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Abstract. We show that birational hyper-Kähler varieties of K3[n]-type are derived equiv-
alent, establishing the D-equivalence conjecture in these cases. The Fourier–Mukai kernels
of our derived equivalences are constructed from projectively hyperholomorphic bundles, fol-
lowing ideas of Markman. Our method also proves a stronger version of the D-equivalence
conjecture for hyper-Kähler varieties of K3[n]-type with Brauer classes.
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0. Introduction

Throughout, we work over the complex numbers C. We recall that the D-equivalence con-
jecture [5, 20] predicts that birational Calabi–Yau varieties have equivalent bounded derived
categories of coherent sheaves.

Conjecture 0.1 (D-equivalence conjecture). If X, X ′ are nonsingular projective birational
Calabi–Yau varieties, then there is an equivalence of bounded derived categories

Db(X) ≃ Db(X ′).

The purpose of this paper is to prove Conjecture 0.1 for hyper-Kähler varieties of K3[n]-type;
these are nonsingular projective varieties deformation equivalent to the Hilbert scheme of n

points on a K3 surface. More generally, our method reduces the D-equivalence conjecture for
hyper-Kähler varieties to the construction of certain projectively hyperholomorphic bundles.

Theorem 0.2. Conjecture 0.1 holds for any hyper-Kähler varieties of K3[n]-type.
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The D-equivalence conjecture has been proven by Bridgeland [6] for Calabi–Yau threefolds.
For projective hyper-Kähler fourfolds, the D-equivalence conjecture holds by combining the
classification results [8, 29] and the case of Mukai flops by Kawamata [20] and Namikawa [25].
However, very few cases of this conjecture are known in dimension > 4; see [26, 1] for some
partial results. Using equivalences obtained from window conditions, Halpern-Leistner [13]
proved the D-equivalence conjecture for any hyper-Kähler variety which can be realized as a
Bridgeland moduli space of stable objects on a (possibly twisted) K3 surface. Theorem 0.2
generalizes Halpern-Leistner’s result, but our construction of the derived equivalences is very
different. We obtain explicit Fourier–Mukai kernels which rely on the theory of moduli spaces
of hyper-Kähler manifolds and hyperholomorphic bundles [28, 23]; this is closer in spirit to the
proposal of Huybrechts [17, Section 5.1]. It would be interesting to find connections between
the two approaches.

Our method in fact proves the following stronger, twisted version of the D-equivalence
conjecture involving arbitrary Brauer classes. Let X 99K X ′ be a birational transform between
hyper-Kähler varieties of K3[n]-type. It naturally identifies the Brauer groups of X, X ′: any
Brauer class α ∈ Br(X) induces a Brauer class α′ ∈ Br(X ′).

Theorem 0.3. Let X 99K X ′ be as above, and let α be any Brauer class on X. Then there is
an equivalence of bounded derived categories of twisted sheaves

Db(X, α) ≃ Db(X ′, α′).

Theorem 0.3 specializes to Theorem 0.2 by taking α = 0.

Acknowledgements. We are grateful to Daniel Huybrechts, Zhiyuan Li, Eyal Markman,
Alex Perry, and Ziyu Zhang for helpful discussions. D.M. was supported by a Simons In-
vestigator Grant. J.S. was supported by the NSF grant DMS-2301474 and a Sloan Research
Fellowship.

1. Moduli of Hodge isometries

Assume n ≥ 2. We denote by Λ the K3[n]-lattice, which is isometric to H2(X,Z), equipped
with the Beauville–Bogomolov–Fujiki (BBF) form, for any hyper-Kähler manifold X of K3[n]-
type.1 In particular, we have a decomposition

Λ = ΛK3 ⊕ Zδ, δ2 = 2 − 2n

with ΛK3 the unimodular K3 lattice, so that any vector ω ∈ Λ can be expressed uniquely as

ω = ωK3 + λδ, ωK3 ∈ ΛK3, λ ∈ Z.

A marking (X, ηX) for a manifold X of K3[n]-type is an isometry ηX : H2(X,Z) ≃−→ Λ.

1When we say that X is a hyper-Kähler manifold or a manifold of K3[n]-type, it means that X is not
necessarily projective.
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1.1. Inseparable pairs. We denote by MΛ the moduli space of marked manifolds (X, ηX)
of K3[n]-type; it is naturally a non-Hausdorff complex manifold whose non-separation il-
lustrates the complexity of the birational/bimeromorphic geometry of hyper-Kähler vari-
eties/manifolds [14].

We say that a pair (X, ηX), (X ′, ηX′) is inseparable if they represent inseparable points on
the moduli space MΛ; as a consequence of the global Torelli theorem, this is equivalent to
the condition that (X, ηX), (X ′, ηX′) share the same period and lie in the same connected
component of MΛ.

Typical examples of inseparable pairs are given by bimeromorphic transforms. More pre-
cisely, a bimeromorphic map X 99K X ′ induces a natural identification H2(X,Z) = H2(X ′,Z)
respecting the Hodge structures. A marking ηX for X then induces a marking ηX′ for X ′,
and the pair (X, ηX), (X ′, ηX′) is therefore inseparable. Note that inseparable points are
not necessarily induced by bimeromorphic transforms directly. As an example, we consider
bimeromorphic X, X ′ as above and assume that

ρ : H2(X ′,Z) → H2(X,Z)

is a parallel transport respecting the Hodge structures. Then the pair

(X, ηX), (X ′, ηX′), ηX′ := ηX ◦ ρ

is inseparable. By [14] (see also [21, Section 3.1]), every inseparable pair arises this way.

1.2. Hodge isometries. We recall the moduli space of Hodge isometries; this was used by
Buskin [9] and Markman [23] to construct algebraic cycles realizing rational Hodge isometries.

For ϕ ∈ O(ΛQ), we define Mϕ to be the moduli space of isomorphism classes of quadruples
(X, ηX , Y, ηY ) where (X, ηX), (Y, ηY ) ∈ MΛ are the corresponding markings and

η−1
Y ◦ ϕ ◦ ηX : H2(X,Q) → H2(Y,Q)

is a Hodge isometry sending some Kähler class of X to a Kähler class of Y . We have the
natural forgetful maps

Π1 : Mϕ → MΛ, (X, ηX , Y, ηY ) 7→ (X, ηX),
Π2 : Mϕ → MΛ, (X, ηX , Y, ηY ) 7→ (Y, ηY ).

Any connected component M0
ϕ of Mϕ maps to a connected component of MΛ via Πi which

we denote by M0
Λ.

Lemma 1.1 ([23, Lemma 5.7]). The maps Πi : M0
ϕ → M0

Λ (i = 1, 2) between connected
components are surjective.

Lemma 1.2. Assume that the point (X, ηX , Y, ηY ) lies in a connected component M0
ϕ. Assume

further that (X, ηX), (X ′, ηX′) form an inseparable pair such that

(1) (X ′, ηX′ , Y, ηY ) ∈ Mϕ.
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Then (X ′, ηX′ , Y, ηY ) lies in the same component M0
ϕ.

Note that (1) is equivalent to the condition that η−1
Y ◦ ϕ ◦ ηX′ sends some Kähler class of X ′

to a Kähler class of Y .

Proof. Both (X, ηX), (X ′, ηX′) lie in the same connected component of MΛ which we call M0
Λ.

We first find paths in M0
Λ connecting both points to (X0, ηX0) ∈ M0

Λ with Pic(X0) = 0. By
Lemma 1.1, we can lift these paths to Mϕ, which connect (X, ηX , Y, ηY ) to (X0, ηX0 , Y0, ηY0),
and (X ′, ηX′ , Y, ηY ) to (X0, ηX0 , Y ′

0 , ηY ′
0
) respectively. On one hand, by considering the projec-

tion Π2, we know that the two points (Y0, ηY0), (Y ′
0 , ηY ′

0
) lie in the same connected component

of MΛ; on the other hand, the Hodge isometry condition ensures that both of them share
the same period [23, Lemma 5.4] and they have trivial Picard group. By the global Torelli
theorem, we must have (Y0, ηY0) = (Y ′

0 , ηY ′
0
). This completes the proof. □

Suppose we are given a point (X, ηX , Y, ηY ) in Mϕ, and Kähler classes ωX , ωY on X, Y which
are identified via η−1

Y ◦ ϕ ◦ ηX . Using this data, one can define a diagonal twistor line ℓ ⊂ Mϕ

which lifts the twistor lines associated to (X, ωX) and (Y, ωY ) on MΛ. A generic diagonal
twistor path on Mϕ is given by a chain of diagonal twistor lines such that, at each node of
the chain, the associated hyper-Kähler manifolds have trivial Picard group. Generic diagonal
twistor paths are used in Theorem 1.3 below to deform certain Fourier–Mukai kernels.

1.3. Brauer groups. Assume that X is a manifold of K3[n]-type. Since X has no odd
cohomology, the discussion in [11, Section 4.1] yields the following explicit description of the
(cohomological) Brauer group:

(2) Br(X) =
(
H2(X,Z)/Pic(X)

)
⊗ Q/Z.

In particular, given a bimeromorphic map X 99K X ′ between manifolds of K3[n]-type, there
is a natural identification

Br(X) = Br(X ′)

since both H2(−,Z) and Pic(−) are identified for X and X ′. The description (2) also allows
us to present a Brauer class in the form

(3)
[

β

d

]
∈ Br(X), β ∈ H2(X,Z), d ∈ Z>0;

this is referred to as the “B-field”.
We note that the cohomology H2(X,Z) forms a trivial local system over any connected

component of the moduli space M0
Λ; therefore (3) for a single X presents a Brauer class for

any point in the component M0
Λ containing (X, ηX).
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1.4. Projectively hyperholomorphic bundles. Using the Bridgeland–King–Reid (BKR)
correspondence [7], Markman constructed in [23] a class of projectively hyperholomorphic
bundles which we recall here. We consider a projective K3 surface S with Pic(S) = ZH.
Assume that r, s are two coprime integers with r ≥ 2. Assume further that the Mukai vector

v0 := (r, mH, s) ∈ H∗(S,Z)

is isotropic, i.e. v2
0 = 0.2 Let M be the moduli of stable vector bundles on S with Mukai

vector v0. Then M is again a K3 surface, and the coprime condition of r, s ensures the
existence of a universal rank r bundle U on M × S. Conjugating the BKR correspondence,
we obtain a vector bundle U [n] on M [n] × S[n] of rank

rk(U [n]) = n!rn;

see [23, Lemma 7.1]. This vector bundle induces a derived equivalence

(4) ΦU [n] : Db(M [n]) ≃−→ Db(S[n]).

Markman further showed in [23, Section 5.6] that the characteristic class of U [n] induces a
Hodge isometry

ϕU [n] : H2(M [n],Q) → H2(S[n],Q).

Under the natural identification

(5) H2(M [n],Q) = H2(M,Q) ⊕ Qδ, H2(S[n],Q) = H2(S,Q) ⊕ Qδ,

this Hodge isometry is of the form

ϕU [n] = (ϕU , id), ϕU : H2(M,Q) → H2(S,Q),

where ϕU is the Hodge isometry of K3 surfaces induced by U ; see [23, Corollary 7.3].
The key results, which are summarized in the following theorem, show that the Fourier–

Mukai kernel U [n], as a projectively hyperholomorphic bundle, deforms along generic diagonal
twistor paths. Moreover, at each point of the path, it induces a (twisted) derived equivalence:

Theorem 1.3 ([23, 19]). There exist markings ηM [n] , ηS[n] for the Hilbert schemes M [n], S[n]

respectively, which induce ϕ ∈ O(ΛQ) via ϕU [n], such that the connected component containing
the quadruple

(M [n], ηM [n] , S[n], ηS[n]) ∈ M0
ϕ

satisfies the following:
(a) For every point (X, ηX , Y, ηY ) lying in the component M0

ϕ, there exists a twisted vector
bundle (E , αE) on X ×Y , which is deformed from U [n] along a generic diagonal twistor
path.

2In [23], Markman only considered the case m = 1; here considering large ±m is crucial for our purpose.
Using [16, Proposition 2.2] (see also [30, Theorem 2.2]), Markman’s argument works identically in this generality.
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(b) Using the form (3), the Brauer class in (a) is presented by

αE =
[
− c1(U [n])

rk(U [n])

]
.

Here we view H2(X × Y,Z) = H2(X,Z) ⊕ H2(Y,Z) as a trivial local system over the
moduli space M0

ϕ via the markings.
(c) Further assume that X, Y are varieties. Then the twisted bundle (E , αE) induces an

equivalence of twisted derived categories

Φ(E,αE ) : Db(X, αX) ≃−→ Db(Y, αY ), αX =
[

aX

rk(E)

]
, αY =

[
− aY

rk(E)

]
,

where aX ∈ H2(X,Z), aY ∈ H2(Y,Z) are given by

c1(U [n]) = aX + aY ∈ H2(X,Z) ⊕ H2(Y,Z).

Proof. (a) was proven in [23, Theorem 8.4]; Markman showed that U [n] on M [n] × S[n] is
projectively slope-stable hyperholomorphic in the sense of [28, 22] which allows him to deform
it along diagonal twistor paths to all points in the component M0

ϕ.
(b) can be obtained by applying Căldăraru’s result [11, Theorem 4.1] along the diagonal

twistor paths; see the discussion in [19, Section 2.3].
(c) was proven in [19, Theorem 2.3]. More precisely, the condition that a twisted bun-

dle induces a twisted derived equivalence can be characterized by cohomological properties
[10, Theorem 3.2.1]. These properties are preserved along a twistor path due to the fact
that the cohomology of slope-polystable hyperholomorphic bundles is invariant under hyper-
Kähler rotations [27, Corollary 8.1]. Therefore we ultimately reduce the desired cohomological
properties to those for M [n] × S[n] which are given by the original equivalence (4). □

1.5. Birational geometry and MBM classes. The birational geometry of hyper-Kähler
varieties is governed by certain integral primitive cohomology classes, called the monodromy
birationally minimal (MBM) classes. We refer to [3] for an introduction to these classes. In
the following, we summarize some results which are needed in our proof.

Let X be a variety of K3[n]-type. We consider its birational Kähler cone BKX and the
positive cone CX :

BKX ⊂ CX ⊂ H1,1(X,R).

The positive cone is convex and admits a wall-and-chamber structure. The closure of the
birational Kähler cone within the positive cone is a convex sub-cone [15], which inherits a wall-
and-chamber structure. Furthermore, by a result of Amerik–Verbitsky [2], and independently
Mongardi [24], all the walls are governed by the MBM classes.

Theorem 1.4 ([24, 2]). Any wall of CX is described by a hyperplane of the form

W⊥ := {ω ∈ H1,1(X,R), (ω, W) = 0} ⊂ H1,1(X,R)
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with W an algebraic MBM class in Pic(X). Here the pairing is with respect to the BBF form.
Moreover, any chamber in CX can be realized as the Kähler cone of a birational hyper-Kähler X ′

through a parallel transport ρ : H2(X ′,Z) → H2(X,Z) respecting the Hodge structures.

Note that any chamber in BKX ⊂ CX is given by the pullback of the Kähler cone via a
birational transform X 99K X ′ of hyper-Kähler varieties. By the discussions of Section 1.1,
any chamber of CX corresponds to a marked variety (X ′, ηX′) of K3[n]-type such that the pair
(X, ηX), (X ′, ηX′) is inseparable.

We also need the following boundedness result, which notably implies that wall-and-chamber
structure of CX is locally polyhedral; see [18, Remark 8.2.3] for a proof of the implication.
The boundedness result was essentially obtained by [4], as explained in [2, Section 6.2].

Theorem 1.5 ([4, 2]). There is a constant C0 > 0, such that for any variety X of K3[n]-type
and any MBM class W ∈ H2(X,Z) we have

0 < −W2 < C0.

Here the norm is with respect to the BBF form.

For any rational Hodge isometry ϕ : H2(X,Q) → H2(Y,Q) between varieties of K3[n]-type,
which sends an MBM class WX on X to a class proportional to an MBM class WY on Y ,
there exist coprime integers a, b such that

ϕ(WX) = a

b
WY .

The following is an immediate consequence of Theorem 1.5.

Corollary 1.6. For any X, Y, ϕ, WX , WY as above, we have

a2 < C0, b2 < C0.

Proof. Since ϕ is an isometry, we have
a2

b2 = W2
X

W2
Y

By Theorem 1.5, both −W2
X and −W2

Y are positive integers < C0. The corollary follows from
the assumption that a, b are coprime. □

1.6. Proof strategy. We discuss the strategy of the proof of Theorem 0.3; Theorem 0.2 is
then deduced as a special case.

Let X be a variety of K3[n]-type. It suffices to prove Theorem 0.3 for a hyper-Kähler
birational model X ′ with a birational map X 99K X ′ which corresponds to a chamber in BKX

adjacent to the Kähler cone of X. By Theorem 1.5, the wall between these two chambers is
given by an algebraic MBM class W ∈ Pic(X).

Now we choose a K3 surface S and a Mukai vector v0 = (r, mH, s) as in the beginning
of Section 1.4, which yields the Hodge isometry ϕU [n] . Associated to these, we have the
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moduli space of Hodge isometries Mϕ, and the component M0
ϕ that contains the quadruple

(M [n], ηM [n] , S[n], ηS[n]).
For the given birational X, X ′, by Lemma 1.1, we can complete them to a pair of quadruples

(Y, ηY , X, ηX), (Y ′, ηY ′ , X ′, ηX′) ∈ M0
ϕ

such that the marking ηX′ is induced by ηX via the birational map X 99K X ′.3 In particular,
the pair (X, ηX), (X ′, ηX′) is inseparable. We note that the pair (Y, ηY ), (Y ′, ηY ′) is also insep-
arable. This is because they share the same period and lie in the same connected component
of MΛ. Moreover, by definition, ϕ−1 sends a Kähler class of X (resp. X ′) to a Kähler class
of Y (resp. Y ′).4 Therefore, if

(6) ϕ−1 does not send W to a class on Y that is proportional to an MBM class,

there must be a point on the wall separating the Kähler cones of X, X ′ which is sent to
the interior of a chamber of the positive cone CY . In particular, there exists a hyper-Kähler
birational model Y ′′ of Y with a marking (Y ′′, ηY ′′) such that the pair (Y, ηY ), (Y ′′, ηY ′′) is
inseparable and

(Y ′′, ηY ′′ , X, ηX), (Y ′′, ηY ′′ , X ′, ηX′) ∈ Mϕ.

Furthermore, by Lemma 1.2, both points lie in the connected component we started with:

(Y ′′, ηY ′′ , X, ηX), (Y ′′, ηY ′′ , X ′, ηX′) ∈ M0
ϕ.

By Theorem 1.3(b, c), we obtain Brauer classes αX , αY ′′ on X, Y ′′ respectively, such that

Db(Y ′′, αY ′′) ≃ Db(X, αX), Db(Y ′′, αY ′′) ≃ Db(X ′, αX′).

Here the Brauer classes αX , αY ′′ only depend on the markings (X, ηX), (Y ′′, ηY ′′) respectively,
and the Brauer class αX′ is induced by αX . Combining both equivalences yields

Db(X, αX) ≃ Db(X ′, αX′)

whose Fourier–Mukai kernel is the composition of two (twisted) hyperholomorphic bundles.
In the next section, we show that for any pair X, X ′ as above with a Brauer class α ∈ Br(X)

and an algebraic MBM class W ∈ Pic(X), a careful choice of the K3 surface S and the Mukai
vector v0 = (r, mH, s) as in Section 1.4 can simultaneously ensure that the condition (6) holds
and the induced Brauer class is as desired:

(7) αX = α.

This completes the proof of Theorem 0.3.

3Here we would like X, X ′ to be deformed from S[n] later in Section 2.
4Here we suppress the markings and still use ϕ to denote the Hodge isometry H2(Y,Q) → H2(X,Q) for

notational convenience.
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Remark 1.7. For a general birational transform X 99K X ′ of varieties of K3[n]-type, which do
not correspond to adjacent chambers in the birational Kähler cone BKX , our proof realizes
the derived equivalence

Db(X, α) ≃ Db(X ′, α′)
via two sequences of varieties X1, . . . , Xt−1 and Y1, . . . , Yt, with each Xi birational to X, X ′,
such that

(8) Db(X, α) ≃ Db(Y1, αY1) ≃ Db(X1, αX1) ≃ Db(Y2, αY2) ≃ · · ·

≃ Db(Yt−1, αYt−1) ≃ Db(Xt−1, αXt−1) ≃ Db(Yt, αYt) ≃ Db(X ′, α′).

Each of the derived equivalences in (8) is induced by a (twisted) hyperholomorphic bundle.

2. Proof of Theorem 0.3

From now on, we fix a variety X of K3[n]-type, a Brauer class α ∈ Br(X), and an algebraic
MBM class W ∈ Pic(X) as in Section 1.6. In particular, the variety X has Picard rank ≥ 2.5

Using (2) and (3), we present the Brauer class α by a class in the rational transcendental
lattice T (X)Q ⊂ H2(X,Q):

α =
[
−B

d

]
, B ∈ T (X), d ∈ Z>0.

Up to adjusting −B
d by an integral class in T (X) ⊂ H2(X,Z), we may further assume that

the class B satisfies
B2 = 2e > 0.

2.1. Divisor classes. Recall that the divisibility div(ω) of a class ω ∈ H2(X,Z) is the positive
generator of the subgroup

{(ω, µ), µ ∈ H2(X,Z)} ⊂ Z

Lemma 2.1. There exists a class A ∈ Pic(X) such that

(A, W) ̸= 0, div(A) = 1.

Proof. We pick a marking identifying H2(X,Z) with a K3[n]-lattice Λ = ΛK3 ⊕ Zδ. For
any g ∈ O(Λ), since g(δ)⊥ is a unimodular K3-lattice, any primitive vector ω ∈ g(δ)⊥ ⊂ Λ
satisfies div(ω) = 1. We would like to choose g so that there exists A ∈ g(δ)⊥ ∩ Pic(X)
satisfying (A, W) ̸= 0. In other words, we want

g(δ)⊥ ∩ Pic(X) ̸= W⊥ ∩ Pic(X).

If we base change to C, the set of g ∈ O(Λ)C such that

g(δ)⊥ ∩ Pic(X)C ̸= W⊥ ∩ Pic(X)C
5Theorem 0.3 is automatically true if X has Picard rank 1, since any birational transform X 99K X ′ is

necessarily an isomorphism.



10 D. MAULIK, J. SHEN, Q. YIN, AND R. ZHANG

is open in the Zariski topology. Furthermore, it is nonempty since X has Picard rank ≥ 2.
Since O(Λ) is Zariski-dense in O(Λ)C, we can find g ∈ O(Λ) satisfying this condition as
well. □

Up to replacing A by −A, we may assume

C1 := (A, W) > 0

which we fix from now on.

Proposition 2.2. For any N > 0, there exists a class D ∈ Pic(X) of divisibility 1, satisfying

D2 > N, (D, W) = C1.

Proof. Since X has Picard rank ≥ 2, we have W⊥ ∩ Pic(X) ̸= 0. Pick an element

ω ∈ W⊥ ∩ Pic(X), ω2 > 0.

Then for large enough t ∈ Z>0, we have

(A + tω, W) = C1, (A + tω)2 > N.

It suffices to show that there exist infinitely many choices of t ∈ Z>0 satisfying

div(A + tω) = 1.

We pick an integral class µ ∈ H2(X,Z) such that

(A, µ) = 1, (ω, µ) ̸= 0;

then we pick another integral class ν ∈ H2(X,Z) such that

(A, ν) = 0, (ω, ν) ̸= 0.

We claim that for sufficiently large t ∈ Z>0 with 1 + t(ω, µ) a prime number, the class A + tω

must have divisibility 1. This follows immediately from the observation that

div(A + tω) | 1 + t(ω, µ), div(A + tω) | (ω, ν). □

2.2. Mukai vectors. We construct the K3 surface S and the Mukai vector v0 of Section 1.6.
By Proposition 2.2, we can find D ∈ Pic(X) with

(9) div(D) = 1, (D, W) = C1 > 0, D2 = 2g > 2C0C1,

where C0 is the constant in Theorem 1.5. Repeating the same argument as in Proposition 2.2,
we also find t ∈ Z>0 such that

div(D + 4gtdB) = 1.

Let (S, H) be a primitively polarized K3 surface of Picard rank 1 of degree

H2 = 2g
(
1 + 4gt2d4(n − 1) + 16gt2d2e

)
> 0.
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We observe that both classes

H − 2gtd2δ ∈ H2(S[n],Z), D + 4gtdB ∈ H2(X,Z)

are of divisibility 1 and have the same norm, where we have used that (D, B) = 0 since B
is transcendental. Therefore, by [12, Example 3.8] and [21, Theorem 9.8], there is a parallel
transport

ρ : H2(S[n],Z) → H2(X,Z)

satisfying

(10) ρ(H − 2gtd2δ) = ϵ(D + 4gtdB),

where ϵ = ±1 is a sign determined by the orientation.
We now consider the Mukai vector

v0 :=
(
16gt2d4, ϵ · 4td2H, 1 + 4gt2d4(n − 1) + 16gt2d2e

)
,

which clearly satisfies

gcd
(
16gt2d4, 1 + 4gt2d4(n − 1) + 16gt2d2e

)
= 1, 16gt2d4 ≥ 2, v2

0 = 0.

The moduli space M of stable vector bundles on S with Mukai vector v0 is a K3 surface of
Picard rank 1 with a universal bundle U on M × S which we fix from now on. Also fixed are
the markings ηM [n] , ηS[n] as in Theorem 1.3, as well as the induced marking

ηX := ηS[n] ◦ ρ−1 : H2(X,Z) ≃−→ Λ.

Proposition 2.3. Let S, M, U be as above.
(a) The primitive polarization Ĥ of M satisfies Ĥ2 = H2.
(b) Let s ∈ S be a point. Assume that the vector bundle U|s has Mukai vector

v̂0 = (16gt2d4, kĤ, ŝ) ∈ H∗(M,Z).

Then we have
gcd(16gt2d4, k) = 4td2.

Proof. (a) follows from [30, Appendix A]. For (b), we note that [30, Theorem 2.2] implies that
the Mukai vector v̂0 is primitive with v̂2

0 = 0. Using (a), we deduce that

ŝ =
(

k

4td2

)2 (
1 + 4gt2d4(n − 1) + 16gt2d2e

)
∈ Z.

Therefore, we have that k is divisible by 4td2, which shows

4td2 | gcd(16gt2d4, k).

On the other hand, if k
4td2 is not coprime to 16gt2d4, the Mukai vector v̂0 is divisible by their

common factor. This contradicts the fact that v̂0 is primitive. □
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2.3. End of proof. We complete the proof using the K3 surface S, the Mukai vector v0,
and the universal bundle U constructed in the last section. This gives the vector bundle U [n]

on M [n] × S[n]. We write

c1(U [n]) = aM [n] + aS[n] ∈ H2(M [n],Z) ⊕ H2(S[n],Z)

with
aM [n] ∈ H2(M [n],Z), aS[n] ∈ H2(S[n],Z).

Recall the natural identification

(11) H2(S[n],Z) = H2(S,Z) ⊕ Zδ.

By [23, Equation (7.11)], we can present the class aS[n] using (11):

aS[n] = rk(U [n]) ·
(

ϵ · 4td2H

16gt2d4 − δ

2

)
∈ H2(S[n],Z).

Via the parallel transport ρ and (10), we obtain

ρ

(
aS[n]

rk(U [n])

)
= ρ

(
ϵ · H

4gtd2 − δ

2

)
= ρ

(
ϵ

(
H

4gtd2 − δ

2

)
+ (ϵ − 1)δ

2

)
= ϵ · ρ(H − 2gtd2δ)

4gtd2 + (ϵ − 1)
2 ρ(δ)

= D + 4gtdB
4gtd2 + (ϵ − 1)

2 ρ(δ)

= B
d

+ [class in Pic(X)Q] + [class in H2(X,Z)] ∈ H2(X,Q).

Hence, by Theorem 1.3(c), we have

αX =
[
−ρ

(
aS[n]

rk(U [n])

)]
=
[
−B

d

]
= α.

To complete the proof, it remains to address (6). This is given by the following proposition.

Proposition 2.4. Let M0
ϕ be the connected component of the moduli space of Hodge isometries

constructed from S, M, U as above. For any quadruple

(Y, ηY , X, ηX) ∈ M0
ϕ

with X, W fixed as above, the class ϕ−1(W) ∈ H2(Y,Q) is not proportional to any MBM
class on Y . Here we suppress the markings and still use ϕ to denote the Hodge isometry
H2(Y,Q) → H2(X,Q) for notational convenience.
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Proof. The main idea of the argument is that, for our choice of the Mukai vector v0, by a
calculation of Buskin [9], the rational Hodge isometry ϕ−1 is conjugate to a reflection by
a vector of large norm. By Corollary 1.6, we then show that it cannot send W to a class
proportional to an MBM class.

The details are as follows. Since the MBM classes are deformation invariant, we only need
to treat the Hodge isometry

ϕU [n] : H2(M [n],Q) → H2(S[n],Q)

which can be further simplified under the identification (5):

(ϕU , id) : H2(M,Q) ⊕ Qδ → H2(S,Q) ⊕ Qδ.

Assume that

(12) ϕ−1
U [n](ρ−1(W)) = b

a
W ′

with W ′ an MBM class on M [n] and a, b coprime. We write

ρ−1(W) = WK3 + λδ, WK3 ∈ H2(S,Z), λ ∈ Z.

The equation (12) implies that ϕ−1
U (aWK3) is an integral class. By the formula right before

[9, Conclusion 3.8], the integrality forces the pairing

(H, aWK3) ∈ Z

to be divisible by
16gt2d4

gcd (16gt2d4, 4td2k) = g,

where we have used Proposition 2.3(b) in the last equation.
On the other hand, we have

(H, aWK3) = (H, ρ−1(aW)) = (ρ(H), aW) = ϵ(D, aW) + [integer divisible by g],

where the last equality uses (10). In particular, we find

g | (D, aW) = aC1.

Combined with Corollary 1.6, this implies

g ≤ a2C1 < C0C1

which contradicts our choice of D in (9). This shows that (12) cannot hold, which proves the
proposition. □

In conclusion, both (6) and (7) are settled by our choice of the K3 surface S and the Mukai
vector v0; the proof of Theorem 0.3 is now complete. □
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