluation map ev : Mg,n(A, β) → An. By the push-pull formula, we have〈
α ; γ1, . . . , γn

〉A,red

g,(1,d)
=

∫
ev∗(π∗(α)∩[Mg,n(A,β)]red)

γ1 ⊗ · · · ⊗ γn . (5.1)

By the algebraicity of α and [Mg,n(A, β)]red, the integral (5.1) is 0 unless

n∑
k=1

vai(γk) =
n∑
k=1

vbi(γk) , i ∈ {1, 2} .

5.4 Proof of Proposition 5.2(ii): Base cases

We argue by induction on the pair (g, n), where g > 1 is the genus of the source curve and
n > 0 is the number of marked points. We order the pairs (g, n) lexicographically: we have
(g′, n′) < (g, n) if and only if

• g′ < g or

• g′ = g and n′ < n.

Base cases: g = 1 and n > 0. We have already observed that Theorem 5.1 holds in all g = 1
cases. Proposition 5.2 holds in g = 1 by the same argument. We discuss the n = 0 and n = 1
cases as examples.

In case (g, n) = (1, 0), the only series is FA1 ( ; ) = 0 since the reduced virtual dimension is 1
and there are no insertions.

In case (g, n) = (1, 1), the moduli space M1,1(A, (1, d)) has reduced virtual dimension 2. We
must have either α ∈ R1(M1,1) or τ(p) as integrands. Such an α is a multiple of the class of
a point on M1,1. Because a generic elliptic curve does not admit a non-vanishing map to E1×E2,
the integral vanishes. In the second case, we evaluate

FA1 (1; p) =
〈
τ0(p)

〉A,red

1,(1,0)
= 1 ,

which is a quasi-modular form of weight 0.
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5.5 Proof of Proposition 5.2(ii): Induction

Consider a pair (g, n) satisfying g > 2 and assume that Proposition 5.2 is proven in all cases
(g′, n′) where (g′, n′) < (g, n).

Let γ1, . . . , γn ∈ H∗(A,Q) be monomial classes, and let α ∈ R∗(Mg,n) be a tautological class
of pure degree. We must prove that Proposition 5.2 holds for the series

FAg (α; γ1, . . . , γn) . (5.2)

We may assume that the dimension constraint

2g + 2n = deg(α) +
n∑
i=1

deg(γi) (5.3)

is satisfied, since the series (5.2) vanishes otherwise. In the dimension constraint (5.3), deg denotes
the real cohomological degree of a class (on both Mg,n and A).

Case (i):
∑n

i=1 deg(γi) 6 2n. From dimension constraint (5.3), we find

deg(α) = 2g + 2n−
∑
i

deg(γi) > 2g

or, equivalently, α ∈ R>g
(
Mg,n

)
. Using the strong form of Getzler–Ionel vanishing proven

in [FP05, Proposition 2], we can find a class

α̃ ∈ R∗
(
∂Mg,n

)
such that ι∗α̃ = α, where ι : ∂Mg,n → Mg,n is the inclusion of the boundary. By the splitting
formula, the series

FAg (α ; γ1, . . . , γn) = FAg (ι∗α̃ ; γ1, . . . , γn)

is expressed in terms of a linear combination of series

FAg′(α̃ ; γ̃1, . . . , γ̃n′) for which (g′, n′) < (g, n) .

The induction hypothesis for the latter implies that Proposition 5.2 holds for FAg (α ; γ1, . . . , γn).

Case (ii):
∑n

i=1 deg(γi) > 2n. Consider the moduli space Mg,n ⊂ Mg,n of non-singular
genus g > 2 curves with n marked points. The tautological ring R∗(Mg,n) is generated by
classes pulled back from Mg via the forgetful map p : Mg,n →Mg and the cotangent line classes
ψ1, . . . , ψn ∈ H2(Mg,n,Q). A class α ∈ R∗(Mg,n) can therefore be written as a sum of classes of
the form

• ι∗(α̃) for α̃ ∈ R∗(∂Mg,n),

• ψk11 ∪ · · · ∪ ψknn ∪ p∗(ζ) for k1, . . . , kn > 0 and ζ ∈ R∗(Mg).

Here, we let ψ1, . . . , ψn denote also the cotangent line classes on Mg,n.

A summand of the form ι∗(α̃) is expressed by the splitting formula in lower-order terms; see
Case (i). Hence, we may assume

α = ψk11 ∪ · · · ∪ ψ
kn
n ∪ p∗(ζ) . (5.4)

Case (ii-a): There exists an i for which ki > 0. We assume k1 > 0. If deg(γ1) 6 3, we first
apply the vanishing of Lemma 4.2 for γ1 and γ = γ2 ⊗ · · · ⊗ γn. Using the abelian vanishing
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relation (see also (4.3)), we find that FAg (α ; γ1, γ2, . . . , γn) can be expressed as a sum of series

±FAg (α ; γ1 ∪ δ, γ′2, . . . , γ′n)

for various monomial classes δ, γ′2, . . . , γ
′
n ∈ H∗(A,Q) with deg(δ) > 1.

The above relation increases the degree of γ1. By induction on deg(γ1), we may assume
deg(γ1) = 4 or, equivalently, γ1 = p.

Next, we use the degeneration of A = E1×E2 to the normal cone of an elliptic fiber E = E2

of the projection to E1,

A A ∪E
(
P1 × E

)
.

We choose the point class γ1 to lie (after degeneration) on the component P1×E. The distribution
of the remaining classes γ2, . . . , γn can be chosen freely.

For classes α̃ ∈ R∗(Mg,r), ξ ∈ H∗(E,Q), and γ̃1, . . . , γ̃r on A and P1 × E, respectively, we
define

FA/Eg (α̃ ; γ̃1, . . . , γ̃r; ξ) =
∑
d>0

〈
α̃ ;

r∏
i=1

τ0(γ̃i)
∣∣ ξ〉A/E,red

g,(1,d)

qd ,

F(P1×E)/E
g (α̃ ; γ̃1, . . . , γ̃r; ξ) =

∑
d>0

〈
α̃ ;

r∏
i=1

τ0(γ̃i)
∣∣ ξ〉(P1×E)/E

g,(1,d)

qd ,

where we use the bracket notation defined in Section 4.5.

For γ1 = p, the degeneration formula then yields

FAg (α ; γ1, . . . , γn) =
∑

(g′,n′)6(g,n−1)

F
A/E
g′,n′(α

′ ; ( . . . ); ξ) · F(P1×E)/E
g′′,n′′

(
α′′ ; γ1, ( . . . ); ξ

∨) . (5.5)

The summation here is over splittings

g = g′ + g′′ , n = n′ + n′′

and distributions ( . . . ) of the insertions γ2, . . . , γn. The marking numbers n′ and n′′ are placed
in the subscripts of the generating series inside the sum for clarity. (The relative points are not
included in the counts n′ and n′′.) The class α determines α′ and α′′ by restriction. Finally, there
is also a sum over all relative conditions

ξ ∈ {1, a2, b2, ω2} ,

where ξ∨ denotes the class dual to ξ.

Lemma 5.3. The primitive potential for (P1 × E)/E satisfies the following properties for all
g′′ > 0:

(i) The series F
(P1×E)/E
g′′ (α′′ ; γ̃1, . . . , γ̃n′′ ; ξ

∨) vanishes unless

va2

(
ξ∨
)

+
n′′∑
k=1

va2(γ̃k) = vb2

(
ξ∨
)

+
n′′∑
k=1

vb2(γ̃k) .

(ii) We have F
(P1×E)/E
g′′ (α′′ ; γ̃1, . . . , γ̃n′′ ; ξ

∨) ∈ QMod2g′′+2`′′−2 for

`′′ = va2

(
ξ∨
)

+

n′′∑
k=1

va2(γ̃k) .
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Proof. Because there is only algebraic cohomology on P1, the vanishing statement (i) follows
from the fact that the virtual class is algebraic.

In [MP06], the relative invariants of (P1 × E)/E were effectively expressed in terms of the
absolute descendent invariants of P1×E through relations obtained by the following operations:

• degeneration of P1 × E to P1 × E ∪E P1 × E,

• localization on the P1-factor,

• rubber calculus.

A simple verification shows that the resulting relations respect modularity of the weight specified
by part (ii) for each of these operations. Hence, we are reduced to the case of absolute descendent
invariants of P1 × E.

Then, virtual localization on the P1-factor expresses the descendent invariants of P1 × E in
terms of the descendent invariants of E. Finally, [MPT10, Proposition 28] yields the required
modularity property (ii).

For the last step, instead of localization, the product formula [Beh99] may be used to reduce
P1×E to the case of the descendent invariants of the elliptic curve E since the Gromov–Witten
classes of P1 are known to be tautological [GP99].

Lemma 5.3 controls the factor on the right inside the sum of (5.5). Part (ii) of Lemma 5.3 is
a refinement of [MPT10, Lemma 30]. However, the proof is the same as given in [MPT10].

The factor on the left inside the sum of (5.5) is more difficult to control. We will consider the
terms of the sum corresponding to

(g′, n′) < (g, n− 1) and (g′, n′) = (g, n− 1)

separately. Lemma 5.4 below shows how to apply the inductive hypothesis to the terms in the
sum (5.5) with (g′, n′) < (g, n− 1). The case (g′, n′) = (g, n− 1) will be considered afterward.

Lemma 5.4. Let (g′, n′) < (g, n − 1). The primitive potential for A/E satisfies the following
properties:

(i) The series F
A/E
g′ (α′ ; γ̃1, . . . , γ̃n′ ; ξ) vanishes unless

vai(ξ) +
n′∑
k=1

vai(γ̃k) = vbi(ξ) +
n′∑
k=1

vbi(γ̃k) , i ∈ {1, 2} .

(ii) We have F
A/E
g′ (α′ ; γ̃1, . . . , γ̃n′ ; ξ) ∈ QMod2(g′−2)+2`′ for

`′ = va2(ξ) +
n′∑
k=1

va2(γ̃k) .

Proof. We apply the degeneration formula to

FAg′(α
′ ; γ̃1, . . . , γ̃n′ , ω1ξ) (5.6)

with the specialization to P1 × E for the last point and the specialization by pull-back for the
other insertions. Since (g′, n′) < (g, n−1), we have (g′, n′+1) < (g, n), so the induction hypothesis
applies to the series (5.6).
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The degeneration formula yields a relation involving the relative geometries A/E and (P1 ×
E)/E,

FAg′(α
′ ; γ̃1, . . . , γ̃n′ , ω1ξ) =

∑
(g′◦,n

′
◦)6(g′,n′)

F
A/E
g′◦,n

′
◦

(
α′◦ ; ( . . . ); ξ̃

)
· F(P1×E)/E

g′•,n
′
•

(
α′• ; ( . . . ), ω1ξ; ξ̃

∨) . (5.7)

The summation here is over splittings

g′ = g′◦ + g′• , n′ + 1 = n′◦ + n′•

and distributions ( . . . ) of the insertions γ̃1, . . . , γ̃n′ . The class α′ determines α′◦ and α′• by re-
striction. There is also a sum over all relative conditions ξ̃ ∈ {1, a2, b2, ω2}.

We now analyze the (g′◦, n
′
◦) = (g′, n′) term of the sum in (5.7),

F
A/E
g′

(
α′ ; γ̃1, . . . , γ̃n′ ; ξ̃

)
· F(P1×E)/E

0,1

(
ω1ξ; ξ̃

∨) . (5.8)

Since genus 0 stable maps do not represent classes of type (1, d) with d > 0 on P1 × E, we have

F
(P1×E)/E
0,1

(
ω1ξ; ξ̃

∨) =
〈
ξ̃∨ | τ0(ω1ξ)

〉(P1×E)/E

0,(1,0)
= δ

ξ,ξ̃
.

The second equality is obtained by the identification of the moduli space of maps by the location
of the relative point,

M0,0

((
P1 × E

)
/E, (1, 0)

) ∼= E . (5.9)

Combining the above, we can rewrite (5.8) as simply

F
A/E
g′ (α′ ; γ̃1, . . . , γ̃n′ ; ξ) .

We find that the series FA for the absolute geometry can be expressed in terms of the series
FA/E for the relative geometry by a transformation matrix M which is upper triangular with
entries 1 on the diagonal. By Lemma 5.3, the off-diagonal terms of M are given by quasi-modular
forms. By inverting the unipotent matrix M and applying the induction hypothesis to FA, we
find that the relative invariants FA/E are quasi-modular forms.

The weight and vanishing statement can now be deduced from a careful consideration of
the entries of M−1. Alternatively, we may argue via a (second) induction on (g′, n′). In case
(g′, n′) = (1, 1), there are no lower-order terms in (5.7), and we are done. If the statement is
true for all (g′◦, n

′
◦) < (g′, n′), then the statement follows directly from (5.7) and the induction

hypothesis.

We now turn to the (g′, n′) = (g, n− 1) term in the sum (5.5):

F
A/E
g,n−1(α ; γ2, . . . , γn;ω) · F(P1×E)/E

0,1 (γ1; 1)

As we have seen above, only curves in class (1, 0) contribute to the series F
(P1×E)/E
0,1 (γ1; 1). By

the identification of the moduli space (5.9), we have

F
(P1×E)/E
0,1 (γ1; 1) = 〈 1 | τ0(p) 〉(P

1×E)/E
0,(1,0) = 1 .

Hence, the (g′, n′) = (g, n− 1) term is

F
A/E
g,n−1(α ; γ2, . . . , γn;ω) , (5.10)

where the class α ∈ R∗(Mg,n) is pulled back to Mg,n−1(A/E, (1, d)) via the map

π : Mg,n−1(A/E, (1, d))→Mg,n ,
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which takes the relative point on the left to the marking 1 on the right. We must prove that the
induction hypothesis implies that

(i) the potential F
A/E
g,n−1(α ; γ2, . . . , γn;ω) vanishes unless

vai(ξ) +

n∑
k=2

vai(γk) = vbi(ξ) +

n∑
k=2

vbi(γk) , i ∈ {1, 2} ;

(ii) we have F
A/E
g,n−1(α ; γ2, . . . , γn;ω) ∈ QMod2(g−2)+2` for

` = va2(ξ) +
n∑
k=2

va2(γk) .

We proceed by studying the cotangent lines. Let

Lrel →Mg,n−1(A/E, (1, d)) , L1 →Mg,n

denote the respective cotangent lines at the relative point and the first marking.

Lemma 5.5. After pull-back via π, we have an isomorphism Lrel
∼= π∗L1 on Mg,n−1(A/E, (1, d)).

Proof. Let C be the n-pointed domain of a map f : C → Ã parameterized by the moduli space
Mg,n−1(A/E, (1, d)). The n points consist of the relative point together with the n− 1 standard

markings. The target Ã is a possible accordian destabilization of A along E. The lemma is a
consequence of the following claim: the n-pointed curve C is Deligne–Mumford stable.

Since g > 1 and n > 1, to prove the stability of the n-pointed curve C, we need only consider
the non-singular rational components P ⊂ C:

• If f(P ) ⊂ A, then f is constant on P , that is, f(P ) ∈ A \ E, and P must carry at least
three special points by the definition of map stability.

• If f(P ) is contained in a rubber bubble over E, then P is mapped to a point of E and
therefore must map to a fiber of the bubble. Stability of the bubble then requires the
existence of at least three special points of P .

Since the n-pointed curve C is stable, there is no contraction of components associated with
the map π. Hence, the cotangent lines are isomorphic.

The relative divisor E ⊂ A is the fiber over a point 0E1 ∈ E1. Let f : C → Ã be a stable map
parameterized by the moduli space Mg,n−1(A/E, (1, d)), and let prel ∈ C be the relative point.

Composition with the canonical projections ε : Ã→ A→ E1 yields a map

εf : C → E1 with εf(prel) = 0E1 .

The cotangent line Lrel carries a canonical section via the differential of εf ,

s : C = T ∗0E1
(E1)→ Lrel .

The vanishing locus7 of s is the boundary of the moduli space Mg,n−1(A/E, (1, d)) corresponding
to the first bubble over E.

Since α is of the form (5.4) with k1 > 0, a factor ψ1 = c1(L1) can be extracted from α, giving
α = ψ1 · α̃. After pull-back via π, we have π∗(ψ1) = c1(Lrel) by Lemma 5.5. Via the vanishing

7The geometry is pulled back from the Artin stack of degenerations of A/E.

430



Curve counting on abelian surfaces and threefolds

locus of the section s, we obtain the following equation for the series (5.10):

F
A/E
g,n−1(α ; γ2, . . . , γn;ω) =

∑
(g′,n′)<(g,n−1)

F
A/E
g′,n′(α̃

′ ; ( . . . ); ξ) · FRub(P1×E)
g′′,n′′

(
α̃′′ ; ( . . . ); ξ∨, ω

)
. (5.11)

The summation here is over splittings

g = g′ + g′′ , n− 1 = n′ + n′′

and distributions ( . . . ) of the insertions γ2, . . . , γn. Only insertions γi satisfying

va1(γi) = vb1(γi) = 0

can be distributed to the rubber series

F
Rub(P1×E)
g′′,n′′

(
α̃′′ ; ( . . . ); ξ∨, ω

)
=
∑
d>0

〈
ξ∨
∣∣ α̃′′ ; ( . . . )

∣∣ω〉Rub(P1×E)

g′′,(1,d)
qd .

By stability of the rubber, either g′′ > 0 or n′′ > 0. The class α̃ determines α̃′ and α̃′′ by
restriction. Finally, there is also a sum on the right side of (5.11) over relative conditions ξ.

In the sum on the right side of (5.11), the balancing and modularity of the first factor

F
A/E
g′,n′(α̃

′ ; ( . . . ) ; ξ)

is obtained from Lemma 5.4. The balancing and modularity of the rubber factor

F
Rub(P1×E)
g′′,n′′

(
α̃′′ ; ( . . . ); ξ∨, ω

)
follows from the rubber calculus and an argument parallel to the proof of Lemma 5.3. (We leave
the details here to the reader.) The results together imply the required balancing and modularity
for the series (5.10).

We now control the balancing and modularity of all terms in the sum on the right of (5.5).
As a consequence, Proposition 5.2 holds for FAg (α ; γ1, . . . , γn). The proof of the induction step
for Case (ii-a) is complete.

Case (ii-b): α = p∗(ζ) for some ζ ∈ R∗(Mg). We may assume that γ1 is of minimal degree:

deg(γ1) 6 deg(γi) for all i ∈ {2, . . . , n} .

Below, we will distinguish several subcases depending upon deg(γ1).

Consider the map Mg,n(A, (1, d))→Mg,n−1(A, (1, d)) forgetting the first marking. The coef-
ficients of the series

FAg (p∗(ζ); γ1, . . . , γn) (5.12)

are integrals where all classes in the integrand, except for ev∗1(γ1), are pull-backs via the map
forgetting the first marking.

Case deg(γ1) 6 1. The series (5.12) vanishes by the push-pull formula since the fiber of the
forgetful map has (complex) dimension 1.

Case deg(γ1) = 2. We use the divisor equation for γ1 and find

FAg (p∗(ζ); γ1, . . . , γn) =


FAg (p∗(ζ); γ2, . . . , γn) if γ1 = a1b1 ,

q ddqF
A
g (p∗(ζ); γ2, . . . , γn) if γ1 = a2b2 ,

0 otherwise .
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Because the differential operator

q
d

dq
=

1

2πi

∂

∂τ

preserves QMod∗ and is homogeneous of degree 2, Proposition 5.2 holds for (5.12) by the induc-
tion hypothesis.

Case deg(γ1) = 3. Since
∑

i deg(γi) is even, we must have n > 2. We order the classes
γ2, . . . , γn so that γ2, . . . , γk are point classes and γk+1, . . . , γn are classes of degree 3, for some
1 6 k < n.

We will use the abelian vanishing of Lemma 4.2 for γ1 and γ = γ2 ⊗ · · · ⊗ γn. Let s ∈
{a1, b1, a2, b2} be the factor with vs(γ1) = 0. Using the abelian vanishing relation, we find

k∑
i=1

FAg
(
p∗(ζ); p, . . . , p︸ ︷︷ ︸

i−1

, γ1, p, . . . , p︸ ︷︷ ︸
k−i

, γk+1, . . . , γn
)

=
n∑

i=k+1
vs(γi)=1

±FAg (p∗(ζ); p, γ2, . . . , γ̃i, . . . , γn) ,

where γ̃i = γi/s denotes the class γi with the factor s removed. The plus signs in the terms on
the left-hand side require a careful accounting of the signs. Since the class p∗(ζ) is symmetric
with respect to interchanging markings, the above equation simplifies to

k · FAg (p∗(ζ); γ1, . . . , γn) =

n∑
i=k+1
vs(γi)=1

±FAg (p∗(ζ); p, γ2, . . . , γ̃i, . . . , γn) .

Since γ̃i is of degree 2, we may apply the divisor equation to each summand on the right side.
As a result, the right side is reduced to terms of lower order; see Case deg(γ1) = 2 above. By the
induction hypothesis, Proposition 5.2 holds for (5.12).

Case deg(γ1) = 4. All the insertions γ1, . . . , γn must be point classes. If n = 1, the dimension
constraint (5.3) implies deg(α) = 2g − 2 and hence ζ ∈ Rg−1

(
Mg

)
. By the strong form of

Looijenga’s vanishing R>g−1(Mg) = 0 proven in [FP05, Proposition 2], there exists a class ζ̃ ∈
R∗
(
∂Mg

)
such that ι∗ζ̃ = ζ. The pull-back p∗(ζ) via p : Mg,n → Mg can be written as the

push-forward of a tautological class on the boundary ∂Mg,n. Proposition 5.2 holds for (5.12) by
the splitting formula and the induction hypothesis; see Case (i).

If n > 2, we use the degeneration A A∪E
(
P1×E

)
, which already appeared in Case (ii-a)

above. We choose the point classes γ1 and γ2 to lie on the component P1×E after degeneration.

The degeneration formula then yields

FAg (α ; γ1, . . . , γn) =
∑

(g′,n′)6(g,n)

F
A/E
g′,n′(α

′ ; ( . . . ); ξ) · F(P1×E)/E
g′′,n′′

(
α′′ ; γ1, γ2, ( . . . ); ξ

∨) , (5.13)

where the sum is as in (5.5).

If g′ = g in the sum (5.13), then the second factor is

F
(P1×E)/E
0,n′′

(
α′′ ; γ1, γ2, ( . . . ); ξ

∨) . (5.14)

Genus 0 stable maps do not represent classes of type (1, d) with d > 0 on P1 × E; hence only
the curve class (1, 0) need be considered. Since there are no curves of type (1, 0) through two
general points of P1 ×E, the factor (5.14) vanishes. As a result, only g′ < g terms appear in the
sum (5.13). Proposition 5.2 holds for (5.12) by Lemmas 5.3 and 5.4.
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The proof of the induction step has now been established in all cases. The proof of Proposi-
tion 5.2 is complete.

5.6 K3 surfaces

Theorem 1.3 for abelian surfaces is exactly parallel to the modularity results [MPT10, Theorem 4
and Proposition 29] for the primitive descendent potential for K3 surfaces. Though the argument
for abelian surfaces is more difficult because of the presence of odd cohomology, several aspects
are similar.

The refined modularity of Theorem 5.1 for abelian surfaces is strictly stronger than the state-
ments of [MPT10] for K3 surfaces. In fact, the proof of [MPT10] also yields the parallel refined
statement for K3 surfaces. The crucial point is to use the refined modularity of Lemma 5.3(ii)
instead of the weaker modularity of [MPT10, Lemma 30]. We state the refined modularity for K3
surfaces below following the notation of [MPT10].

Let S → P1 be a non-singular, projective, elliptically fibered K3 surface with a section. Let
s, f ∈ H2(S,Z) be the section and fiber class, respectively. The primitive descendent potential
for the reduced Gromov–Witten theory of S is defined by

FSg
(
τa1(γ1) · · · τan(γn)

)
=
∑
d>0

〈
τa1(γ1) · · · τan(γn)

〉S,red

g,s+df
qd−1

for g > 0.

We define a new degree function deg(γ) for classes γ ∈ H∗(S,Q) by the following rules:

• γ ∈ H0(S,Q) 7→ deg(γ) = 0,

• γ ∈ H4(S,Q) 7→ deg(γ) = 2.

For classes γ ∈ H2(S,Q), the degree is more subtle. Viewing the section and fiber classes also as
elements of cohomology, we define

V = Qs⊕Qf ⊂ H2(S,Q) .

We have a direct sum decomposition

Qf ⊕ V ⊥ ⊕Q(s + f) ∼= H2(S,Q) , (5.15)

where V ⊥ is defined with respect to the intersection form. We consider only classes γ ∈ H2(S,Q)
which are pure with respect to the decomposition (5.15). Then,

• γ ∈ Qf 7→ deg(γ) = 0,

• γ ∈ V ⊥ 7→ deg(γ) = 1,

• γ ∈ Q(s + f) 7→ deg(γ) = 2.

The modularity of [MPT10, Theorem 4 and Proposition 29] is refined by the following result.

Theorem 5.6. For deg-homogeneous classes γi ∈ H∗(S,Q), we have

FSg
(
τa1(γ1) · · · τan(γn)

)
∈ 1

∆(q)
QMod`

for ` = 2g +
∑n

i=1 deg(γi).

The discriminant modular form entering in Theorem 5.6 is

∆(q) = q

∞∏
n=1

(
1− qn

)24
.
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6. Hyperelliptic curves

6.1 Overview

The correspondence between hyperelliptic curves on a surface S and rational curves in Hilb2(S)
has been used often to enumerate hyperelliptic curves on S; see [Gra01] for S = P2 and [Pon07] for
S = P1×P1. The main difficulty in applying the correspondence is the need of a non-degeneracy
result concerning curves in P1 × S. For abelian surfaces, the required non-degeneracy, stated as
(†) in Section 1.2.4, is expected to hold generically but is not known in most cases. The above
correspondence then yields only conditional or virtual results on the number of hyperelliptic
curves on an abelian surface, as pursued, for example, by Rose in [Ros14].

We proceed with our study of hyperelliptic curves in three steps. In Section 6.2, we provide
several equivalent descriptions of (†) and a proof in genus 2 for a generic abelian surface. In
Section 6.3, we prove an unconditional formula for the first non-trivial case of genus 3 hyperelliptic
curves via explicit Gromov–Witten integrals, a boundary analysis, and the genus 2 result proven
in Section 6.2.

In Section 6.4, we assume the existence of abelian surfaces A and irreducible curve classes β
satisfying property (†) in all genera. Employing the correspondence above, we find a closed
formula for the hA,FLS

g,β . While a similar strategy has been used in [Ros14] assuming the crepant
resolution conjecture, our closed formula is new. Together with the strong modularity result of
Theorem 5.1, we obtain a formula for the Gromov–Witten numbers HFLS

g,(1,d) which agrees with
the genus 3 counts.

6.2 Non-degeneracy for abelian surfaces

We briefly recall the correspondences between hyperelliptic curves in S, curves in P1 × S, and
rational curves in Hilb2(S). For simplicity, we restrict to the case of abelian surfaces S = A; see
[FKP09, Gra01, Obe18] for the general case.

Let A be an abelian surface, and let f : C → A be a map from a non-singular hyperelliptic
curve. Let p : C → P1 be the double cover. Since A contains no rational curves, f does not
factor through p. Consider the map (p, f) : C → P1 × A. The image C̄ = Im(C) ⊂ P1 × A is an
irreducible curve, (flat) of degree 2 over P1, and has normalization C → C̄.

Let Hilb2(A) be the Hilbert scheme of 2 points of A, and let ∆ ⊂ Hilb2(A) denote the
subvariety parameterizing non-reduced length 2 subschemes of A. By the universal property of
the Hilbert scheme, the curve C̄ induces a map φ : P1 → Hilb2(A) such that the image is not
contained in ∆.

Conversely, let φ : P1 → Hilb2(A) be a map whose image is not contained in ∆. Since A
contains no rational curves, by pulling back the universal family Z ⊂ Hilb2(A) × A, we obtain
an irreducible curve C̄ ⊂ P1 ×A of degree 2 over P1. The normalization C → C̄ is hyperelliptic
and induces a map f : C → A.

Hence, there are bijective correspondences between

• maps f : C → A from non-singular hyperelliptic curves,

• irreducible curves C̄ ⊂ P1 ×A of degree 2 over P1,

• maps φ : P1 → Hilb2(A) with image not contained in ∆.

The correspondences allow us to reformulate the non-degeneracy property (†).

Lemma 6.1 (Graber [Gra01]). Under the correspondences above, the following are equivalent:
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(i) The differential of f is injective at the Weierstrass points of C, and no conjugate non-
Weierstrass points are mapped to the same point on A.

(ii) The curve C̄ is non-singular.

(iii) The map φ meets ∆ transversally.

Using a recent result of Poonen and Stoll [PS14], we verify that property (†) holds generically
in genus 2.

Lemma 6.2. Let A be a generic abelian surface with a curve class β of type (1, d), and let
f : C → A be a map from a non-singular genus 2 curve in class β. Then f : C → A satisfies
condition (i) of Lemma 6.1.

Proof. The condition on the differential of f is automatically satisfied by [LS02b, Proposition 2.2]
for genus 2 curves on abelian surfaces.

Now, suppose that there exist a non-singular genus 2 curve C, two conjugate non-Weierstrass
points x, y ∈ C, and a map f : C → A in class β such that f(x) = f(y). Up to translation, we
may assume that f maps a Weierstrass point q ∈ C to 0A ∈ A. Then f factors as

C
aj−→ J

π−→ A ,

where J is the Jacobian of C and aj is the Abel–Jacobi map with respect to q. The hyperelliptic
involution of C corresponds to the automorphisms −1 of J and A. For x, y conjugate, this implies
that f(x) = f(y) is a 2-torsion point on A.

Since C is of genus 2 and β is of type (1, d), the map π is an isogeny of degree d. It follows
that both aj(x) and aj(y) are 2d-torsions on J .

In genus 2, the assumption that A is generic implies that C is generic. However, by [PS14,
Theorem 7.1], a generic (Weierstrass-pointed) hyperelliptic curve C meets the torsions of J only
at the Weierstrass points. Hence the points x, y do not exist.

The proof of Lemma 6.2 works for any type (d1, d2) with d1, d2 > 0. However, since multiple
covered curves may arise, statement (†) is false for imprimitive classes in higher genus. The most
basic counterexample is constructed by taking an étale double cover C3 → C2 of a non-singular
genus 2 curve C2 ⊂ A. Then, C3 is non-singular and hyperelliptic of genus 3, but C2 contains a
Weierstrass point whose preimage in C3 is a pair of conjugate non-Weierstrass points.

Furthermore, by the proof of [KLCM17, Theorem 1.6], for generic A and β of type (1, d),
property (†) also holds in the maximal geometric genus gd. The value of gd is determined by
the inequality (1.5). It is also shown that for every g ∈ {2, . . . , gd}, there exists at least one
non-singular genus g curve in P1 ×A of class (2, β).

6.3 Genus 3 hyperelliptic counts

We prove here Proposition 1.4. We proceed in two steps. First, we evaluate HFLS
3,(1,d). Then, we

identify the contributions from the boundary of the moduli space.

Lemma 6.3. For all d > 1, we have HFLS
3,(1,d) = d2

∑
m|d (3m2 − 4dm)/4.

Proof. On M3, let λ1 be the first Chern class of the Hodge bundle, let δ0 be the class of the
curves with a nonseparating node, and let δ1 be the class of curves with a separating node.
By [HM82], we have

H3 = 9λ1 − δ0 − 3δ1 .
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The lemma will be proven by the following three evaluations:

〈λ1〉A,FLS
3,(1,d) =

d2

12

∑
m|d

m3 , 〈δ0〉A,FLS
3,(1,d) = d3

∑
m|d

m, 〈δ1〉A,FLS
3,(1,d) = 0 .

The first equation follows directly from Theorem 1.1. For the second, we have

〈δ0〉A,FLS
3,(1,d) =

1

2
〈τ0(∆)〉A,FLS

2,(1,d) =
1

2
· 2d · 〈1〉A,FLS

2,(1,d) = d · d2
∑
m|d

m,

where ∆ denotes the class of the diagonal in A×A. The divisor δ1 is associated with the locus of
curves which split into genus 1 and genus 2 components. Since, generically, A contains no genus 1
curves, the class on the genus 1 component must be 0. Since [M1,1(A, 0)]vir = 0, we obtain the
third evaluation.

Proof of Proposition 1.4. Let A and β be generic. By Lemma 6.2, the only contribution to HFLS
g,(1,d)

from maps f : C → A with C nodal arises from the locus in M3 with a separating node. The
maps are of the form

f : B ∪ C ′ → A ,

where B is a genus 2 curve and C ′ is an elliptic tail glued to B along one of the six Weierstrass
points of B. Under f , the curve B maps to a genus 2 curve in A, while C ′ gets contracted. By
a direct calculation (or examining the case d = 1), we find that each genus 2 curve in the FLS
contributes

6 · 1

2

∫
M1,1

c1(Ob) = −1

4
,

where Ob denotes the obstruction sheaf. Therefore,

hA,FLS
3,β = HFLS

3,(1,d) + d2σ(d) · 1

4
= d2

∑
m|d

m(3m2 + 1− 4d)

4
.

6.4 A formula for all genera

Consider the composition

Hilb2(A)→ Sym2(A)→ A (6.1)

of the Hilbert–Chow morphism and the addition map. The fiber of 0A ∈ A is the Kummer K3
surface of A, denoted by Km(A). Alternatively, Km(A) can be defined as the blowup of A/± 1
at the 16 singular points.

In the notation of Section 6.2, a map φ : P1 → Hilb2(A) not contained in ∆ maps to Km(A)
if and only if the corresponding hyperelliptic curve f : C → A maps a Weierstrass point of C to
a 2-torsion point of A.

By Nakajima’s theorem on the cohomology of Hilbert schemes, we have a natural decompo-
sition

H2

(
Hilb2(A);Z

)
= H2(A,Z)⊕ ∧2H1(A,Z)⊕ Z ·X ,

where X is the class of an exceptional curve.

A hyperelliptic curve f : C → A in class β corresponds to a map φ : P1 → Hilb2(A) not
contained in ∆, which has class

β + γ + kX ∈ H2

(
Hilb2(A),Z

)
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for some γ ∈ ∧2H1(A,Z), with

k = χ
(
OC̄
)
− 2 = −1− ga

(
C̄
)
,

where ga(C̄) is the arithmetic genus of C̄; see [Obe18, Section 1.3].

Proposition 6.4. Let β be an irreducible curve class of type (1, d) on an abelian surface A
satisfying (†). Then, after the change of variables y = −e2πiz and q = e2πiτ , we have∑

g>2

hA,FLS
g,β

(
y1/2 + y−1/2

)2g+2
=
d2

16
Coeffqd

[
4K(z, τ)4

]
,

where Coeffqd denotes the coefficient of qd.

Proof. For every hyperelliptic curve f : C → A in class β, the map (p, f) : C → C̄ is an isomor-
phism by (†). In particular, the arithmetic genus of C̄ is equal to the genus of C.

Hence, there is a bijective correspondence between

(i) maps f : C → A from non-singular hyperelliptic curves of genus g and class β for which
a Weierstrass point of C is mapped to a 2-torsion point of A,

(ii) maps φ : P1 → Hilb2(A) with image not contained in ∆ of class

β + γ − (g + 1)X

for some γ ∈ ∧2H1(A,Z) and with image in Km(A).

Let hA,Hilb
g,β be the finite number of such curves.

In every translation class of a hyperelliptic curve f : C → A in class β, there are d2 members
(up to automorphisms) in a given fixed linear system, and 16 members (up to automorphisms)
with a Weierstrass point of C mapping to a 2-torsion point. Hence, we have

hA,FLS
g,β =

d2

16
hA,Hilb
g,β .

By assumption (†) and Lemma 6.1, every map φ : P1 → Hilb2(A) as in item (ii) meets ∆
transversely and is isolated. In this situation, Graber in [Gra01, Sections 2 and 3] has explicitly
determined the relationship between the genus 0 Gromov–Witten invariants of Hilb2(A) and the
number of these rational curves.

Let p : M0(Hilb2(A))→ A be the map induced by (6.1). Then,∑
g>0

hA,Hilb
g,β

(
y1/2 + y−1/2

)2g+2
=
∑
k∈Z

∑
γ∈∧2H1(A,Z)

yk
∫

[M0(Hilb2(A),β+γ+kA)]red
p∗(0A) .

The integral on the right-hand side reduces to the genus 0 invariants of the Kummer K3
surfaces and is determined by the Yau–Zaslow formula. Direct calculations and theta function
identities, see [Obe18] for details, then provide the closed evaluation∑

k∈Z
γ∈∧2H1(A,Z)

yk
∫

[M0(Hilb2(A),β+γ+kA)]red
p∗(0A) = Coeffqd

[
4K(z, τ)4

]
.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let β be an irreducible class of type (1, d) on an abelian surface A satis-
fying (†). The only contributions to HFLS

g,(1,d) from maps f : C → A with C nodal are of the form
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f : B ∪ C1 ∪ · · · ∪ C2h+2 → A , (6.2)

where

• f : B → A is a map in class β from a non-singular hyperelliptic curve B of some genus
h < g;

• the Ci are pairwise disjoint curves that are glued to the ith Weierstrass point xi of B and
are contracted under f ;

• the genera gi of Ci satisfy h+ g1 + · · ·+ g2h+2 = g;

• if gi > 2, then Ci is a hyperelliptic curve and xi is a Weierstrass point of Ci.

By stability, the case gi = 0 does not appear.

For g > 2, let Hg,1 ∈ Ag−1
(
Mg,1

)
be the stack fundamental class of the closure of non-

singular hyperelliptic curves with marked point at a Weierstrass point. By convention, we set
H1,1 = 1

2

[
M1,1

]
. Then, the contribution of a non-singular hyperelliptic curve f : B → A of genus

h in class β to HFLS
g,(1,d) is

∑
g1,...,g2h+2>0

g1+···+g2h+2=g−h

2h+2∏
i=1
gi>0

∫
Mgi,1

Hgi,1 ∪ c(Ob) , (6.3)

where Ob denotes the obstruction sheaf. Analyzing the tangent obstruction sequence, we obtain

c(Ob) =
c(E∨)2

1− ψ1
.

Define the generating series

F (u) = u+
∑
g>1

u2g+1

∫
Mg,1

Hg,1 ∪ c(E∨)2

1− ψ1
.

Then, from relation (6.3) and the definition of hA,FLS
g,β , we obtain∑

h>2

hA,FLS
h,β F (u)2h+2 =

∑
g>2

HFLS
g,(1,d) u

2g+2 .

The series F (u) has been computed by Wise using orbifold Gromov–Witten theory [Wis16]. The
result is

F (u) = 2 sin(u/2) = u− 1

24
u3 +

1

1920
u5 ± · · · .

Together with Proposition 6.4, this implies the claim.

The calculation of the invariants HFLS
g,(1,d) is similar to the calculations of the orbifold genus 0

Gromov–Witten theory of the second symmetric product of a non-singular surface as pursued in
[Ros14, Wis11]. We expect that a connection can be made to their work.

The main step in the proof of Theorem 1.5 is the evaluation of the generating series F (u).
Below, we will give a second proof of Theorem 1.5 under slightly stronger assumptions. The
main new input here is the refined modularity statement of Theorem 5.1. Using the modularity
property, the evaluation of F (u) will follow automatically from the theory of modular forms.

For the second proof, we will assume that the following holds:
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(∃†) For every d > 1, there exist an abelian surface A and an irreducible curve class β of type
(1, d) satisfying property (†).

Second proof of Theorem 1.5 under assumption (∃†). For all d > 1, let βd be an irreducible class
of type (1, d) on an abelian surface Ad satisfying (†).

Step 1. Define the generating series

ϕg(q) =
∑
d>1

hAd,FLS
g,βd

qd .

By Proposition 6.4, we have, after the change of variables u = 2πz and y = −eiu,∑
g>2

(
y1/2 + y−1/2

)2g+2
ϕg(q) =

(
q
d

dq

)2 K(z, τ)4

4
=
∑
m>2

u2mfm(q) , (6.4)

where fm(q) are quasi-modular forms of weight 2m, that is, fm(q) ∈ QMod2m. Let r = −(y1/2 +
y−1/2) = 2 sin(u/2), and let

u = 2 arcsin(r/2) = r +
1

24
r3 +

3

640
r5 + · · ·

be the inverse transform. After inserting this into (6.4), we obtain∑
g>2

ϕg(q)r
2g+2 =

∑
m>2

(
r +

1

24
r3 + · · ·

)2m
fm(q) .

Hence, ϕg(q) is a quasi-modular form with highest weight term fg+1(q):

ϕg(q) = fg+1(q) +R(q) (6.5)

for R(q) ∈ QMod62g.

Step 2. By the trade of the FLS for insertions as in (4.1), the vanishing of the d = 0 term,
and deformation invariance, we have

FE1×E2
g (Hg; a1ω2, b1ω2, ω1a2, ω1b2) =

∑
d>1

HFLS
g,(1,d)q

d , (6.6)

where we use the notation of Section 5. Applying Theorem 5.1, we see that the series (6.6) is
hence a quasi-modular form of pure weight 2g + 2.

Step 3. By assumption (†) and the discussion after (6.2), the Gromov–Witten invariant
HFLS
g,(1,d) equals the sum

HFLS
g,(1,d) =

∑
26g′6g

cg′,gh
Ad,FLS
g′,βd

(6.7)

for coefficients cg′,g ∈ Q. Summing up (6.7) over all d, we obtain∑
d>1

HFLS
g,(1,d)q

d =
∑

26g′6g

cg′,gϕg′(q) .
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The left-hand side is homogeneous of weight 2g + 2, hence must equal the weight 2g + 2 part of
the right-hand side. Therefore, by (6.5), we have∑

d>1

HFLS
g,(1,d)q

d = fg+1(q) .

By the definition of the fg+1(q), this shows part (ii) of the theorem:∑
g>2

u2g+2
∑
d>1

HFLS
g,(1,d)q

d =
∑
g>2

u2gfg(q) =
(
q
d

dq

)2 1

4
K(z, τ)4 . (6.8)

Comparing (6.8) with (6.4), we see that part (i) also follows.

Part II. Abelian threefolds

7. Donaldson–Thomas theory

7.1 Overview

Let A be a generic abelian surface carrying a curve class βd′ of type (1, d′) with d′ > 0, and
let E be a generic elliptic curve. Throughout Section 7, we will work with the abelian threefold
X = A× E.

Here, we compute the topological Euler characteristic of the stack Hilbn(X, (βd′ , d))/X in
the cases d′ ∈ {1, 2}, proving Theorem 1.6. Next, we present a conjectural relationship between
the Behrend function weighted Euler characteristic and the topological Euler characteristic via
a simple sign change, and show how it implies Corollary* 1.7. We discuss the motivation and
plausibility for the conjecture.

Our computation here is parallel to the computation of the reduced Donaldson–Thomas
invariants for K3 × E in [Bry15]. We will frequently refer to results of [Bry15]. The technique
used was developed by Bryan and Kool in [BK16].

7.2 Notation

Since the translation action of X on Hilbn(X, (βd′ , d)) has finite stabilizer, the reduced Donald-
son–Thomas invariants

DTn,(βd′ ,d) = e
(

Hilbn(X, (βd′ , d))/X, ν
)

=
∑
k∈Z

k · e
(
ν−1(k)

)
and the topological (unweighted) Euler characteristics

D̂Tn,(βd′ ,d) = e
(

Hilbn(X, (βd′ , d))/X
)

are well defined. We have dropped the superscript X in the notation for the Donaldson–Thomas
invariants of Section 1.3.1.

We also use the shorthand notation

Hilbn,d
′,d(X) = Hilbn(X, (βd′ , d))

and the following bullet convention.
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A

E
z0

Figure 1. A vertical curve (dashed) contained in the slice A×{z0} (light gray), a diagonal curve
(dotted), and two horizontal curves (solid).

Convention. When an index in a space is replaced by a bullet (•), we sum over the index,
multiplying by the appropriate variable. The result is a formal series with coefficients in the
Grothendieck ring.

For example, we let

Hilb•,d
′,•(X)/X =

∑
d>0

∑
n∈Z

[
Hilbn,d

′,d(X)/X
]
pnqd ,

which we regard as an element in K0(DMC)((p))[[q]], the ring of formal power series in q, Laurent
in p, with coefficients in the Grothendieck ring of Deligne–Mumford stacks over C.

Define the Donaldson–Thomas partition functions of X,

DTd′ =
∑
d>0

∑
n∈Z

DTn,(βd′ ,d)(−p)nqd ,

D̂Td′ =
∑
d>0

∑
n∈Z

D̂Tn,(βd′ ,d)p
nqd .

By the bullet convention,

D̂Td′ = e
(

Hilb•,d
′,•(X)/X

)
,

where we extend the Euler characteristic e : K0(DMC)→ Q termwise to the ring of formal power
series in p and q over K0(DMC).

7.3 Vertical and diagonal loci

Let pA and pE be the projections of X = A×E onto the factors A and E, respectively. We say
an irreducible curve C ⊂ X is

• vertical if pE : C → E has degree 0,

• horizontal if pA : C → A has degree 0,

• diagonal if pA, pE both have non-zero degree.

The various definitions are illustrated in Figure 1.

Consider a subscheme C⊂X which defines a point in Hilbn,d
′,d(X). Since the class pA∗[C]=βd′

is irreducible, there is a unique irreducible component of C of dimension 1, which is either vertical
or diagonal. All other irreducible components of C of dimension 1 are horizontal.
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Consider the sublocus

Hilbn,d
′,d

vert (X) ⊂ Hilbn,d
′,d(X) (7.1)

parameterizing subschemes C ⊂ X with C0 × {z0} ⊂ C for some z0 ∈ E and for some curve

C0 ⊂ A of class βd′ . We endow Hilbn,d
′,d

vert (X) with the natural scheme structure. It is a closed
subscheme of Hilbn,d

′,d(X).

Let Hilbn,d
′,d

diag (X) be the complement of the inclusion (7.1),

Hilbn,d
′,d

diag (X) = Hilbn,d
′,d(X) \Hilbn,d

′,d
vert (X) .

Hence, every point in Hilbn,d
′,d

diag (X) corresponds to a subscheme C ⊂ X, which contains a diagonal
component.

Since the condition defining the subscheme (7.1) is invariant under the translation action

of X, we have an induced action of X on Hilbn,d
′,d

vert (X) and its complement. We exhibit the stack

Hilbn,d
′,d

vert (X)/X as a global quotient stack of a scheme by a finite group of order d′2, as follows.

Let L → A be a fixed line bundle on A with c1(L) = βd′ , and let z0 ∈ E be a fixed point.
Consider the subscheme

Hilbn,d
′,d

vert,fixed(X) ⊂ Hilbn,d
′,d

vert (X)

parameterizing subschemes C ⊂ X with C0 × {z0} ⊂ C for some

C0 ∈ |L| . (7.2)

The stabilizer of Hilbn,d
′,d

vert,fixed(X) under the translation action of X is the subgroup

Ker
(
φ : A→ Â

)
⊂ A , (7.3)

where φ : a 7→ L ⊗ t∗aL
−1 and ta : A → A denotes the translation by a ∈ A. By (2.1), the

subgroup (7.3) is isomorphic to Zd′ × Zd′ . Hence, we have the stack equivalence

Hilbn,d
′,d

vert (X)/X ∼= Hilbn,d
′,d

vert,fixed(X)/(Zd′ × Zd′) . (7.4)

7.4 Proof of Theorem 1.6(i)

Let L be a line bundle on A with c1(L) = β1, and let C0 ∈ |L| be the unique non-singular
genus 2 curve in |L|. Since L has type (1, 1), the class c1(L) is a principally polarization of A. In
particular, A is isomorphic to the Jacobian J of C0.

Step 1. Every irreducible diagonal curve C ⊂ X in class (β1, d) maps isomorphically to C0

and, therefore, induces a non-constant map C0 → E. Dualizing, we obtain a non-constant map
E → J(C0) ∼= A, whose image is an abelian subvariety of A of dimension 1. Hence, by the

genericity of A, no diagonal curve exists and Hilbn,d
′,d

diag (X) is empty.

Since there are no diagonal curves, we write

Hilbn,d
′,d

fixed (X) = Hilbn,d
′,d

vert,fixed(X) .

Then, by the equivalence (7.4) with d′ = 1, we have

e
(

Hilbn,d
′,d(X)/X

)
= e
(

Hilbn,d
′,d

fixed (X)
)
.

Using the bullet convention, we find

D̂T1 = e
(

Hilb•,1,•fixed (X)
)
.
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A

E
z0

C0

Figure 2. Subschemes in A×E up to translation. Horizontal curves (solid) can have nilpotent
thickenings, and there can be embedded and floating points (gray). The unique vertical curve
C0 ∈ |L| (dashed) lies in A× {z0} and is generically reduced.

Step 2. Let X̂C0×E be the formal completion of X along the closed subvariety C0 ×E, and
let U = X \ C0 × E be the open complement. The subschemes {X̂C0×E , U} forms a fpqc cover
of X. By fpqc descent, subschemes in X are determined by their restrictions to X̂C0×E and U .

Since subschemes parameterized by Hilbn,1,dfixed (X) are disjoint unions of components contained

entirely in X̂C0×E or U , see Figure 2, there is no overlap condition for descent.

Consequently, we can stratify Hilbn,1,dfixed (X) by locally closed subsets isomorphic to the product

of Hilbert schemes of X̂C0×E and U , respectively. The result is succinctly expressed as an equality
in the Grothendieck ring K0(VarC)((p))[[q]]:

Hilb•,1,•fixed (X) = Hilb•,1,•fixed

(
X̂C0×E

)
·Hilb•,0,•(U) , (7.5)

where we view Hilbn,1,dfixed(X̂C0×E) and Hilbn,0,d(U) as subschemes of Hilbn,1,dfixed (X) and Hilbn,0,d(X),
respectively. Taking Euler characteristics in (7.5), we obtain

D̂T1 = e
(

Hilb•,1,•fixed (X̂C0×E)
)
· e
(

Hilb•,0,•(U)
)
. (7.6)

Step 3. We calculate the second factor e
(

Hilb•,0,•(U)
)
. The E-action on U induces an action

of E on Hilbn,0,d(U). This new E-action exists because the fixed condition (7.2) concerns only

the Hilbn,1,dfixed (X̂C0×E)-factors and is independent of U and Hilbn,0,d(U).

Since a scheme with a free E-action has trivial Euler characteristic, we have

e
(

Hilbn,0,d(U)
)

= e
(

Hilbn,0,d(U)E
)
,

where Hilbn,0,d(U)E is the fixed locus of the E-action on Hilbn,0,d(U). Every element of
Hilbn,0,d(U)E corresponds to an E-invariant subscheme or, equivalently, is of the form Z ×E for
a 0-dimensional subscheme Z ⊂ A\C0 of length d. Since χ(OZ×E) = 0 for every such Z, we find

e
(

Hilb•,0,•(U)
)

= e

(∑
d>0

Hilbd(A \ C0)qd
)

=

( ∏
m>1

(
1− qm

)−1
)e(A\C0)

=
∏
m>1

(
1− qm

)−2
.

(7.7)

We have used Göttsche’s formula for the Euler characteristic of the Hilbert scheme of points of
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X̂C0×E C0

xi × E aixi

C0 × {z0}

Figure 3. The map ρd : Hilbn,1,dfixed (X̂C0×E)→ Symd(C0) records the location and multiplicity of
the horizontal curve components.

a surface [Göt90].

Step 4. We calculate the first factor e
(

Hilb•,1,•fixed (X̂C0×E)
)
.

Consider the constructible morphism8

ρd : Hilbn,1,dfixed

(
X̂C0×E

)
→ Symd(C0) , (7.8)

defined as follows. Let [C] ∈ Hilbn,1,dfixed (X̂C0×E) be a scheme with curve support C0×z0∪i (xi×E)
and multiplicity ai along xi × E. Then

ρd([C]) =
∑
i

aixi ∈ Symd(C0) .

Hence, ρd([C]) records the intersection (with multiplicities) of C0 with all horizontal components
of C; see Figure 3.

We determine the Euler characteristic of Hilb•,1,•fixed (X̂C0×E) by computing the Euler charac-
teristic of Symd(C0), weighted by the constructible function given by the Euler characteristic of
the fibers of ρd. Hence, we write

e
(

Hilbn,1,dfixed (X̂C0×E)
)

=

∫
Hilbn,1,dfixed (X̂C0×E)

1de =

∫
Symd C0

(ρd)∗(1)de ,

where de is the measure on constructible subsets induced by the Euler characteristic and ρd∗(1)
denotes integration along the fiber. By writing

Sym•C0 =
∑
d>0

SymdC0q
d

and extending the integration to the bullet notation termwise, we obtain

e
(

Hilb•,1,•fixed

(
X̂C0×E

))
=

∫
Sym• C0

ρ∗(1)de , (7.9)

8A constructible morphism is a map which is regular on each piece of a decomposition of its domain into locally
closed subsets. Because we work with Euler characteristics and the Grothendieck group, we only need to work
with constructible morphisms.

444



Curve counting on abelian surfaces and threefolds

where the measureable function ρ∗(1) is given by

ρ∗(1)
(∑

i

aixi

)
= e
(
ρ−1
(∑

i

aixi

))
∈ Z((p)) .

The following result shows that ρ∗(1) depends only on the underlying partition of the point
in the symmetric product.

Proposition 7.1. We have

ρ∗(1)
(∑

i

aixi

)
=
(
p1/2(1− p)−1

)e(C0)
∏
i

F (ai) ,

where ∑
a>0

F (a)qa =
∏
m>1

(1− qm)

(1− pqm)(1− p−1qm)
.

The proof of Proposition 7.1 is identical to the proof of [Bry15, Proposition 4.1 and Lem-
ma 4.3] with e(C0) = −2 here (instead of Euler characteristic 2 in [Bry15]).

We apply the following result regarding weighted Euler characteristics of symmetric products.

Lemma 7.2. Let S be a scheme, and let Sym•(S) =
∑

d>0 Symd(S)qd. Let G be a constructible
function on Sym•(S) such that

G

(∑
i

aixi

)
=
∏
i

g(ai)

for a function g with g(0) = 1. Then∫
Sym• S

Gde =

(∑
a>0

g(a)qa
)e(S)

.

An elementary proof of Lemma 7.2 is given in [BK16], but see also [Bry15, Lemma 4.2].

After applying Proposition 7.1 and Lemma 7.2 to (7.9), we obtain

e
(

Hilb•,1,•fixed

(
X̂C0×E

))
= p−1(1− p)2

(∑
a>0

F (a)qa
)−2

= p−1(1− p)2
∏
m>1

(1− pqm)2(1− p−1qm)2

(1− qm)2
.

Using (7.6), (7.7), and the definition of K(p, q), we obtain the evaluation of part (i) of Theo-
rem 1.6.

7.5 Proof of Theorem 1.6(ii)

Let A be a generic abelian surface with curve class β2 of type (1, 2), and let L → A be a fixed
line bundle with c1(L) = β2. The linear system |L| = P1 is a pencil of irreducible genus 3 curves.
The generic curve in the pencil is non-singular, but there are exactly 12 singular curves (each of
which has a single nodal); see [BL99].

By the disjoint union

Hilbn,d
′,d(X) = Hilbn,d

′,d
diag (X) tHilbn,d

′,d
vert (X)
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and the isomorphism (7.4), we have

Hilbn,2,d(X)/X = Hilbn,2,dvert,fixed(X)/(Z/2× Z/2) tHilbn,2,ddiag (X)/X .

Using the bullet convention, it follows that we have

D̂T2 =
1

4
e
(

Hilb•,2,•vert,fixed(X)
)

+ e
(

Hilb•,2,•diag (X)/X
)
. (7.10)

Step 1. We begin by evaluating e
(

Hilb•,2,•vert,fixed(X)
)
. Consider the map

τ : Hilb•,2,•vert,fixed(X)→ |L| = P1 ,

which maps a subscheme C to the divisor in |L| associated with pA(C). The fiber of τ over a
point C ∈ |L|, denoted by

Hilbn,2,dC (X) ⊂ Hilbn,2,dvert,fixed(X) ,

is the sublocus of Hilbn,2,dvert,fixed(X) which parameterizes curves which contain the curve C × {z0}.

As we have done in (7.9), we may write

e
(

Hilb•,2,•vert,fixed(X)
)

=

∫
|L|
τ∗(1)de ,

where τ∗(1) denotes the constructible function obtained by integration along the fiber:

τ∗(1)([C]) = e
(

Hilb•,2,•C (X)
)
.

Step 2. Let C ⊂ A be a curve in |L|. Following a strategy similar to that of the proof of
part (i), we will compute explicit expressions for τ∗(1)([C]) depending only upon whether C is
nodal or not.

Following Step 2 of the proof of part (i), we have

Hilb•,2,•C (X) = Hilb•,2,•C

(
X̂C×E

)
·Hilb•,2,•C (X \ C × E) .

Using the extra E-action on the second factors, we obtain

e
(

Hilb•,2,•C (X)
)

= e
(

Hilb•,2,•C

(
X̂C×E

))
·
∏
m>1

(
1− qm

)−e(A\C)
. (7.11)

For the first factor, we use the map

ρ : Hilb•,2,•C (X̂C×E)→ Sym•(C) ,

which records the location and multiplicity of the horizontal components (and has already ap-
peared in (7.8)).

446



Curve counting on abelian surfaces and threefolds

N

A

E
z0

Figure 4. A subscheme parameterized by Hilb•,2,•N (X) which includes a thickened horizontal
curve (solid) attached to the node of a nodal vertical curve (dashed). For the subscheme to have
a non-zero contribution to the Euler characteristic, embedded points (gray) can only occur on N
or on horizontal curves attached to N .

Step 3. If C is non-singular, we apply Proposition 7.1 with C in place of C0 for the integration
along the fiber of ρ. By Lemma 7.2, we have

e
(

Hilb•,2,•C (X̂C×E)
)

=

∫
Sym• C

ρ∗(1)de

=
(
p1/2(1− p)−1

)e(C)
(∑
a>0

F (a)qa
)e(C)

= p−2(1− p)4
∏
m>1

(1− pqm)4(1− p−1qm)4

(1− qm)4
.

Using (7.11) with e(A \ C) = 4, we find

τ∗(1)([C]) = e
(

Hilb•,2,•C (X)
)

= K(p, q)4 . (7.12)

Step 4. Let C = N ∈ |L| be a curve with a nodal point z ∈ C. The corresponding moduli

space Hilbn,2,dN (X) is depicted in Figure 4. We have the following result.

Proposition 7.3. Let x1, . . . , xl ∈ N \ {z}; then

ρ∗(1)
(
bz +

l∑
i=1

aixi

)
= p−2(1− p)4N(b)

l∏
i=1

F (ai) , (7.13)

where ∑
b>0

N(b)qb =
∏
m>1

(
1− qm

)−1 ·
(

1 +
p

(1− p)2
+
∑
d>1

∑
k|d

k
(
pk + p−k

)
qd
)
.

The proof is identical to the proof of the corresponding statement for contributions of nodal
curves in the K3 × E-geometry of [Bry15, Section 5]. The only difference is that in our case,
e(N \ {z}) = −4, whereas in the K3 case, e(N \ {z}) = 0. The different Euler characteristic
results in the different prefactor p−2(1− p)4 in (7.13). The prefactor in general is(

p1/2(1− p)−1
)e(N\{z})

.
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The geometry of the term N(b) arises as the contribution

N(b) = e
(

Hilb•,2,b(X̂{z}×E)
)
.

In [Bry15], the right-hand side is expressed in terms of the topological vertex. By results of [BO00],
we obtain the closed form of Proposition 7.3.

By Proposition 7.3 and Lemma 7.2, we obtain

e
(

Hilb•,2,•N (X̂N×E)
)

=

∫
Sym•N

ρ∗(1)de

= p−2(1− p)4

∫
Sym•(N\{z})

∏
i

F (ai)de

∫
Sym•({z})

N(b) de

= p−2(1− p)4
(∑
a>0

F (a)qa
)e(N\{z})(∑

b>0

N(b)qb
)

= p−2(1− p)4
( ∏
m>1

(1− pqm)4(1− p−1qm)4

(1− qm)5

)
·
(

1 +
p

(1− p)2
+
∑
d>1

∑
k|d

k
(
pk + p−k

)
qd
)
.

By (7.11) with e(A \N) = 3, we find

τ∗(1)([N ]) = e
(

Hilb•,2,•N (X)
)

= K(p, q)4 ·
(

1 +
p

(1− p)2
+
∑
d>1

∑
k|d

k
(
pk + p−k

)
qd
)
. (7.14)

Step 5. We complete the calculation of e
(

Hilb•,2,•vert,fixed(X)
)
.

By (7.12) and (7.14), the function τ∗(1)([C]) depends only upon whether C ∈ |L| is nodal or
not. Therefore,

e
(

Hilb•,2,•vert,fixed(X)
)

=

∫
|L|
τ∗(1)de

= e
(
P1 \ 12 points

)
·K(p, q)4 + e(12 points) · τ∗(1)(N)

= −10K(p, q)4 + 12K(p, q)4 ·
(

1 +
p

(1− p)2
+
∑
d>1

∑
k|d

k
(
pk + p−k

)
qd
)

= K(p, q)4 ·
(

2 + 12
p

(1− p)2
+ 12

∑
d>1

∑
k|d

k
(
pk + p−k

)
qd
)
.

Step 6. We compute the contribution e
(

Hilb•,2,•diag (X)/X
)

arising from the locus of curves
with a diagonal component.

By Lemma 8.6, there are 12σ(d/2) δd,even isolated translation classes of diagonal curves of
class (β2, d). Moreover, the translation action of X on each translation class is free.

Choose one representative from each X-orbit of the diagonal classes. Let

Hilbn,2,ddiag,fixed(X) ⊂ Hilbn,2,ddiag (X) (7.15)

be the subscheme parameterizing curves which contain one of the chosen representatives. The
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moduli space (7.15) defines a slice for the action of X on Hilbn,2,ddiag (X),

Hilbn,2,ddiag (X)/X ∼= Hilbn,2,ddiag,fixed(X) .

The contribution of such subschemes to the Euler characteristic is computed precisely as the
contribution with a genus 3 vertical component in Step 3 above. Taking into account the number
of diagonal curves and their degrees in the horizontal direction, we find

e
(

Hilb•,2,•diag,fixed(X)
)

= e
(

Hilb•,2,•C (X)
)
·
(

12
∑
d>1

∑
k|d

kq2d
)

= K(p, q)4 ·
(

12
∑
d>1

∑
k|d

kq2d
)
.

Step 7. We have calculated all terms in the sum (7.10) in Steps 5 and 6. After summing,
the proof of part (ii) of Theorem 1.6 is complete.

7.6 The Behrend function

In the cases d′ ∈ {1, 2}, we conjecture that the Behrend function weighted Euler characteristic of
the Hilbert schemes differs from the ordinary Euler characteristic by a factor of ±(−1)n. Here, n is
the holomorphic Euler characteristic, and the overall sign depends upon whether the component
of the Hilbert scheme corresponds to subschemes with diagonal curves or vertical curves.

The Behrend function on the quotient,

ν : Hilbn,d
′,d(X)/X → Z ,

induces, by our identification of the various components with different slices of the X-action,
constructible functions on

Hilbn,1,dfixed (X) , Hilbn,2,dvert,fixed(X) , and Hilbn,2,ddiag,fixed(X) .

We will denote these functions by ν as well and write e(·, ν) for the topological Euler characteristic
weighted by ν.

Conjecture D. We have

e
(

Hilbn,1,dfixed (X)
)

= −(−1)ne
(

Hilbn,1,dfixed (X), ν
)
,

e
(

Hilbn,2,dvert,fixed(X)
)

= −(−1)ne
(

Hilbn,2,dvert,fixed(X), ν
)
,

e
(

Hilbn,2,ddiag,fixed(X)
)

= +(−1)ne
(

Hilbn,2,ddiag,fixed(X), ν
)
.

Assuming Conjecture D, we prove Corollary* 1.7.

Proof of Corollary* 1.7. In case d′ = 1, by Conjecture D, we have DT1 = −D̂T1. Part (i) of
Corollary* 1.7 hence follows from part (i) of Theorem 1.6.

In case d′ = 2, we have, following (7.10),

DT2 =
∑
d>0

∑
n∈Z

( 1

4
e
(

Hilb•,2,•vert,fixed(X), ν
)

+ e
(

Hilb•,2,•diag,fixed(X), ν
))

(−p)nqd .

By Conjecture D, the right side equals∑
d>0

∑
n∈Z

(
−1

4
e
(

Hilb•,2,•vert,fixed(X)
)

+ e
(

Hilb•,2,•diag,fixed(X)
))
pnqd .
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These terms have been calculated in Steps 5 and 6 of the proof of Theorem 1.6(ii). Summing,
we obtain

K(p, q)4 ·
(
−3℘(p, q)− 1

4
+ 6

∑
d>1

∑
k|d

k
(
2q2d − qd

))
,

where

℘(p, q) =
1

12
+

p

(1− p)2
+
∑
d>1

∑
k|d

k
(
pk − 2 + p−k

)
qd

is the Weierstrass elliptic function expanded in p and q. Rewriting

−1

4
+ 6

∑
d>1

∑
k|d

k
(
2q2d − qd

)
= −1

4

(
1 + 24

∑
d>1

∑
k|d

kqd − 24
∑
d>1

∑
k|d

k even

kqd
)

= −1

4
ϑD4(q) ,

where

ϑD4(q) = 1 + 24
∑
d>1

∑
k|d
k odd

kqd

is the theta function of the D4 lattice, we find

DT2 = −K(p, q)4 ·
(

3℘(p, q) +
1

4
ϑD4(q)

)
.

Hence, part (ii) of Corollary* 1.7 follows from Lemma 7.4 below.

Lemma 7.4. We have

K(p, q)4 ·
(

3℘(p, q) +
1

4
ϑD4(q)

)
=

3

2
K(p, q)4℘(p, q) +

3

8
K
(
p2, q2

)2
.

Proof. The lemma is stated as an equality of formal power series. Since both sides converge for
the variables p = e2πiz and q = e2πiτ with z ∈ C and τ ∈ H, we may work with the actual
functions K(z, τ), ℘(z, τ), and ϑD4(τ).

The statement of the lemma is then equivalent to

ϕ(z, τ) =
K(2z, 2τ)2

K(z, τ)4
− 4℘(z, τ) =

2

3
ϑD4(τ) . (7.16)

From the definition of K(z, τ), we obtain

K(z + λτ + µ, τ) = (−1)λ+µq−λ
2/2p−λK(z, τ)

for all λ, µ ∈ Z. Combined with the double-periodicity of the Weierstrass ℘-function, this implies
ϕ(z + λτ + µ, τ) = ϕ(z, τ) for all λ, µ ∈ Z. Since

K(z, τ) = 2πiz +O
(
z3
)

and ℘(z, τ) =
1

(2πiz)2
+O(1) ,

the function ϕ(z, τ) has no pole at z = 0. Because the only zero of K(z, τ) and ϑ1(z, τ) and the
only pole of ℘(z, τ) in the fundamental region are at z = 0, the function ϕ(z, τ) is entire. By
double-periodicity, ϕ(z, τ) is hence a constant depending only on τ .

We evaluate ϕ(z, τ) at z = 1/2. We have ℘(1/2, τ) = −1
6ϑD4(τ). Since K(1/2, τ) 6= 0 but

K(1, τ) = 0, this shows

ϕ(z, τ) = ϕ
(1

2
, τ
)

= −4 ·
(
−1

6
ϑD4(τ)

)
=

2

3
ϑD4(τ) .
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7.7 Discussion of Conjecture D

The phenomenon proposed by Conjecture D is parallel to the phenomenon exhibited by the
Donaldson–Thomas invariants of toric Calabi–Yau threefolds. In the case of toric Calabi–Yau
threefolds, the only subschemes which contribute to the DT invariants are the torus-fixed sub-
schemes, namely those which are locally given by monomial ideals. The value of the Behrend
function at such a subscheme Z is given by ±(−1)n, where n = χ(OZ) and the overall sign de-
pends only on the 1-dimensional component of Z (and not on the embedded points) [MNOP06].

One route to prove Conjecture D would be to show the following two properties:

(i) The motivic methods of the previous section are compatible with the Behrend function;
specifically, the group actions defined on the various substrata of Hilb(X)/X respect the
Behrend function.

(ii) The value of the Behrend function at a subscheme Z which is formally locally given by
monomial ideals is given by ±(−1)n, where the overall sign is positive if Z contains a
diagonal curve and negative if Z contains a vertical curve.

8. Gromov–Witten theory

8.1 Overview

Let X be an abelian threefold, let g > 2 be the genus, and let β ∈ H2(X,Z) be a curve class of
type (d1, d2, d3) with d1, d2 > 0.

In Section 8.2, we define a virtual fundamental class on the quotient stack Mg(X,β)/X. The
degree of the virtual class is the quotient Gromov–Witten invariant of X.

The reduced Gromov–Witten invariants of X are defined by integration against the 3-reduced
virtual class (defined in Section 2.4) on the moduli space Mg,n(X,β). In Section 8.3, we prove
that these invariants are fully determined by the quotient Gromov–Witten invariants and classical
intersections.

In Section 8.4, we relate the quotient invariants in genus 3 to the lattice counts of Section 2.3.
We also prove the crucial Lemma 8.6 needed in Section 7. In Section 8.5, we use Jacobi form
techniques to show that Conjectures B and C are consistent with Theorem 1.6.

Finally, we extend Conjecture C to all curve classes in Section 8.6.

8.2 Quotient invariants

Since g > 2, the threefold X acts on Mg(X,β) with finite stabilizers. Let

q : Mg(X,β)→Mg(X,β)/X (8.1)

be the quotient map. Let 0X ∈ X be the identity element, let ev : Mg,1(X,β) → X be the
evaluation map, let ψ1 be the first Chern class of the cotangent line L1 → Mg,1(X,β), and let
π : Mg,1(X,β)→Mg(X,β) be the forgetful map.

We define the reduced virtual class on Mg(X,β)/X by[
Mg(X,β)/X

]red
=

1

2g − 2
(q ◦ π)∗

((
ev−1(0X) ∪ ψ1

)
∩
[
Mg,1(X,β)

]red)
.

The definition is justified by the following lemma.

Lemma 8.1. Let p : Mg,n(X,β) → Mg(X,β)/X be the composition of the forgetful map with
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the quotient map. Then,

p∗
[
Mg(X,β)/X

]red
=
[
Mg,n(X,β)

]red
.

Proof. The map p factors as

p : Mg,n(X,β)
p′−→Mg(X,β)

q−→Mg(X,β)/X ,

where p′ is the forgetful map and q is the quotient map (8.1). Since we have

p′∗
[
Mg(X,β)

]red
=
[
Mg,n(X,β)

]red
,

it is enough to prove

q∗
[
Mg(X,β)/X

]red
=
[
Mg(X,β)

]red
.

Consider the product decomposition

Mg,1(X,β) = M
0
g,1(X,β)×X , (8.2)

where M
0
g,1(X,β) = ev−1(0X). Under the decomposition (8.2), write

q′ : Mg,1(X,β)→M
0
g,1(X,β)

for the projection to the first factor. Since the obstruction theory of Mg,1(X,β) is X-equivariant,
we have

ψ1 ∩
[
Mg,1(X,β)

]red
= q′∗α

for some class α on M
0
g,1(X,β).

Consider the inclusion

ι : M
0
g,1(X,β)→Mg,1(X,β)

defined by M
0
g,1(X,β)× 0X under (8.2) and the fiber diagram

Mg,1(X,β)
q′ //

π

��

M
0
g,1(X,β)

ι
oo

π′

��
Mg(X,β)

q //Mg(X,β)/X ,

where π′ is the map induced by π. Then

(2g − 2)q∗
[
Mg(X,β)/X

]red
= q∗π′∗q

′
∗
((

ev−1(0X) ∪ ψ1

)
∩
[
Mg,1(X,β)

]red)
= π∗q

′∗q′∗
((

ev−1(0X) ∪ ψ1

)
∩
[
Mg,1(X,β)

]red)
= π∗q

′∗ι∗
(
ψ1 ∩

[
Mg,1(X,β)

]red)
= π∗q

′∗α

= π∗
(
ψ1 ∩

[
Mg,1(X,β)

]red)
.

The lemma now follows directly from the dilaton equation.

We define the quotient Gromov–Witten invariants of X by

Ng,β =

∫
[Mg(X,β)/X]red

1 . (8.3)
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8.3 Reduced Gromov–Witten invariants

Let g > 2, and let β be a curve class of type (d1, d2, d3) with d1, d2 > 0. Let
[
Mg,n(X,β)

]red

be the 3-reduced virtual class on the moduli space Mg,n(X,β) constructed in Section 2.4. The
reduced Gromov–Witten invariants of X are defined by〈

τa1(γ1) · · · τan(γn)
〉X,red

g,β
=

∫
[Mg,n(X,β)]red

n∏
i=1

ev∗i (γi) ∪ ψ
ai
i (8.4)

for γ1, . . . , γn ∈ H∗(X,Q) and a1, . . . , an > 0.

By the definition of the virtual class [Mg(X,β)/X]red and the quotient Gromov–Witten
invariants (8.3), we have

Ng,β =
1

2g − 2
·
〈
τ1(p)

〉X,red

g,β
,

where p ∈ H6(X,Z) is the class of a point. The invariants Ng,β will be shown to determine all
reduced Gromov–Witten invariants (8.4) of X.

We first determine all primary Gromov–Witten invariants in terms of Ng,β. Consider the
translation action

t : Xn+1 → X , (a, x1, . . . , xn) 7→ (x1 − a, . . . , xn − a) . (8.5)

Lemma 8.2. For γ1, . . . , γn ∈ H∗(X,Q),〈
τ0(γ1) · · · τ0(γn)

〉X,red

g,β
= Ng,β ·

∫
t∗([X]⊗β⊗n)

γ1 ⊗ · · · ⊗ γn . (8.6)

Proof. Let γ1, . . . , γn ∈ H∗(X,Q) be homogeneous classes. We may assume that the dimension
constraint

n∑
i=1

deg(γi) = 2(3 + n)

holds, where deg(·) denotes the real degree of a class in X; otherwise, both sides of (8.6) vanish.

For every k, let

πk : Mg,k(X,β)→Mg(X)/X

be the composition of the map that forgets all markings with the quotient map. By Lemma 8.1,
we have [

Mg,n(X,β)
]red

= π∗n
[
Mg(X,β)/X

]red
;

hence, by the push-pull formula, we have〈
τ0(γ1) · · · τ0(γn)

〉X,red

g,β
=

∫
[Mg(X,β)/X]red

πn∗

(∏
i

ev∗i (γi)
)
.

Since the map πn is of relative dimension 3 + n, the cohomology class πn∗
(∏

i ev∗i (γi)
)

has
degree 0. To proceed, we evaluate

∏
i ev∗i (γi) on the fibers of πn.

Let f : C → X be a stable map of genus g and class β, let [f ] ∈Mg(X,β)/X be the associated
point, and let F be the (stack) fiber of πn over [f ].

By the definition of Mg(X,β)/X as a quotient stack [Rom05], we may identify

X = π−1
0 ([f ]) , (8.7)

where the induced map X →Mg(X,β) is x 7→ (f − x).
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Under (8.7), let b0 : F → X be the map which forgets all markings. For i ∈ {1, . . . , n}, let
bi : F → C be the map which forgets all except the ith marking. The induced map

b = (b0, . . . , bn) : F → X × Cn

is birational on components.

The evaluation map ev : F → Xn factors as

F
b−→ X × Cn (id,f,...,f)−−−−−−→ Xn+1 t−→ Xn ,

where t is the translation map (8.5). We find∫
F

ev∗1(γ1) · · · ev∗n(γn) =

∫
ev∗[F ]

γ1 ⊗ · · · ⊗ γn

=

∫
t∗(id,fn)∗([X]⊗[C]⊗n)

γ1 ⊗ · · · ⊗ γn

=

∫
t∗([X]⊗β⊗n)

γ1 ⊗ · · · ⊗ γn .

Since this depends only on β and the γi, we conclude

πn∗

(∏
i

ev∗i (γi)
)

=
(∫

t∗([X]⊗βn)
γ1 ⊗ · · · ⊗ γn

)
· 1 .

The claim of the lemma follows.

We state the abelian vanishing relation for abelian threefolds. Consider the map defined by

p : Xn → Xn−1 , (x1, . . . , xn) 7→ (x2 − x1, . . . , xn − x1) .

Lemma 8.3. Let γ ∈ H∗(Xn−1,Q), and let a1, . . . , an > 0. For any γ1 ∈ H∗(X,Q) of degree
deg(γ1) 6 5, we have ∫

[Mg,n(X,β)]red
ev∗1(γ1) ∪ ev∗ p∗(γ) ∪

∏
i

ψaii = 0 .

The proof is identical to the proof of Lemma 4.2.

Proposition 8.4. The full reduced descendent Gromov–Witten theory of X in genus g and
class β is determined from Ng,β by the following operations:

(i) the string, dilaton, and divisor equations,

(ii) the abelian vanishing relation of Lemma 8.3,

(iii) the evaluation by Lemma 8.2 of primary invariants,

(iv) the evaluation
〈
τ1(p)

〉X,red

g,β
= (2g − 2) · Ng,β.

Proof. Let γ1, . . . , γn ∈ H∗(X,Q) be homogeneous classes. We must determine the Gromov–
Witten invariant 〈

τa1(γ1) · · · τan(γn)
〉X,red

g,β
(8.8)

for a1, . . . , an > 0. We may assume the dimension constraint

n∑
i=1

deg(γi) + 2ai = 2(3 + n) , (8.9)
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where deg(·) is the real degree of a class in X. In particular, we have n > 1.

We proceed by induction on n. In case n = 1, the insertion must be

τ1(p) , τ2(γ) , τ3(γ′) , or τ4(γ′′)

for classes γ, γ′, γ′′ of degree 4, 2, 0, respectively. The case τ1(p) follows from (iv). The cases τ2(γ),
τ3(γ′), and τ4(γ′′) all vanish by the abelian vanishing relation (ii).

Suppose n > 1 and assume that the proposition is true for all n′ < n. If ai = 0 for all i, the
statement follows from the evaluation (iii). Hence, we may assume a1 > 0. If deg(γ1) < 6, we
first apply the vanishing of Lemma 8.3 for γ1 and γ = γ2 ⊗ · · · ⊗ γn. We find that (8.8) can be
expressed as a sum of series

±
〈
τa1(γ1 ∪ δ)τa2(γ′2) · · · τan(γ′n)

〉X,red

g,β

for homogeneous classes δ, γ′2, . . . , γ
′
n ∈ H∗(X,Q) with deg(δ) > 1. The above relation increases

the degree of γ1. By induction on deg(γ1), we may assume deg(γ1) = 6.

By the dimension constraint (8.9), we have

n∑
i=2

deg(γi) + 2ai = 2(n− a1) ;

hence, there exists a k ∈ {2, . . . , n} such that deg(γk) + 2ak 6 2.

If ak = 1, then deg(γk) = 0 and we use the dilaton equation. If ak = 0 and deg(γi) ∈ {0, 1},
we use the string equation. If ak = 0 and deg(γi) = 2, we use the divisor equation. In each
case, we reduce to Gromov–Witten invariants with fewer than n marked points. The proof of the
proposition now follows from the induction hypothesis.

In (3.3), we defined quotient invariants NQ
g,(d1,d2) counting genus g curves on an abelian sur-

face A in class of type (d1, d2), with g > 2 and d1, d2 > 0. By trading the FLS condition for
insertions, moving the calculation to the threefold A× E via the k = 2 case of Section 2.5, and
by the evaluation of Lemma 8.2, one obtains

NQ
g,(d1,d2) = Ng,(d1,d2,0) .

Hence, the quotient invariants of abelian surfaces agree with the degenerate case of the quotient
invariants of abelian threefolds.

8.4 Genus 3 counts

We determine the genus 3 invariants of X using the lattice method of Section 2.3. The strategy
is similar to the proof of Lemma 3.1.

Lemma 8.5. For all d1, d2, d3 > 0, we have N3,(d1,d2,d3) = 2ν(d1, d2, d3).

Proof. Let β be a curve class of type (d1, d2, d3) on a generic abelian threefold X. Since X is
simple, every genus 3 stable map f : C → X in class β has a non-singular domain C and induces
a polarized isogeny (X̂, β̂)→ (J, θ).

Conversely, every simple principally polarized abelian threefold (B, θ) is the Jacobian of
a unique non-singular genus 3 curve C. Hence, each polarized isogeny (X̂, β̂) → (B, θ) induces
a map

f : C
aj−→ B → X .
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However, for a generic abelian threefold X, we have Aut(C) = {1} and Aut(X) = {±1}. The
composition

f− = (−1) ◦ f : C → X

is not translation equivalent to f , and the given polarized isogeny corresponds to two genus 3
stable maps up to translation. (This fact was overlooked in [LS02a].)

The argument in the proof of Lemma 3.1 also shows that X acts freely on M3(X,β). The only
point to verify is that given a non-singular genus 3 curve C and the Abel–Jacobi map aj : C → J ,
the only element in J fixing aj(C) is 0J . For this, we consider the map

Sym2(aj) : Sym2(C) → J .

The image of Sym2(C) is a theta divisor and is only fixed by 0J ∈ J . Then, if a point a ∈ J fixes
aj(C), it must also fix the image of Sym2(C) under Sym2(aj). Hence a = 0J .

It follows that M3(X,β)/X is a set of 2ν(d1, d2, d3) isolated reduced points.

By Lemma 3.1, Theorem 3.2, and Lemma 8.5,

N3,(1,d,d′) = 2NQ
2,(d,d′) = 2

∑
k| gcd(d,d′)

∑
m| dd′/k2

k3m. (8.10)

The right-hand side of (8.10) matches precisely the genus 3 predictions of Conjectures B and C.

Further, the lattice method can be adjusted to count diagonal curves in the X = A × E
setting. Let A, E, and (βd′ , d) be as in Section 7. Recall that an irreducible curve C ⊂ X is
diagonal if both projections pA : C → A and pE : C → E are of non-zero degree.

Lemma 8.6. For even d, there are 12σ(d/2) = 12
∑

k| d/2 k isolated diagonal curves in class (β2, d)
up to translation. All diagonal curves are non-singular of genus 3. The translation action of A×E
on the diagonal curves is free.

Proof. Let C be a diagonal curve in class (β2, d). Since β2 is irreducible, the projection pA : C → A
is generically injective. The image C0 = pA(C) ⊂ A is either a non-singular genus 3 curve or a
nodal genus 2 curve. We claim that the latter does not happen.

Suppose that it does, and let q : C̃ → C be the normalization map. Then pA ◦ q : C̃ → A
factors through an isogeny J(C̃) → A, where J(C̃) is the Jacobian of the genus 2 curve C̃. We
also know that pE ◦ q : C̃ → E factors through J(C̃) → E, which is surjective since d > 0. This
contradicts the assumption that A is simple.

Hence, C0 is non-singular of genus 3 and so is C. As before, every such C induces a polarized
isogeny (

Â× E, (̂β2, d)
)
→ (J, θ) .

Conversely, every principally polarized abelian threefold (B, θ) is

• either the Jacobian of a unique non-singular genus 3 curve,

• or the product of a principally polarized abelian surface and an elliptic curve, with the
product polarization.

Given (β2, d) of type (1, 2, d), we know exactly which maximal totally isotropic subgroups of
Ker(φ

(̂β2,d)
) ∼= (Z/2× Z/d)2 correspond to polarized isogenies(

Â× E, (̂β2, d)
)
→ (B, θ) (8.11)
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to Jacobians (B, θ). They are precisely the subgroups not of the form

G1 ×G2 with G1 < (Z/2)2 , G2 < (Z/d)2 .

In particular, d must be even for these subgroups to exist. In terms of (2.2), there are the
following two possibilities:

(i) K = Z/2k for some k| d/2, generated by(
1,

d

2k

)
∈ Z/2× Z/d

together with an arbitrary element in Homsym(K, K̂),

(ii) K = Z/2× Z/2k for some k| d/2, generated by

(1, 0),
(

0,
d

2k

)
∈ Z/2× Z/d

together with a non-diagonal element in Homsym(K, K̂).

Summing the number of subgroups of types (i) and (ii), we find∑
k | d/2

2k +
∑
k | d/2

2 · 2k = 6
∑
k | d/2

k

polarized isogenies to Jacobians. We claim that each of the isogenies corresponds to two diagonal
curves up to translation.

We have seen that a diagonal curve C ⊂ A×E is isomorphic to its image C0 ⊂ A. By [BL04,
Section 10.8(1)], every non-singular genus 3 curve C ′ ⊂ A in class β2 admits a double cover to
an elliptic curve E′. In particular, the Jacobian J(C ′) is isogenous to A× E′. Hence,

Z/2 ⊂ Aut(C0) = Aut(C) .

On the other hand, we have generically Aut(A× E) = Z/2× Z/2. Since the Jacobian J of C is
isogenous to A× E, we also have

Aut(J) ⊂ Z/2× Z/2 .

A strong form of the Torelli theorem (see [BL04, Section 11.12(19)]) says

Aut(C) =

{
Aut(J, θ) if C is hyperelliptic ,

Aut(J, θ)/{±1} if C is not hyperelliptic .

In our case, this means

Aut(C) =

{
Z/2× Z/2 if C is hyperelliptic ,

Z/2 if C is not hyperelliptic .

To see that C is generically not hyperelliptic, recall from Section 6.3 that up to translation there
are three9 hyperelliptic genus 3 curves

C ′1, C
′
2, C

′
3 ⊂ A

in class β2 with Z/2-stabilizers. For i = 1, 2, 3, the Jacobian J(C ′i) is isogenous to A × E′i for
some E′i. Hence, by taking E non-isogenous to E′1, E′2, E′3, we find that the diagonal curve
C ⊂ A× E is not isomorphic to C ′1, C

′
2, C

′
3.

9Each corresponds to a degree 2 polarized isogeny (A, β2)→ (B, θ), with B the Jacobian of a genus 2 curve. The
hyperelliptic curve is obtained by taking the preimage of the genus 2 curve.
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To conclude, we have Aut(C) = Z/2 and Aut(J) = Aut(A×E) = Z/2×Z/2. Therefore, each
polarized isogeny (8.11) gives two diagonal curves up to translation. We find in total

2 · 6
∑
k | d/2

k = 12
∑
k | d/2

k

diagonal curves up to translation. The proof that A×E acts freely is identical to the one given
in the proof of Lemma 8.5.

8.5 Consistency check of Conjectures B and C

Conjecture C expresses the invariants Ng,(1,d′,d) in terms of the invariants Ng,(1,1,d). By Conjec-
ture B, we obtain a prediction for the Donaldson–Thomas invariants of type (1, 2, d) in terms of
those of (1, 1, d). We show here that these predictions match the calculations of Theorem 1.6.

For d > 0, let fd(p), gd(p) ∈ Q((p)) be the unique Laurent series with∑
d>0

fd(p)q
d = K(z, τ)2 ,

∑
d>0

gd(p)q
d =

3

2
K(z, τ)4℘(z, τ) +

3

8
K(2z, 2τ)2 (8.12)

under the variable change p = e2πiz and q = e2πiτ . The functions on the right-hand side of (8.12)
are exactly the negative of the functions appearing in Corollary* 1.7. The following lemma shows
that Corollary* 1.7 is consistent with Conjectures B and C.

Lemma 8.7. We have

gd(p) =

{
f2d(p) if d is odd,

f2d(p) + 1
2fd/2

(
p2
)

if d is even.

Proof. We use basic results from the theory of Jacobi forms [EZ85]. We will work with the actual
variables p = e2πiz and q = e2πiτ , where z ∈ C and τ ∈ H.

Let ϕ−2,1(z, τ) be the weight −2, index 1 generator of the ring of weak Jacobi forms defined
in [EZ85, Section 9]. We have the basic identity

ϕ−2,1(z, τ) = K(z, τ)2 ;

see, for example, [DMZ12, equation (4.29)]. Applying the Hecke operator
∣∣
−2,1

V2 defined in [EZ85,

Section 4], we obtain the weak weight −2, index 2 Jacobi form

(ϕ−2,1|−2,1V2)(z, τ) =
∑
d>0

(
f2d(p) +

fd/2(p2)

23

)
qd ,

where fa(p) = 0 whenever a is fractional. Using [EZ85, Theorem 9.3] and comparing the first
coefficients, we find ∑

d>0

(
f2d(p) +

fd/2(p2)

23

)
qd =

3

2
K(z, τ)4℘(z, τ) .
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We conclude ∑
d>0

(
f2d(p) +

fd/2(p2)

2

)
qd =

3

2
K(z, τ)4℘(z, τ) +

∑
d>0

3

8
fd/2

(
p2
)
qd

=
3

2
K(z, τ)4℘(z, τ) +

3

8
K(2z, 2τ)2

=
∑
d>0

gd(p)q
d .

8.6 A formula for imprimitive classes

We conjecture a multiple cover formula in all classes for the quotient invariants Ng,(d1,d2,d3). The
shape of the formula already appeared in the physics approach of [MMS99]. However, [MMS99]
does not match the invariants Ng,β and our formula below is different.

Define the function

n(d1, d2, d3, k) =
∑
δ

δ2 ,

where δ runs over all divisors of

gcd

(
k, d1, d2, d3,

d1d2

k
,
d1d3

k
,
d2d3

k
,
d1d2d3

k2

)
.

Conjecture E. For all g > 2, d1, d2 > 0, and d3 > 0,

Ng,(d1,d2,d3) =
∑
k

n(d1, d2, d3, k)k2g−3N
g,
(

1,1,d1d2d3/k2
) ,

where k runs over all divisors of gcd(d1d2, d1d3, d2d3) such that k2 divides d1d2d3.

Recall the quotient Donaldson–Thomas invariants DTn,β. Assuming deformation invariance,
we write

DTn,β = DTn,(d1,d2,d3)

if β is of type (d1, d2, d3). The invariants DTn,(d1,d2,d3) are defined whenever n 6= 0 or if at least
two of the di are positive.

Translating the multiple cover rule of Conjecture E via the conjectural GW/DT correspon-
dence yields the following.

Conjecture E’. Assume n > 0 or that at least two of the integers d1, d2, d3 are positive. Then

DTn,(d1,d2,d3) =
∑
k

1

k
n(d1, d2, d3, k)(−1)n−(n/k) DT

n/k,
(

1,1,d1d2d3/k2
) ,

where k runs over all divisors of gcd(n, d1d2, d1d3, d2d3) such that k2 divides d1d2d3.

While Conjecture E applies only for d1, d2 > 0, we have stated Conjecture E′ also for the
degenerate cases (0, 0, d). Unraveling the definition yields

DTn,(0,0,d) =
(−1)n−1

n

∑
k|gcd(n,d)

k2 ,

which for d = 0 is in perfect agreement with [She15] and for d > 0 is proven in [OS16b].

459



J. Bryan, G. Oberdieck, R. Pandharipande and Q. Yin

Acknowledgements
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