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We present a simple and characteristic-free proof of a result of Green and Griffiths,

which states that for the generic curve C of genus g ≥ 4, the Faber–Pandharipande cycle

K × K − (2g − 2)KΔ is nontorsion in CH2(C × C ).

1 Introduction

Let C be a smooth algebraic curve of genus g over a field k. Denote by K ∈ CH1(C ) the

class of a canonical divisor of C . Faber and Pandharipande introduced the 0-cycle

Z := K × K − (2g − 2)KΔ ∈ CH2(C × C ), (1)

where KΔ is the divisor K on the diagonal Δ⊂ C × C . This cycle is of degree 0 and lies

in the kernel of the Albanese map.

It is easy to see that Z = 0 when g = 0,1,2. Faber and Pandharipande showed that

it is also the case when g = 3, using the fact that genus 3 curves are either hyperelliptic

or plane curves. They asked if Z vanishes in general. Green and Griffiths [8] answered

this in the negative (over C).
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2 Q. Yin

Theorem 1.1 ([8, Theorem 2]). If C is the generic curve of genus g ≥ 4, then Z �= 0 in

CH2(C × C )Q. �

Their proof involves lengthy calculations of a Hodge-theoretic infinitesimal

invariant. In this note, we give a simple proof of this result, which also works in positive

characteristic. It consists of two separate steps.

(i) A problem on the Jacobian. We observe that Z is symmetric, so it naturally

lives on the second symmetric power C [2] of C . The latter is closely related

to the Jacobian J of C via the map C [2] → J (with respect to a point x0 ∈
C (k)). We show that Z is the pull-back of an explicit codimension 2 cycle

W on J, which is tautological in the sense of Polishchuk [11]. In particular,

the sl2-action studied in [11] gives a new proof that Z = 0 for g = 3 (without

classifying genus 3 curves).

(ii) A degeneration argument. We consider W in the relative setting, where it

lives on the universal Jacobian π : J → Mg,1. Although Abel–Jacobi trivial

fiberwise, the cycle W gives a class cl(W) in H2(Mg,1, R2π∗Q) (over C, or

H2(Mg,1, R2π∗Q�(2)) in general). If W is trivial on the generic fiber, then there

should exist an open subset U ⊂ Mg,1 such that the restriction of cl(W) is

zero in H2(U, R2π∗Q). So it remains to show that such a U does not exist. A

key lemma by Fakhruddin (cf. [7, Lemma 4.1]) reduces this to an argument on

the boundary of Mg,1. There we construct explicit families of stable curves

and study the cycle class of W. It turns out that even the simplest families

of “test curves” will suffice for the proof.

1.1 Philosophical note

It is in general very difficult to detect nontrivial cycles in the kernel of the Abel–Jacobi

map. Results in this direction are mostly variational, often obtained by calculating

infinitesimal invariants on the generic fiber. The invariants are essentially Hodge-

theoretic objects associated with certain Leray filtrations, and the calculation is usually

difficult.

Now since we work with an abelian scheme J , the classical Leray filtration is

actually a multiplicative decomposition (cf. [13, Corollary 2.2]). Its compatibility with

the Beauville decomposition in CH(J )Q tells us exactly in which cohomology group lies

the cycle class. Finally, via the degeneration argument we take full advantage of the

boundary of Mg (or Mg,1), which is missing in the infinitesimal approach.
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The Generic Nontriviality of the Faber–Pandharipande Cycle 3

This method can also be used to detect nontrivial cycles that lie deeper in the

conjectural Bloch–Beilinson filtration (cf. [14]).

1.2 Notation and conventions

We work over a field k of arbitrary characteristic. Since the main result is a geometric

statement (see note after Theorem 3.3), we assume k to be algebraically closed. From

now on, Chow groups are with Q-coefficients. By a “cycle”, we mean the rational equiv-

alence class of a cycle. The word “generic” is taken in the schematic sense. Over C (or

any uncountable field), the term “very general” is often used, which means outside a

countable union of Zariski-closed proper subsets of the base scheme (see Corollary 3.5).

2 Connections with the Jacobian

We briefly review Polishchuk’s work [11] on the tautological ring of a Jacobian J. Let

C be a smooth curve of genus g over k. Denote by J the Jacobian of C , and by θ the

class of a symmetric theta divisor on J. Recall the Beauville decomposition CHi(J)=
⊕i

j=i−gCHi
( j)(J), with

CHi
( j)(J) := {α ∈ CHi(J) : [n]∗(α)= n2i− jα for all n∈ Z}.

We identify J with its dual Jt via the canonical principal polarization, and denote by

P the Poincaré line bundle on J × J. There is the Fourier transform F : CHi
( j)(J)

∼−→
CHg−i+ j

( j) (J) given by α �→ pr2,∗(pr∗
1(α) · ch(P)), where pr1,pr2 : J × J → J are the two pro-

jections. We refer the reader to Beauville’s paper [2] for more details about the Beauville

decomposition and the Fourier transform.

Choose a base point x0 ∈ C (k), and let ι : C ↪→ J be the embedding given by x �→
OC (x − x0). Consider the 1-cycle [C ] := [ι(C )] and its components [C ]( j) ∈ CHg−1

( j) (J). Define

pi := F ([C ](i−1)) ∈ CHi
(i−1)(J) for i ≥ 1,

qi := F (θ · [C ](i)) ∈ CHi
(i)(J) for i ≥ 0.

The Q-subalgebra of CH(J) generated by {pi}i≥1 and {qi}i≥0 is called the tautological ring

of J, denoted by T (J). Polishchuk proved that it is stable under F and the Pontryagin

product “∗”.
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4 Q. Yin

An important tool is the sl2-action on CH(J) and on T (J) (here sl2 = Q · e + Q ·
f + Q · h), defined by

e(α) := p1 · α, f(α) := −[C ](0) ∗ α,

h(α) := (2i − j − g)α for α ∈ CHi
( j)(J).

Polishchuk showed that f acts on T (J) via the differential operator D given by

D := −1

2

∑
i, j≥1

(
i + j

j

)
pi+ j−1∂pi∂pj −

∑
i, j≥1

(
i + j − 1

j

)
qi+ j−1∂qi∂pj +

∑
i≥1

qi−1∂pi, (2)

where ∂pi (respectively, ∂qi) is the partial derivative with respect to pi (respectively, qi)

(cf. [11, Theorem 0.2]).

Now consider the map φ : C × C → J given by (x, y) �→ OC (x + y − 2x0). We would

like to express the cycle Z ∈ CH2(C × C ) in (1) as the pull-back of a certain cycle W ∈
T 2(J) under φ. Since Z is Abel–Jacobi trivial, we should look for W in T 2

(2)(J), which is

spanned by q2
1 and q2.

Proposition 2.1. Define W := 2(q2
1 − (2g − 2)q2) ∈ T 2

(2)(J). We have Z = φ∗(W). �

Proof. This is done by an explicit calculation. The essential ingredients are the pull-

back of θ via ι : C → J, and the pull-back of c1(P) via (ι, φ) : C × (C × C )→ J × J. Write

η := ι∗(θ) and � := (ι, φ)∗(c1(P)). Then we have identities

η= 1

2
K + [x0], ([11], (1.1))

�= [Δ1] + [Δ2] − 2pr∗
1([x0])− pr∗

2([x0 × C ] + [C × x0]), ([12], (2.1))

where Δ1 = {(x, x, y) : x, y∈ C } and Δ2 = {(x, y, x) : x, y∈ C }, and pr1 : C × (C × C )→ C ,

pr2 : C × (C × C )→ C × C are the two projections.

By chasing through the following cartesian squares (here pr1,pr2 stand for the

two projections in all cases)
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The Generic Nontriviality of the Faber–Pandharipande Cycle 5

we find

φ∗(F (θ · [C ]))= pr2,∗(pr∗
1(η) · exp(�))

= pr2,∗(pr∗
1(

1
2 K + [x0]) · exp([Δ1] + [Δ2] − 2 pr∗

1([x0]))) · exp(−[x0 × C ] − [C × x0])

= pr2,∗(pr∗
1((

1
2 K + [x0]) · exp(−2[x0])) · exp([Δ1] + [Δ2])) · exp(−[x0 × C ] − [C × x0])

= pr2,∗(pr∗
1(

1
2 K + [x0]) · exp([Δ1] + [Δ2])) · exp(−[x0 × C ] − [C × x0]).

Then by expanding the exponentials while keeping track of the codimension,

we obtain

φ∗(q1)= pr2,∗(pr∗
1(

1
2 K + [x0]) · ([Δ1] + [Δ2]))− pr2,∗pr∗

1(
1
2 K + [x0]) · ([x0 × C ] + [C × x0])

= 1
2 (K × [C ] + [C ] × K)− (g − 1)([x0 × C ] + [C × x0]),

φ∗(q2)= pr2,∗(pr∗
1(

1
2 K + [x0]) · 1

2 ([Δ1] + [Δ2])2)

− pr2,∗(pr∗
1(

1
2 K + [x0]) · ([Δ1] + [Δ2])) · ([x0 × C ] + [C × x0])

+ pr2,∗pr∗
1(

1
2 K + [x0]) · 1

2 ([x0 × C ] + [C × x0])2

= pr2,∗(pr∗
1(

1
2 K + [x0]) · ([Δ1] · [Δ2]))− 1

2 (K × [x0] + [x0] × K)+ (g − 2)[x0 × x0]

= 1
2 KΔ − 1

2 (K × [x0] + [x0] × K)+ (g − 1)[x0 × x0].

Hence

φ∗(q2
1 )=

1

2
K × K − (g − 1)(K × [x0] + [x0] × K)+ 2(g − 1)2[x0 × x0],

and we obtain φ∗(2(q2
1 − (2g − 2)q2))= K × K − (2g − 2)KΔ. �

Corollary 2.2.

(i) We have Z = 0 if and only if W = 0. In particular, whether W vanishes or not

is independent of x0.

(ii) If g = 3, then Z = 0 in CH2(C × C ). �
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6 Q. Yin

Proof. For (i), we calculate the push-forward φ∗(Z). First, we have

Z = K × K − (2g − 2)KΔ

= 4( 1
2 K + [x0])× ( 1

2 K + [x0])− 4( 1
2 K + [x0])× [x0] − 4[x0] × ( 1

2 K + [x0])

− (4g − 4)( 1
2 K + [x0])Δ + 4g[x0 × x0].

By the projection formula, we find

φ∗(Z)= 4(θ · [C ]) ∗ (θ · [C ])− 8θ · [C ] − (4g − 4)[2]∗(θ · [C ])+ 4g[0]

= 0(θ · [C ](0))+ 0(θ · [C ](1))+ 4(θ · [C ](1)) ∗ (θ · [C ](1))− (8g − 8)(θ · [C ](2))

+ (terms in ⊕ j≥3 T g
( j)(J))

= 4((θ · [C ](1)) ∗ (θ · [C ](1))− (2g − 2)(θ · [C ](2)))+ (terms in ⊕ j≥3 T g
( j)(J)).

Observe that the Fourier dual of (θ · [C ](1)) ∗ (θ · [C ](1))− (2g − 2)(θ · [C ](2)) is exactly W. If

Z = 0, then every Beauville component of φ∗(Z) is zero, and hence W = 0.

For (ii), consider the cycle p2
2 ∈ T 4

(2)(J). When g = 3, we have p2
2 = 0 for dimension

reasons. By applying the differential operator D in (2) twice, we obtain

D2(p2
2)= D(−6p3 + 2q1 p2)= 2(q2

1 − 4q2)= 0.

So W = 0, and thus Z = 0. �

Remark 2.3.

(i) By a classical theorem of Rojtman (cf. [10, Theorem 0.1]), the vanishing of Z

with Q-coefficients implies its vanishing with Z-coefficients.

(ii) It would be interesting to study the vanishing locus of Z when g ≥ 4. Also

conjecturally (by Bloch and Beilinson) Z vanishes if the curve C is defined

over Q̄. �

3 Fakhruddin’s Degeneration Argument

3.1 The relative setting

We include stable curves of compact type in the relative setting. The base scheme S

is a smooth connected variety of dimension d over k. Let p: C → S be a relative curve
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The Generic Nontriviality of the Faber–Pandharipande Cycle 7

with a section (marked point) x0 : S → C , such that the fibers are stable 1-pointed curves

of compact type in the sense of Deligne and Mumford. Write g for the genus of the

fibers. Denote by π : J → S the relative Jacobian of C , which is a principally polarized

abelian scheme of relative dimension g. As in the absolute case, the section x0 induces

an embedding ι : C ↪→ J that gives the following diagram (here σ0 is the zero section

of π ):

We refer the reader to [9, Section 6] for the precise definition of ι in the compact type case.

Roughly speaking, the Jacobian of a curve of compact type is a product of Jacobians,

and ι is obtained by taking the product of the embeddings in the factors.

On CH(J )we again have a decomposition CHi(J )= ⊕CHi
( j)(J ), such that [n]∗ is

the multiplication by n2i− j on CHi
( j)(J ) (cf. [6, Theorem 2.19]). At the cohomology level,

there is a canonical decomposition

Rπ∗Q�(r)�
∑

i

Riπ∗Q�(r)[−i],

with [n]∗ acting on Riπ∗Q�(r) by the multiplication by ni (cf. [5, 2.19]). This decomposition

is multiplicative, that is, compatible with the multiplicative structure

Rπ∗Q�(r)⊗ Rπ∗Q�(r
′)→ Rπ∗Q�(r + r′)

given by the cup product (cf. [13, Corollary 2.2]). It follows that we have a multiplicative

decomposition

Hm(J ,Q�(r))�
⊕

i+ j=m

H j(S, Riπ∗Q�(r)).

Comparing the action of [n] on Chow groups and on cohomology, we know that the cycle

class map cl : CHi(J )→ H2i(J ,Q�(i)) decomposes as a sum of maps

cl : CHi
( j)(J )→ H j(S, R2i− jπ∗Q�(i)), (3)

which respect the multiplicative structures on both sides. Note that if the base field

k= C, one may work with singular cohomology with coefficients in Q.
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8 Q. Yin

3.2 The degeneration

Let α ∈ CHi
( j)(J ). Denote by Jη the generic fiber of J → S, and by αη ∈ CHi

( j)(Jη) the

restriction of α to Jη. Now suppose αη = 0. By the standard “spreading-out” proce-

dure, there exists a nonempty open subset U ⊂ S such that αU = 0 ∈ CHi
( j)(JU ), where

JU := J ×S U and αU := α|JU . Combining with the cycle class map (3), we have the fol-

lowing implication.

Proposition 3.1. If αη = 0, then there exists a nonempty open subset U ⊂ S such that

cl(αU )= 0 ∈ H j(U, R2i− jπ∗Q�(i)). �

We consider the cycles q2
1 ,q2, and W in the relative setting (3). More precisely,

denote by θ ∈ CH1
(0)(J ) the divisor class corresponding to the canonical principal polar-

ization λ : J
∼−→ J t (so 2θ is the pull-back of the first Chern class of the Poincaré bundle

P under the map id × λ : J → J × J t, and fiberwise θ is the class of a symmetric

theta divisor). Again we identify J with J t and regard the Fourier transform F as an

endomorphism of CH(J ). Generalizing the definitions in Section 2, we write [C ] := [ι(C )]

and let

qi := F (θ · [C ](i)) ∈ CHi
(i)(J ) for i ≥ 0.

As before, we define W := 2(q2
1 − (2g − 2)q2) ∈ CH2

(2)(J ).

Our main focus is the case S = M ct
g,1, that is, the moduli stack of stable 1-pointed

curves of genus g and of compact type. The fact that M ct
g,1 is a stack plays no role in

the discussion. In fact, since the Chow groups are with Q-coefficients, for our purpose

(Theorem 3.3) it is equivalent to work over a finite cover of the moduli stack that is an

honest variety (cf. [1, Theorem 7.6.4] for the existence of such a cover).

The goal is to prove that for g ≥ 4, we have W �= 0 generically over M ct
g,1. In view

of Proposition 3.1, we would like to show that for all nonempty open subsets U ⊂ M ct
g,1,

we have

cl(WU ) �= 0 ∈ H2(U, R2π∗Q�(2)).

Using the following lemma by Fakhruddin, we can reduce the proof to a calculation on

the boundary of M ct
g,1.

Lemma 3.2 ([7, Lemma 4.1]). Let X, S be smooth connected varieties over k and π : X →
S be a smooth proper map. Consider a class h∈ Hm(X,Q�(r)). Suppose there exists a
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The Generic Nontriviality of the Faber–Pandharipande Cycle 9

nonempty subvariety T ⊂ S such that for all nonempty open subsets V ⊂ T , we have

hV �= 0, where hV := h|XV . Then for all nonempty open subsets U ⊂ S, we have hU �= 0. �

3.3 Proof of Theorem 1.1

Now to prove Theorem 1.1, it suffices to construct a family of “test curves” over a variety

T on the boundary of M ct
g,1, and to show that the class of W does not vanish over any

nonempty open subset of T . In fact, we can prove a slightly stronger result.

Theorem 3.3. When g ≥ 4, the cycles q2
1 and q2 are linearly independent on the generic

Jacobian (over M ct
g,1). In particular, we have W �= 0 on the generic Jacobian. �

Note that Theorem 3.3 is of geometric nature: if the statement is true over the

base field k, then it is automatically true over any base field k′ ⊂ k. This means the

theorem still holds over an arbitrary field (not necessarily algebraically closed). Together

with Corollary 2.2(i), it implies Theorem 1.1.

The rest of this paper is devoted to the construction of the “test curves” and

the proof of Theorem 3.3. We shall construct two families of curves over the same base

scheme T . We show that for any nontrivial linear combination of q2
1 and q2, at least one

of the two families will give a cohomology class that does not vanish when restricted

to nonempty open subsets of T . For simplicity, we begin with the case g = 4, while the

proof for the general case is almost identical (see end of proof).

3.3.1 Case g = 4

Take two smooth curves C1 and C2 of genus 2 over k, with Jacobians (J1, θ1) and (J2, θ2).

Let x (respectively, y) be a varying point on C1 (respectively, C2), and c be a fixed point on

C2. We construct the first family of stable curves by joining x and y and using c as the

marked point, and then the second family by joining x and c and using y as the marked

point, as is shown in the picture below.

With x and y varying, both families have the same base scheme T := C1 × (C2\{c}).
We denote them by C → T and C ′ → T , respectively. Observe that C and C ′ have also the
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10 Q. Yin

same relative Jacobian J := J1 × J2 × T , a constant abelian scheme over T via the last

projection.

Consider the embeddings C ↪→ J with respect to c, and C ′ ↪→ J with respect

to y. An important fact is that both embeddings naturally extend over C1 × C2 ⊃ T . More

precisely, we have

ψ1 : C1 × C1 × C2 ↪→ J1 × J2 × C1 × C2 given by (z, x, y) �→ (OC1(z − x),OC2(y − c), x, y),

ψ2 : C2 × C1 × C2 ↪→ J1 × J2 × C1 × C2 given by (w, x, y) �→ (0,OC2(w − c), x, y),

ψ ′
1 : C1 × C1 × C2 ↪→ J1 × J2 × C1 × C2 given by (z, x, y) �→ (OC1(z − x),OC2(c − y), x, y),

ψ ′
2 : C2 × C1 × C2 ↪→ J1 × J2 × C1 × C2 given by (w, x, y) �→ (0,OC2(w − y), x, y).

We take T̄ := C1 × C2 as the base scheme and view the other schemes as T̄-schemes

through the projections onto the last two factors. We also write J̄ := J1 × J2 × T̄ .

The divisor θ corresponding to the polarization of J̄ → T̄ is θ := θ1 × [J2] × [T̄ ] + [J1] ×
θ2 × [T̄ ].

Let C̄ ⊂ J̄ be the union of the images of ψ1 and ψ2; similarly, let C̄ ′ ⊂ J̄ be the

union of the images of ψ ′
1 and ψ ′

2. We see that the restriction of C̄ (respectively, C̄ ′) to T

is exactly C (respectively, C ′). Define

q̄i := F (θ · [C̄ ](i)) ∈ CHi
(i)(J̄ ), q̄′

i := F (θ · [C̄ ′](i)) ∈ CHi
(i)(J̄ ).

Again, the restriction of q̄i (respectively, q̄′
i) to T is exactly the qi of C (respectively, C ′).

As J̄ is a constant abelian scheme over T̄ , we have a Künneth decomposition

Hm(J̄ )=
⊕

a1+b1+a2+b2=m

Ha1(J1)⊗ Hb1(C1)⊗ Ha2(J2)⊗ Hb2(C2).

Here, and in what follows, we omit the coefficients of the cohomology groups. Also on

the right-hand side we have sorted the factors in the order J1-C1-J2-C2, as this turns out

to be convenient in our calculations. Given a class h∈ Hm(J̄ ), we denote by h[a1,b1,a2,b2]

its Künneth component in the indicated degrees.

In this case, the cycle class map (3) takes the form

cl : CHi
( j)(J̄ )→

⊕
a1+a2=2i− j

b1+b2= j

Ha1(J1)⊗ Hb1(C1)⊗ Ha2(J2)⊗ Hb2(C2). (4)
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The Generic Nontriviality of the Faber–Pandharipande Cycle 11

Then for α= q̄2
1 , q̄2, q̄′2

1 , q̄
′
2 ∈ CH2

(2)(J̄ ), we can only have cl(α)[a1,b1,a2,b2] �= 0 if a1 + a2 = 2 and

b1 + b2 = 2. Moreover, remark that H2(C1) (respectively, H2(C2)) is supported on a point

of C1 (respectively, C2). As we should like to have the cycle classes after restriction to

open subsets V ⊂ T ⊂ T̄ , the only interesting components are cl(α)[a1,1,a2,1] with a1 + a2 = 2

(in fact, we will see in the proof of Proposition 3.4 that for cl(α)[a1,1,a2,1] to be nonzero, we

also have a1 = a2 = 1).

The following elementary calculation is the key point in the proof of Theorem 3.3.

Proposition 3.4. There exist nonzero classes

h1 ∈ H1(J1)⊗ H1(C1)⊗ H1(J2)⊗ H1(C2),

h2,h4 ∈ H0(J1)⊗ H0(C1)⊗ H1(J2)⊗ H1(C2),

h3 ∈ H1(J1)⊗ H1(C1)⊗ H0(J2)⊗ H0(C2),

such that

cl(q̄2)
[1,1,1,1] = h1, cl(q̄2

1 )
[1,1,1,1] = 2h2�h3,

cl(q̄′
2)

[1,1,1,1] = −h1, cl(q̄′2
1 )

[1,1,1,1] = −2h2�h3 + 2h3�h4.

Moreover, the classes h2�h3 and h3�h4 are also nonzero. �

Proof. The proof is just a careful analysis of the embeddings ψ1, ψ2, ψ
′
1, ψ

′
2. We first cal-

culate the relevant Künneth components of cl([C̄ ](i)) and cl([C̄ ′](i)). Then by intersecting

with cl(θ) and applying F in cohomology, we obtain the relevant components of cl(q̄i)

and cl(q̄′
i).

We start with the cycle classes of [C̄ ](1) and [C̄ ](2). Observe that the image of ψ2

only gives a class in H4(J1)⊗ H0(C1)⊗ H2(J2)⊗ H0(C2), which by (4), does not contribute

to either [C̄ ](1) or [C̄ ](2). Regarding ψ1, we may view it as the product of

ψ3 : C1 × C1 ↪→ J1 × C1, ψ4 : C2 ↪→ J2 × C2,

(z, x) �→ (OC1(z − x), x), y �→ (OC2(y − c), y).

The class of Im(ψ3) has components in H2(J1)⊗ H0(C1), H1(J1)⊗ H1(C1), and

H0(J1)⊗ H2(C1). The third component is irrelevant due to the appearance of H2(C1). We

claim that the other two components are both nonzero. For the first, we regard J1 × C1
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12 Q. Yin

as a constant family over C1. Then C1 × C1 is fiberwise an ample divisor, which gives a

nonzero class in H2(J1)⊗ H0(C1). For the component in H1(J1)⊗ H1(C1), we consider

C1 × C1
id×Δ−−−→ C1 × C1 × C1

σ×id−−−→ C [2]
1 × C1

ϕ×id−−→ J1 × C1

(z, x) �→ (z, x, x) �→ ((z, x), x) �→ (OC1(z + x − 2x), x).

The class of the diagonal in C1 × C1 has a component in H1(C1)⊗ H1(C1) which, viewed

as a correspondence, gives the identity H1(C1)
∼−→ H1(C1). It follows that the class of

Im(id ×Δ) has a nonzero component in H0(C1)⊗ H1(C1)⊗ H1(C1). Moreover, we have

isomorphisms

σ∗ : H0(C1)⊗ H1(C1)
∼−→ H1(C [2]

1 ), ϕ∗ : H1(C [2]
1 )

∼−→ H1(J1),

the latter due to the fact that C [2]
1 is obtained by blowing up a point in J1. So Im(ψ3)

as a correspondence gives an isomorphism H1(J1)
∼−→ H1(C1), which implies a nonzero

component in H1(J1)⊗ H1(C1).

Similarly, the class of Im(ψ4) has nonzero components in H4(J2)⊗ H0(C2) and

H3(J2)⊗ H1(C2). Now we collect all nonzero contributions to the classes of [C̄ ](1) and

[C̄ ](2) that do not involve either H2(C1) or H2(C2). For [C̄ ](2), there is only one nonzero

class

h0
1 ∈ H1(J1)⊗ H1(C1)⊗ H3(J2)⊗ H1(C2).

By intersecting with cl(θ) and applying F , we obtain a nonzero class

h1 := F (cl(θ)�h0
1) ∈ H1(J1)⊗ H1(C1)⊗ H1(J2)⊗ H1(C2),

For [C̄ ](1), there are two nonzero classes

h0
2 ∈ H2(J1)⊗ H0(C1)⊗ H3(J2)⊗ H1(C2), h0

3 ∈ H1(J1)⊗ H1(C1)⊗ H4(J2)⊗ H0(C2).

Again by intersecting with cl(θ) and applying F , we obtain nonzero classes

h2 := F (cl(θ)�h0
2) ∈ H0(J1)⊗ H0(C1)⊗ H1(J2)⊗ H1(C2),

h3 := F (cl(θ)�h0
3) ∈ H1(J1)⊗ H1(C1)⊗ H0(J2)⊗ H0(C2).

By the definition of q̄i, we have cl(q̄2)
[1,1,1,1] = h1 and cl(q̄2

1 )
[1,1,1,1] = h2�h3 + h3�h2 =

2h2�h3.

For the cohomology classes of q̄′
2 and q̄′2

1 , we remark that the embedding ψ ′
1 dif-

fers from ψ1 only by an action of [−1] on the J2 factor. As a consequence, by repeating
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The Generic Nontriviality of the Faber–Pandharipande Cycle 13

the same procedure we obtain classes h′
1 = −h1, h′

2 = −h2 and h′
3 = h3, so that 2h′

2�h′
3 =

−2h2�h3. However, this time the embedding ψ ′
2 makes an additional contribution. The

class of Im(ψ ′
2) has a nonzero component

h0
4 ∈ H4(J1)⊗ H0(C1)⊗ H1(J2)⊗ H1(C2),

which belongs to the class of [C̄ ′](1). By intersecting with cl(θ) and applying F , we get a

nonzero class

h4 := F (cl(θ)�h0
4) ∈ H0(J1)⊗ H0(C1)⊗ H1(J2)⊗ H1(C2).

This time we have cl(q̄′
2)

[1,1,1,1] = −h1 and cl(q̄′2
1 )

[1,1,1,1] = −2h2�h3 + 2h3�h4.

Finally, since the 0th cohomology groups H0(Ci) and H0(Ji) are generated by the

unit of the ring structures, we see that both h2�h3 and h3�h4 are nonzero. �

As h1 �= 0 and h3�h4 �= 0, it follows from Proposition 3.4 that for any (r, s) �=
(0,0) ∈ Q2, at least one of cl(rq̄2

1 + sq̄2)
[1,1,1,1] and cl(rq̄′2

1 + sq̄′
2)

[1,1,1,1] is nonzero in

H1(C1)⊗ H1(J1)⊗ H1(C2)⊗ H1(J2).

It remains to ensure that this nonzero cohomology class does not vanish when

restricted to nonempty open subsets of T̄ = C1 × C2, that is, not supported on a divisor

of C1 × C2. We can achieve this by imposing additional assumptions on C1 and C2. In

positive characteristic, we choose C1 to be ordinary and C2 supersingular. Over Q̄, and

hence for any k= k̄ of characteristic 0, we take C1 and C2 such that J1 and J2 are both

simple, and such that End(J1)= Z and J2 is of CM type (cf. [3], Chapters 14 and 15 for

explicit examples). In both situations, we have Hom(J1, J2)= 0, which implies that there

is no nonzero divisor class in H1(C1)⊗ H1(C2). This completes the proof for g = 4.

3.3.2 General case: end of proof

When g> 4, we may attach to both families a constant curve C0 of genus g − 4 via a fixed

point c′ ∈ C0, and use another fixed point c′′ ∈ C0 as the marked point. The proof is exactly

the same. Alternatively, we may apply Ceresa’s degeneration argument (cf. [4, (3.10)]) and

reduce to the case g = 4.
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14 Q. Yin

Corollary 3.5. When the base field k is uncountable (e.g., k= C) and when g ≥ 4, the

same statement as in Theorem 3.3 holds for the Jacobian of a very general curve

(over Mg,1). �

Proof. In fact, the data Mg,1, J , q2
1 , and q2 are all defined over the prime field k0 = Q

or Fp. Then for any class α ∈ Q · q2
1 + Q · q2, if α is nonzero over the generic point η ∈

Mg,1/k0, by base change, it is also nonzero over any point s ∈ Mg,1(k) that maps to η. In

other words, we have α �= 0 over any point s ∈ Mg,1(k) that does not lie in a subvariety of

Mg,1/k0. Since k0 is countable, there are only countably many such varieties. �
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