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We use Gromov–Witten theory to study rational curves in 
holomorphic symplectic varieties. We present a numerical 
criterion for the existence of uniruled divisors swept out by 
rational curves in the primitive curve class of a very general 
holomorphic symplectic variety of K3[n] type. We also classify 
all rational curves in the primitive curve class of the Fano 
variety of lines in a very general cubic 4-fold, and prove the 
irreducibility of the corresponding moduli space. Our proofs 
rely on Gromov–Witten calculations by the first author, and 
in the Fano case on a geometric construction of Voisin. In the 
Fano case a second proof via classical geometry is sketched.
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0. Introduction

0.1. Overview

Rational curves in K3 surfaces have been investigated for decades from various angles. 
In contrast, not much is known about the geometry of rational curves in the higher-
dimensional analogs of K3 surfaces—holomorphic symplectic varieties.1 In this paper, 
we use Gromov–Witten theory (intersection theory of the moduli space of stable maps) 
together with classical methods to study these rational curves.

0.2. Rational curves

Let (X, H) be a very general polarized holomorphic symplectic variety of dimension 
2n, and let β ∈ H2(X, Z) be the primitive curve class. The moduli space M0,m(X, β)
of genus 0 and m-pointed stable maps to X in class β is pure of expected dimension 
2n − 2 + m; see Proposition 1.1. Consider the decomposition

M0,1(X,β) = M0 ∪M1 ∪ · · · ∪Mn−1 (1)

such that the general fibers of the restricted evaluation map

ev : M i → ev(M i) ⊂ X

are of dimension i. The image of M0 under ev is precisely the union of all uniruled 
divisors swept out by rational curves in class β. More generally, the image ev(M i) is the 
codimension i + 1 locus of points on X through which passes an i-dimensional family of 
rational curves in class β.

In [20, Conjecture 4.3], Mongardi and Pacienza conjectured that for all i

M i �= ∅,

which would imply the existence of algebraically coisotropic subvarieties in X in the 
sense of Voisin [26].

1 A nonsingular projective variety X is holomorphic symplectic if it is simply connected and H0(X, Ω2
X)

is generated by a nowhere degenerate holomorphic 2-form.
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In Theorems 0.1 and 0.2 below, we provide counterexamples to this conjecture which 
illustrate “pathologies” of rational curves in higher-dimensional holomorphic symplectic 
varieties. Two typical examples are as follows.

(i) There exist a very general pair (X, H) of K3[8] type with M0 = ∅. In other words, on 
(X, H) there exists no uniruled divisor swept out by rational curves in the primitive 
class β.

(ii) For the Fano variety of lines in a very general cubic 4-fold, we have M1 = ∅.

Here a variety is of K3[n] type if it is deformation equivalent to the Hilbert scheme of n
points on a K3 surface.

0.3. Uniruled divisors

On a holomorphic symplectic variety X, let

(−,−) : H2(X,Z) ×H2(X,Z) → Q

denote the unique Q-valued extension of the Beauville–Bogomolov form on H2(X, Z). If 
X is of K3[n] type and n ≥ 2, there is an isomorphism of abelian groups

r : H2(X,Z)/H2(X,Z) → Z/(2n− 2)Z,

unique up to multiplication by ±1, such that r(α) = 1 for some α ∈ H2(X, Z) with 
(α, α) = 1

2−2n . Given a class β ∈ H2(X, Z), we define its residue set by

±[β] = {±r(β)} ⊂ Z/(2n− 2)Z.

In case n = 1, we set ±[β] = 0.
The following theorem provides a complete numerical criterion for the existence of 

uniruled divisors swept out by rational curves in the primitive class of a very general 
variety of K3[n] type.

Theorem 0.1. Let X be a holomorphic symplectic variety of K3[n] type, and let β ∈
H2(X, Z) be a primitive curve class. If

(β, β) = −2 +
n−1∑
i=1

2di −
1

2n− 2

(
n−1∑
i=1

ri

)2

,

±[β] = ±
[
n−1∑
i=1

ri

]
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for some di, ri ∈ Z satisfying 2di − r2
i

2 ≥ 0, then there exists a uniruled divisor on X
swept out by rational curves in class β. The converse holds if β is irreducible.

For a very general pair (X, β) with X of K3[n] type and β the primitive curve class, 
Theorem 0.1 implies that

(i) M0 �= ∅ when n ≤ 7, and
(ii) for every n ≥ 8, there exists (X, β) such that M0 = ∅.

The first instance of case (ii) is given by a very general pair (X, β) of K3[8] type with 
(β, β) = 3

14 and ±[β] = ±[5].2

0.4. Fano varieties of lines

Let Y ⊂ P 5 be a nonsingular cubic 4-fold. By Beauville and Donagi [4], the Fano 
variety of lines in Y

F = {l ∈ Gr(2, 6) : l ⊂ Y }

is a holomorphic symplectic 4-fold. These varieties form a 20-dimensional family of po-
larized holomorphic symplectic varieties of K3[2] type.

In [25], Voisin constructed a rational self-map

ϕ : F ��� F (2)

sending a general line l to its residual line with respect to the unique plane P 2 ⊂ P 5

tangent to Y along l. When Y is very general, the exceptional divisor associated to the 
resolution of ϕ

D = P (NS/F ) F

S

φ

p (3)

is a P 1-bundle over a nonsingular surface S ⊂ F ; see Amerik [1]. The image of each fiber

φ(p−1(s)) ⊂ F, s ∈ S

is a rational curve lying in the primitive curve class in H2(F, Z).
The following theorem shows that every rational curve in the primitive curve class is 

of this form in a unique way.

2 Such a pair (X, β) can be obtained by deforming (Hilb8(S), β′), where S is a K3 surface of genus 2 with 
polarization H and β′ = H + 5A with A the exceptional curve class; see Section 2 for the notation.



G. Oberdieck et al. / Advances in Mathematics 357 (2019) 106829 5
Theorem 0.2. Let F be the Fano variety of lines in a very general cubic 4-fold. Then for 
every rational curve C ⊂ F in the primitive curve class, there is a unique s ∈ S such 
that C = φ(p−1(s)).

We also show that S is connected and calculate its first Chern class; see Corollary 3.3. 
In particular, the moduli space of rational curves in the primitive curve class of a very 
general F is irreducible. This implies M1 = ∅ in the decomposition (1) and the following.

Corollary 0.3. For a very general F , there is a unique irreducible uniruled divisor swept 
out by rational curves in the primitive curve class.

The moduli space of rational curves in the primitive curve class of a very general 
K3 surface always has more than one irreducible component. Corollary 0.3 indicates a 
difference between rational curves in K3 surfaces and in higher-dimensional holomorphic 
symplectic varieties.

0.5. Idea of proofs

We briefly explain how Gromov–Witten theory [10] controls rational curves in the 
primitive class β of a very general polarized holomorphic symplectic variety (X, H) of 
K3[n] type.

Since the evaluation map ev is generically finite on the component M0 but con-
tracts positive dimensional fibers on all other components in the decomposition (1), the 
(non)emptiness of M0 is detected by the pushforward

ev∗[M0,1(X,β)] ∈ H2(X,Q). (4)

For the Fano variety of lines X = F , a key observation is that the emptiness of M1 can 
be further detected by the Gromov–Witten correspondence

ev12∗[M0,2(X,β)] ∈ H4n(X ×X,Q). (5)

The class (5) has contributions from all of the components in (1), and contains strictly 
more information than the 1-pointed class (4).

Since M0,m(X, β) is pure of the expected dimension, its fundamental class coincides 
with the (reduced) virtual fundamental class [5,17],

[M0,m(X,β)] = [M0,m(X,β)]vir.

Hence the classes (4) and (5) are determined by the Gromov–Witten invariants of X. By 
deformation invariance, the Gromov–Witten invariants can be calculated on a special 
model given by the Hilbert scheme of points of an elliptic K3 surface; see [22] and 
Section 2.
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Our proofs of Theorems 0.1 and 0.2 are intersection-theoretic. In Appendix A, we 
also sketch an alternative proof of Theorem 0.2 using a series of classification results in 
classical projective geometry.3

0.6. Conventions

We work over the complex numbers. A statement holds for a very general polarized 
projective variety (X, H) if it holds away from a countable union of proper Zariski-closed 
subsets in the corresponding component of the moduli space.

1. Moduli spaces of stable maps

We discuss properties of the moduli spaces of stable maps to holomorphic symplectic 
varieties, and introduce tools from Gromov–Witten theory.

1.1. Dimensions

Let X be a holomorphic symplectic variety of dimension 2n, and let β ∈ H2(X, Z) be 
an irreducible curve class. We show that the moduli space M0,1(X, β) of genus 0 pointed 
stable maps to X in class β is pure of the expected dimension.

Let M be an irreducible component of M0,1(X, β). We know a priori

dimM ≥
∫
β

c1(X) + dimX − 1 = 2n− 1.

Consider the restriction of the evaluation map to M ,

ev : M → Z = ev(M) ⊂ X. (6)

Proposition 1.1. If a general fiber of (6) is of dimension r − 1, then

(i) dimZ = 2n − r, so that dimM = 2n − 1;
(ii) r ≤ n;
(iii) a general fiber of the MRC fibration4 Z ��� B is of dimension r.

Proof. Since the curve class β is irreducible, the family of rational curves M → T ⊂
M0,0(X, β) viewed as in X is unsplit in the sense of [15, IV, Definition 2.1]. Given a 

3 The proof in Appendix A was found only after a first version of this article appeared online. While 
Theorem 0.2 can be proven classically, the quantitative information obtained from Gromov–Witten theory 
was essential for us to find the statement.
4 We refer to [11] for the definition and properties of the maximal rationally connected (MRC) fibration.
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general point x ∈ Z, let Tx ⊂ T be the Zariski-closed subset parametrizing maps passing 
through x. Consider the universal family Cx → Tx and the restricted evaluation map

ev : Cx → Vx = ev(Cx) ⊂ Z.

By [15, IV, Proposition 2.5], we have

dimT = dimZ + dim Vx − 2.

Hence dimVx = dimM − dimZ + 1 = r. In other words, rational curves through a 
general point of Z cover a Zariski-closed subset of dimension r.

A general fiber of the MRC fibration Z ��� B is thus of dimension ≥ r. By an 
argument of Mumford (see [26, Lemma 1.1]), this implies dimZ ≤ 2n − r and r ≤ n. On 
the other hand, since dimM ≥ 2n − 1, we have

dimZ = dimM − (r − 1) ≥ 2n− r.

Hence there is equality dimZ = 2n − r, and the dimension of a general fiber of Z ��� B

is exactly r. �
Proposition 1.1 shows that M0,1(X, β) is pure of the expected dimension 2n − 1 and 

justifies the decomposition (1). Similar arguments have also appeared in [2, Theorem 
4.4] and [3, Proposition 4.10].

1.2. Gromov–Witten theory

Let X be a holomorphic symplectic variety of dimension 2n, and let β ∈ H2(X, Z) be 
an arbitrary curve class. By Li–Tian [17] and Behrend–Fantechi [5], the moduli space of 
stable maps M0,m(X, β) carries a (reduced5) virtual fundamental class

[M0,m(X,β)]vir ∈ H2vdim(M0,m(X,β),Q).

It has the following basic properties.

(a) Virtual dimension. The virtual fundamental class is of dimension

vdim = 2n− 2 + m. (7)

(b) Expected dimension. If M0,m(X, β) is pure of the expected dimension (7), then the 
virtual and the ordinary fundamental classes agree:

5 Since X is holomorphic symplectic, the (standard) virtual fundamental class on the moduli space van-
ishes. The theory is nontrivial only after reduction; see [19, Section 2.2] and [22, Section 0.2]. The virtual 
fundamental class is always assumed to be reduced in this paper.
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[M0,m(X,β)]vir = [M0,m(X,β)].

(c) Deformation invariance. Let π : X → B be a family of holomorphic symplectic 
varieties, and let β ∈ H0(B, Rπ4n−2

∗ Z) be a class which restricts to a curve class in 
H2(Xb, Z) on each fiber.6 Then there exists a class on the moduli space of relative 
stable maps

[M0,m(X/B, β)]vir ∈ H2(vdim+dim B)(M0,m(X/B, β),Q)

such that for every fiber Xb ↪→ X , the inclusion ιb : b ↪→ B induces

ι!b[M0,m(X/B, β)]vir = [M0,m(Xb, β)]vir.

Here ι!b is the refined Gysin pullback. In particular, intersection numbers of 
[M0,m(X, β)]vir against cohomology classes pulled back from X via the evaluation 
maps

evi : M0,m(X,β) → X, (f, x1, . . . , xm) 
→ f(xi)

are invariant under deformations of (X, β) which keep β of Hodge type.

1.3. Gromov–Witten correspondence

Let X, β be as in Section 1.1. The evaluation maps from the 2-pointed moduli space

M0,2(X,β)

X X

ev2ev1

induce an action on cohomology:

GWβ : Hi(X,Q) → Hi(X,Q), γ 
→ ev2∗(ev∗
1γ ∩ [M0,2(X,β)]vir). (8)

We call (8) the Gromov–Witten correspondence.
We introduce a factorization of (8) as follows. Consider the diagram

M0,1(X,β) X

M0,0(X,β)

ev

p (9)

6 We have suppressed an application of Poincaré duality here. Same with the definition of GWβ and Φ2
in Section 1.3 below.
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with p the forgetful map (which is flat). We define morphisms

Φ1 : Hi(X,Q) → H4n−2−i(M0,0(X,β),Q), γ 
→ p∗(ev∗γ ∩ [M0,1(X,β)]vir),

Φ2 = ev∗p
∗ : H4n−2−i(M0,0(X,β),Q) → Hi(X,Q).

Since β is irreducible, there is a Cartesian diagram of forgetful maps

M0,2(X,β)

M0,1(X,β) M0,1(X,β)

M0,0(X,β).

Hence the Gromov–Witten correspondence (8) factors as

GWβ = Φ2 ◦ Φ1 : Hi(X,Q) → Hi(X,Q). (10)

1.4. Hodge classes

Now let (X, H) be a very general polarized holomorphic symplectic 4-fold of K3[2]

type. It is shown in [23, Section 3] that the Hodge classes in H4(X, Q) are spanned by 
H2 and c2(X).

A surface Σ ⊂ X is Lagrangian if the holomorphic 2-form σ on X restricts to zero on 
Σ. The class of any Lagrangian surface is a positive multiple of

vX = 5H2 − 1
6(H,H)c2(X) ∈ H4(X,Q), (11)

where (−, −) is the Beauville–Bogomolov form on H2(X, Z).7

Proposition 1.2. If (X, H) is very general of K3[2] type and β ∈ H2(X, Z) is the primitive 
curve class, then for any Hodge class α ∈ H4(X, Q), the class

GWβ(α) ∈ H4(X,Q)

is proportional to vX .

7 This follows from a direct calculation of the constraint [Σ] · σ = 0 ∈ H6(X, Q). The class vX was first 
calculated by Markman.
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Proof. We use the factorization (10). For any Hodge class α ∈ H4(X, Q), the class

Φ1(α) ∈ H2(M0,0(X,β),Q)

is represented by curves. Hence GWβ(α) can be expressed as a linear combination of 
classes of the form

[ev(p−1(C))] ∈ H4(X,Q)

with C ⊂ M0,0(X, β) a curve.
Moreover, we have

ev∗σ = p∗σ′

for some holomorphic 2-form σ′ on M0,0(X, β). Hence any surface of the form ev(p−1(C))
is Lagrangian, and the proposition follows. �

Proposition 1.2 implies that the class vX in (11) is an eigenvector of the Gromov–
Witten correspondence

GWβ : H4(X,Q) → H4(X,Q).

An explicit formula for GWβ was calculated in [22] and is recalled in Section 2.5.

2. Gromov–Witten calculations

In this Section, we prove Theorem 0.1 using formulas for the 1-pointed Gromov–
Witten class in the K3[n] case based on [22]. We also present formulas for the Gromov–
Witten correspondence in the K3[2] case, which will be used in Section 3.

2.1. Quasi-Jacobi forms

Jacobi forms are holomorphic functions in variables8 (τ, z) ∈ H × C with modular 
properties; see [9] for an introduction. Here we will consider Jacobi forms as formal power 
series in the variables

q = e2πiτ , y = −e2πiz

expanded in the region |q| < |y| < 1.

8 Let H = {τ ∈ C : Im(τ) > 0} denote the upper half-plane.
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Recall the Jacobi theta function

Θ(q, y) = (y1/2 + y−1/2)
∏
m≥1

(1 + yqm)(1 + y−1qm)
(1 − qm)2

and the Weierstraß elliptic function

℘(q, y) = 1
12 − y

(1 + y)2 +
∑
m≥1

∑
d|m

d((−y)d − 2 + (−y)−d)qm.

Define Jacobi forms φk,1 of weight k and index 1 by

φ−2,1(q, y) = Θ(q, y)2, φ0,1(q, y) = 12Θ(q, y)2℘(q, y).

We also require the weight k and index 0 Eisenstein series

Ek(q) = 1 − 2k
Bk

∑
m≥1

∑
d|m

dk−1qm, k = 2, 4, 6,

where the Bk are the Bernoulli numbers, and the modular discriminant

Δ(q) = E3
4 −E2

6
1728 = q

∏
m≥1

(1 − qm)24.

We define the ring of quasi-Jacobi forms of even weight as the free polynomial algebra

J = Q[E2, E4, E6, φ−2,1, φ0,1].

The weight/index assignments to the generators induce a bigrading

J =
⊕
k∈Z

⊕
m≥0

Jk,m

by weight k and index m.

Lemma 2.1 ([9, Theorem 2.2]). Let φ ∈ J∗,m be a quasi-Jacobi form of index m ≥ 1. For 
all d, r ∈ Z, the coefficient [φ]qdyr only depends on 2d − r2

2m and the set {±[r]}, where 
[r] ∈ Z/2mZ is the residue of r.

By Lemma 2.1, we may denote the qdyr-coefficient of φ by

φ

[
2d− r2

, ±[r]
]

= [φ]qdyr . (12)
2m
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If φ is of index 0, we set φ[2d, 0] = [φ]qd . Lemma 2.1 remains valid if we replace φ by 
f(q)φ for any Laurent series f(q), and we keep the notation as in (12) for the coefficients.

We will mainly focus on the quasi-Jacobi form

φ =
(
−℘ + 1

12E2

)
Θ2. (13)

The following are some positivity results.

Lemma 2.2. Let φ be as in (13). Then φ[D] ≥ 0 for all D and

φ[D] > 0 ⇐⇒ D = 2n− r2

2 ≥ 0 for some n, r ∈ Z.

Proof. By the Jacobi triple product, we have Θ = ϑ1/η
3 where

ϑ1(q, y) =
∑

n∈Z+ 1
2

ynq
1
2n

2
, η(q) = q

1
24

∏
n≥1

(1 − qn).

If we write Θ =
∑

n,r c(n, r)qnyr, we therefore get

c(n, r) > 0 ⇐⇒
(
r ∈ 1

2Z \ Z and 2n ≥ r2 − 1
4

)
and c(n, r) = 0 otherwise. By the explicit expressions for the action of differential oper-
ators on quasi-Jacobi forms in [22, Appendix B], we have the identity

φ = Θ2D2
y log Θ = D2

y(Θ)Θ −Dy(Θ)2.

Hence [
φ
]
qnyk =

∑
n=n1+n2
k=k1+k2

c(n1, k1)c(n2, k2)(k2
1 − k1k2)

= 1
2

∑
n=n1+n2
k=k1+k2

c(n1, k1)c(n2, k2)(k1 − k2)2 ≥ 0.
(14)

Since φ is quasi-Jacobi, the coefficient 
[
φ
]
qnyk only depends on 4n − k2, hence we may 

assume k ∈ {0, 1}. The result now follows from (14) by a direct check. �
2.2. Beauville–Bogomolov form

Let X be a holomorphic symplectic variety of dimension 2n. The Beauville–Bogomolov 
form on H2(X, Z) induces an embedding
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H2(X,Z) ↪→ H2(X,Z), α 
→ (α,−),

which is an isomorphism after tensoring with Q. Let

(−,−) : H2(X,Z) ×H2(X,Z) → Q (15)

denote the unique Q-valued extension of the Beauville–Bogomolov form.
If X is of K3[n] type with n ≥ 2, there is an isomorphism of abelian groups

r : H2(X,Z)/H2(X,Z) → Z/(2n− 2)Z

such that r(α) = 1 for some α ∈ H2(X, Z) with (α, α) = 1
2−2n . The morphism r is 

unique up to multiplication by ±1.

2.3. Curve classes

Consider a pair (X, β) where X is a holomorphic symplectic variety of K3[n] type, and 
β ∈ H2(X, Z) is a primitive curve class. The curve class β has the following invariants:

(i) the Beauville–Bogomolov norm (β, β) ∈ Q, and
(ii) the residue [β] ∈ H2(X, Z)/H2(X, Z).

The residue set of β is the subset

±[β] = {±r([β])} ⊂ Z/(2n− 2)Z.

It is independent of the choice of map r. If n = 1, we set ±[β] = 0.
Given a (quasi-)Jacobi form φ of index m = n − 1, we define

φβ = φ[(β, β),±[β]].

By Markman [18] (see also [21, Lemma 23]), two pairs (X, β) and (X ′, β′) are defor-
mation equivalent through a family of holomorphic symplectic manifolds which keeps 
the curve class of Hodge type if and only if the norms and the residue sets of β and β′

agree. Hence, by identifying H∗(X) with H∗(X ′) via parallel transport and by property 
(c) of the virtual fundamental class, the Gromov–Witten invariants of the pairs (X, β)
and (X ′, β′) are equal.9

9 The (reduced) virtual fundamental class can also be defined via symplectic geometry and the twistor 
space of X; see [6]. Hence, the Gromov–Witten invariants are invariant also under (nonnecessarily alge-
braic) symplectic deformations of (X, β) which keep β of Hodge type. The invariance under nonalgebraic 
deformations is not needed for our application to the Fano variety of lines in a cubic 4-fold.
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Table 1
The first few multiplicities of uniruled divisors for K3[2].

(β, β) − 5
2 −2 − 1

2 0 3
2 2 7

2 4 11
2 6

fβ 0 1 4 30 120 504 1980 6160 23576 60720

2.4. Proof of Theorem 0.1

Recall from (13) the quasi-Jacobi form φ.

Theorem 2.3 ([22]). Let X be a holomorphic symplectic variety of K3[n] type, and let 
β ∈ H2(X, Z) be a primitive curve class. Then we have

ev∗[M0,1(X,β)]vir =
(
φn−1

Δ

)
β

h ∈ H2(X,Q)

where h = (β, −) ∈ H2(X, Q) is the dual of β with respect to (15).

For the readers’ convenience, we provide a proof of Theorem 2.3 at the end of this 
section. Theorem 2.3 together with the positivity of the Fourier coefficients of φ implies 
Theorem 0.1.

Proof of Theorem 0.1. By Lemma 2.2 the criterion in Theorem 0.1 holds if and only if(
φn−1

Δ

)
β

> 0,

hence by Theorem 2.3 if and only if the pushforward ev∗[M0,1(X, β)]vir is nontrivial. 
Since the pushforward is a class in H2(X, Q) supported on a uniruled subvariety, the 
first claim follows. The second claim follows from Proposition 1.1 and property (b) of 
the virtual fundamental class. �

In the K3[2] case, we define

f = φ

Δ =
(
−℘ + 1

12E2

)
Θ2

Δ .

The first few values of fβ are listed in Table 1.10

2.5. Gromov–Witten correspondence

In this section, we specialize to the K3[2] case. Recall the Gromov–Witten correspon-
dence GWβ in (8). We also define

10 When n = 2, the value (β, β) ∈ Q uniquely determines ±[β] ⊂ Z/2Z.
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Table 2
The first eigenvalues of GWβ for K3[2].

(β, β) − 5
2 −2 − 1

2 0 3
2 2 7

2 4 11
2 6

λ1 0 −2 −2 0 180 1008 6930 24640 129668 364320
λ2 3 0 0 0 945 3840 53760 138240 1237005 2661120

g =
(
−12

5 ℘−E2

)
Θ2

Δ .

Theorem 2.4 ([22]). Let X be a holomorphic symplectic 4-fold of K3[2] type, and let 
β ∈ H2(X, Z) be a primitive curve class. If (β, β) �= 0, then GWβ is diagonalizable with 
eigenvalues

λ0 = 0, λ1 = (β, β)fβ , λ2 = (β, β)gβ ,

and eigenspaces

Vλ1 = Q〈h, h3, (hei)i=1,...,22〉, Vλ2 = Qv.

Here h = (β, −) ∈ H2(X, Q) is the dual of β with respect to (15), {ei}i=1,...,22 is a basis 
of the orthogonal of h in H2(X, Q), and

v = 5h2 − 1
6(β, β)c2(X) ∈ H4(X,Q).

One can show that the eigenvalues λ1, λ2 are integral, and if (β, β) > 0 then λ2 >

λ1 > 0. The first few eigenvalues are listed in Table 2.

2.6. Proof of Theorem 2.3

A very general pair (X, β) has Picard rank 1.11 Hence there exists Nβ ∈ Q such that

ev∗[M0,1(X,β)]vir = Nβh ∈ H2(X,Q).

By specialization, this also holds for any pair (X, β) as in Theorem 2.3.
We will evaluate Nβ on the Hilbert scheme of n points on an elliptic K3 surface S

with a section. By Section 2.3, we may assume

β = B + (d + 1)F + rA ∈ H2(Hilbn(S),Z), d ≥ −1, r ∈ Z, (16)

where B, F ∈ H2(S, Z) are the classes of the section and fiber of the elliptic fibration, 
and A ∈ H2(Hilbn(S), Z) is the class of an exceptional curve (for n ≥ 2). Here we apply 
the natural identification

11 In this statement, we allow X to be a holomorphic symplectic manifold.
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H2(Hilbn(S),Z) � H2(S,Z) ⊕ ZA.

Let F0 ⊂ S be a nonsingular fiber, and let x1, . . . , xn−1 ∈ S \ F0 be distinct points. 
Consider the curve

C = {x1 + · · · + xn−1 + x′ : x′ ∈ F0} ⊂ Hilbn(S).

Then 
∫
[C] h = 1 and hence by the first equation in [22, Theorem 2], we find

Nβ =
∫

[M0,1(X,β)]vir

ev∗[C] =
[
φn−1

Δ

]
qdyr

=
(
φn−1

Δ

)
β

. �

2.7. Proof of Theorem 2.4

Consider the 2-pointed class

Zβ = ev12∗[M0,2(X,β)]vir ∈ H8(X ×X,Q).

By the divisor equation [10] and Theorem 2.3, we have

∫
Zβ

γ ⊗ δ =

⎛⎜⎝∫
β

δ

∫
γ

h

⎞⎟⎠ fβ

for all δ ∈ H2(X, Q) and γ ∈ H6(X, Q).12 Hence

GWβ(δ) =

⎛⎜⎝∫
β

δ

⎞⎟⎠ fβh ∈ H2(X,Q),

GWβ(γ) =

⎛⎝∫
γ

h

⎞⎠ fββ ∈ H6(X,Q).

Now consider the (4, 4)-Künneth factor of Zβ,

Z4,4
β ∈ H4(X) ⊗H4(X).

By monodromy invariance under the group SO(H2(X, C), h), we have

12 We have suppressed an application of Poincaré duality here.
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Z4,4
β =aβh

2 ⊗ h2 + bβ(h2 ⊗ c2(X) + c2(X) ⊗ h2) + cβc2(X) ⊗ c2(X)

+ dβ(h⊗ h)cBB + eβ [ΔX ]4,4

for some aβ , bβ , cβ , dβ , eβ ∈ Q; see [13, Section 4]. Here

cBB ∈ Sym2(H2(X,Q)) ⊂ H2(X,Q) ⊗H2(X,Q)

is the inverse of the Beauville–Bogomolov class.
Since 

∫
Zβ

σ2⊗σ̄2 = 0, we have eβ = 0. Also, since the Gromov–Witten correspondence 
is equivariant with respect to multiplication by σ, we find

GWβ(hσ) = GWβ(h)σ = (β, β)fβhσ.

Hence dβ = fβ . Together with Proposition 1.2 and 
∫
X
v2 = 48(β, β)2 �= 0, this implies

Z4,4
β = ψβ

v ⊗ v

48(β, β)2 + fβ(h⊗ h)
(
cBB − h⊗ h

(β, β)

)
(17)

for some ψβ ∈ Q. It remains to determine ψβ.
As in the proof of Theorem 2.3, let S be an elliptic K3 surface with a section, and 

let β be as in (16). Consider the fiber class of the Lagrangian fibration Hilb2(S) → P 2

induced by the elliptic fibration S → P 1,

L ∈ H4(Hilb2(S),Q).

We have ∫
Hilb2(S)

h2L = 2,
∫

Hilb2(S)

vL = 10,
∫

Hilb2(S)×Hilb2(S)

(hL ⊗ hL)cBB = 0.

Then [22, Theorem 1] and (17) imply the relation(
Θ2

Δ

)
β

=
∫
Zβ

L ⊗ L = 102

48(β, β)2ψβ − 22

(β, β)fβ .

Hence

ψβ = 12(β, β)
25

(
4f + H1

(
Θ2

Δ

))
β

where

Hm = 2q d − 1
(
y
d
)2

, m ≥ 1

dq 2m dy
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is the heat operator. Explicit formulas for the derivatives of Jacobi forms can be found 
in [22, Appendix B], and this yields ψβ = (β, β)gβ as desired. �
3. Rational curves in the Fano varieties of lines

We give the proof of Theorem 0.2. From now on, let F be the Fano variety of lines in 
a very general cubic 4-fold Y , and let β ∈ H2(F, Z) be the primitive curve class.

3.1. Degeneracy locus

The variety F is naturally embedded in the Grassmannian Gr(2, 6). Let U and Q be 
the tautological bundles of ranks 2 and 4 with the short exact sequence

0 → U → C6 ⊗OGr(2,6) → Q → 0.

We use UF , QF to denote the restriction of U , Q on F . Let H = c1(U∗
F ) be the hyperplane 

class on F with respect to the Plücker embedding. By [4], the primitive curve class 
β ∈ H2(F, Z) is characterized by 

∫
β
H = 3.

The indeterminacy locus S of the rational map (2) consists of lines l ⊂ Y with normal 
bundle

Nl/Y = Ol(−1) ⊕Ol(1)⊕2.

For every line l ⊂ Y corresponding to s ∈ S, there is a pencil of planes tangent to Y
along l. The residual lines of this pencil form the rational curve φ(p−1(s)) ⊂ F . By [1, 
Proposition 6], we have ∫

[φ(p−1(s))]

H = 3.

Hence the curve φ(p−1(s)) lies in the primitive curve class β. Moreover, by the calcula-
tions in [1, Theorem 8], we find

φ∗[D] = 60H ∈ H2(F,Q). (18)

In [1], the surface S is shown to be nonsingular, and is expressed as the degeneracy 
locus of the (sheafified) Gauss map

g : Sym2(UF ) → Q∗
F

associated to the cubic Y . Let π : PSym2(UF ) → F be the P 2-bundle and let h be the 
relative hyperplane class. Then S is isomorphic to the zero locus S′ of a section of the 
rank 4 vector bundle π∗Q∗

F ⊗O(h) on PSym2(UF ). Let HS′ , hS′ be the restrictions of the 
divisor classes π∗H, h on S′. There is the following calculation of intersection numbers.
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Lemma 3.1. We have ∫
S′

H2
S′ =

∫
S′

HS′hS′ =
∫
S′

h2
S′ = 315.

Proof. Let c = c2(U∗
F ) ∈ H4(F, Q). Since S′ ⊂ PSym2(UF ) is the zero locus of a section 

of the vector bundle π∗Q∗
F ⊗O(h), a direct calculation yields

[S′] = c4(Q∗
F ⊗O(h)) = 5(π∗H2 − π∗c)h2 − 35

6 π∗H3 · h + 10
3 π∗H4

∈ H8(PSym2(UF ),Q).

The lemma follows from the projection formula, the intersection numbers calculated in 
[1, Lemma 4], and the projective bundle formula associated to π : PSym2(UF ) → F ,

h3 = 3π∗H · h2 − (2π∗H2 + 4π∗c)h + 5
3π

∗H3 ∈ H6(PSym2(UF ),Q). �
3.2. Connectedness

Now we prove that S is connected and calculate its first Chern class.
Let G be the total space of the projective bundle PSym2(U) over the Grassmannian 

Gr(2, 6), and let

π̃ : G → Gr(2, 6)

be the projection. For convenience, we also write H for the hyperplane class on Gr(2, 6), 
and h for the relative hyperplane class of π̃. We define

V = π̃∗Sym3(U∗) ⊕ π̃∗Q∗ ⊗O(h)

to be the rank 8 tautological vector bundle on G. Then S is isomorphic to the zero locus 
of a section of V. We consider the universal zero locus of all sections of V,

W = {(s, x) : s(x) = 0} ⊂ PH0(G,V) ×G

together with the two projections

W G

PH0(G,V).

ι

q

Since the morphism q has a fiber isomorphic to the surface S, a general fiber Ws →
s ∈ PH0(G, V) is also of dimension 2 by upper semi-continuity.
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Proposition 3.2. For s ∈ PH0(G, V) very general, the surface Ws is nonsingular of Picard 
rank 1.

Proof. Over a point x ∈ G, the fiber of ι is the projective space

PH0(G,V ⊗ Ix)

where Ix is the ideal sheaf of x. By the projection formula, we have

H0(G,V ⊗ Ix) = H0(Gr(2, 6), Sym3(U∗) ⊗ π̃∗Ix ⊕Q∗ ⊗ π̃∗Ix(h)).

In particular, the dimension of H0(G, V ⊗ Ix) only depends on the projection π̃(x) ∈
Gr(2, 6). The homogeneity of Gr(2, 6) implies that ι : W → G is a projective bundle.

Since W is nonsingular, a general fiber Ws is also nonsingular. For Ws very general, 
an identical argument as in [24, Lemma 2.1] yields

Pic(Ws)Q = Im (ι∗ : Pic(G)Q → Pic(Ws)Q) .

Hence the Picard group Pic(Ws)Q is spanned by π̃∗H and h. The calculation in 
Lemma 3.1 and the Hodge index theorem imply that

(π̃∗H − h)|Ws
= 0 ∈ H2(Ws,Q).

Hence the classes π̃∗H and h coincide in the Néron–Severi group of Ws. �
Corollary 3.3. The surface S in (3) is connected. If HS is the restriction of H to S, then 
we have

c1(S) = −3HS ∈ H2(S,Q).

Proof. The surface S is isomorphic to the zero locus S′ of a section of V via the natural 
projection π|S′ : S′ ∼−→ S. This isomorphism identifies the divisor classes HS′ and HS .

By Proposition 3.2, a very general Ws is connected, which then implies that S is 
connected. Moreover, Proposition 3.2 shows that c1(S) is proportional to HS in H2(S, Q). 
The coefficient is determined by a calculation of intersection numbers; see [1, Remark in 
Section 2]. �
3.3. Divisorial contribution

By Proposition 1.1, the moduli space of stable maps M0,1(F, β) is pure of dimension 
3. Recall the decomposition (1),

M0,1(F, β) = M0 ∪M1,
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such that a general fiber of ev : M i → ev(M i) ⊂ F is of dimension i. We first analyze 
the component M0.

By construction, the family of maps p : D → S in (3) has a factorization

φ : D → M0 ev−→ F.

We have seen in (18) that

φ∗[D] = 60H ∈ H2(F,Q).

On the other hand, by Theorem 2.313 together with property (b) of the virtual funda-
mental class, we find

ev∗[M0] = ev∗[M0,1(F, β)] = ev∗[M0,1(F, β)]vir = 60H ∈ H2(F,Q).

To conclude M0 = D, it suffices to prove the following proposition.

Proposition 3.4. For a very general F , each s ∈ S yields a distinct rational curve 
φ(p−1(s)) ⊂ F .

Proof. Let s1, s2 ∈ S be two distinct points and suppose

φ(p−1(s1)) = φ(p−1(s2)) ⊂ F.

For i = 1, 2, let li ⊂ Y be the line corresponding to si, and let Pi ⊂ P 5 be the 
3-dimensional linear subspace spanned by the tangent planes along li. Then necessarily 
P1 = P2. Otherwise, the intersection P1 ∩ P2 is a plane that contains all lines in Y
corresponding to the points on φ(p−1(si)). The fact that Y contains a plane violates the 
very general assumption. We also know l1 ∩ l2 = ∅. Otherwise, the plane spanned by l1
and l2 is tangent to Y along both l1 and l2, which is impossible.

Consider the Gauss map14 associated to the cubic Y ,

D : P 5 → P 5∗.

By definition, the image D(li) ⊂ P 5∗ is a line which is dual to Pi ⊂ P 5. Following the 
argument of Clemens and Griffiths [7, Section 6], we may assume that l1, l2 are given by 
the equations

X2 = X3 = X4 = X5 = 0,

X0 = X1 = X4 = X5 = 0.

13 By [4], we have (β, β) = 3
2 and (β, −) = 1

2H ∈ H2(F, Q).
14 It is called the dual mapping in [7].
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Then the condition P1 = P2 forces D(l1) = D(l2) to be given by the equations

X∗
0 = X∗

1 = X∗
2 = X∗

3 = 0.

As a result, the cubic polynomial of Y takes the form

X4Q
1
4(X0, X1) + X5Q

1
5(X0, X1)

+ X4Q
2
4(X2, X3) + X5Q

2
5(X2, X3) + R1 + R2. (19)

Here the Qj
i are quadratic polynomials, R1 consists of terms of degree at least 2 in 

{X4, X5}, and R2 consists of terms of degree 1 in each of {X0, X1}, {X2, X3}, {X4, X5}. 
The total number of possibly nonzero coefficients in (19) is

4 · 3 + (4 · 3 + 4) + 2 · 2 · 2 = 36.

On the other hand, the subgroup of GL(C6) fixing two disjoint lines in P 5 is of dimension

4 + 4 + 3 · 4 = 20,

resulting in a locus of dimension 36 − 20 = 16 in the moduli space of cubic 4-folds. This 
again contradicts the very general assumption of Y . �
3.4. Non-contribution

We use the Gromov–Witten correspondence introduced in (8) to eliminate the com-
ponent M1. Recall that by property (b) of the virtual fundamental class, the class 
[M0,2(F, β)]vir in (8) equals the ordinary fundamental class.

We begin by calculating the contribution of M0 = D to the Gromov–Witten corre-
spondence

GWβ : H4(F,Q) → H4(F,Q). (20)

Recall the diagram (3) and consider morphisms

ΦD
1 = p∗φ

∗ : H4(F,Q) → H2(S,Q),

ΦD
2 = φ∗p

∗ : H2(S,Q) → H4(F,Q).

Comparing with (9) and (10), we see that ΦD
2 ◦ ΦD

1 = φ∗p
∗p∗φ

∗ gives the contribution 
of D to the Gromov–Witten correspondence (20).

Let c = c2(U∗
F ) ∈ H4(F, Q). Using the short exact sequence

0 → TF → TGr(2,6)|F → Sym3(U∗
F ) → 0,
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we find

8c = 5H2 − c2(F ) = vF ∈ H4(F,Q)

where vF is the class defined in (11).15 There is the following explicit calculation.

Proposition 3.5. We have

φ∗p
∗p∗φ

∗c = 945c ∈ H4(F,Q).

Proof. The argument in Proposition 1.2 shows that c is an eigenvector of φ∗p∗p∗φ∗. To 
determine the eigenvalue, it suffices to compute the intersection number∫

F

φ∗p
∗p∗φ

∗c ·H2. (21)

By the projection formula, we have∫
F

φ∗p
∗p∗φ

∗c ·H2 =
∫
D

p∗p∗φ
∗c · φ∗H2

=
∫
S

p∗φ
∗c · p∗φ∗H2 =

∫
F

φ∗p
∗p∗φ

∗H2 · c.

Again by the argument in Proposition 1.2, we know that φ∗p
∗p∗φ

∗H2 is proportional to 
c. Hence we can deduce the intersection number (21) by calculating instead∫

F

φ∗p
∗p∗φ

∗H2 ·H2 =
∫
S

(p∗φ∗H2)2.

Let ξ be the relative hyperplane class of the projective bundle

p : D = P (NS/F ) → S.

By [1, Proposition 6] and the projective bundle formula, we find

p∗φ
∗H2 = p∗(7p∗HS + 3ξ)2 = 42HS − 9c1(NS/F ) ∈ H2(S,Q),

where HS is the restriction of H to S. Moreover, Corollary 3.3 yields

c1(NS/F ) = −c1(S) = 3HS ∈ H2(S,Q).

15 The proportionality of c and vF also follows from the fact that c is represented by a rational (hence 
Lagrangian) surface.
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Hence we obtain

p∗φ
∗H2 = 15HS ∈ H2(S,Q).

Applying Lemma 3.1, we find the intersection number∫
F

φ∗p
∗p∗φ

∗H2 ·H2 =
∫
S

(p∗φ∗H2)2 = 152 · 315 = 70875.

Finally, by the intersection numbers calculated in [1, Lemma 4], we have∫
F

φ∗p
∗p∗φ

∗c ·H2 =
∫
F

φ∗p
∗p∗φ

∗H2 · c = 70875 · 27
45 = 42525

and hence

φ∗p
∗p∗φ

∗c = 42525
45 c = 945c ∈ H4(F,Q). �

The eigenvalue in Proposition 3.5 coincides with the one in Theorem 2.4,

GWβ(c) = 945c ∈ H4(F,Q).

Hence the final step is to show that if the component M1 is nonempty, then it has to 
contribute nontrivially to the Gromov–Witten correspondence (20).

If M ′ ⊂ M1 is a nonempty irreducible component, consider the restriction of (9)

M ′ F

T ′

ev

p

where T ′ ⊂ p(M1) ⊂ M0,0(F, β) is the base of M ′. We define morphisms

ΦM ′

1 : H4(F,Q) → H2(T ′,Q), γ 
→ p∗(ev∗γ ∩ [M ′]),

ΦM ′

2 = ev∗p
∗ : H2(T ′,Q) → H4(F,Q).

By definition, the composition ΦM ′
2 ◦ ΦM ′

1 gives the contribution of M ′ to the Gromov–
Witten correspondence (20).

Proposition 3.6. If M ′ ⊂ M1 is a nonempty irreducible component, then we have

ΦM ′

2 ◦ ΦM ′

1 (c) = Nc ∈ H4(F,Q)

for some N > 0.
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Proof. Let Z ′ = ev(M ′) with ι : Z ′ ↪→ F the embedding. Consider the following diagram

M̃ ′ Z̃ ′

M ′ Z ′ F,

T ′

ẽv

τ ι̃

ev

p

ι

where M̃ ′ and Z̃ ′ are simultaneous resolutions of M ′ and Z ′.
We calculate ΦM ′

1 (c) ∈ H2(T ′, Q). By the projection formula, we have16

ΦM ′

1 (c) = p∗(ev∗ι∗c ∩ [M ′])

= p∗τ∗τ
∗ev∗ι∗c

= p∗τ∗ẽv∗ι̃∗c ∈ H2(T ′,Q).

Since Z ′ is Lagrangian, we find

[Z ′] = ι̃∗[Z̃ ′] = N ′c ∈ H4(F,Q)

for some N ′ > 0. The intersection number 
∫
F
c2 = 27 calculated in [1, Lemma 4] then 

implies

ι̃∗c = 27N ′[x̃] ∈ H4(Z̃ ′,Q)

for any point x̃ ∈ Z̃ ′. This yields

ΦM ′

1 (c) = 27N ′p∗τ∗ẽv∗[x̃] = 27N ′[Vx] ∈ H2(T ′,Q),

where Vx ⊂ T ′ parametrizes rational curves through a general point x ∈ Z ′. In particular, 
we see that ΦM ′

1 (c) ∈ H2(T ′, Q) is an effective curve class.
As a result, the class

ΦM ′

2 ◦ ΦM ′

1 (c) = ev∗p
∗ΦM ′

1 (c) ∈ H4(F,Q)

is an effective sum of classes of Lagrangian surfaces, and hence a positive multiple of 
c. �

We conclude M1 = ∅, and the proof of Theorem 0.2 is complete.

16 Since M̃ ′ is nonsingular, we have suppressed an application of Poincaré duality here.
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Appendix A. Sketch of a classical proof of Theorem 0.2

We sketch a proof of Theorem 0.2 via the classical geometry of cubic hypersurfaces. 
Let Y ⊂ P 5 be a very general cubic 4-fold, and let F be the Fano variety of lines in Y .

Consider the correspondence given by the universal family

L Y

F.

qY

qF

A rational curve R ⊂ F corresponds to a surface Z = qY (q−1
F (R)) ⊂ Y . If R lies in the 

primitive curve class of F , then we have

[Z] = H2
Y ∈ H4(Y,Z)

with HY the hyperplane class on Y .

Step 1. Let j : Y ↪→ P 5 be the embedding. Since the surface j(Z) ⊂ P 5 is of degree 3, we 
know from [12, Page 173] that j(Z) lies in a hyperplane P 4 ⊂ P 5. Hence Z is contained 
in the hyperplane section

Y ′ = Y ∩ P 4 ⊂ P 4.

Step 2. By [12, Page 525, Proposition], the surface Z ⊂ Y ′ belongs to one of the following 
classes:

(i) a cubic rational normal scroll;
(ii) a cone over a twisted cubic curve;
(iii) a cubic surface given by a hyperplane section of Y ′ ⊂ P 4.
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Since (i) and (ii) cannot hold for a very general17 cubic 4-fold, we find that Z is a 
cubic surface of the form

Z = Y ∩ P 3.

Step 3. The singularities of cubic surfaces were classified long ago; see [8, Chapter 9] and 
[16, Section 2]. Since Z is integral, it satisfies one of the following conditions:

(i) Z has rational double point singularities;
(ii) Z has a simple elliptic singularity;
(iii) Z is integral but not normal.

By definition, the surface Z is swept out by a 1-dimensional family of lines parame-
terized by a rational curve. Hence we may narrow down to case (iii).

Step 4. By further classification results (see [16, Section 2.3]), the surface Z is projectively 
equivalent to one of the four surfaces with explicit equations:

X2
0X1 + X2

2X3 = 0,

X0X1X2 + X2
0X3 + X3

1 = 0,

X3
1 + X3

2 + X1X2X3 = 0,

X3
1 + X2

2X3 = 0.

In each of the four cases, the singular locus of Z is a line l ⊂ Z, and the 1-dimensional 
family of lines covering Z is given by the residual lines of the planes containing l. Hence 
we conclude that all rational curves in the primitive curve class of F are given by the 
uniruled divisor (3). The uniqueness part of Theorem 0.2 follows from Proposition 3.4.
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