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Abstract. We study the interplay of the moduli of curves and the moduli of K3 surfaces via the
virtual class of the moduli spaces of stable maps. Using Getzler’s relation in genus 1, we construct
a universal decomposition of the diagonal in Chow in the third fiber product of the universal K3
surface. The decomposition has terms supported on Noether–Lefschetz loci which are not visible
in the Beauville–Voisin decomposition for a fixed K3 surface. As a result of our universal decom-
position, we prove the conjecture of Marian–Oprea–Pandharipande: the full tautological ring of the
moduli space of K3 surfaces is generated in Chow by the classes of the Noether–Lefschetz loci.
Explicit boundary relations are constructed for all κ classes.

More generally, we propose a connection between relations in the tautological ring of the mod-
uli spaces of curves and relations in the tautological ring of the moduli space of K3 surfaces. The
WDVV relation in genus 0 is used in our proof of the MOP conjecture.

Keywords. K3 surfaces, moduli spaces, tautological cycles, Noether–Lefschetz loci, Gromov–
Witten theory
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0. Introduction

0.1. κ classes

Let M2` be the moduli space of quasi-polarized K3 surfaces (X,H) of degree 2` > 0:

• X is a nonsingular, projective K3 surface over C,
• H ∈ Pic(X) is a primitive and nef class satisfying

〈H,H 〉X =

∫
X

H 2
= 2`.

The basics of quasi-polarized K3 surfaces and their moduli are reviewed in Section 1.
Consider the universal quasi-polarized K3 surface over the moduli space,

π : X →M2`.

We define a canonical divisor class on the universal surface,

H ∈ A1(X ,Q),

which restricts to H on the fibers of π by the following construction. Let M0,1(π,H)

be the π -relative moduli space of stable maps: M0,1(π,H) parameterizes stable maps
from genus 0 curves with one marked point to the fibers of π representing the fiberwise
class H . Let

ε : M0,1(π,H)→ X

be the evaluation morphism over M2`. The moduli space M0,1(π,H) carries a π -relative
reduced obstruction theory with reduced virtual class of π -relative dimension 1. We define

H =
1

N0(`)
· ε∗[M0,1(π,H)]

red
∈ A1(X ,Q),

where N0(`) is the genus 0 Gromov–Witten invariant1

N0(`) =

∫
[M0,0(X,H)]red

1.

By the Yau–Zaslow formula,2 the invariant N0(`) is never 0 for ` ≥ −1,

∞∑
`=−1

q`N0(`) =
1
q
+ 24+ 324q + 3200q2

+ · · · .

The construction of H is discussed further in Section 2.1.

1 While ` > 0 is required for the quasi-polarization (X,H), the reduced Gromov–Witten invari-
ant N0(`) is well-defined for all ` ≥ −1.

2 The formula was proposed in [30]. The first proofs in the primitive case can be found in [1, 10].
We will later require the full Yau–Zaslow formula for the genus 0 Gromov–Witten counts also in
imprimitive classes, proven in [16].
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The π -relative tangent bundle of X ,

Tπ → X ,

is of rank 2 and is canonically defined. Using H and c2(Tπ ), we define the κ classes,

κ[a;b] = π∗(Ha
· c2(Tπ )b) ∈ Aa+2b−2(M2`,Q).

Our definition follows [18, Section 4] except for the canonical choice of H. The construc-
tion here requires no choices to be made in the definition of the κ classes.

0.2. Strict tautological classes

The Noether–Lefschetz loci also define classes in the Chow ring A?(M2`,Q). Let

NL?(M2`) ⊂ A?(M2`,Q)

be the subalgebra generated by the Noether–Lefschetz loci (of all codimensions). On the
Noether–Lefschetz locus3

M3→M2`,

corresponding to the larger Picard lattice 3 ⊃ (2`), richer κ classes may be defined by
simultaneously using several elements of 3.

We define canonical κ classes based on the lattice polarization 3. A nonzero class
L ∈ 3 is admissible if

(i) L = m · L̃ with L̃ primitive, m > 0, and 〈L̃, L̃〉3 ≥ −2,
(ii) 〈H,L〉3 ≥ 0,

and in case of equality in (ii), which forces equality in (i) by the Hodge index theorem,

(ii′) L is effective.

Effectivity is equivalent to the condition 〈H,L〉3 ≥ 0 for every quasi-polarizationH ∈ 3
for a generic K3 surface parameterized by M3.

For L ∈ 3 admissible, we define

L =
1

N0(L)
· ε∗[M0,1(π3, L)]

red
∈ A1(X3,Q),

where π3 : X3→M3 is the universalK3 surface. The reduced Gromov–Witten invari-
ant

N0(L) =

∫
[M0,0(X,L)]red

1

is nonzero for all admissible classes by the full Yau–Zaslow formula proven in [16] (see
Section 1.4).

3 Throughout, the Noether–Lefschetz loci are defined by specifying a Picard lattice (the “first
type” as in [20]). We view the Noether–Lefschetz loci as proper maps to M2` instead of subspaces.
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For L1, . . . , Lk ∈ 3 admissible classes, we have canonically constructed divisors

L1, . . . ,Lk ∈ A1(X3,Q).

We define the richer κ classes on M3 by

κ
[L
a1
1 ,...,L

ak
k ;b]
= π3∗(La1

1 · · ·L
ak
k · c2(Tπ3)b) ∈ A

∑
i ai+2b−2(M3,Q). (1)

We will sometimes suppress the dependence on the Li ,

κ
[L
a1
1 ,...,L

ak
k ;b]
= κ[a1,...,ak;b].

We define the strict tautological ring of the moduli space of K3 surfaces,

R?(M2`) ⊂ A?(M2`,Q),

to be the subring generated by the push-forwards from the Noether–Lefschetz loci M3

of all products of the κ classes (1) obtained from admissible classes of 3. By definition,

NL?(M2`) ⊂ R?(M2`).

There is no need to include a κ index for the first Chern class of Tπ since

c1(Tπ ) = −π∗λ

where λ = c1(E) is the first Chern class of the Hodge line bundle E →M2` with fiber
H 0(X,KX) over the moduli point (X,H) ∈ M2`. The Hodge class λ is known to be
supported on Noether–Lefschetz divisors.4

A slightly different tautological ring of the moduli space of K3 surfaces was defined
in [18]. A basic result conjectured in [20] and proven in [6] is the isomorphism

NL1(M2`) = A1(M2`,Q).

In fact, the Picard group of M3 is generated by the Noether–Lefschetz divisors of M3

for every lattice polarization 3 of rank ≤ 17 by [6]. As an immediate consequence, the
strict tautological ring defined here is isomorphic to the tautological ring of [18] in all
codimensions up to 17. Since the dimension of M2` is 19, the differences in the two
definitions are only possible in degrees 18 and 19.

We prefer to work with the strict tautological ring. A basic advantage is that the κ
classes are defined canonically (and not up to twist as in [18]). Every class of the strict
tautological ring R?(M2`) is defined explicitly. A central result of the paper is the fol-
lowing generation property conjectured first in [18].

Theorem 1. The strict tautological ring is generated by Noether–Lefschetz loci,

NL?(M2`) = R?(M2`).

4 By [8], λ on M3 is supported on Noether–Lefschetz divisors for every lattice polarization 3.
See also [19, Theorem 3.1] for a stronger statement: λ on M2` is supported on any infinite collec-
tion of Noether–Lefschetz divisors.
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Our construction also defines the strict tautological ring

R?(M3) ⊂ A?(M3,Q)

for every lattice polarization 3. As before, the subring generated by the Noether–Lef-
schetz loci corresponding to lattices 3̃ ⊃ 3 is contained in the strict tautological ring,

NL?(M3) ⊂ R?(M3).

In fact, we prove a generation result parallel to Theorem 1 for every lattice polarization,

NL?(M3) = R?(M3).

While the definition of R?(M3) includes infinitely many generators, NL?(M3) is
finite-dimensional as a Q-vector space by [9].

0.3. Fiber products of the universal surface

Let X n denote the nth fiber product of the universal K3 surface over M2`,

πn : X n
→M2`.

The strict tautological ring

R?(X n) ⊂ A?(X n,Q)

is defined to be the subring generated by the push-forwards to X n from the Noether–Lef-
schetz loci

πn3 : X
n
3→M3

of all products of

• the πn3-relative diagonals in X n
3,

• the pull-backs of L ∈ A1(X3,Q) via the n projections X n
3→ X3 for every admissible

L ∈ 3,
• the pull-backs of c2(Tπ3) ∈ A2(X3,Q) via the n projections,
• the pull-backs of R?(M3) via πn∗3 .

The construction also defines the strict tautological ring R?(X n
3) ⊂ A?(X n

3,Q) for every
lattice polarization 3.

A straightforward calculation shows that the strict tautological rings {R?(X n
3)}n≥0

form a closed system under pull-backs and push-fowards via the various tautological maps
X n
3→ Xm

3 .
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0.4. Export construction

Let Mg,n(π3, L) be the π3-relative moduli space of stable maps representing the admis-
sible class L ∈ 3. The evaluation map at the n markings is

εn : Mg,n(π3, L)→ X n
3.

Conjecture 1. The push-forward of the reduced virtual fundamental class lies in the
strict tautological ring,

εn∗ [Mg,n(π3, L)]
red
∈ R?(X n

3).

When Conjecture 1 is restricted to a fixed K3 surface X, another open question is ob-
tained.

Conjecture 2. The push-forward of the reduced virtual fundamental class,

εn∗ [Mg,n(X,L)]
red
∈ A?(Xn,Q),

lies in the Beauville–Voisin ring of Xn generated by the diagonals and the pull-backs of
Pic(X) via the n projections.

If Conjecture 1 could be proven also for descendents (and in an effective form), then we
could export tautological relations on Mg,n to X n

3 via the morphisms

Mg,n
τ
←− Mg,n(π3, L)

εn

−→ X n
3.

More precisely, given a relation Rel = 0 among tautological classes on Mg,n,

εn∗τ
∗(Rel) = 0 ∈ R?(X n

3)

would then be a relation among strict tautological classes on X n
3.

We prove Theorem 1 as a consequence of the export construction for the WDVV rela-
tion in genus 0 and for Getzler’s relation in genus 1. The required parts of Conjectures 1
and 2 are proven by hand.

0.5. WDVV and Getzler

We fix an admissible class L ∈ 3 and the corresponding divisor L ∈ A1(X3,Q). For
i ∈ {1, . . . , n}, let

L(i) ∈ A1(X n
3,Q)

denote the pull-back of L via the ith projection pr(i) : X n
3→ X3. For 1 ≤ i < j ≤ n, let

1(ij) ∈ A2(X n
3,Q)

be the πn3-relative diagonal where the ith and j th coordinates are equal. We write

1(ijk) = 1(ij) ·1(jk) ∈ A4(X n
3,Q).
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The Witten–Dijkgraaf–Verlinde–Verlinde relation in genus 0 is

3 4

0

0

1 2


−



2 4

0

0

1 3


= 0 ∈ A1(M0,4,Q). (2)

Theorem 2. For all admissible L ∈ 3, exportation of the WDVV relation yields

L(1)L(2)L(3)1(34) + L(1)L(3)L(4)1(12)

− L(1)L(2)L(3)1(24) − L(1)L(2)L(4)1(13) + . . . = 0 ∈ A5(X 4
3,Q), (†)

where the dots stand for strict tautological classes supported over proper Noether–Lef-
schetz divisors of M3.

Getzler [13] in 1997 discovered a beautiful relation in the cohomology of M1,4 which was
proven to hold in Chow in [24]:

12



0

1

0


− 4



0

0

1


− 2


0

0

1


+ 6


0

0

1



+


0

0

+


0

0

 − 2


0

0

 = 0 ∈ A2(M1,4,Q). (3)

Here, the strata are summed over all marking distributions and are taken in the stack sense
(following the conventions of [13]).

Theorem 3. For admissible L ∈ 3 satisfying the condition 〈L,L〉3 ≥ 0, exportation of
Getzler’s relation yields

L(1)1(12)1(34) + L(3)1(12)1(34) + L(1)1(13)1(24) + L(2)1(13)1(24) + L(1)1(14)1(23)

+ L(2)1(14)1(23) − L(1)1(234) − L(2)1(134) − L(3)1(124) − L(4)1(123)

− L(1)1(123) − L(1)1(124) − L(1)1(134) − L(2)1(234) + · · · = 0 ∈ A5(X 4
3,Q), (‡)

where the dots stand for strict tautological classes supported over proper Noether–Lef-
schetz loci of M3.
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The statements of Theorems 2 and 3 contain only the principal terms of the relation
(not supported over proper Noether–Lefschetz loci of M3). We will write all the terms
represented by the dots in Sections 4 and 6.

The relation of Theorem 2 is obtained from the export construction after dividing
by the genus 0 reduced Gromov–Witten invariant N0(L). The latter never vanishes for
admissible classes. Similarly, for Theorem 3, the export construction has been divided by
the genus 1 reduced Gromov–Witten invariant

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p),

where p ∈ H 4(X,Q) is the class of a point on X. By a result of Oberdieck discussed in
Section 1.5, N1(L) does not vanish for admissible classes satisfying 〈L,L〉3 ≥ 0.

0.6. Relations on X 3
3

As a corollary of Getzler’s relation, we have the following result. Let pr(123) : X 4
3→ X 3

3

be the projection to the first three factors. Let L = H and consider the operation
pr(123)∗(H(4) · −) applied to the relation (‡). We obtain a universal decomposition of
the diagonal 1(123) which generalizes the result of Beauville–Voisin [2] for a fixed K3
surface.5

Corollary 1. The π3
3-relative diagonal 1(123) admits a decomposition with principal

terms

2` ·1(123) = H2
(1)1(23) +H2

(2)1(13) +H2
(3)1(12)

−H2
(1)1(12) −H2

(1)1(13) −H2
(2)1(23) + · · · ∈ A4(X 3

3,Q), (‡′)

where the dots stand for strict tautological classes supported over proper Noether–Lef-
schetz loci of M3.

The diagonal 1(123) controls the behavior of the κ classes. For instance, we have

κ[a;b] = π
3
∗ (Ha

(1) ·1
b
(23) ·1(123)) ∈ Aa+2b−2(M2`,Q).

The diagonal decomposition of Corollary 1 plays a fundamental role in the proof of The-
orem 1.

0.7. Cohomological results

Bergeron and Li [5] have obtained an independent proof of the generation of the tautolog-
ical ring RH?(M3) by Noether–Lefschetz loci in cohomology. Petersen [27] has proven
the vanishing6

RH18(M2`) = RH19(M2`) = 0.
We expect the above vanishing to hold also in Chow.

5 See also [28] for a related discussion.
6 We use the complex grading here.
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What happens in codimension 17 is a very interesting question. By a result of van der
Geer and Katsura [12], RH17(M2`) 6= 0. We hope the stronger statement

RH17(M2`) = Q (4)

holds. If true, (4) would open the door to a numerical theory of proportionalities in the tau-
tological ring. The evidence for (4) is rather limited at the moment. Careful calculations
in the ` = 1 and 2 cases would be very helpful here.

1. K3 surfaces

1.1. Reduced Gromov–Witten theory

Let X be a nonsingular, projective K3 surface over C, and let

L ∈ Pic(X) = H 2(X,Z) ∩H 1,1(X,C)

be a nonzero effective class. The moduli space Mg,n(X,L) of genus g stable maps with
n marked points has expected dimension

dimvir
C Mg,n(X, β) =

∫
L

c1(X)+ (dimC(X)− 3)(1− g)+ n = g − 1+ n.

However, as the obstruction theory admits a 1-dimensional trivial quotient, the virtual
class [Mg,n(X,L)]

vir vanishes. The standard Gromov–Witten theory is trivial.
Curve counting on K3 surfaces is captured instead by the reduced Gromov–Witten

theory constructed first via the twistor family in [10]. An algebraic construction follow-
ing [3] is given in [20]. The reduced class

[Mg,n(X,L)]
red
∈ Ag+n(Mg,n(X,L),Q)

has dimension g + n. The reduced Gromov–Witten integrals of X,

〈τa1(γ1) · · · τan(γn)〉
X,red
g,L =

∫
[Mg,n(X,L)]red

n∏
i=1

ev∗i (γi) ∪ ψ
ai
i ∈ Q, (5)

are well-defined. Here, γi ∈ H ?(X,Q) and ψi is the standard descendent class at the ith

marking. Under deformations of X for which L remains a (1, 1)-class, the integrals (5)
are invariant.

1.2. Curve classes on K3 surfaces

Let X be a nonsingular, projective K3 surface over C. The second cohomology of X is a
rank 22 lattice with intersection form

(H 2(X,Z), 〈−,−〉X) ∼= U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1), (6)

where

U =

(
0 1
1 0

)



10 Rahul Pandharipande, Qizheng Yin

and

E8(−1) =



−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


is the (negative) Cartan matrix. The intersection form (6) is even.

The divisibility m(L) is the largest positive integer which divides the lattice element
L ∈ H 2(X,Z). If the divisibility is 1, L is primitive. Elements with equal divisibility and
norm square are equivalent up to orthogonal transformation of H 2(X,Z) (see [29]).

1.3. Lattice polarization

A primitive class H ∈ Pic(X) is a quasi-polarization if

〈H,H 〉X > 0 and 〈H, [C]〉X ≥ 0

for every curve C ⊂ X. A sufficiently high tensor power H n of a quasi-polarization is
base point free and determines a birational morphism X→ X̃ contracting A-D-E config-
urations of (−2)-curves on X. Therefore, every quasi-polarized K3 surface is algebraic.

Let 3 be a fixed rank r primitive7 sublattice

3 ⊂ U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)

with signature (1, r − 1), and let v1, . . . , vr ∈ 3 be an integral basis. The discriminant is

1(3) = (−1)r−1 det

〈v1, v1〉 · · · 〈v1, vr 〉
...

. . .
...

〈vr , v1〉 · · · 〈vr , vr 〉

 .
The sign is chosen so 1(3) > 0.

A 3-polarization of a K3 surface X is a primitive embedding

3 ↪→ Pic(X)

satisfying two properties:

(i) the lattice pairs 3 ⊂ U3
⊕ E8(−1)2 and 3 ⊂ H 2(X,Z) are isomorphic via an

isometry which restricts to the identity on 3,
(ii) the image of 3 ⊂ Pic(X) contains a quasi-polarization.

By (ii), every 3-polarized K3 surface is algebraic.

7 A sublattice is primitive if the quotient is torsion free.
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The period domain M of Hodge structures of type (1, 20, 1) on the lattice
U3
⊕ E8(−1)2 is an analytic open subset of the 20-dimensional nonsingular isotropic

quadric Q,
M ⊂ Q ⊂ P

(
(U3
⊕ E8(−1)2)⊗Z C

)
.

Let M3 ⊂ M be the locus of vectors orthogonal to the entire sublattice 3 ⊂ U3
⊕

E8(−1)2.
Let 0 be the isometry group of the lattice U3

⊕ E8(−1)2, and let 03 ⊂ 0 be the
subgroup restricting to the identity on 3. By global Torelli, the moduli space M3 of 3-
polarized K3 surfaces is the quotient M3 = M3/03. We refer the reader to [11] for a
detailed discussion.

1.4. Genus 0 invariants

Let L ∈ Pic(X) be a nonzero and admissible class on a K3 surface X as defined in
Section 0.2:

(i) 1
m(L)2

· 〈L,L〉X ≥ −2, where m(L) is the divisibility of L,
(ii) 〈H,L〉X ≥ 0.

In case of equalities in both (i) and (ii), we further require L to be effective.

Proposition 1. The reduced genus 0 Gromov–Witten invariant

N0(L) =

∫
[M0,0(X,L)]red

1

is nonzero for all admissible classes L.

Proof. The result is a direct consequence of the full Yau–Zaslow formula (including mul-
tiple classes) proven in [16]. We define N0(`) for ` ≥ −1 by

∞∑
`=−1

q`N0(`) =
1

q
∏
∞

n=1(1− qn)24 =
1
q
+ 24+ 324q + 3200q2

+ · · · .

For ` < −1, we set N0(`) = 0. By the full Yau–Zaslow formula,

N0(L) =
∑
r|m(L)

1
r3N0

(
〈L,L〉X

2r2

)
. (7)

Since all N0(`) for ` ≥ −1 are positive, the right side of (7) is positive. ut

1.5. Genus 1 invariants

Let L ∈ Pic(X) be an admissible class on a K3 surface X. Let

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p)

be the reduced invariant virtually counting elliptic curves passing through a point of X.
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We define
∞∑
`=0

q`N1(`) =

∑
∞

k=1
∑
d|k dkq

k

q
∏
∞

n=1(1− qn)24 = 1+ 30q + 480q2
+ 5460q3

+ · · · .

For ` ≤ −1, we set N1(`) = 0. If L is primitive,

N1(L) = N1(〈L,L〉X/2)

by a result of [10]. In particular,N1(L)> 0 for L admissible and primitive if 〈L,L〉X ≥ 0.

Proposition 2 (Oberdieck). The reduced genus 1 Gromov–Witten invariant N1(L) is
nonzero for all admissible classes L satisfying 〈L,L〉X ≥ 0.

Proof. The result is a direct consequence of the multiple cover formula for the reduced
Gromov–Witten theory ofK3 surfaces conjectured in [23]. By the multiple cover formula,

N1(L) =
∑
r|m(L)

rN1

(
〈L,L〉X

2r2

)
. (8)

Since all N1(`) for ` ≥ 0 are positive, the right side of (8) is positive.
To complete the argument, we must prove the multiple cover formula (8) in the re-

quired genus 1 case. We derive (8) from the genus 2 case of the Katz–Klemm–Vafa for-
mula for imprimitive classes proven in [26]. Let

N2(L) =

∫
[M2(X,L)]red

λ2,

where λ2 is the pull-back of the second Chern class of the Hodge bundle on M2. Using
the well-known boundary expression8 for λ2 in the tautological ring of M2, Pixton [21,
Appendix] proves

N2(L) =
1
10
N1(L)+

〈L,L〉2X
960

N0(L). (9)

By [26], the multiple cover formula for N2(L) carries a factor of r . By the Yau–Zaslow

formula for imprimitive classes [16], the term 〈L,L〉2X
960 N0(L) also carries a factor of

(r2)2 ·
1
r3 = r.

By (9), N1(L) must then carry a factor of r in the multiple cover formula exactly as
claimed in (8). ut

1.6. Vanishing

Let L ∈ Pic(X) be an inadmissible class on a K3 surface X. The following vanishing
result holds.

8 See [22]. A more recent approach valid also for higher genus can be found in [15].
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Proposition 3. For inadmissible L, the reduced virtual class is 0 in Chow,

[Mg,n(X,L)]
red
= 0 ∈ Ag+n(Mg,n(X,L),Q).

Proof. Consider a 1-parameter family of K3 surfaces

πC : X → (C, 0) (10)

with special fiber π−1(0) = X for which the class L is algebraic on all fibers. Let

φ : Mg,n(πC, L)→ C (11)

be the universal moduli space of stable maps to the fibers of πC . Let ι : 0 ↪→ C be the
inclusion of the special point. By the construction of the reduced class,

[Mg,n(X,L)]
red
= ι![Mg,n(πC, L)]

red.

Using the argument of [20, Lemma 2] for elliptically fibered K3 surfaces with a sec-
tion, such a family (10) can be found for which the fiber of φ is empty over a general point
of C since L is not generically effective. The vanishing

[Mg,n(X,L)]
red
= 0 ∈ Ag+n(Mg,n(X,L),Q) (12)

then follows: ι! of any cycle which does not dominate C is 0.
If the family (10) consists of projective K3 surfaces, the argument stays within the

Gromov–Witten theory of algebraic varieties. However, if the family consists of nonalge-
braicK3 surfaces (as may be the case since L is not ample), a few more steps are needed.
First, we can assume all stable maps to the fiber of the family (10) lie over 0 ∈ C and
map to the algebraic fiber X. There is no difficulty in constructing the moduli space of
stable maps (11). In fact, all the geometry takes place over an Artinian neighborhood of
0 ∈ C. Therefore the cones and intersection theory are all algebraic. We conclude the
vanishing (12). ut

2. Gromov–Witten theory for families of K3 surfaces

2.1. The divisor L

Let B be any nonsingular base scheme, and let πB : XB → B be a family of 3-polarized
K3 surfaces.9 For L ∈ 3 admissible, consider the moduli space

Mg,n(πB, L)→ B. (13)

9 Since the quasi-polarization class may not be ample, XB may be a nonsingular algebraic space.
There is no difficulty in defining the moduli space of stable maps and the associated virtual classes
for such nonsingular algebraic spaces. Since the stable maps are to the fiber classes, the moduli
spaces are of finite type. In the original paper on virtual fundamental classes by Behrend and Fan-
techi [3], the obstruction theory on the moduli space of stable maps was required to have a global
resolution (usually obtained from an ample bundle on the target). However, the global resolution
hypothesis was removed by Kresch [17, Theorem 5.2.1].
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The relationship between the πB-relative standard and reduced obstruction theory of
Mg,n(πB, L) yields

[Mg,n(πB, L)]
vir
= −λ · [Mg,n(πB, L)]

red

where λ is the pull-back via (13) of the Hodge bundle on B. The reduced class is of
πB-relative dimension g + n.

The canonical divisor class associated to an admissible L ∈ 3 is

L =
1

N0(L)
· ε∗[M0,1(πB, L)]

red
∈ A1(XB,Q).

By Proposition 1, the reduced Gromov–Witten invariant

N0(L) =

∫
[M0,0(X,L)]red

1

is not zero.
For a family of 3-polarized K3 surfaces over any base scheme B, we define

L ∈ A1(XB,Q)

by pull-back from the universal family over the nonsingular moduli stack M3.10

2.2. The divisor L̂

Let X3 denote the universal 3-polarized K3 surface over M3,

π3 : X3→M3.

For L ∈ 3 admissible, Let M0,0(π3, L) be the π3-relative moduli space of genus 0 stable
maps. Let

φ : M0,0(π3, L)→M3

be the proper structure map. The reduced virtual class [M0,0(π3, L)]
red is of φ-relative

dimension 0 and satisfies

φ∗[M0,0(π3, L)]
red
= N0(L) · [M3] 6= 0.

The universal curve over the moduli space of stable maps,

C→ M0,0(π3, L),

carries an evaluation morphism εM : C→ XM = φ
∗X3 over M3. Via the Hilbert–Chow

map, the image of εM determines a canonical Chow cohomology class L̂ ∈ A1(XM,Q).
Via pull-back, we also have the class L ∈ A1(XM,Q) constructed in Section 2.1.

10 Since we work with Q-coefficients, the intersection theory on the nonsingular moduli stack
M3 can be defined via a finite étale cover which is a nonsingular scheme.
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The classes L̂ and L are certainly equal when restricted to the fibers of

πM : XM→ M0,0(π3, L).

However, more is true. We define the reduced virtual class of XM by flat pull-back,

[XM]
red
= π∗

M
[M0,0(π3, L)]

red
∈ Ad(3)+2(XM,Q),

where d(3) = 20− rank(3) is the dimension of M3.

Theorem 4. For L ∈ 3 admissible,

L̂ ∩ [XM]
red
= L ∩ [XM]

red
∈ Ad(3)+1(XM,Q).

The proof of Theorem 4 will be given in Section 5.

3. Basic push-forwards in genus 0 and 1

3.1. Push-forwards of reduced classes

Let L ∈ 3 be a nonzero class. As discussed in Section 0.4, the export construction re-
quires knowing the push-forward of the reduced virtual class [Mg,n(π3, L)]

red via the
evaluation map

εn : Mg,n(π3, L)→ X n
3.

Fortunately, to export the WDVV and Getzler relations, we only need to analyze three
simple cases.

3.2. Case g = 0, n ≥ 1

Consider the push-forward class in genus 0,

εn∗ [M0,n(π3, L)]
red
∈ An(X n

3,Q).

For n = 1 and L ∈ 3 admissible, we have by definition

ε∗[M0,1(π3, L)]
red
= N0(L) · L.

Proposition 4. For all n ≥ 1, we have

εn∗ [M0,n(π3, L)]
red
=

{
N0(L) · L(1) · · ·L(n) if L ∈ 3 is admissible,
0 if not.

Here L(i) is the pull-back of L via the ith projection.
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Proof. Consider first the case where the classL ∈ 3 is admissible. The evaluation map εn

factors as

M0,n(π3, L)
εn
M
−→ X n

M

ρn

−→ X n
3

where εn
M

is the lifted evaluation map and ρn is the projection. We have

εn∗ [M0,n(π3, L)]
red
= ρn∗ε

n

M∗
[M0,n(π3, L)]

red
= ρn∗ (L̂(1) · · · L̂(n) ∩ [X n

M
]
red)

= ρn∗ (L(1) · · ·L(n) ∩ [X n

M
]
red) = N0(L) · L(1) · · ·L(n) ∩ [X n

3],

where the third equality is a consequence of Theorem 4.
Next, consider the case where L ∈ 3 is inadmissible. By Proposition 3 and a spread-

ing out argument (see [7]), the reduced class [M0,n(π3, L)]
red is supported over a proper

subset of M3.11 Since K3 surfaces are not ruled, the support of

εn∗ [M0,n(π3, L)]
red
∈ An(X n

3,Q)

has codimension at least n+ 1 and therefore vanishes. ut

3.3. Case g = 1, n = 1

The push-forward class ε∗[M1,1(π3, L)]
red
∈ A0(X3,Q) is a multiple of the fundamental

class of X3.

Proposition 5. We have

ε∗[M1,1(π3, L)]
red
=

{
N1(L) · [X3] if L ∈ 3 is admissible and 〈L,L〉3 ≥ 0,
0 if not.

Proof. The multiple of the fundamental class [X3] can be computed fiberwise: it is the
genus 1 Gromov–Witten invariant

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p).

The invariant vanishes for L ∈ Pic(X) inadmissible, as well as for L admissible and
〈L,L〉X < 0. ut

3.4. Case g = 1, n = 2

The push-forward class is a divisor,

ε2
∗[M1,2(π3, L)]

red
∈ A1(X 2

3,Q).

11 The spreading out argument works for M3 again by taking a finite étale cover which is a
scheme.
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Proposition 6. We have

ε2
∗[M1,2(π3, L)]

red

=

{
N1(L) · (L(1) + L(2) + Z(L)) if L ∈ 3 is admissible and 〈L,L〉3 ≥ 0,
0 if not.

Here Z(L) is a divisor class in A1(M3,Q) depending on L.12

In Section 7.2, we will compute Z(L) explicitly in terms of Noether–Lefschetz divisors
in the moduli space M3.

Proof of Proposition 6. Consider first the case where the class L ∈ 3 is admissible and
〈L,L〉3 ≥ 0. If L is a multiple of the quasi-polarization H , we may assume 3 = (2`).
The statement for arbitrary 3 is obtained by pulling back via M3→M2`. Then, the
relative Picard group Pic(X3/M3) has rank 1. Since the reduced class [M1,2(π3, L)]

red

is S2-invariant, the push-forward takes the form

ε2
∗[M1,2(π3, L)]

red
= c(L) · (L(1) + L(2))+ Z̃(L) ∈ A1(X 2

3,Q), (14)

where c(L) ∈ Q and Z̃(L) is (the pull-back of) a divisor class in A1(M3,Q).
The constant c(L) can be computed fiberwise: by the divisor equation13, we have

c(L) = N1(L).

Since N1(L) 6= 0 by Proposition 2, we can rewrite (14) as

ε2
∗[M1,2(π3, L)]

red
= N1(L) · (L(1) + L(2) + Z(L)) ∈ A1(X 2

3,Q),

where Z(L) ∈ A1(M3,Q).
If L 6= m · H , we may assume 3 to be a rank 2 lattice with H,L ∈ 3. The general

case follows again by pulling back. Then, the push-forward class takes the form

ε2
∗[M1,2(π3, L)]

red
= cH (L) · (H(1) +H(2))+ cL(L) · (L(1) + L(2))
+ Z̃(L) ∈ A1(X 2

3,Q), (15)

where cH (L), cL(L) ∈ Q and Z̃(L) ∈ A1(M3,Q). By applying the divisor equation
with respect to

〈L,L〉3 ·H − 〈H,L〉3 · L,

we find
cH (L)(2`〈L,L〉3 − 〈H,L〉23) = 0.

Since 2`〈L,L〉3 − 〈H,L〉23 < 0 by the Hodge index theorem, we have cH (L) = 0.
Moreover, by applying the divisor equation with respect to H , we find

cL(L) = N1(L).

12 We identify A?(M3,Q) as a subring of A?(X n
3,Q) via πn∗3 .

13 Since L is a multiple of the quasi-polarization, 〈L,L〉3 > 0.
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Since N1(L) 6= 0 by Proposition 2, we can rewrite (15) as

ε2
∗[M1,2(π3, L)]

red
= N1(L) · (L(1) + L(2) + Z(L)) ∈ A1(X 2

3,Q),

where Z(L) ∈ A1(M3,Q).
Next, consider the case where the class L ∈ 3 is inadmissible. As before, by Proposi-

tion 3 and a spreading out argument, the reduced class [M1,2(π3, L)]
red is supported over

a proper subset of M3. SinceK3 surfaces are not elliptically connected,14 the support of
the push-forward class

ε2
∗[M1,2(π3, L)]

red
∈ A1(X 2

3,Q)

has codimension at least 2. Hence, the push-forward class vanishes.
Finally, for L ∈ 3 admissible and 〈L,L〉3 < 0, the reduced class [M1,2(π3, L)]

red is
fiberwise supported on the products of finitely many curves in theK3 surface.15 This im-
plies the support of the push-forward class ε2

∗[M1,2(π3, L)]
red has codimension 2 in X 2

3.
Hence, the push-forward class vanishes. ut

4. Exportation of the WDVV relation

4.1. Exportation

Let L ∈ 3 be an admissible class. Consider the morphisms

M0,4
τ
←− M0,4(π3, L)

ε4
−→ X 4

3.

Following the notation of Section 0.4, we export here the WDVV relation with respect to
the curve class L,

ε4
∗τ
∗(WDVV) = 0 ∈ A5(X 4

3,Q). (16)

We will compute ε4
∗τ
∗(WDVV) by applying the splitting axiom of Gromov–Witten theory

to the two terms of the WDVV relation (2). The splitting axiom requires a distribution of
the curve class to each vertex of each graph appearing in (2).

14 A nonsingular projective variety Y is said to be elliptically connected if there is a genus 1 curve
passing through two general points of Y . In dimension ≥ 2, elliptically connected varieties are
uniruled (see [14, Proposition 6.1]).
15 The proof exactly follows the argument of Proposition 3. We find a (possibly nonalgebraic)

1-parameter family of K3 surfaces for which the class L is generically a multiple of a (−2)-curve.
The open moduli space of stable maps to the K3 fibers which are not supported on the family of
(−2)-curves (and its limit curve in the special fiber) is constrained to lie over the special point in
the base of the family. The specialization argument of Proposition 3 then shows the virtual class is 0
when restricted to the open moduli space of stable maps to the special fiber which are not supported
on the limit curve.
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4.2. WDVV relation: unsplit contributions

The unsplit contributions are obtained from curve class distributions which do not split L.
The first unsplit contributions come from the first graph of (2):

3 4

0

L 0

1 2


+



3 4

L 0

0

1 2


N0(L) ·

(
L(1)L(2)L(3)1(34) + L(1)L(3)L(4)1(12)

)
.

The unsplit contributions from the second graph of (2) are

−



2 4

0

L 0

1 3


−



2 4

L 0

0

1 3


−N0(L) ·

(
L(1)L(2)L(3)1(24) + L(1)L(2)L(4)1(13)

)
.

The curve class 0 vertex is not reduced and yields the usual intersection form (which
explains the presence of diagonal 1(ij)). The curve class L vertex is reduced. We have
applied Proposition 4 to compute the push-forward to X 4

3. All terms are of relative codi-
mension 5 (codimension 1 for each of the factors L(i) and codimension 2 for the diago-
nal 1(ij)). The four unsplit terms (divided by N0(L)) exactly constitute the principal part
of Theorem 2.

4.3. WDVV relation: split contributions

The split contributions are obtained from non-trivial curve class distributions to the ver-
tices

L = L1 + L2, L1, L2 6= 0.

By Proposition 4, we need only consider distributions where both L1 and L2 are admis-
sible classes. Let 3̃ be the saturation16 of the span of L1, L2, and3. There are two types.

• If rank(3̃) = rank(3)+ 1, the split contributions are pushed forward from X 4
3̃

via the
map X 4

3̃
→ X 4

3. Both vertices carry the reduced class by the obstruction calculation of

16 We work only with primitive sublattices of U3
⊕ E8(−1)2.
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[20, Lemma 1]. The split contributions are

3 4

L2 0

L1 0

1 2


N0(L1)N0(L2)〈L1, L2〉3̃ · L1,(1)L1,(2)L2,(3)L2,(4),

−



2 4

L2 0

L1 0

1 3


−N0(L1)N0(L2)〈L1, L2〉3̃ · L1,(1)L1,(3)L2,(2)L2,(4).

All terms are of relative codimension 5 (codimension 1 for the Noether–Lefschetz condi-
tion and codimension 1 for each of the factors La,(i)).
• If 3̃ = 3, there is no obstruction cancellation as above. The extra reduction yields a
factor of −λ (see [20, Section 3.2]). The split contributions are

3 4

L2 0

L1 0

1 2


N0(L1)N0(L2)〈L1, L2〉3̃ · (−λ)L1,(1)L1,(2)L2,(3)L2,(4),

−



2 4

L2 0

L1 0

1 3


−N0(L1)N0(L2)〈L1, L2〉3̃ · (−λ)L1,(1)L1,(3)L2,(2)L2,(4).

All terms are of relative codimension 5 (codimension 1 for −λ and codimension 1 for
each of the factors La,(i)).



Relations in the tautological ring 21

4.4. Proof of Theorem 2

The complete exported relation (16) is obtained by adding the unsplit contributions to the
summation over all split contributions

L = L1 + L2

of both types. Split contributions of the first type are explicitly supported over the
Noether–Lefschetz locus corresponding to

3̃ ⊂ U3
⊕ E2

8 .

Split contributions of the second type all contain the factor−λ. The class λ is known to be
a linear combination of proper Noether–Lefschetz divisors of M3 by [8, Theorem 1.2].
Hence, we view the split contributions of the second type also as being supported over
Noether–Lefschetz loci. For the formula of Theorem 2, we divide the relation (16) by
N0(L). ut

5. Proof of Theorem 4

5.1. Overview

Let L ∈ 3 be an admissible class, and let M0,0(π3, L) be the π3-relative moduli space
of genus 0 stable maps,

φ : M0,0(π3, L)→M3.

Let XM be the universal 3-polarized K3 surface over M0,0(π3, L),

πM : XM→ M0,0(π3, L).

In Sections 2.1 and 2.2, we have constructed two divisor classes

L̂,L ∈ A1(XM,Q).

We define the κ classes with respect to L̂ by

κ̂[La;b] = πM∗(L̂
a
· c2(TπM)

b) ∈ Aa+2b−2(M0,0(π3, L),Q).

Since L̂ and L are equal on the fibers of πM, the difference L̂ − L is the pull-back17

of a divisor class in A1(M0,0(π3, L),Q). In fact, the difference is equal18 to

1
24 · (̂κ[L;1] − κ[L;1]) ∈ A1(M0,0(π3, L),Q).

Therefore,
L̂− 1

24 · κ̂[L;1] = L− 1
24 · κ[L;1] ∈ A1(XM,Q). (17)

17 We use here the vanishing H 1(X,OX) = 0 for K3 surfaces X and the base change theorem.
18 We keep the same notation for the pull-backs of the κ classes via the structure map φ. Also, we

identify A?(M0,0(π3, L),Q) as a subring of A?(X n

M
,Q) via πn∗

M
.
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Our strategy for proving Theorem 4 is to export the WDVV relation via the morphisms

M0,4
τ
←− M0,4(π3, L)

ε4
M
−→ X 4

M
.

We deduce the following identity from the exported relation:

ε4
M∗
τ ∗(WDVV) = 0 ∈ Ad(3)+3(X 4

M
,Q), (18)

where d(3) = 20− rank(3) is the dimension of M3.

Proposition 7. For L ∈ 3 admissible,

κ̂[L;1] ∩ [M0,0(π3, L)]
red
= κ[L;1] ∩ [M0,0(π3, L)]

red
∈ Ad(3)−1(M0,0(π3, L),Q).

Equation (17) and Proposition 7 together yield

L̂ ∩ [XM]
red
= L ∩ [XM]

red
∈ Ad(3)+1(XM,Q),

thus proving Theorem 4.
The exportation process is almost identical to the one in Section 4. However, since

we work over M0,0(π3, L) instead of M3, we do not require Proposition 4 (whose proof
uses Theorem 4).

5.2. Exportation

We briefly describe the exportation (18) of the WDVV relation with respect to the curve
class L. As in Section 4, the outcome of ε4

M∗
τ ∗(WDVV) consists of unsplit and split

contributions:

• For the unsplit contributions, the difference is that one should replace L by the corre-
sponding L̂. Moreover, since we do not push forward to X 4

3, there is no overall coeffi-
cient N0(L).

• For the split contributions corresponding to the admissible curve class distributions

L = L1 + L2,

one again replaces Li by the corresponding L̂i and removes the coefficient N0(Li). As
before, the terms are either supported over proper Noether–Lefschetz divisors of M3, or
multiplied by (the pull-back of) −λ.

We obtain the following analogue of Theorem 2.

Proposition 8. For admissible L ∈ 3, exportation of the WDVV relation yields(
L̂(1)L̂(2)L̂(3)1(34) + L̂(1)L̂(3)L̂(4)1(12) − L̂(1)L̂(2)L̂(3)1(24)

− L̂(1)L̂(2)L̂(4)1(13) + · · ·
)
∩ [X 4

M
]
red
= 0 ∈ Ad(3)+3(X 4

M
,Q), (19)

where the dots stand for (Gromov–Witten) tautological classes supported over proper
Noether–Lefschetz divisors of M3.

Here, the Gromov–Witten tautological classes on X n

M
are defined by replacing L by L̂ in

Section 0.3.
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5.3. Proof of Proposition 7

We distinguish two cases.

Case 〈L,L〉3 6= 0. First, we rewrite (17) as

κ̂[L;1] − κ[L;1] = 24 · (L̂− L) ∈ A1(XM,Q).

By the same argument, we also have

κ̂[L3;0] − κ[L3;0] = 3〈L,L〉3 · (L̂− L) ∈ A1(XM,Q).

By combining the above equations, we find

〈L,L〉3 · κ̂[L;1]−8 · κ̂[L3;0] = 〈L,L〉3 ·κ[L;1]−8 ·κ[L3;0] ∈ A1(M0,0(π3, L),Q). (20)

Next, we apply (19) with respect to L and insert 1(12)1(34) ∈ A4(X 4
M
,Q). The rela-

tion
1(12)1(34) ∩ ε

4
M∗
τ ∗(WDVV) = 0 ∈ Ad(3)−1(X 4

M
,Q)

pushes down via π4
M
: X 4

M
→ M0,0(π3, L) to yield

(2〈L,L〉3 · κ̂[L;1] − 2 · κ̂[L3;0]) ∩ [M0,0(π3, L)]
red

∈ φ∗NL1(M3,Q) ∩ [M0,0(π3, L)]
red. (21)

Since 〈L,L〉3 6= 0, a combination of (20) and (21) yields

κ̂[L;1] ∩ [M0,0(π3, L)]
red
∈ φ∗A1(M3,Q) ∩ [M0,0(π3, L)]

red.

In other words, there is a divisor class D ∈ A1(M3,Q) for which

κ̂[L;1] ∩ [M0,0(π3, L)]
red
= φ∗(D) ∩ [M0,0(π3, L)]

red
∈ Ad(3)−1(M0,0(π3, L),Q).

Then, by the projection formula, we find

φ∗(̂κ[L;1] ∩ [M0,0(π3, L)]
red) = N0(L) · κ[L;1] = N0(L) ·D ∈ A1(M3,Q).

Hence D = κ[L;1], which proves Proposition 7 in case 〈L,L〉3 6= 0.

Case 〈L,L〉3 = 0. Let H ∈ 3 be the quasi-polarization and let H ∈ A1(XM,Q) be the
pull-back of the class H ∈ A1(X3,Q). We define the κ classes

κ̂[H a1 ,La2 ;b] = πM∗(H
a1 · L̂a2 · c2(TπM)

b) ∈ Aa1+a2+2b−2(M0,0(π3, L),Q).

First, by the same argument used to prove (17), we have

κ̂[H,L2;0] − κ[H,L2;0] = 2〈H,L〉3 · (L̂− L) ∈ A1(XM,Q).
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By combining the above equation with (17), we find

〈H,L〉3 · κ̂[L;1] − 12 · κ̂[H,L2;0]

= 〈H,L〉3 · κ[L;1] − 12 · κ[H,L2;0] ∈ A1(M0,0(π3, L),Q). (22)

Next, we apply (19) with respect to L and insert H(1)H(2)1(34) ∈ A4(X 4
M
,Q). The

relation
H(1)H(2)1(34) ∩ ε

4
M∗
τ ∗(WDVV) = 0 ∈ Ad(3)−1(X 4

M
,Q)

pushes down via π4
M

to yield(
〈H,L〉23 · κ̂[L;1] − 2〈H,L〉3 · κ̂[H,L2;0]

)
∩ [M0,0(π3, L)]

red

∈ φ∗NL1(M3,Q) ∩ [M0,0(π3, L)]
red. (23)

Since 〈H,L〉3 6= 0 by the Hodge index theorem, a combination of (22) and (23)
yields

κ̂[L;1] ∩ [M0,0(π3, L)]
red
∈ φ∗A1(M3,Q) ∩ [M0,0(π3, L)]

red.

As in the previous case, we conclude

κ̂[L;1] ∩ [M0,0(π3, L)]
red
= κ[L;1] ∩ [M0,0(π3, L)]

red
∈ Ad(3)−1(M0,0(π3, L),Q).

The proof of Proposition 7 (and thus Theorem 4) is complete. ut

6. Exportation of Getzler’s relation

6.1. Exportation

Let L ∈ 3 be an admissible class satisfying 〈L,L〉3 ≥ 0. Consider the morphisms

M1,4
τ
←− M1,4(π3, L)

ε4
−→ X 4

3.

Following the notation of Section 0.4, we export here Getzler’s relation with respect to
the curve class L,

ε4
∗τ
∗(Getzler) = 0 ∈ A5(X 4

3,Q). (24)
We will compute ε4

∗τ
∗(Getzler) by applying the splitting axiom of Gromov–Witten theory

to the seven terms of Getzler’s relation (3). The splitting axiom requires a distribution of
the curve class to each vertex of each graph appearing in (3).

6.2. Curve class distributions

To export Getzler’s relation with respect to the curve class L, we will use the following
properties for the graphs which arise:

(i) Only distributions of admissible classes contribute.
(ii) A genus 1 vertex with valence19 2 or a genus 0 vertex with valence at least 4 must

carry a nonzero class.

19 The valence counts all incident half-edges (both from edges and markings).
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(iii) A genus 1 vertex with valence 1 cannot be adjacent to a genus 0 vertex with a nonzero
class.

(iv) A genus 1 vertex with valence 2 cannot be adjacent to two genus 0 vertices with
nonzero classes.

Property (i) is a consequence of Propositions 4–6. For (ii), the moduli of contracted 2-
pointed genus 1 curve produces a positive-dimensional fiber of the push-forward to X 4

3

(and similarly for contracted 4-point genus 0 curves). Properties (iii) and (iv) are con-
sequences of positive dimensional fibers of the push-forward to X 4

3 obtained from the
elliptic component. We leave the elementary details to the reader.

6.3. Getzler’s relation: unsplit contributions

We begin with the unsplit contributions. The strata appearing in Getzler’s relation are
ordered as in (3).

Stratum 1.

12



0

L 1

0


12N1(L) ·

(
L(1)1(12)1(34) + L(3)1(12)1(34) + L(1)1(13)1(24)

+ L(2)1(13)1(24) + L(1)1(14)1(23) + L(2)1(14)1(23)
)

+ 12N1(L) · Z(L)
(
1(12)1(34) +1(13)1(24) +1(14)1(23)

)
By property (ii), the genus 1 vertex must carry the curve class L in the unsplit case. The
contribution is then calculated using Propositions 4 and 6.

Stratum 2.

−4



0

0

L 1


−12N1(L) ·

(
L(1)1(234) + L(2)1(134) + L(3)1(124) + L(4)1(123)

+ L(1)1(123) + L(1)1(124) + L(1)1(134) + L(2)1(234)
)

− 12N1(L) · Z(L)
(
1(123) +1(124) +1(134) +1(234)

)
Again by property (ii), the genus 1 vertex must carry the curve class L in the unsplit case.
The contribution is then calculated using Propositions 4 and 6.
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Stratum 3. No contribution by properties (ii) and (iii).

Stratum 4.

6


L 0

0

1


N0(L) · λL(1)L(2)L(3)L(4)

The genus 0 vertex of valence 4 must carry the curve class L in the unsplit case. The
contracted genus 1 vertex contributes the virtual class

ε∗[M1,1(π3, 0)]vir
=

1
24 · λ ∈ A1(X 1

3,Q). (25)

The coefficient 6 together with the 4 graphs which occur cancel the 24 in the denominator
of (25). Proposition 4 is then applied to the genus 0 vertex of valence 4.

Stratum 5. No contribution by Property (ii) since there are two genus 0 vertices of va-
lence 4.

Stratum 6. 
L 0

0


1
2N0(L) · κ[L;1]L(1)L(2)L(3)L(4)

The genus 0 vertex of valence 4 must carry the curve class L in the unsplit case. Propo-
sition 4 is applied to the genus 0 vertex of valence 4. The self-edge of the contracted
genus 0 vertex yields a factor of c2(Tπ3). The contribution of the contracted genus 0
vertex is

1
2 · κ[L;1]

where the factor of 1
2 is included since the self-edge is not oriented.

Stratum 7. No contribution by Property (ii) since there are two genus 0 vertices of va-
lence 4.

We have already seen that λ is expressible in term of the Noether–Lefschetz divisors
of M3. Since we will later express Z(L) and κ[L;1] in terms of the Noether–Lefschetz
divisors of M3, the principal terms in the above analysis only occur in Strata 1 and 2. The
principal parts of Strata 1 and 2 (divided20 by 12N1(L)) exactly constitute the principal
part of Theorem 3.

20 The admissibility of L together with condition 〈L,L〉3 ≥ 0 implies N1(L) 6= 0 by Proposi-
tion 2.
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6.4. Getzler’s relation: split contributions

The split contributions are obtained from non-trivial curve class distributions to the ver-
tices. By property (i), we need only consider distributions of admissible classes.

Case A. The class L is divided into two nonzero parts,

L = L1 + L2.

Let 3̃ be the saturation of the span of L1, L2, and 3.

• If rank(3̃) = rank(3)+ 1, the contributions are pushed forward from X 4
3̃

via the map
X 4
3̃
→ X 4

3.

• If 3̃ = 3, the contributions are multiplied by −λ.

With the above rules, the formulas below address both the rank(3̃) = rank(3) + 1 and
the rank(3̃) = rank(3) cases simultaneously.

Stratum 1.

12



0

L1 1

L2 0


12N1(L1)N0(L2)〈L1, L2〉3̃ ·

(
L2,(1)L2,(2)1(34) + L2,(3)L2,(4)1(12)

+ L2,(1)L2,(3)1(24) + L2,(2)L2,(4)1(13) + L2,(1)L2,(4)1(23) + L2,(2)L2,(3)1(14)
)

By property (ii), the genus 1 vertex must carry a nonzero curve class. The contribution is
calculated using Propositions 4 and 6.

Stratum 2.

−4



0

L2 0

L1 1


−4N1(L1)N0(L2)〈L1, L2〉3̃ ·

(
L2,(1)L2,(2)1(23) + L2,(1)L2,(2)1(24) + L2,(1)L2,(3)1(34)

+ L2,(1)L2,(2)1(13) + L2,(1)L2,(2)1(14) + L2,(2)L2,(3)1(34)

+ L2,(1)L2,(3)1(12) + L2,(1)L2,(3)1(14) + L2,(2)L2,(3)1(24)

+ L2,(1)L2,(4)1(12) + L2,(1)L2,(4)1(13) + L2,(2)L2,(4)1(23)
)
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−4



L2 0

0

L1 1


−12N1(L1)N0(L2) ·

(
L1,(1)L2,(2)L2,(3)L2,(4) + L1,(2)L2,(1)L2,(3)L2,(4)

+ L1,(3)L2,(1)L2,(2)L2,(4) + L1,(4)L2,(1)L2,(2)L2,(3)
)

−4N1(L1)N0(L2) ·
(
L1,(1)L2,(1)L2,(2)L2,(3) + L1,(1)L2,(1)L2,(2)L2,(4)

+ L1,(1)L2,(1)L2,(3)L2,(4) + L1,(2)L2,(1)L2,(2)L2,(3) + L1,(2)L2,(1)L2,(2)L2,(4)

+ L1,(2)L2,(2)L2,(3)L2,(4) + L1,(3)L2,(1)L2,(2)L2,(3) + L1,(3)L2,(1)L2,(3)L2,(4)

+ L1,(3)L2,(2)L2,(3)L2,(4) + L1,(4)L2,(1)L2,(2)L2,(4) + L1,(4)L2,(1)L2,(3)L2,(4)

+ L1,(4)L2,(2)L2,(3)L2,(4))− 12N1(L1)N0(L2) · Z(L1)
(
L2,(1)L2,(2)L2,(3)

+ L2,(1)L2,(2)L2,(4) + L2,(1)L2,(3)L2,(4) + L2,(2)L2,(3)L2,(4)
)

By property (ii), the genus 1 vertex must carry a nonzero curve class. There are two
possibilities for the distribution. Both contributions are calculated using Propositions 4
and 6.

Stratum 3. No contribution by properties (ii) and (iii).

Stratum 4.

6


L2 0

0

L1 1


24N1(L1)N0(L2) · L2,(1)L2,(2)L2,(3)L2,(4)

By property (iii), the genus 0 vertex in the middle cannot carry a nonzero curve class. The
contribution is calculated using Propositions 4 and 5.

Stratum 5. 
L2 0

L1 0


1
2N0(L1)N0(L2)〈L1, L1〉3̃〈L1, L2〉3̃ ·

(
L1,(1)L2,(2)L2,(3)L2,(4)+L1,(2)L2,(1)L2,(3)L2,(4)

+ L1,(3)L2,(1)L2,(2)L2,(4) + L1,(4)L2,(1)L2,(2)L2,(3)
)
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The factor 1
2 〈L1, L1〉3̃ is obtained from the self-edge. The contribution is calculated using

Proposition 4.

Stratum 6. 
L2 0

L1 0


1
2N0(L1)N0(L2)〈L1, L1〉3̃〈L1, L2〉3̃ · L2,(1)L2,(2)L2,(3)L2,(4)

The factor 1
2 〈L1, L1〉3̃ is obtained from the self-edge. The contribution is calculated using

Proposition 4.

Stratum 7.

−2


L2 0

L1 0


−N0(L1)N0(L2)〈L1, L2〉

2
3̃
·
(
L1,(1)L1,(2)L2,(3)L2,(4) + L2,(1)L2,(2)L1,(3)L1,(4)

+ L1,(1)L1,(3)L2,(2)L2,(4) + L2,(1)L2,(3)L1,(2)L1,(4)

+ L1,(1)L1,(4)L2,(2)L2,(3) + L2,(1)L2,(4)L1,(2)L1,(3)
)

The factor −2
( 1

2 〈L1, L2〉
2
3̃

)
is obtained from two middle edges (the 1

2 comes from the
symmetry of the graph). The contribution is calculated using Proposition 4.

Case B. The class L is divided into three nonzero parts,

L = L1 + L2 + L3.

Let 3̃ be the saturation of the span of L1, L2, L3, and 3. By properties (ii)–(iv), only
Stratum 2 contributes.

• If rank(3̃) = rank(3)+ 2, the contributions are pushed forward from X 4
3̃

via the map
X 4
3̃
→ X 4

3.
• If rank(3̃) = rank(3)+ 1, the contributions are pushed forward from X 4

3̃
via the map

X 4
3̃
→ X 4

3 and multiplied by −λ.

• If 3̃ = 3, the contributions are multiplied by (−λ)2.

With the above rules, the formula below addresses all three cases

rank(3̃) = rank(3)+ 2, rank(3̃) = rank(3)+ 1, rank(3̃) = rank(3)

simultaneously.
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Stratum 2.

−4



L3 0

L2 0

L1 1


−4N1(L1)N0(L2)N0(L3)〈L1, L2〉3̃〈L2, L3〉3̃ ·

(
L2,(1)L3,(2)L3,(3) + L2,(1)L3,(2)L3,(4)

+ L2,(1)L3,(3)L3,(4) + L2,(2)L3,(1)L3,(3) + L2,(2)L3,(1)L3,(4) + L2,(2)L3,(3)L3,(4)

+ L2,(3)L3,(1)L3,(2) + L2,(3)L3,(1)L3,(4) + L2,(3)L3,(2)L3,(4)

+ L2,(4)L3,(1)L3,(2) + L2,(4)L3,(1)L3,(3) + L2,(4)L3,(2)L3,(3)
)

The contribution is calculated using Propositions 4 and 6.

6.5. Proof of Theorem 3

The complete exported relation (24) is obtained by adding all the unsplit contributions
of Section 6.3 to all the split contributions of Section 6.4. Using the Noether–Lefschetz
support21 of

λ, κ[L;1], Z(L)

the only principal contributions are unsplit and obtained from Strata 1 and 2. For the
formula of Theorem 3, we normalize the relation by dividing by 12N1(L). ut

6.6. Higher genus relations

In genus 2, there is a basic relation among tautological classes in codimension 2 on M2,3
(see [4]). However, to export in genus 2, we would first have to prove genus 2 analogues
of the push-forward results in genus 0 and 1 of Section 3. To build a theory which allows
the exportation of all the known tautological relations22 on the moduli space of curves
to the moduli space of K3 surfaces is an interesting direction of research. Fortunately, to
prove the Noether–Lefschetz generation of Theorem 1, only the relations in genus 0 and 1
are required.

7. Noether–Lefschetz generation

7.1. Overview

We present here the proof of Theorem 1: the strict tautological ring is generated by
Noether–Lefschetz loci,

NL?(M3) = R?(M3).

21 To be proven in Section 7.2.
22 For a survey of Pixton’s relations, see [25].
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We will use the exported WDVV relation (†) of Theorem 2, the exported Getzler’s rela-
tion (‡) of Theorem 3, the diagonal decomposition (‡′) of Corollary 1, and an induction
on codimension.

For (‡), we will require not only the principal terms which appear in the statement of
Theorem 3, but the entire formula proven in Section 6. In particular, for (‡) we will not
divide by the factor 12N1(L).

7.2. Codimension 1

The base of the induction on codimension consists of all of the divisorial κ classes:

κ[L3;0], κ[L;1], κ[L2
1,L2;0], κ[L1,L2,L3;0] ∈ R1(M3), (26)

for L,L1, L2, L3 ∈ 3 admissible. Our first goal is to prove the divisorial κ classes (26)
are expressible in terms of Noether–Lefschetz divisors in M3. In addition, we will deter-
mine the divisorZ(L) defined in Proposition 6 for allL ∈ 3 admissible and 〈L,L〉3 ≥ 0.

Let L,L1, L2, L3 ∈ 3 be admissible, and let H ∈ 3 be the quasi-polarization with

〈H,H 〉3 = 2` > 0.

Case A: κ[L3;0], κ[L;1], and Z(L) for 〈L,L〉3 > 0.

•We apply (†) with respect to L and insert 1(12)1(34) ∈ R4(X 4
3). The relation

ε4
∗τ
∗(WDVV) ∪1(12)1(34) = 0 ∈ R9(X 4

3)

pushes down via π4
3 : X

4
3→M3 to yield

2〈L,L〉3 · κ[L;1] − 2 · κ[L3;0] ∈ NL1(M3). (27)

•We apply (‡) with respect to L and insert L(1)L(2)L(3)L(4) ∈ R4(X 4
3). The relation

ε4
∗τ
∗(Getzler) ∪ L(1)L(2)L(3)L(4) = 0 ∈ R9(X 4

3)

pushes down via π4
3 to yield

72N1(L)〈L,L〉3 · κ[L3;0] + 36N1(L)〈L,L〉
2
3 · Z(L)

− 48N1(L)〈L,L〉3 · κ[L3;0] +
1
2N0(L)〈L,L〉

4
3 · κ[L;1] ∈ NL1(M3).

The divisors Z(L) and κ[L;1] are obtained from the unsplit contributions of Strata 1, 2,
and 6. After combining terms, we find

24N1(L)·κ[L3;0]+
1
2N0(L)〈L,L〉

3
3·κ[L;1]+36N1(L)〈L,L〉3·Z(L) ∈ NL1(M3). (28)
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• We apply (‡) with respect to L and insert L(1)L(2)1(34) ∈ R4(X 4
3). After push-down

via π4
3 to M3, we obtain

288N1(L) · κ[L3;0] + 12N1(L)〈L,L〉3 · κ[L;1] + 48N1(L) · κ[L3;0]

+ 288N1(L)〈L,L〉3 · Z(L)+ 24N1(L)〈L,L〉3 · Z(L)

− 24N1(L)〈L,L〉3 · κ[L;1] − 24N1(L) · κ[L3;0] − 24N1(L) · κ[L3;0]

− 24N1(L)〈L,L〉3 · Z(L)+
1
2N0(L)〈L,L〉

3
3 · κ[L;1] ∈ NL1(M3).

After combining terms, we find

288N1(L) · κ[L3;0] −
(
12N1(L)〈L,L〉3 − 1/2N0(L)〈L,L〉

3
3

)
· κ[L;1]

+ 288N1(L)〈L,L〉3 · Z(L) ∈ NL1(M3). (29)

• We apply (‡) with respect to L and insert 1(12)1(34) ∈ R4(X 4
3). After push-down via

π4
3 to M3, we obtain

576N1(L) · κ[L;1] + 48N1(L) · κ[L;1] + 6912N1(L) · Z(L)+ 576N1(L) · Z(L)

− 48N1(L) · κ[L;1] − 48N1(L) · κ[L;1] − 1152N1(L) · Z(L)

+
1
2N0(L)〈L,L〉

2
3 · κ[L;1] ∈ NL1(M3).

After combining terms, we find(
528N1(L)+

1
2N0(L)〈L,L〉

2
3

)
· κ[L;1] + 6336N1(L) · Z(L) ∈ NL1(M3). (30)

The system of equations (27)–(30) yields the matrix
−2 2〈L,L〉3 0

24N1(L)
1
2N0(L)〈L,L〉

3
3 36N1(L)〈L,L〉3

288N1(L) −12N1(L)〈L,L〉3 +
1
2N0(L)〈L,L〉

3
3 288N1(L)〈L,L〉3

0 528N1(L)+
1
2N0(L)〈L,L〉

2
3 6336N1(L)

 . (31)

Since N0(L),N1(L) 6= 0, straightforward linear algebra23 shows the matrix (31) to have

23 One may even consider λ as a 4th variable in (27)–(30). For 3 = (2`) and L = H , the only λ
terms are obtained from the unsplit contribution of Stratum 4 to (‡). We find the matrix

−2 2(2`) 0 0
24N1(`)

1
2N0(`)(2`)3 36N1(`)(2`) N0(`)(2`)3

288N1(`) −12N1(`)(2`)+
1
2N0(`)(2`)3 288N1(`)(2`) N0(`)(2`)3

0 528N1(`)+
1
2N0(`)(2`)2 6336N1(`) N0(`)(2`)2


whose determinant is easily seen to be nonzero. In particular, we obtain a geometric proof of the
fact λ ∈ NL1(M2`). The determinant of the 4 × 4 matrix is likely to be nonzero for every 3 and
H (in which case additional λ terms appear). We plan to carry out a more detailed computation in
the future.
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maximal rank 3. We have therefore proven

κ[L3;0], κ[L;1], Z(L) ∈ NL1(M3)

and completed the analysis of Case A.

Case B: κ[H 2,L;0] for 〈L,L〉3 > 0. We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
3),

and push down via π3
3 to M3. Since κ[H ;1], Z(H) ∈ NL1(M3) by Case A, we find

2` · κ[L3;0] − 3〈L,L〉3 · κ[H 2,L;0] ∈ NL1(M3).

Since κ[L3;0] ∈ NL1(M3) by Case A, we have κ[H 2,L;0] ∈ NL1(M3). Case B is com-
plete.

Case C: κ[L3;0], κ[H 2,L;0], and κ[L;1] for 〈L,L〉3 < 0.

• We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
3), and push down via π3

3 to M3.
Since κ[H ;1], Z(H) ∈ NL1(M3) by Case A, we find

2` · κ[L3;0] − 3〈L,L〉3 · κ[H 2,L;0] ∈ NL1(M3). (32)

• We apply (‡′) with insertion H(1)L(2)L(3) ∈ R3(X 3
3), and push down via π3

3 to M3.
Since κ[H 3;0] ∈ NL1(M3) by Case A, we find

2` · κ[H,L2;0] − 2〈H,L〉3 · κ[H 2,L;0] ∈ NL1(M3). (33)

• We apply (†) with respect to L, insert H(1)H(2)L(3)L(4) ∈ R4(X 4
3), and push down

via π4
3 to M3. We find

〈H,L〉2 · κ[L3;0] + 〈L,L〉
2
· κ[H 2,L;0] − 2〈H,L〉〈L,L〉 · κ[H,L2;0] ∈ NL1(M3). (34)

• We apply (†) with respect to L, insert 1(12)1(34) ∈ R4(X 4
3), and push down via π4

3

to M3. We find
2〈L,L〉3 · κ[L;1] − 2 · κ[L3;0] ∈ NL1(M3). (35)

The system of equations (32)–(34) for κ[L3;0], κ[H,L2;0], κ[H 2,L;0] yields the matrix 2` 0 −3〈L,L〉3
0 2` −2〈H,L〉3

〈H,L〉23 −2〈H,L〉3〈L,L〉3 〈L,L〉23


with determinant

2`〈L,L〉3
(
2`〈L,L〉3 − 〈H,L〉23

)
> 0

by the Hodge index theorem applied to the second factor. Therefore,

κ[L3;0], κ[H,L2;0], κ[H 2,L;0] ∈ NL1(M3),

and by (35), we have κ[L;1] ∈ NL1(M3). Case C is complete.



34 Rahul Pandharipande, Qizheng Yin

Case D: κ[L3;0], κ[H 2,L;0], κ[L;1], and Z(L) for 〈L,L〉3 = 0.

• We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
3), and push down via π3

3 to M3.
Since κ[H ;1], Z(H) ∈ NL1(M3) by Case A, we find

2` · κ[L3;0] − 3〈L,L〉3 · κ[H 2,L;0] ∈ NL1(M3),

hence24 κ[L3;0] ∈ NL1(M3).

• We apply (‡′) with insertion H(1)L(2)L(3) ∈ R3(X 3
3), and push down via π3

3 to M3.
We find

2` · κ[H,L2;0] − 2〈H,L〉3 · κ[H 2,L;0] ∈ NL1(M3). (36)

•We apply (†) with respect to L, insert H(1)H(2)1(34) ∈ R4(X 4
3), and push down via π4

3

to M3. We find

〈H,L〉23 · κ[L;1] − 2〈H,L〉3 · κ[H,L2;0] ∈ NL1(M3).

Since 〈H,L〉3 6= 0 by the Hodge index theorem, we have

〈H,L〉3 · κ[L;1] − 2 · κ[H,L2;0] ∈ NL1(M3). (37)

• We apply (‡) with respect to L, insert H(1)H(2)H(3)L(4) ∈ R4(X 4
3), and push down

via π4
3 to M3. We find

36N1(L)〈H,L〉3 · κ[H 2,L;0] + 36N1(L)(2`) · κ[H,L2;0] + 36N1(L)(2`)〈H,L〉3 · Z(L)

− 36N1(L)〈H,L〉3 · κ[H 2,L;0] ∈ NL1(M3).

Since N1(L) 6= 0, we have

κ[H,L2;0] + 〈H,L〉3 · Z(L) ∈ NL1(M3). (38)

•We apply (‡) with respect to L, insert H(1)H(2)1(34) ∈ R4(X 4
3), and push down via π4

3

to M3. We find

288N1(L) · κ[H 2,L;0] + 12N1(L)(2`) · κ[L;1] + 48N1(L) · κ[H 2,L;0]

+ 288N1(L)(2`) · Z(L)+ 24N1(L)(2`) · Z(L)

− 24N1(L) · κ[H 2,L;0] − 24N1(L) · κ[H 2,L;0] − 24N1(L)(2`) · Z(L) ∈ NL1(M3).

After combining terms, we obtain

24 · κ[H 2,L;0] + 2` · κ[L;1] + 24(2`) · Z(L) ∈ NL1(M3). (39)

We multiply (39) by 〈H,L〉3, and make substitutions using (36)–(38), which yields

(12+ 2− 24)(2`) · κ[H,L2;0] ∈ NL1(M3).

24 A direct argument using elliptically fibered K3 surfaces shows κ
[L3;0] = 0 for 〈L,L〉3 = 0.
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Therefore, κ[H,L2;0] ∈ NL1(M3). Then, again by (36)–(38),

κ[H 2,L;0], κ[L;1], Z(L) ∈ NL1(M3).

Case D is complete.

Case E: κ[L1,L2,L3;0] for arbitrary L1, L2, L3 ∈ 3. We apply (‡′) with insertion
L1,(1)L2,(2)L3,(3) ∈ R3(X 3

3), and push down via π3
3 to M3. The result expresses

2` · κ[L1,L2,L3;0] in terms of Noether–Lefschetz divisors and κ divisors treated in the
previous cases. Therefore, κ[L1,L2,L3;0] ∈ NL1(M3). Case E is complete.

Cases A–E together cover all divisorial κ classes and prove the divisorial case of
Theorem 1.

Proposition 9. The strict tautological ring in codimension 1 is generated by Noether–
Lefschetz loci,

NL1(M3) = R1(M3).

In fact, by the result of [6], NL1(M3) generates all of A1(M3,Q) for rank(3) ≤ 17.
We have given a direct proof of Proposition 9 using exported relations which is valid for
every lattice polarization 3 without rank restriction. The same method will be used to
prove the full statement of Theorem 1.

7.3. Second Chern class

The next step is to eliminate the c2(Tπ3) index in the class κ
[L
a1
1 ,...,L

ak
k ;b]

and reduce to

the case κ
[L
a1
1 ,...,L

ak
k ;0]

. Our strategy is to express c2(Tπ3) ∈ R2(X3) in terms of simpler
strict tautological classes.

From now on, we will require only the decomposition (‡′).

•We apply (‡′) with insertion H(1)H(2)1(23) ∈ R4(X 3
3), and push down via π3

3 to M3.
As a result, we find

2` · κ[H 2;1] − κ[H 3;0]κ[H ;1] − 2 · κ[H 4;0] + 2 · κ[H 4;0] ∈ NL2(M3),

where we have used Proposition 9 for all the nonprincipal terms corresponding to larger
lattices. By Proposition 9 for 3, we have κ[H 3;0], κ[H ;1] ∈ NL1(M3). We conclude

κ[H 2;1] ∈ NL2(M3).

• We apply (‡′) with insertion 1(12) ∈ R2(X 3
3), and push forward to X3 via the third

projection pr(3) : X 3
3→ X3. We find

2` · c2(Tπ3) = 2 ·H2
+ 24 ·H2

− κ[H 2;1] − 2 ·H2
+ · · ·

= 24 ·H2
− κ[H 2;1] + · · · ∈ R2(X3),

where the dots stand for strict tautological classes supported over proper Noether–Lef-
schetz loci of M3.
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We have already proven κ[H 2;1] ∈ NL2(M3). Therefore, up to strict tautological
classes supported over proper Noether–Lefschetz loci of M3, we may replace c2(Tπ3)
by

24
2`
·H2
∈ R2(X3).

The replacement lowers the c2(Tπ3) index of κ classes. By induction, we need only prove
Theorem 1 for κ classes with trivial c2(Tπ3) index.

7.4. Proof of Theorem 1

The κ classes with trivial c2(Tπ3) index can be written as

κ[H a ,L1,...,Lk;0] ∈ Ra+k−2(M3),

where the Li ∈ 3 are admissible classes (not necessarily distinct) that are different from
the quasi-polarization H .

Codimension 2. In codimension 2, the complete list of κ classes (with trivial c2(Tπ3)
index) is

κ[H 4;0], κ[H 3,L;0], κ[H 2,L1,L2;0], κ[H,L1,L2,L3;0], κ[L1,L2,L3,L4;0] ∈ R2(M3).

• For κ[H 4;0], we apply (‡′) with insertion H2
(1)1(23) ∈ R4(X 3

3), and push down via π3
3

to M3. We find

2` · κ[H 2;1] − 24 · κ[H 4;0] − 2 · κ[H 4;0] + 2 · κ[H 4;0] + 2` · κ[H 2;1] ∈ NL2(M3),

where we have used Proposition 9 for all the non-principal terms corresponding to larger
lattices. Since κ[H 2;1] ∈ NL2(M3) by Section 7.3, we have κ[H 4;0] ∈ NL2(M3).

• For κ[H 3,L;0], we apply (‡′) with insertion H2
(1)H(2)L(3) ∈ R4(X 3

3), and push down
via π3

3 to M3. We find

2` · κ[H 3,L;0] − 〈H,L〉3 · κ[H 4;0] − 2 · κ[H 3;0]κ[H 2,L;0] + 2` · κ[H 3,L;0] ∈ NL2(M3),

hence κ[H 3,L;0] ∈ NL2(M3).

• For κ[H 2,L1,L2;0], we apply (‡′) with insertion H2
(1)L1,(2)L2,(3) ∈ R4(X 3

3), and push
down via π3

3 to M3. We find

2` · κ[H 2,L1,L2;0] − 〈L1, L2〉3 · κ[H 4;0]

− 2 · κ[H 2,L1;0]κ[H 2,L2;0] + 2` · κ[H 2,L1,L2;0] ∈ NL2(M3),

hence κ[H 2,L1,L2;0] ∈ NL2(M3).
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• For κ[H,L1,L2,L3;0], we apply (‡′) with insertion H(1)L1,(1)L2,(2)L3,(3) ∈ R4(X 3
3), and

push down via π3
3 to M3. We find

2` · κ[H,L1,L2,L3;0] − 〈L2, L3〉3 · κ[H 3,L1;0] − κ[H 2,L2;0]κ[H,L1,L3;0]

− κ[H 2,L3;0]κ[H,L1,L2;0] + 〈H,L1〉3 · κ[H 2,L2,L3;0] ∈ NL2(M3),

hence κ[H,L1,L2,L3;0] ∈ NL2(M3).

• For κ[L1,L2,L3,L4;0], we apply (‡′) with insertion L1,(1)L2,(1)L3,(2)L4,(3) ∈ R4(X 3
3), and

push down via π3
3 to M3. We find

2` · κ[L1,L2,L3,L4;0] − 〈L3, L4〉3 · κ[H 2,L1,L2;0] − κ[H 2,L3;0]κ[L1,L2,L4;0]

− κ[H 2,L4;0]κ[L1,L2,L3;0] + 〈L1, L2〉3 · κ[H 2,L3,L4;0] ∈ NL2(M3),

hence κ[L1,L2,L3,L4;0] ∈ NL2(M3).

Codimension ≥ 3. Our strategy in codimension c ≥ 3 involves an induction on codi-
mension together with a second induction on the H index a of the κ class

κ[H a ,L1,...,Lk;0] ∈ Ra+k−2(M3).

For the induction on c, we assume the Noether–Lefschetz generation for all lower codi-
mensions. The base case is Proposition 9. For the induction on a, we assume the Noether–
Lefschetz generation for all higher H indices.

• For the base of the induction on H indices, consider the class κ[H a;0] ∈ Ra−2(M3).

We apply (‡′), insert

Ha−3
(1) H2

(2)H(3) ∈ Ra(X 3
3) with a − 2 = c,

and push down via π3
3 to M3. By induction on codimension, we obtain

2` · κ[H a;0] − 2 · κ[H 3;0]κ[H a−1;0] − κ[H 4;0]κ[H a−2;0]

+ 2` · κ[H a;0] + κ[H 5;0]κ[H a−3;0] ∈ NLa−2(M3). (40)

For both25 a = 5 and a > 5, the coefficient of κ[H a;0] is positive and the other terms in
(40) are products of κ classes of lower codimension. Therefore, by the induction hypoth-
esis,

κ[H a;0] ∈ NLa−2(M3).

• If a > 0 and k > 0, we apply (‡′), insert

Ha−1
(1) L1,(1) · · ·Lk−1,(1)H(2)Lk,(3) ∈ Ra+k(X 3

3) with a + k − 2 = c,

25 Since a − 2 = c ≥ 3, a ≥ 5.
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and push down via π3
3 to M3. By induction on codimension, we obtain

2` · κ[H a ,L1,...,Lk;0] − 〈H,Lk〉3 · κ[H a+1,L1,...,Lk−1;0]

− κ[H 3;0]κ[H a−1,L1,...,Lk−1,Lk;0] − κ[H 2,Lk;0]κ[H a ,L1,...,Lk−1;0]

+ κ[H 3,Lk;0]κ[H a−1,L1,...,Lk−1;0] ∈ NLa+k−2(M3). (41)

Since the last three terms of (41) are products of κ classes of lower codimension (since
a + k ≥ 5), using the induction hypothesis again yields

2` · κ[H a ,L1,...,Lk;0] − 〈H,Lk〉3 · κ[H a+1,L1,...,Lk−1;0] ∈ NLa+k−2(M3),

which allows us to raise the H index.

• If a = 0, we apply (‡′), insert

L1,(1) · · ·Lk−2,(1)Lk−1,(2)Lk,(3) ∈ Rk(X 3
3) with k − 2 = c,

and push down via π3
3 to M3. By induction on codimension, we obtain

2` · κ[L1,...,Lk;0] − 〈Lk−1, Lk〉3 · κ[H 2,L1,...,Lk−2;0]

− κ[H 2,Lk−1;0]κ[L1,...,Lk−2,Lk;0] − κ[H 2,Lk;0]κ[L1,...,Lk−2,Lk−1;0]

+ κ[H 2,Lk−1,Lk;0]κ[L1,...,Lk−2;0] ∈ NLk−2(M3). (42)

Since the last three terms of (42) are products of κ classes of lower codimension (since
k ≥ 5), using the induction hypothesis again yields

2` · κ[L1,...,Lk;0] − 〈Lk−1, Lk〉3 · κ[H 2,L1,...,Lk−2;0] ∈ NLk−2(M3),

which allows us to raise the H index.
The induction argument on codimension and H index is complete. The Noether–Lef-

schetz generation of Theorem 1 is proven. ut
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