THE *D***-EQUIVALENCE CONJECTURE FOR HYPER-KAHLER ¨ VARIETIES VIA HYPERHOLOMORPHIC BUNDLES**

DAVESH MAULIK, JUNLIANG SHEN, QIZHENG YIN, AND RUXUAN ZHANG

ABSTRACT. We show that birational hyper-Kähler varieties of $K3^{[n]}$ -type are derived equivalent, establishing the *D*-equivalence conjecture in these cases. The Fourier–Mukai kernels of our derived equivalences are constructed from projectively hyperholomorphic bundles, following ideas of Markman. Our method also proves a stronger version of the *D*-equivalence conjecture for hyper-Kähler varieties of $K3^{[n]}$ -type with Brauer classes.

CONTENTS

0. INTRODUCTION

Throughout, we work over the complex numbers C. We recall that the *D*-equivalence conjecture [\[5,](#page-13-1) [20\]](#page-13-2) predicts that birational Calabi–Yau varieties have equivalent bounded derived categories of coherent sheaves.

Conjecture 0.1 (*D*-equivalence conjecture)**.** *If X, X*′ *are nonsingular projective birational Calabi–Yau varieties, then there is an equivalence of bounded derived categories*

$$
D^b(X) \simeq D^b(X').
$$

The purpose of this paper is to prove Conjecture [0.1](#page-0-1) for hyper-Kähler varieties of $K3^{[n]}$ -type; these are nonsingular projective varieties deformation equivalent to the Hilbert scheme of *n* points on a *K*3 surface. More generally, our method reduces the *D*-equivalence conjecture for hyper-Kähler varieties to the construction of certain projectively hyperholomorphic bundles.

Theorem 0.2. *Conjecture* [0.1](#page-0-1) *holds for any hyper-Kähler varieties of* $K3^{[n]}$ -type.

Date: November 21, 2024.

The *D*-equivalence conjecture has been proven by Bridgeland [\[6\]](#page-13-3) for Calabi–Yau threefolds. For projective hyper-Kähler fourfolds, the *D*-equivalence conjecture holds by combining the classification results [\[8,](#page-13-4) [29\]](#page-14-0) and the case of Mukai flops by Kawamata [\[20\]](#page-13-2) and Namikawa [\[25\]](#page-13-5). However, very few cases of this conjecture are known in dimension > 4 ; see [\[26,](#page-14-1) [1\]](#page-13-6) for some partial results. Using equivalences obtained from window conditions, Halpern-Leistner [\[13\]](#page-13-7) proved the *D*-equivalence conjecture for any hyper-Kähler variety which can be realized as a Bridgeland moduli space of stable objects on a (possibly twisted) *K*3 surface. Theorem [0.2](#page-0-2) generalizes Halpern-Leistner's result, but our construction of the derived equivalences is very different. We obtain explicit Fourier–Mukai kernels which rely on the theory of moduli spaces of hyper-K¨ahler manifolds and hyperholomorphic bundles [\[28,](#page-14-2) [23\]](#page-13-8); this is closer in spirit to the proposal of Huybrechts [\[17,](#page-13-9) Section 5.1]. It would be interesting to find connections between the two approaches.

Our method in fact proves the following stronger, twisted version of the *D*-equivalence conjecture involving arbitrary Brauer classes. Let $X \dashrightarrow X'$ be a birational transform between hyper-Kähler varieties of $K3^{[n]}$ -type. It naturally identifies the Brauer groups of X, X' : any Brauer class $\alpha \in \text{Br}(X)$ induces a Brauer class $\alpha' \in \text{Br}(X')$.

Theorem 0.3. Let $X \rightarrow X'$ be as above, and let α be any Brauer class on X. Then there is *an equivalence of bounded derived categories of twisted sheaves*

$$
D^b(X, \alpha) \simeq D^b(X', \alpha').
$$

Theorem [0.3](#page-1-1) specializes to Theorem [0.2](#page-0-2) by taking $\alpha = 0$.

Acknowledgements. We are grateful to Daniel Huybrechts, Zhiyuan Li, Eyal Markman, Alex Perry, and Ziyu Zhang for helpful discussions. D.M. was supported by a Simons Investigator Grant. J.S. was supported by the NSF grant DMS-2301474 and a Sloan Research Fellowship.

1. Moduli of Hodge isometries

Assume $n \geq 2$. We denote by Λ the $K3^{[n]}$ -lattice, which is isometric to $H^2(X,\mathbb{Z})$, equipped with the Beauville–Bogomolov–Fujiki (BBF) form, for any hyper-Kähler manifold *X* of $K3^{[n]}$ type.[1](#page-1-2) In particular, we have a decomposition

$$
\Lambda = \Lambda_{K3} \oplus \mathbb{Z}\delta, \quad \delta^2 = 2 - 2n
$$

with Λ_{K3} the unimodular *K*3 lattice, so that any vector $\omega \in \Lambda$ can be expressed uniquely as

$$
\omega = \omega_{K3} + \lambda \delta, \quad \omega_{K3} \in \Lambda_{K3}, \quad \lambda \in \mathbb{Z}.
$$

A marking (X, η_X) for a manifold *X* of $K3^{[n]}$ -type is an isometry $\eta_X : H^2(X, \mathbb{Z}) \xrightarrow{\simeq} \Lambda$.

¹When we say that *X* is a hyper-Kähler manifold or a manifold of $K3^{[n]}$ -type, it means that *X* is not necessarily projective.

1.1. **Inseparable pairs.** We denote by \mathfrak{M}_{Λ} the moduli space of marked manifolds (X, η_X) of $K3^{[n]}$ -type; it is naturally a non-Hausdorff complex manifold whose non-separation illustrates the complexity of the birational/bimeromorphic geometry of hyper-Kähler varieties/manifolds [\[14\]](#page-13-10).

We say that a pair (X, η_X) , $(X', \eta_{X'})$ is *inseparable* if they represent inseparable points on the moduli space \mathfrak{M}_{Λ} ; as a consequence of the global Torelli theorem, this is equivalent to the condition that (X, η_X) , $(X', \eta_{X'})$ share the same period and lie in the same connected component of \mathfrak{M}_{Λ} .

Typical examples of inseparable pairs are given by bimeromorphic transforms. More precisely, a bimeromorphic map $X \dashrightarrow X'$ induces a natural identification $H^2(X, \mathbb{Z}) = H^2(X', \mathbb{Z})$ respecting the Hodge structures. A marking η_X for *X* then induces a marking $\eta_{X'}$ for *X'*, and the pair (X, η_X) , $(X', \eta_{X'})$ is therefore inseparable. Note that inseparable points are not necessarily induced by bimeromorphic transforms *directly*. As an example, we consider bimeromorphic X, X' as above and assume that

$$
\rho: H^2(X', \mathbb{Z}) \to H^2(X, \mathbb{Z})
$$

is a parallel transport respecting the Hodge structures. Then the pair

$$
(X, \eta_X), \quad (X', \eta_{X'}), \quad \eta_{X'} := \eta_X \circ \rho
$$

is inseparable. By [\[14\]](#page-13-10) (see also [\[21,](#page-13-11) Section 3.1]), every inseparable pair arises this way.

1.2. **Hodge isometries.** We recall the moduli space of Hodge isometries; this was used by Buskin [\[9\]](#page-13-12) and Markman [\[23\]](#page-13-8) to construct algebraic cycles realizing rational Hodge isometries.

For $\phi \in O(\Lambda_{\mathbb{Q}})$, we define \mathfrak{M}_{ϕ} to be the moduli space of isomorphism classes of quadruples (X, η_X, Y, η_Y) where $(X, \eta_X), (Y, \eta_Y) \in \mathfrak{M}_{\Lambda}$ are the corresponding markings and

$$
\eta_Y^{-1} \circ \phi \circ \eta_X : H^2(X, \mathbb{Q}) \to H^2(Y, \mathbb{Q})
$$

is a Hodge isometry sending some Kähler class of X to a Kähler class of Y . We have the natural forgetful maps

$$
\Pi_1: \mathfrak{M}_{\phi} \to \mathfrak{M}_{\Lambda}, \quad (X, \eta_X, Y, \eta_Y) \mapsto (X, \eta_X),
$$

$$
\Pi_2: \mathfrak{M}_{\phi} \to \mathfrak{M}_{\Lambda}, \quad (X, \eta_X, Y, \eta_Y) \mapsto (Y, \eta_Y).
$$

Any connected component \mathfrak{M}^0_ϕ of \mathfrak{M}_ϕ maps to a connected component of \mathfrak{M}_Λ via Π_i which we denote by \mathfrak{M}^0_{Λ} .

Lemma 1.1 ([\[23,](#page-13-8) Lemma 5.7]). The maps $\Pi_i : \mathfrak{M}_{\phi}^0 \to \mathfrak{M}_{\Lambda}^0$ ($i = 1, 2$) between connected *components are surjective.*

Lemma 1.2. *Assume that the point* (X, η_X, Y, η_Y) *lies in a connected component* \mathfrak{M}_{ϕ}^0 *. Assume further that* (X, η_X) , $(X', \eta_{X'})$ *form an inseparable pair such that*

$$
(1) \t\t\t (X', \eta_{X'}, Y, \eta_Y) \in \mathfrak{M}_{\phi}.
$$

Then $(X', \eta_{X'}, Y, \eta_Y)$ *lies in the same component* \mathfrak{M}^0_{ϕ} *.*

Note that [\(1\)](#page-2-0) is equivalent to the condition that $\eta_Y^{-1} \circ \phi \circ \eta_{X'}$ sends some Kähler class of X' to a Kähler class of Y.

Proof. Both (X, η_X) , $(X', \eta_{X'})$ lie in the same connected component of \mathfrak{M}_{Λ} which we call \mathfrak{M}_{Λ}^0 . We first find paths in \mathfrak{M}_{Λ}^0 connecting both points to $(X_0, \eta_{X_0}) \in \mathfrak{M}_{\Lambda}^0$ with $Pic(X_0) = 0$. By Lemma [1.1,](#page-2-1) we can lift these paths to \mathfrak{M}_{ϕ} , which connect (X, η_X, Y, η_Y) to $(X_0, \eta_{X_0}, Y_0, \eta_{Y_0}),$ and $(X', \eta_{X'}, Y, \eta_Y)$ to $(X_0, \eta_{X_0}, Y'_0, \eta_{Y'_0})$ respectively. On one hand, by considering the projection Π_2 , we know that the two points $(Y_0, \eta_{Y_0}), (Y'_0, \eta_{Y'_0})$ lie in the same connected component of \mathfrak{M}_{Λ} ; on the other hand, the Hodge isometry condition ensures that both of them share the same period [\[23,](#page-13-8) Lemma 5.4] and they have trivial Picard group. By the global Torelli theorem, we must have $(Y_0, \eta_{Y_0}) = (Y'_0, \eta_{Y'_0})$. This completes the proof. □

Suppose we are given a point (X, η_X, Y, η_Y) in \mathfrak{M}_{ϕ} , and Kähler classes ω_X, ω_Y on X, Y which are identified via $\eta_Y^{-1} \circ \phi \circ \eta_X$. Using this data, one can define a *diagonal twistor line* $\ell \subset \mathfrak{M}_{\phi}$ which lifts the twistor lines associated to (X, ω_X) and (Y, ω_Y) on \mathfrak{M}_{Λ} . A *generic diagonal twistor path* on \mathfrak{M}_{ϕ} is given by a chain of diagonal twistor lines such that, at each node of the chain, the associated hyper-Kähler manifolds have trivial Picard group. Generic diagonal twistor paths are used in Theorem [1.3](#page-4-0) below to deform certain Fourier–Mukai kernels.

1.3. **Brauer groups.** Assume that *X* is a manifold of $K3^{[n]}$ -type. Since *X* has no odd cohomology, the discussion in [\[11,](#page-13-13) Section 4.1] yields the following explicit description of the (cohomological) Brauer group:

(2)
$$
Br(X) = \left(H^2(X, \mathbb{Z})/Pic(X)\right) \otimes \mathbb{Q}/\mathbb{Z}.
$$

In particular, given a bimeromorphic map $X \dashrightarrow X'$ between manifolds of $K3^{[n]}$ -type, there is a natural identification

$$
Br(X) = Br(X')
$$

since both $H^2(-, \mathbb{Z})$ and Pic(-) are identified for *X* and *X'*. The description [\(2\)](#page-3-0) also allows us to present a Brauer class in the form

(3)
$$
\left[\frac{\beta}{d}\right] \in \text{Br}(X), \quad \beta \in H^2(X, \mathbb{Z}), \quad d \in \mathbb{Z}_{>0};
$$

this is referred to as the "*B*-field".

We note that the cohomology $H^2(X,\mathbb{Z})$ forms a trivial local system over any connected component of the moduli space \mathfrak{M}^0_Λ ; therefore [\(3\)](#page-3-1) for a single X presents a Brauer class for any point in the component \mathfrak{M}^0_Λ containing (X, η_X) .

1.4. **Projectively hyperholomorphic bundles.** Using the Bridgeland–King–Reid (BKR) correspondence [\[7\]](#page-13-14), Markman constructed in [\[23\]](#page-13-8) a class of projectively hyperholomorphic bundles which we recall here. We consider a projective K3 surface *S* with $Pic(S) = \mathbb{Z}H$. Assume that *r, s* are two coprime integers with $r \geq 2$. Assume further that the Mukai vector

$$
v_0 := (r, mH, s) \in H^*(S, \mathbb{Z})
$$

is isotropic, *i.e.* $v_0^2 = 0^2$ $v_0^2 = 0^2$ $v_0^2 = 0^2$. Let *M* be the moduli of stable vector bundles on *S* with Mukai vector v_0 . Then *M* is again a *K*3 surface, and the coprime condition of *r*, *s* ensures the existence of a universal rank r bundle U on $M \times S$. Conjugating the BKR correspondence, we obtain a vector bundle $\mathcal{U}^{[n]}$ on $M^{[n]} \times S^{[n]}$ of rank

$$
\mathrm{rk}(\mathcal{U}^{[n]}) = n!r^n;
$$

see [\[23,](#page-13-8) Lemma 7.1]. This vector bundle induces a derived equivalence

(4)
$$
\Phi_{\mathcal{U}^{[n]}} : D^b(M^{[n]}) \xrightarrow{\simeq} D^b(S^{[n]}).
$$

Markman further showed in [\[23,](#page-13-8) Section 5.6] that the characteristic class of $\mathcal{U}^{[n]}$ induces a Hodge isometry

$$
\phi_{\mathcal{U}^{[n]}}:H^2(M^{[n]},\mathbb{Q})\to H^2(S^{[n]},\mathbb{Q}).
$$

Under the natural identification

(5)
$$
H^2(M^{[n]}, \mathbb{Q}) = H^2(M, \mathbb{Q}) \oplus \mathbb{Q}\delta, \quad H^2(S^{[n]}, \mathbb{Q}) = H^2(S, \mathbb{Q}) \oplus \mathbb{Q}\delta,
$$

this Hodge isometry is of the form

$$
\phi_{\mathcal{U}^{[n]}} = (\phi_{\mathcal{U}}, \text{id}), \quad \phi_{\mathcal{U}} : H^2(M, \mathbb{Q}) \to H^2(S, \mathbb{Q}),
$$

where $\phi_{\mathcal{U}}$ is the Hodge isometry of *K*3 surfaces induced by \mathcal{U} ; see [\[23,](#page-13-8) Corollary 7.3].

The key results, which are summarized in the following theorem, show that the Fourier– Mukai kernel $\mathcal{U}^{[n]},$ as a projectively hyperholomorphic bundle, deforms along generic diagonal twistor paths. Moreover, at each point of the path, it induces a (twisted) derived equivalence:

Theorem 1.3 ([\[23,](#page-13-8) [19\]](#page-13-15)). *There exist markings* $\eta_{M^{[n]}}, \eta_{S^{[n]}}$ *for the Hilbert schemes* $M^{[n]}$, $S^{[n]}$ *respectively, which induce* $\phi \in O(\Lambda_{\mathbb{Q}})$ *via* $\phi_{\mathcal{U}^{[n]}}$ *, such that the connected component containing the quadruple*

$$
(M^{[n]},\eta_{M^{[n]}},S^{[n]},\eta_{S^{[n]}})\in \mathfrak{M}_{\phi}^0
$$

satisfies the following:

(a) For every point (X, η_X, Y, η_Y) lying in the component \mathfrak{M}_{ϕ}^0 , there exists a twisted vector *bundle* $(\mathcal{E}, \alpha_{\mathcal{E}})$ *on* $X \times Y$ *, which is deformed from* $\mathcal{U}^{[n]}$ *along a generic diagonal twistor path.*

²In [\[23\]](#page-13-8), Markman only considered the case $m = 1$; here considering large $\pm m$ is crucial for our purpose. Using [\[16,](#page-13-16) Proposition 2.2] (see also [\[30,](#page-14-3) Theorem 2.2]), Markman's argument works identically in this generality.

(b) *Using the form [\(3\)](#page-3-1), the Brauer class in (a) is presented by*

$$
\alpha_{\mathcal{E}} = \left[-\frac{c_1(\mathcal{U}^{[n]})}{\text{rk}(\mathcal{U}^{[n]})} \right].
$$

Here we view $H^2(X \times Y, \mathbb{Z}) = H^2(X, \mathbb{Z}) \oplus H^2(Y, \mathbb{Z})$ as a trivial local system over the *moduli space* \mathfrak{M}_{ϕ}^0 *via the markings.*

(c) *Further assume that* X, Y *are varieties. Then the twisted bundle* $(\mathcal{E}, \alpha_{\mathcal{E}})$ *induces an equivalence of twisted derived categories*

$$
\Phi_{(\mathcal{E},\alpha_{\mathcal{E}})}: D^b(X,\alpha_X) \xrightarrow{\simeq} D^b(Y,\alpha_Y), \quad \alpha_X = \left[\frac{a_X}{\text{rk}(\mathcal{E})}\right], \quad \alpha_Y = \left[-\frac{a_Y}{\text{rk}(\mathcal{E})}\right],
$$

 $where \ a_X \in H^2(X, \mathbb{Z}), a_Y \in H^2(Y, \mathbb{Z}) \ are given by$

$$
c_1(\mathcal{U}^{[n]}) = a_X + a_Y \in H^2(X, \mathbb{Z}) \oplus H^2(Y, \mathbb{Z}).
$$

Proof. (a) was proven in [\[23,](#page-13-8) Theorem 8.4]; Markman showed that $\mathcal{U}^{[n]}$ on $M^{[n]} \times S^{[n]}$ is projectively slope-stable hyperholomorphic in the sense of [\[28,](#page-14-2) [22\]](#page-13-17) which allows him to deform it along diagonal twistor paths to all points in the component \mathfrak{M}^0_{ϕ} .

(b) can be obtained by applying Căldăraru's result $[11,$ Theorem 4.1 along the diagonal twistor paths; see the discussion in [\[19,](#page-13-15) Section 2.3].

(c) was proven in [\[19,](#page-13-15) Theorem 2.3]. More precisely, the condition that a twisted bundle induces a twisted derived equivalence can be characterized by cohomological properties [\[10,](#page-13-18) Theorem 3.2.1]. These properties are preserved along a twistor path due to the fact that the cohomology of slope-polystable hyperholomorphic bundles is invariant under hyper-Kähler rotations [\[27,](#page-14-4) Corollary 8.1]. Therefore we ultimately reduce the desired cohomological properties to those for $M^{[n]} \times S^{[n]}$ which are given by the original equivalence [\(4\)](#page-4-2).

1.5. **Birational geometry and MBM classes.** The birational geometry of hyper-Kähler varieties is governed by certain integral *primitive* cohomology classes, called the monodromy birationally minimal (MBM) classes. We refer to [\[3\]](#page-13-19) for an introduction to these classes. In the following, we summarize some results which are needed in our proof.

Let *X* be a variety of $K3^{[n]}$ -type. We consider its birational Kähler cone $\mathcal{B}\mathcal{K}_X$ and the positive cone \mathcal{C}_X :

$$
\mathcal{B}\mathcal{K}_X \subset \mathcal{C}_X \subset H^{1,1}(X,\mathbb{R}).
$$

The positive cone is convex and admits a wall-and-chamber structure. The closure of the birational Kähler cone within the positive cone is a convex sub-cone $[15]$, which inherits a walland-chamber structure. Furthermore, by a result of Amerik–Verbitsky [\[2\]](#page-13-21), and independently Mongardi [\[24\]](#page-13-22), all the walls are governed by the MBM classes.

Theorem 1.4 ([\[24,](#page-13-22) [2\]](#page-13-21)). Any wall of \mathcal{C}_X is described by a hyperplane of the form $W^{\perp} := \{ \omega \in H^{1,1}(X,\mathbb{R}), (\omega, \mathcal{W}) = 0 \} \subset H^{1,1}(X,\mathbb{R})$

with W an algebraic MBM class in $Pic(X)$. Here the pairing is with respect to the BBF form. *Moreover, any chamber in* \mathcal{C}_X *can be realized as the Kähler cone of a birational hyper-Kähler* X' *through a parallel transport* $\rho: H^2(X', \mathbb{Z}) \to H^2(X, \mathbb{Z})$ *respecting the Hodge structures.*

Note that any chamber in $\mathcal{B}\mathcal{K}_X \subset \mathcal{C}_X$ is given by the pullback of the Kähler cone via a birational transform $X \rightarrow X'$ of hyper-Kähler varieties. By the discussions of Section [1.1,](#page-2-2) any chamber of \mathcal{C}_X corresponds to a marked variety $(X', \eta_{X'})$ of $K3^{[n]}$ -type such that the pair $(X, \eta_X), (X', \eta_{X'})$ is inseparable.

We also need the following boundedness result, which notably implies that wall-and-chamber structure of \mathcal{C}_X is locally polyhedral; see [\[18,](#page-13-23) Remark 8.2.3] for a proof of the implication. The boundedness result was essentially obtained by [\[4\]](#page-13-24), as explained in [\[2,](#page-13-21) Section 6.2].

Theorem 1.5 ([\[4,](#page-13-24) [2\]](#page-13-21)). *There is a constant* $C_0 > 0$ *, such that for any variety* X *of* $K3^{[n]}$ -type and any MBM class $W \in H^2(X, \mathbb{Z})$ we have

$$
0<-\mathcal{W}^2
$$

Here the norm is with respect to the BBF form.

For any rational Hodge isometry $\phi: H^2(X, \mathbb{Q}) \to H^2(Y, \mathbb{Q})$ between varieties of $K3^{[n]}$ -type, which sends an MBM class \mathcal{W}_X on *X* to a class proportional to an MBM class \mathcal{W}_Y on *Y*, there exist coprime integers *a, b* such that

$$
\phi(\mathcal{W}_X) = \frac{a}{b} \mathcal{W}_Y.
$$

The following is an immediate consequence of Theorem [1.5.](#page-6-0)

Corollary 1.6. *For any* $X, Y, \phi, \mathcal{W}_X, \mathcal{W}_Y$ *as above, we have*

$$
a^2 < C_0, \quad b^2 < C_0.
$$

Proof. Since ϕ is an isometry, we have

$$
\frac{a^2}{b^2}=\frac{\mathcal{W}_X^2}{\mathcal{W}_Y^2}
$$

By Theorem [1.5,](#page-6-0) both $-\mathcal{W}_X^2$ and $-\mathcal{W}_Y^2$ are positive integers $\lt C_0$. The corollary follows from the assumption that a, b are coprime. \Box

1.6. **Proof strategy.** We discuss the strategy of the proof of Theorem [0.3;](#page-1-1) Theorem [0.2](#page-0-2) is then deduced as a special case.

Let *X* be a variety of $K3^{[n]}$ -type. It suffices to prove Theorem [0.3](#page-1-1) for a hyper-Kähler birational model X' with a birational map $X \dashrightarrow X'$ which corresponds to a chamber in $\mathcal{B}K_X$ adjacent to the Kähler cone of X . By Theorem [1.5,](#page-6-0) the wall between these two chambers is given by an algebraic MBM class $W \in Pic(X)$.

Now we choose a K3 surface S and a Mukai vector $v_0 = (r, mH, s)$ as in the beginning of Section [1.4,](#page-4-3) which yields the Hodge isometry $\phi_{\mathcal{U}^{[n]}}$. Associated to these, we have the moduli space of Hodge isometries \mathfrak{M}_{ϕ} , and the component \mathfrak{M}_{ϕ}^0 that contains the quadruple $(M^{[n]}, \eta_{M^{[n]}}, S^{[n]}, \eta_{S^{[n]}}).$

For the given birational X, X' , by Lemma [1.1,](#page-2-1) we can complete them to a pair of quadruples

$$
(Y, \eta_Y, X, \eta_X), \quad (Y', \eta_{Y'}, X', \eta_{X'}) \in \mathfrak{M}_{\phi}^0
$$

such that the marking $\eta_{X'}$ is induced by η_X via the birational map $X \dashrightarrow X'.^3$ $X \dashrightarrow X'.^3$ In particular, the pair (X, η_X) , $(X', \eta_{X'})$ is inseparable. We note that the pair (Y, η_Y) , $(Y', \eta_{Y'})$ is also inseparable. This is because they share the same period and lie in the same connected component of \mathfrak{M}_{Λ} . Moreover, by definition, ϕ^{-1} sends a Kähler class of *X* (resp. *X'*) to a Kähler class of Y (resp. Y').^{[4](#page-7-1)} Therefore, if

 (6) ϕ^{-1} does not send W to a class on Y that is proportional to an MBM class,

there must be a point on the wall separating the Kähler cones of X, X' which is sent to the interior of a chamber of the positive cone \mathcal{C}_Y . In particular, there exists a hyper-Kähler birational model *Y*^{*''*} of *Y* with a marking $(Y'', \eta_{Y''})$ such that the pair (Y, η_Y) , $(Y'', \eta_{Y''})$ is inseparable and

$$
(Y'', \eta_{Y''}, X, \eta_X), \quad (Y'', \eta_{Y''}, X', \eta_{X'}) \in \mathfrak{M}_{\phi}.
$$

Furthermore, by Lemma [1.2,](#page-2-3) both points lie in the connected component we started with:

 $(Y'', \eta_{Y''}, X, \eta_X), \quad (Y'', \eta_{Y''}, X', \eta_{X'}) \in \mathfrak{M}_{\phi}^0.$

By Theorem [1.3\(](#page-4-0)b, c), we obtain Brauer classes $\alpha_X, \alpha_{Y''}$ on X, Y'' respectively, such that

$$
D^{b}(Y'', \alpha_{Y''}) \simeq D^{b}(X, \alpha_{X}), \quad D^{b}(Y'', \alpha_{Y''}) \simeq D^{b}(X', \alpha_{X'}).
$$

Here the Brauer classes $\alpha_X, \alpha_{Y''}$ only depend on the markings $(X, \eta_X), (Y'', \eta_{Y''})$ respectively, and the Brauer class $\alpha_{X'}$ is induced by α_X . Combining both equivalences yields

$$
D^b(X, \alpha_X) \simeq D^b(X', \alpha_{X'})
$$

whose Fourier–Mukai kernel is the composition of two (twisted) hyperholomorphic bundles.

In the next section, we show that for any pair *X, X'* as above with a Brauer class $\alpha \in \text{Br}(X)$ and an algebraic MBM class $W \in Pic(X)$, a careful choice of the K3 surface S and the Mukai vector $v_0 = (r, mH, s)$ as in Section [1.4](#page-4-3) can simultaneously ensure that the condition [\(6\)](#page-7-2) holds and the induced Brauer class is as desired:

$$
\alpha_X = \alpha.
$$

This completes the proof of Theorem [0.3.](#page-1-1)

³Here we would like X, X' to be deformed from $S^{[n]}$ later in Section [2.](#page-8-0)

⁴Here we suppress the markings and still use ϕ to denote the Hodge isometry $H^2(Y, \mathbb{Q}) \to H^2(X, \mathbb{Q})$ for notational convenience.

Remark 1.7. For a general birational transform $X \dashrightarrow X'$ of varieties of $K3^{[n]}$ -type, which do not correspond to adjacent chambers in the birational Kähler cone $\mathcal{B}\mathcal{K}_X$, our proof realizes the derived equivalence

$$
D^b(X, \alpha) \simeq D^b(X', \alpha')
$$

via two sequences of varieties X_1, \ldots, X_{t-1} and Y_1, \ldots, Y_t , with each X_i birational to X, X' , such that

$$
(8) \quad D^{b}(X,\alpha) \simeq D^{b}(Y_{1},\alpha_{Y_{1}}) \simeq D^{b}(X_{1},\alpha_{X_{1}}) \simeq D^{b}(Y_{2},\alpha_{Y_{2}}) \simeq \cdots
$$

$$
\simeq D^{b}(Y_{t-1},\alpha_{Y_{t-1}}) \simeq D^{b}(X_{t-1},\alpha_{X_{t-1}}) \simeq D^{b}(Y_{t},\alpha_{Y_{t}}) \simeq D^{b}(X',\alpha').
$$

Each of the derived equivalences in [\(8\)](#page-8-1) is induced by a (twisted) hyperholomorphic bundle.

2. Proof of Theorem [0.3](#page-1-1)

From now on, we fix a variety *X* of $K3^{[n]}$ -type, a Brauer class $\alpha \in Br(X)$, and an algebraic MBM class $W \in Pic(X)$ as in Section [1.6.](#page-6-1) In particular, the variety X has Picard rank ≥ 2.5 ≥ 2.5 Using [\(2\)](#page-3-0) and [\(3\)](#page-3-1), we present the Brauer class α by a class in the rational transcendental lattice $T(X)_{\mathbb{Q}} \subset H^2(X, \mathbb{Q})$:

$$
\alpha = \left[-\frac{\mathcal{B}}{d} \right], \quad \mathcal{B} \in T(X), \quad d \in \mathbb{Z}_{>0}.
$$

Up to adjusting $-\frac{B}{d}$ *d*^{*d*}</sup> by an integral class in *T*(*X*) ⊂ *H*²(*X*, \mathbb{Z}), we may further assume that the class β satisfies

$$
\mathcal{B}^2 = 2e > 0.
$$

2.1. **Divisor classes.** Recall that the divisibility $\text{div}(\omega)$ of a class $\omega \in H^2(X,\mathbb{Z})$ is the positive generator of the subgroup

$$
\{(\omega,\mu), \mu \in H^2(X,\mathbb{Z})\} \subset \mathbb{Z}
$$

Lemma 2.1. *There exists a class* $A \in Pic(X)$ *such that*

$$
(\mathcal{A}, \mathcal{W}) \neq 0, \quad \text{div}(\mathcal{A}) = 1.
$$

Proof. We pick a marking identifying $H^2(X,\mathbb{Z})$ with a $K3^{[n]}$ -lattice $\Lambda = \Lambda_{K3} \oplus \mathbb{Z}\delta$. For any $g \in O(\Lambda)$, since $g(\delta)^{\perp}$ is a unimodular K3-lattice, any primitive vector $\omega \in g(\delta)^{\perp} \subset \Lambda$ satisfies div(ω) = 1. We would like to choose *g* so that there exists $A \in g(\delta)^{\perp} \cap Pic(X)$ satisfying $(A, W) \neq 0$. In other words, we want

$$
g(\delta)^{\perp} \cap Pic(X) \neq \mathcal{W}^{\perp} \cap Pic(X).
$$

If we base change to \mathbb{C} , the set of $g \in O(\Lambda)_{\mathbb{C}}$ such that

$$
g(\delta)^{\perp} \cap \operatorname{Pic}(X)_{\mathbb{C}} \neq \mathcal{W}^{\perp} \cap \operatorname{Pic}(X)_{\mathbb{C}}
$$

⁵Theorem [0.3](#page-1-1) is automatically true if *X* has Picard rank 1, since any birational transform $X \dashrightarrow X'$ is necessarily an isomorphism.

is open in the Zariski topology. Furthermore, it is nonempty since *X* has Picard rank ≥ 2 . Since $O(\Lambda)$ is Zariski-dense in $O(\Lambda)_{\mathbb{C}}$, we can find $g \in O(\Lambda)$ satisfying this condition as well. \Box

Up to replacing $\mathcal A$ by $-\mathcal A$, we may assume

$$
C_1 := (\mathcal{A}, \mathcal{W}) > 0
$$

which we fix from now on.

Proposition 2.2. For any $N > 0$, there exists a class $\mathcal{D} \in \text{Pic}(X)$ of divisibility 1, satisfying

$$
\mathcal{D}^2 > N, \quad (\mathcal{D}, \mathcal{W}) = C_1.
$$

Proof. Since *X* has Picard rank ≥ 2 , we have $W^{\perp} \cap Pic(X) \neq 0$. Pick an element

$$
\omega \in \mathcal{W}^{\perp} \cap \text{Pic}(X), \quad \omega^2 > 0.
$$

Then for large enough $t \in \mathbb{Z}_{>0}$, we have

$$
(\mathcal{A} + t\omega, \mathcal{W}) = C_1, \quad (\mathcal{A} + t\omega)^2 > N.
$$

It suffices to show that there exist infinitely many choices of $t \in \mathbb{Z}_{>0}$ satisfying

$$
\operatorname{div}(\mathcal{A} + t\omega) = 1.
$$

We pick an integral class $\mu \in H^2(X, \mathbb{Z})$ such that

$$
(\mathcal{A}, \mu) = 1, \quad (\omega, \mu) \neq 0;
$$

then we pick another integral class $\nu \in H^2(X,\mathbb{Z})$ such that

$$
(\mathcal{A}, \nu) = 0, \quad (\omega, \nu) \neq 0.
$$

We claim that for sufficiently large $t \in \mathbb{Z}_{>0}$ with $1 + t(\omega, \mu)$ a prime number, the class $\mathcal{A} + t\omega$ must have divisibility 1. This follows immediately from the observation that

$$
\operatorname{div}(\mathcal{A} + t\omega) | 1 + t(\omega, \mu), \quad \operatorname{div}(\mathcal{A} + t\omega) | (\omega, \nu).
$$

2.2. **Mukai vectors.** We construct the *K*3 surface *S* and the Mukai vector v_0 of Section [1.6.](#page-6-1) By Proposition [2.2,](#page-9-0) we can find $\mathcal{D} \in \text{Pic}(X)$ with

(9)
$$
\text{div}(\mathcal{D}) = 1
$$
, $(\mathcal{D}, \mathcal{W}) = C_1 > 0$, $\mathcal{D}^2 = 2g > 2C_0C_1$,

where C_0 is the constant in Theorem [1.5.](#page-6-0) Repeating the same argument as in Proposition [2.2,](#page-9-0) we also find $t \in \mathbb{Z}_{>0}$ such that

$$
\operatorname{div}(\mathcal{D} + 4gt d\mathcal{B}) = 1.
$$

Let (S, H) be a primitively polarized $K3$ surface of Picard rank 1 of degree

$$
H^{2} = 2g\left(1 + 4gt^{2}d^{4}(n-1) + 16gt^{2}d^{2}e\right) > 0.
$$

We observe that both classes

$$
H - 2gtd^2\delta \in \mathrm{H}^2(S^{[n]}, \mathbb{Z}), \quad \mathcal{D} + 4gtd\mathcal{B} \in H^2(X, \mathbb{Z})
$$

are of divisibility 1 and have the same norm, where we have used that $(D, \mathcal{B}) = 0$ since \mathcal{B} is transcendental. Therefore, by [\[12,](#page-13-25) Example 3.8] and [\[21,](#page-13-11) Theorem 9.8], there is a parallel transport

$$
\rho: H^2(S^{[n]}, \mathbb{Z}) \to H^2(X, \mathbb{Z})
$$

satisfying

(10)
$$
\rho(H - 2gtd^2\delta) = \epsilon(\mathcal{D} + 4gtd\mathcal{B}),
$$

where $\epsilon = \pm 1$ is a sign determined by the orientation.

We now consider the Mukai vector

$$
v_0 := \left(16gt^2d^4, \, \epsilon \cdot 4td^2H, \, 1 + 4gt^2d^4(n-1) + 16gt^2d^2e \right),
$$

which clearly satisfies

$$
\gcd\left(16gt^2d^4, 1+4gt^2d^4(n-1)+16gt^2d^2e\right)=1, \quad 16gt^2d^4\geq 2, \quad v_0^2=0.
$$

The moduli space M of stable vector bundles on S with Mukai vector v_0 is a $K3$ surface of Picard rank 1 with a universal bundle U on $M \times S$ which we fix from now on. Also fixed are the markings $\eta_{M^{[n]}}, \eta_{S^{[n]}}$ as in Theorem [1.3,](#page-4-0) as well as the induced marking

$$
\eta_X:=\eta_{S^{[n]}}\circ\rho^{-1}:H^2(X,\mathbb{Z})\xrightarrow{\simeq} \Lambda.
$$

Proposition 2.3. *Let S, M,* U *be as above.*

- (a) The primitive polarization \hat{H} of M satisfies $\hat{H}^2 = H^2$.
- (b) Let $s \in S$ be a point. Assume that the vector bundle $\mathcal{U}|_s$ has Mukai vector

$$
\widehat{v}_0 = (16gt^2d^4, k\widehat{H}, \widehat{s}) \in H^*(M, \mathbb{Z}).
$$

Then we have

$$
\gcd(16gt^2d^4, k) = 4td^2.
$$

Proof. (a) follows from [\[30,](#page-14-3) Appendix A]. For (b), we note that [30, Theorem 2.2] implies that the Mukai vector \hat{v}_0 is primitive with $\hat{v}_0^2 = 0$. Using (a), we deduce that

$$
\widehat{s} = \left(\frac{k}{4td^2}\right)^2 \left(1 + 4gt^2d^4(n-1) + 16gt^2d^2e\right) \in \mathbb{Z}.
$$

Therefore, we have that k is divisible by $4td^2$, which shows

$$
4td^2 | \gcd(16gt^2d^4, k).
$$

On the other hand, if $\frac{k}{4td^2}$ is not coprime to $16gt^2d^4$, the Mukai vector \hat{v}_0 is divisible by their common factor. This contradicts the fact that \hat{v}_0 is primitive. \Box 2.3. **End of proof.** We complete the proof using the $K3$ surface S , the Mukai vector v_0 , and the universal bundle $\mathcal U$ constructed in the last section. This gives the vector bundle $\mathcal U^{[n]}$ on $M^{[n]} \times S^{[n]}$. We write

$$
c_1(\mathcal{U}^{[n]}) = a_{M^{[n]}} + a_{S^{[n]}} \in H^2(M^{[n]}, \mathbb{Z}) \oplus H^2(S^{[n]}, \mathbb{Z})
$$

with

$$
a_{M^{[n]}} \in H^2(M^{[n]}, \mathbb{Z}), \quad a_{S^{[n]}} \in H^2(S^{[n]}, \mathbb{Z}).
$$

Recall the natural identification

(11)
$$
H^2(S^{[n]}, \mathbb{Z}) = H^2(S, \mathbb{Z}) \oplus \mathbb{Z}\delta.
$$

By [\[23,](#page-13-8) Equation (7.11)], we can present the class $a_{S[n]}$ using [\(11\)](#page-11-0):

$$
a_{S^{[n]}} = \mathrm{rk}(\mathcal{U}^{[n]}) \cdot \left(\frac{\epsilon \cdot 4td^2H}{16gt^2d^4} - \frac{\delta}{2}\right) \in H^2(S^{[n]}, \mathbb{Z}).
$$

Via the parallel transport ρ and [\(10\)](#page-10-0), we obtain

$$
\rho \left(\frac{a_{S^{[n]}}}{\text{rk}(\mathcal{U}^{[n]})} \right) = \rho \left(\frac{\epsilon \cdot H}{4gtd^2} - \frac{\delta}{2} \right)
$$

\n
$$
= \rho \left(\epsilon \left(\frac{H}{4gtd^2} - \frac{\delta}{2} \right) + (\epsilon - 1)\frac{\delta}{2} \right)
$$

\n
$$
= \frac{\epsilon \cdot \rho (H - 2gtd^2\delta)}{4gtd^2} + \frac{(\epsilon - 1)}{2} \rho(\delta)
$$

\n
$$
= \frac{\mathcal{D} + 4gtd\mathcal{B}}{4gtd^2} + \frac{(\epsilon - 1)}{2} \rho(\delta)
$$

\n
$$
= \frac{\mathcal{B}}{d} + \text{[class in Pic}(X)\mathbb{Q}] + \text{[class in } H^2(X, \mathbb{Z})] \in H^2(X, \mathbb{Q}).
$$

Hence, by Theorem $1.3(c)$, we have

$$
\alpha_X = \left[-\rho \left(\frac{a_{S^{[n]}}}{\mathrm{rk}(\mathcal{U}^{[n]})} \right) \right] = \left[-\frac{\mathcal{B}}{d} \right] = \alpha.
$$

To complete the proof, it remains to address [\(6\)](#page-7-2). This is given by the following proposition.

 $\bf{Proposition 2.4.}$ Let \mathfrak{M}_{ϕ}^0 be the connected component of the moduli space of Hodge isometries *constructed from S, M,* U *as above. For any quadruple*

$$
(Y, \eta_Y, X, \eta_X) \in \mathfrak{M}_{\phi}^0
$$

with *X*, *W* fixed as above, the class $\phi^{-1}(W) \in H^2(Y, \mathbb{Q})$ is not proportional to any MBM *class on Y*. Here we suppress the markings and still use ϕ to denote the Hodge isometry $H^2(Y, \mathbb{Q}) \to H^2(X, \mathbb{Q})$ *for notational convenience.*

Proof. The main idea of the argument is that, for our choice of the Mukai vector v_0 , by a calculation of Buskin [\[9\]](#page-13-12), the rational Hodge isometry ϕ^{-1} is conjugate to a reflection by a vector of large norm. By Corollary [1.6,](#page-6-2) we then show that it cannot send W to a class proportional to an MBM class.

The details are as follows. Since the MBM classes are deformation invariant, we only need to treat the Hodge isometry

$$
\phi_{\mathcal{U}^{[n]}}:H^2(M^{[n]},\mathbb{Q})\to H^2(S^{[n]},\mathbb{Q})
$$

which can be further simplified under the identification (5) :

$$
(\phi_{\mathcal{U}}, \mathrm{id}) : H^2(M, \mathbb{Q}) \oplus \mathbb{Q}\delta \to H^2(S, \mathbb{Q}) \oplus \mathbb{Q}\delta.
$$

Assume that

(12)
$$
\phi_{\mathcal{U}^{[n]}}^{-1}(\rho^{-1}(\mathcal{W})) = -\frac{b}{a}\mathcal{W}'
$$

with \mathcal{W}' an MBM class on $M^{[n]}$ and a, b coprime. We write

$$
\rho^{-1}(\mathcal{W}) = \mathcal{W}_{K3} + \lambda \delta, \quad \mathcal{W}_{K3} \in H^2(S, \mathbb{Z}), \quad \lambda \in \mathbb{Z}.
$$

The equation [\(12\)](#page-12-0) implies that $\phi_{\mathcal{U}}^{-1}(a\mathcal{W}_{K3})$ is an integral class. By the formula right before [\[9,](#page-13-12) Conclusion 3.8], the integrality forces the pairing

$$
(H, a\mathcal{W}_{\mathrm{K3}}) \in \mathbb{Z}
$$

to be divisible by

$$
\frac{16gt^2d^4}{\gcd(16gt^2d^4, 4td^2k)} = g,
$$

where we have used Proposition [2.3\(](#page-10-1)b) in the last equation.

On the other hand, we have

$$
(H, aW_{K3}) = (H, \rho^{-1}(aW)) = (\rho(H), aW) = \epsilon(\mathcal{D}, aW) + [\text{integer divisible by } g],
$$

where the last equality uses [\(10\)](#page-10-0). In particular, we find

$$
g | (\mathcal{D}, a\mathcal{W}) = aC_1.
$$

Combined with Corollary [1.6,](#page-6-2) this implies

$$
g \le a^2 C_1 < C_0 C_1
$$

which contradicts our choice of D in [\(9\)](#page-9-1). This shows that [\(12\)](#page-12-0) cannot hold, which proves the proposition. \Box

In conclusion, both [\(6\)](#page-7-2) and [\(7\)](#page-7-3) are settled by our choice of the *K*3 surface *S* and the Mukai vector v_0 ; the proof of Theorem [0.3](#page-1-1) is now complete. \Box

REFERENCES

- [1] N. Addington, W. Donovan, and C. Meachan, *Moduli spaces of torsion sheaves on K*3 *surfaces and derived equivalences,* J. Lond. Math. Soc. (2) 93 (2016), no. 3, 846–865.
- [2] E. Amerik and M. Verbitsky, *Rational curves on hyperk¨ahler manifolds,* Int. Math. Res. Not. IMRN (2015), no. 23, 13009–13045.
- [3] E. Amerik and M. Verbitsky, *Rational curves and MBM classes on hyperähler manifolds: a survey*, Rationality of varieties, 75–96, Progr. Math., 342, Birkhäuser/Springer, Cham, 2021.
- [4] A. Bayer, B. Hassett, and Y. Tschinkel, *Mori cones of holomorphic symplectic varieties of K*3 *type,* Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 941–950.
- [5] A. Bondal and D. Orlov, *Semiorthogonal decomposition for algebraic varieties,* arXiv:alg-geom/9506012.
- [6] T. Bridgeland, *Flops and derived categories,* Invent. math. 147 (2002), no. 3, 613–632.
- [7] T. Bridgeland, A. King, and M. Reid, *The McKay correspondence as an equivalence of derived categories,* J. Amer. Math. Soc. 14 (2001), no. 3, 535–554.
- [8] D. Burns, Y. Hu, and T. Luo, *HyperKähler manifolds and birational transformations in dimension* 4, Vector bundles and representation theory (Columbia, MO, 2002), 141–149, Contemp. Math., 322, American Mathematical Society, Providence, RI, 2003.
- [9] N. Buskin, *Every rational Hodge isometry between two K*3 *surfaces is algebraic,* J. Reine Angew. Math. 755 (2019), 127–150.
- [10] A. Căldăraru, *Derived categories of twisted sheaves on Calabi–Yau manifolds*, Ph.D. Thesis, Cornell University, 2000.
- [11] A. Căldăraru, *Non-fine moduli spaces of sheaves on K3 surfaces*, Int. Math. Res. Not. IMRN (2002), no. 20, 1027–1056.
- [12] V. Gritsenko, K. Hulek, and G. K. Sankaran, *Moduli spaces of irreducible symplectic manifolds,* Compos. Math. 146 (2010), no. 2, 404–434.
- [13] D. Halpern-Leistner, *Derived* Θ*-stratifications and the D-equivalence conjecture,* arXiv:2010.01127.
- [14] D. Huybrechts, *Compact hyper-Kähler manifolds: basic results*, Invent. Math. 135 (1999), no. 1, 63–113.
- [15] D. Huybrechts, *The Kähler cone of a compact hyperkähler manifold*, Math. Ann. 326 (2003), no. 3, 499–513.
- [16] D. Huybrechts, *Derived and abelian equivalence of K*3 *surfaces,* J. Algebraic Geom. 17 (2008), no. 2, 375–400.
- [17] D. Huybrechts, *Hyperkähler manifolds and sheaves*, Proceedings of the International Congress of Mathematicians, Volume II, 450–460, Hindustan Book Agency, New Delhi, 2010.
- [18] D. Huybrechts, *Lectures on K3 surfaces,* Cambridge Stud. Adv. Math., 158, Cambridge University Press, Cambridge, 2016, xi+485 pp.
- [19] G. Kapustka and M. Kapustka, *Constructions of derived equivalent hyper-Kähler fourfolds*, arXiv: 2312.14543v4.
- [20] Y. Kawamata, *D-equivalence and K-equivalence,* J. Differential Geom. 61 (2002), no. 1, 147–171.
- [21] E. Markman, *A survey of Torelli and monodromy results for holomorphic-symplectic varieties,* Complex and differential geometry, 257–322, Springer Proc. Math., 8, Springer, Heidelberg, 2011.
- [22] E. Markman, *The Beauville–Bogomolov class as a characteristic class,* J. Algebraic Geom. 29 (2020), no. 2, 199–245.
- [23] E. Markman, *Rational Hodge isometries of hyper-Kähler varieties of K3*^[n]-type are algebraic, Compos. Math. 160 (2024), no. 6, 1261–1303.
- [24] G. Mongardi, *A note on the Kähler and Mori cones of hyperkähler manifolds*, Asian J. Math. 19 (2015), no. 4, 583–591.
- [25] Y. Namikawa, *Mukai flops and derived categories,* J. Reine Angew. Math. 560 (2003), 65–76.

THE *D*-EQUIVALENCE CONJECTURE 15

- [26] D. Ploog, *Equivariant equivalences for finite group actions,* Adv. Math. 216 (2007), no. 1, 62–74.
- [27] M. Verbitsky, *Hyperholomorphic bundles over a hyper-K¨ahler manifold,* J. Algebraic Geom. 5 (1996), no. 4, 633–669.
- [28] M. Verbitsky, *Hyperholomorphic sheaves and new examples of hyperkaehler manifolds*, Hyper-Kähler manifolds, by D. Kaledin, and M. Verbitsky, Mathematical Physics (Somerville), 12, International Press, Somerville, MA, 1999.
- [29] J. Wierzba and J. Wiśniewski, *Small contractions of symplectic* 4-folds, Duke Math. J. 120 (2003), no. 1, 65–95.
- [30] K. Yoshioka, *Stability and the Fourier–Mukai transform. II,* Compos. Math. 145 (2009), no. 1, 112–142.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY *Email address*: maulik@mit.edu

YALE UNIVERSITY *Email address*: junliang.shen@yale.edu

PEKING UNIVERSITY *Email address*: qizheng@math.pku.edu.cn

FUDAN UNIVERSITY *Email address*: rxzhang18@fudan.edu.cn