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Abstract. The purpose of this paper is to study the cohomology rings of universal com-
pactified Jacobians. Over the moduli space Mg of nonsingular curves, we show that the
cohomology ring of the universal Jacobian is independent of the degree. Over the moduli
space Mg,n of Deligne–Mumford stable marked curves with n ≥ 1, on the one hand we show
that the cohomology ring of a universal fine compactified Jacobian is sensitive to the choice
of a nondegenerate stability condition which answers a question of Pandharipande; on the
other hand, we prove that the cohomology ring admits a degeneration via the perverse filtra-
tion which is independent of the (nondegenerate) stability condition. The latter defines the
intrinsic cohomology ring of the universal compactified Jacobian which only relies on g, n.

Our main tools include the support theorems, the recently developed Fourier theory for
dualizable abelian fibrations, and the universal double ramification cycle relations associated
with the universal Picard stack.
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0. Introduction

0.1. Overview. Throughout, we work over the complex numbers C.
The Jacobian variety associated with a nonsingular projective curve is a fundamental geo-

metric object. Universally, we can consider the relative Jacobian over the moduli space Mg

of nonsingular genus g curves. The purpose of this paper is to systematically study the coho-
mology of the universal Jacobian over Mg and its extensions over the moduli space Mg,n of
stable marked curves.
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Two subtle points arise along this path.
First, for different choices of the degree of the line bundles, the corresponding universal

Jacobians are generally not isomorphic (nor birational); see [11, Theorem 1.7]. The degree 0
universal Jacobian is naturally an abelian scheme, and the degree g − 1 universal Jacobian
admits a natural geometric theta divisor via the Abel–Jacobi map. Hence, there is no a priori
reason to prefer one degree over another. Our first result (Theorem 0.1) resolves this by
showing that the cohomology rings of the universal Jacobians, for any degree, are isomorphic.
This reduces the cohomological study of the Jacobian of any degree to the degree 0 case.

Second, when working over the moduli space of stable curves, the universal Jacobian ad-
mits compactifications known as universal fine compactified Jacobians; the geometry of a fine
compactified Jacobian depends on the choice of a stability condition. As we will show in
Theorem 0.6, the cohomology ring of a fine compactified Jacobian also depends on the chosen
stability condition. We will demonstrate in Theorem 0.7 that, although these cohomology
rings may differ, they admit a common degeneration. This degeneration is constructed using
the perverse filtration, and should be viewed as “the intrinsic cohomology ring” of the com-
pactified Jacobian over the moduli space of stable curves, which does not rely on the stability
condition.

We note that the perverse filtration has played a key role in the study of degenerations of
Jacobians of curves. For example, the perverse filtration associated with the Hitchin system
detects the weight filtration of the character variety via the (now proven) P = W conjecture
in non-abelian Hodge theory [13, 34, 25, 35]; the perverse filtration of a compactified Jacobian
calculates the Gopakumar–Vafa invariants associated with a (possibly singular) curve [37],
and is closely related to knot invariants [48, 38, 43]. In this paper, the natural appearance of
the perverse filtration is due to its compatibility with the Fourier transform developed in [35].

0.2. Jacobians. Let Mg be the moduli space of nonsingular projective irreducible curves of
genus g. The degree d universal Jacobian Jd

g parameterizes pairs

(Cb, L), [Cb] ∈Mg, L ∈ Picd(Cb);

it admits a natural morphism

πd : Jd
g →Mg, (Cb, L) 7→ [Cb]

which is smooth and proper. As we mentioned earlier, the geometry of Jd
g is sensitive to d.

We consider the singular cohomology H∗(Jd
g ,Q), which is naturally a graded algebra over

H∗(Mg,Q) via pullback and cup-product. Our first result shows that the cohomology of Jd
g

is independent of d.

Theorem 0.1. For integers d, d′, there is an isomorphism

H∗(Jd
g ,Q) ≃ H∗(Jd′

g ,Q)

of graded H∗(Mg,Q)-algebras.
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We refer to Theorem 1.7 and Corollary 1.8 for a precise stronger statement. In fact, the
cohomology H∗(Jd

g ,Q) is naturally bigraded with the second grading given by a splitting of the
Leray filtration associated with πd : Jd

g →Mg; the isomorphism in Theorem 0.1 is bigraded.

Remark 0.2. More generally, if we consider the universal Jacobian over the moduli spaceMg,n

of curves with n markings, the universal curve over Mg,n then admits a section if n ≥ 1. In
particular, in this case all the universal Jacobians of different degrees are identified via the
section. Therefore Theorem 0.1 is nontrivial only when n = 0.

0.3. Compactified Jacobians. We consider a partial compactification of Mg,

Mg ⊂M
int
g ⊂Mg,

where Mint
g is the moduli space of integral stable curves. For any degree d, the universal

Jacobian πd : Jd
g →Mg admits a natural extension

Jd
g ⊂ J

int,d
g .

Here J int,d
g is the degree d universal compactified Jacobian parameterizing pairs (Cb, F ) with

[Cb] ∈M
int
g an integral stable curve and F a (generically) rank 1 torsion-free sheaf on Cb

satisfying
χ(F ) = d+ 1− g.

The universal compactified Jacobian admits a natural proper morphism

πd : J int,d
g →Mint

g , (Cb, F ) 7→ [Cb]

extending the smooth morphism πd : Jd
g →Mg. For a singular nodal curve

[Cb] ∈M
int
g \Mg,

the fiber π−1
d ([Cb]) is the compactified Jacobian associated with the curve Cb, which is irre-

ducible and contains the Jacobian of Cb (parameterizing line bundles) as a Zariski dense open
subset.

The map πd : J int,d
g →Mint

g endows the cohomology H∗(J int,d
g ,Q) with an extra structure

— the perverse filtration [10]:

(1) P0H
∗(J int,d

g ,Q) ⊂ P1H
∗(J int,d

g ,Q) ⊂ · · · ⊂ P2gH
∗(J int,d

g ,Q) = H∗(J int,d
g ,Q).

The following theorem was proven in [35], which shows that the degeneration of the cohomology
H∗(J int,d

g ,Q) via the perverse filtration is a bigraded H∗(Mint
g ,Q)-algebra.

Theorem 0.3 ([35]). The perverse filtration (1) is multiplicative with respect to the cup-
product, i.e., for integers k, l we have

∪ : PkH
∗(J int,d

g ,Q)⊗ PlH
∗(J int,d

g ,Q)→ Pk+lH
∗(J int,d

g ,Q).
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In particular, the associated graded

Hint,d
g :=

⊕
k,m

GrP
k H

m(J int,d
g ,Q)

is a bigraded H∗(Mint
g ,Q)-algebra induced by the cup-product.

By definition, any element in Hm(Mint
g ,Q) has bigrading (0,m). Clearly, Hint,d

g is iso-
morphic to H∗(J int,d

g ,Q) as Q-vector spaces, but the ring structures may be different. The
following result shows the d-independence of the algebra Hint,d

g .

Theorem 0.4. For integers d, d′, there is an isomorphism

Hint,d
g ≃ Hint,d′

g

of bigraded H∗(Mint
g ,Q)-algebras.

We in fact prove a stronger statement concerning a family of integral locally planar curves;
see Theorem 2.6 and Corollary 2.7. This recovers Theorem 0.4 immediately since nodal sin-
gularities are planar.

We can also consider the universal compactified Jacobian over the locus of integral curves
in Mg,n; but as in Remark 0.2, there are obvious isomorphisms between the compactified
Jacobians of various degrees as long as n ≥ 1.

Remark 0.5. It is natural to ask if there is an isomorphism

H∗(J int,d
g ,Q) ≃ H∗(J int,d′

g ,Q)

of graded H∗(Mint
g ,Q)-algebras without passing to the associated graded. In view of Theo-

rem 0.6 below, we expect that the answer is negative.

0.4. Fine compactified Jacobians. Next, we consider the moduli space Mg,n of stable
curves with n markings. In order to further extend the compactified Jacobians to the locus
of reducible curves, stability conditions are needed. In this paper we work with the stability
conditions introduced by Kass–Pagani [27], and independently by Melo [39].

Roughly, a stability condition in the sense of [27] is an assignment of a rational number to
every irreducible component of every stable marked curve

(Cb, x1, · · · , xn) ∈Mg,n,

satisfying certain compatibility conditions. When we fix the degree d, the space of stability
conditions has a wall-and-chamber structure. The universal fine compactified Jacobian for
a given stability condition is the moduli space parameterizing rank 1 torsion-free sheaves on
stable marked curves which satisfy the stability inequality. We denote it by Jd,ϕ

g,n to indicate its
dependence on the genus g, the number of markings n, the degree of the torsion-free sheaves
d, and the stability condition ϕ. For a nondegenerate stability condition ϕ, i.e., there are
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no strictly semistable sheaves, the universal fine compactified Jacobian J
d,ϕ
g,n is a nonsingular

proper Deligne–Mumford stack which contains the universal compactified Jacobian of integral
curves as a Zariski dense open subset.

The following shows that the cohomology ring of Jd,ϕ
g,n depends on the stability condition ϕ;

this answers a question of Pandharipande [51, Question A].

Theorem 0.6. For g ≥ 4 and any integers d, d′, there exist nondegenerate stability condi-
tions ϕ, ϕ′ of degrees d, d′ respectively such that

H∗(Jd,ϕ
g,1 ,Q) ̸≃ H∗(Jd′,ϕ′

g,1 ,Q)

as graded H∗(Mg,1,Q)-algebras.

On the other hand, we may consider the perverse filtration P•H
∗(Jd,ϕ

g,n,Q) associated with
the natural proper morphism

πd : Jd,ϕ
g,n →Mg,n

and the associated graded
Hd,ϕ

g,n :=
⊕
k,m

GrP
k H

m(Jd,ϕ
g,n,Q).

Theorem 0.7. Assume that ϕ, ϕ′ are nondegenerate stability conditions of degrees d, d′ re-
spectively, and that n ≥ 1. We have the following.

(i) The associated graded Hd,ϕ
g,n is a bigraded algebra over H∗(Mg,n,Q) with elements in

Hm(Mg,n,Q) of bigrading (0,m).
(ii) There is an isomorphism

Hd,ϕ
g,n ≃ Hd′,ϕ′

g,n

of bigraded H∗(Mg,n,Q)-algebras.

Theorems 0.6 and 0.7 suggest that the induced cup-product on the associated graded with
respect to the perverse filtration is “intrinsic” to the moduli space of stable marked curves.

Remark 0.8. When n = 0, nondegenerate stability conditions of degree d exist if and only if

(2) gcd(d+ 1− g, 2g − 2) = 1;

see [27, Remark 5.12]. Thus, the best we can expect is that both statements of Theorem 0.7
hold for those values of d satisfying the numerical condition (2). Our proof does not cover this
case due to the absence of a nondegenerate stability condition of degree 0.

We note that the proof of Theorem 0.7 also yields a parallel result for fine compactified
Jacobians of a reduced locally planar curve which may be of independent interest. To state
the result, now we assume that C0 is a reduced locally planar curve of arithmetic genus g.
For any choice of a nondegenerate stability condition ϕ, i.e., there are no strictly semistable
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sheaves, Migliorini–Shende–Viviani [44] introduced a perverse filtration on the cohomology of
the corresponding fine compactified Jacobian

(3) P0H
∗(Jϕ

C0 ,Q) ⊂ P1H
∗(Jϕ

C0 ,Q) ⊂ · · · ⊂ P2gH
∗(Jϕ

C0 ,Q) = H∗(Jϕ
C0 ,Q).

Similarly, we consider the associated graded

Hϕ
C0

:=
⊕
k,m

GrP
k H

m(Jϕ
C0 ,Q).

Theorem 0.9. Assume that ϕ, ϕ′ are nondegenerate stability conditions for the reduced locally
planar curve C0. We have the following.

(i) The associated graded Hϕ
C0

is a bigraded Q-algebra.
(ii) There is an isomorphism

Hϕ
C0
≃ Hϕ′

C0

of bigraded Q-algebras.

Theorems 0.7 and 0.9 are deduced from a more general sheaf-theoretic statement for relative
fine compactified Jacobians associated with locally planar reduced curves; see Theorem 3.13.

0.5. Ideas of the proofs. The key idea in the proofs of Theorems 0.1, 0.4, 0.7, and 0.9 is
the observation that the Fourier transform controls the cup product. For example, to show
the d-independence of the cohomology ring of the universal Jacobians Jd

g overMg, we establish
a Fourier transform connecting Jd

g with J0
g , which allows us to relate the cup-product for Jd

g

to the convolution product for J0
g :

(4) (H∗(Jd
g ,Q),∪)←− Fourier Transform −→ (H∗(J0

g ,Q), ∗d).

Then the d-independence of the cup product is reduced to the d-independence of the convo-
lution product, which is more manageable. This proves Theorem 0.1.

To carry out this idea when there are singular curves, we apply the Fourier transform
induced by the sheaves constructed by Arinkin [3] and Melo–Rapagnetta–Viviani [41] for the
Fourier–Mukai duality. By the recent work of Maulik–Shen–Yin [35], the Fourier transform
interacts naturally with the (multiplicative) perverse filtration. Furthermore, we show in this
paper that the Fourier transform and the induced cup product on the associated graded (with
respect to the perverse filtration) provides an analogue of (4) when there are singular curves.
For example, in the setting of Theorem 0.7 we have

(5)
(
GrP

• H
∗(Jd,ϕ

g,n,Q),∪
)
←− Fourier Transform −→

(
GrP

• H
∗(J0,ϕ0

g,n ,Q), ∗ϕred

)
where ϕ0 is a fixed nondegenerate stability condition and ∗ϕred is the reduced convolution
product — the natural convolution product on the associated graded. Again, we complete the
proof of Theorem 0.7 by showing that the reduced convolution product on the right-hand side
of (5), which a priori relies on ϕ, is in fact independent of d, ϕ.



THE INTRINSIC COHOMOLOGY RING OF THE UNIVERSAL COMPACTIFIED JACOBIAN 7

From the perspective of the Fourier transform, the induced cup product on the associated
graded with respect to the perverse filtration is a more natural ring structure on the cohomol-
ogy group of the universal compactified Jacobian. We view this as the intrinsic cohomology
ring of the universal compactified Jacobian; this ring is defined via a choice of compactifica-
tion, but is eventually independent of the compactification. It is interesting to explore if the
intrinsic cohomology ring can be realized geometrically, i.e., as (part of) the cohomology ring
of some space related to the universal Jacobian.

On the other hand, we prove in Theorem 0.6 that the actual ring structure of H∗(Jd,ϕ
g,n,Q)

is very sensitive to the choice of nondegenerate stability condition ϕ; this can already be seen
by considering monomials of divisors on fine compactified Jacobians.

0.6. Relations to other work and further discussions. We conclude the introduction by
discussing some relations to other work.

0.6.1. Compactified Jacobians. There are other versions of (relative) compactified Jacobians,
which generalize the ones given by the polarization stability condition considered in this paper;
we refer to [49, 23] and the references therein for more details. We expect that our theory via
the Fourier–Mukai duality and the support theorem can also be applied to these versions.

0.6.2. Enhanced χ-independence. The relative Jacobian (of a given degree) of the moduli space
of nonsingular degree d planar curves admits a natural compactification by Le Potier [31].
The Le Potier moduli space Md,χ parameterizes semistable 1-dimensional sheaves on P2 with
Fitting support of degree d and Euler characteristic χ. We assume (d, χ) = 1 so that the
moduli spaces are nonsingular; a story parallel to the case of stable curves is expected to hold
for this compactification:

(i) The cohomology group H∗(Md,χ,Q) is known to be χ-independent [12, 33].
(ii) The ring structure of H∗(Md,χ,Q) is highly sensitive to χ [32].
(iii) It was conjectured by Kononov–Moreira–Lim–Pi that the associated graded

GrP
• H

∗(Md,χ,Q)

with respect to the perverse filtration (defined by the support map Md,χ → |OP2(d)|)
is naturally a Q-algebra induced by the cup-product, which is further χ-independent;
this was confirmed for d = 5 [28].

Since the Le Potier compactification of the relative Jacobian of planar curves contains fibers
which are not given by fine compactified Jacobians of reduced curves, our theory (which relies
on the Fourier–Mukai duality) cannot be applied to prove the conjecture (iii). On the other
hand, the recently discovered P = C phenomenon for Md,χ [29, 28] suggests that a version of
the Arinkin sheaf may be extended over the non-reduced planar curves.
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0.6.3. Lagrangian fibrations. In general, the induced cup product — assuming it is well defined
— on the associated graded with respect to the perverse filtration does not yield the same ring
as the ordinary cohomology ring (e.g. one can compare Theorem 0.6 with Theorem 0.7). On
the other hand, it was conjectured (c.f. [5, Section 3]) that the perverse filtration associated
with a Lagrangian fibration f : M → B admits a multiplicative splitting (even motivically);
in particular, one expects an isomorphism

(6)
(
GrP

• H
∗(M,Q),∪

)
≃ (H∗(M,Q),∪) .

For Lagrangian fibrations associated with compact hyper-Kähler varieties, this was proven
in [53] using the Hodge decomposition and the Looijenga–Lunts–Verbitsky Lie algebra; for
the Hitchin system associated with GLn, this is a consequence of the P = W conjecture [13,
34, 25, 35].

The isomorphism (6) is further expected to hold sheaf-theoretically over B, and the discus-
sion above suggests that its obstruction is global. Hence, we expect that the “local” perverse
filtration (3) admits a multiplicative splitting. This, combined with Theorem 0.9, leads us to
conjecture the following.

Conjecture 0.10. Under the assumption of Theorem 0.9, for the nondegenerate stability
conditions ϕ, ϕ′, there is an isomorphism

H∗(Jϕ
C0 ,Q) ≃ H∗(Jϕ′

C0 ,Q)

of graded Q-algebras.

0.6.4. Intrinsic tautological ring. For fine compactified Jacobians Jd,ϕ
g,n over the moduli space

of stable curves, the universal family induces a natural notion of tautological subring

RH∗(Jd,ϕ
g,n) ⊂ H∗(Jd,ϕ

g,n,Q);

we refer to Section 4.2 and the references therein for details.
In analogy with the intrinsic cohomology ring, it is natural to take the associated graded

of the tautological ring with respect to the perverse filtration

(7) RHd,ϕ
g,n :=

⊕
k,m

GrP
k RH

m(Jd,ϕ
g,n) ⊂ Hd,ϕ

g,n.

Question 0.11. Does the isomorphism in Theorem 0.7(ii) respect the subring (7)? If so, can
we describe the structure of RHd,ϕ

g,n?
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1. Jacobians

This section focuses on nonsingular curves and their Jacobians. We consider Jacobians of all
degrees associated with a family of nonsingular curves, and show that their cohomology rings
are all isomorphic and hence independent of the degree; see Theorem 1.7 and Corollary 1.8
for precise statements. The proof closely follows the arguments of Beauville [8, 9].

1.1. Fourier transforms. Let C → B be a smooth projective family of irreducible curves of
genus g over a nonsingular irreducible quasiprojective base variety B. Later, B can also be
the moduli stack of nonsingular curves Mg; see Remark 1.9. For any integer d, let

πd : Jd
C → B

be the associated Jacobian family of degree d line bundles. Note that by [42], in general Jd
C is

a fine moduli space if and only if

gcd(d+ 1− g, 2g − 2) = 1.

To overcome this issue and to make use of the Poincaré line bundle, we follow the strategy
of [35] with simplifications in the nonsingular case; see Remark 1.1.

We choose a multisection

(8) D ⊂ C → B

finite and flat of degree r over B, whose existence is guaranteed by the quasiprojectivity of B
and by applying [14, Theorem 1.1]. By Bertini we may assume D to be nonsingular. For
any B-scheme T , a flat family of degree d line bundles

Fd
T ⇝ C ×B T

over T is said to be trivialized along the multisection D if there is a specified isomorphism

Norm(Fd
T |D×BT ) ≃ OT .

Here Norm : Pic(D ×B T ) → Pic(T ) is the norm map with respect to the finite and flat
morphism D ×B T → T ; see [55, Tag 0BD2]. Then, by considering families of line bundles
trivialized along D, we obtain a µr-gerbe

J d
C → Jd

C

equipped with a universal line bundle

(9) Fd ∈ Coh(C ×B J d
C)(1),

where Coh(C ×B J d
C)(1) is the isotypic category consisting of coherent sheaves on which the

action of µr is given by the character λ 7→ λ1; see [35, Section 4.2] for more details.
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Remark 1.1. A subtle difference between the trivialization process here and in [35, Section 4.2]
is the norm map versus pushing forward and taking the determinant. The norm map, being
a group homomorphism, has better functorial properties and results in a better-behaved uni-
versal line bundle (9). On the other hand, when dealing with rank 1 torsion-free sheaves we
do not have a norm map at hand, hence the treatment in [35, Section 4.2].

Throughout this section we set

J ∨
C := J 0

C , J∨
C := J0

C , π∨ := π0 : J∨
C → B

and let J ∨
C serve as the dual to J d

C for all d ∈ Z at once. By [35, Proposition 4.3], there exists
a Poincaré line bundle

Pd ∈ Coh(J ∨
C ×B J d

C)(d,0)

where the subscript (d, 0) specifies the character λ 7→ λd (resp. λ 7→ λ0) of the µr-action on
the J ∨

C (resp. J d
C) factor. The Poincaré line bundle induces a Fourier–Mukai transform

FMPd : DbCoh(J ∨
C )(−d)

≃−→ DbCoh(J d
C)(0)

between the corresponding isotypic bounded derived categories. Its inverse is given by the
Fourier–Mukai kernel

(Pd)−1 := (Pd)∨ ⊗ p∗
J d

C
ωJ d

C/B[g] ∈ DbCoh(J d
C ×B J ∨

C )(0,−d)

where pJ d
C

: J d
C ×B J ∨

C → J d
C is the projection and ωJ d

C/B is the relative canonical bundle
of J d

C → B.
The quasiprojectivity of B also ensures that the Deligne–Mumford stack J d

C is a quotient
stack. We can then make use of the Chow theory of quotient stacks [18, 19] to define the
Chow-theoretic Fourier transform. More precisely, we set

(10) Fd =
∑

i

Fd
i := ch(Pd) ∈ CH∗(J∨

C ×B Jd
C), Fd

i := chi(Pd) ∈ CHi(J∨
C ×B Jd

C)

where all Chow groups and rings are taken with Q-coefficients, and the Chow groups of
gerbes are identified with those of the coarse spaces. We view Fd as a mixed-degree Chow
correspondence between J∨

C and Jd
C , whose inverse is defined accordingly via Riemann–Roch:

(Fd)−1 =
∑

i

(Fd)−1
i ∈ CH∗(Jd

C ×B J∨
C), (Fd)−1

i ∈ CHi(Jd
C ×B J∨

C).

We have

(11) [∆Jd
C/B] = Fd ◦ (Fd)−1 ∈ CHg(Jd

C ×B Jd
C), [∆J∨

C/B] = (Fd)−1 ◦ Fd ∈ CHg(J∨
C ×B J∨

C)

where [∆Jd
C/B] (resp. [∆J∨

C/B]) is the relative diagonal class of πd (resp. π∨), and serves as the
identity element in the ring of Chow self-correspondences.

Two main ingredients in establishing Theorem 1.7 are the Fourier vanishing and the convo-
lution product, which will be addressed in the next two sections.
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1.2. Fourier vanishing. For the smooth family πd : Jd
C → B, the full Fourier vanishing (FV)

refers to the following statement.

Proposition 1.2 (Fourier vanishing). For all i+ j ̸= 2g, we have

(FV) (Fd)−1
j ◦ F

d
i = 0 ∈ CHi+j−g(J∨

C ×B J∨
C).

We first develop some consequences assuming (FV). We define, for 0 ≤ i ≤ 2g, Chow
self-correspondences

(12) pd
i := Fd

i ◦ (Fd)−1
2g−i ∈ CHg(Jd

C ×B Jd
C), p∨

i := (Fd)−1
i ◦ F

d
2g−i ∈ CHg(J∨

C ×B J∨
C).

For dimension reasons, the relative diagonal class [∆Jd
C/B] (resp. [∆J∨

C/B]) decomposes as

[∆Jd
C/B] = Fd ◦ (Fd)−1 =

2g∑
i=0

pd
i , [∆J∨

C/B] = (Fd)−1 ◦ Fd =
2g∑

i=0
p∨

i .

Applying (FV), we find immediately the relations

pd
i ◦ pd

j =

pd
i i = j

0 i ̸= j;

in other words, the Chow self-correspondences pd
i are pairwise orthogonal idempotents. We

also have the corresponding statement for the p∨
i which furthermore justifies the notation.

Proposition 1.3. For 0 ≤ i ≤ 2g, the Chow self-correspondences p∨
i in (12) are pairwise

orthogonal idempotents which are independent of the degree d.

The proof of Proposition 1.3 will be given at the end of this section, after the proof of (FV).
As our applications are mostly cohomological, we shall state some results in terms of con-

structible sheaves. We consider the derived pushforward of the constant sheaves

πd∗QJd
C
, π∨

∗ QJ∨
C
∈ Db

c(B)

in the bounded constructible category of B. Here and throughout, all pushforward, pullback,
and tensor functors are derived. The Fourier transform (10) and its inverse induce morphisms
of the (shifted) pushforward complexes via the cycle class maps

CHi(J∨
C ×B Jd

C)→ H2i(J∨
C ×B Jd

C ,Q) ≃ HomDb
c(B)(π∨

∗ QJ∨
C
, πd∗QJd

C
[2i− 2g]),

CHi(Jd
C ×B J∨

C)→ H2i(Jd
C ×B J∨

C ,Q) ≃ HomDb
c(B)(πd∗QJd

C
, π∨

∗ QJ∨
C

[2i− 2g]);

see [35, Section 2.2.2]. We thus obtain the sheaf-theoretic Fourier transform

(13) Fd =
∑

i

Fd
i : π∨

∗ QJ∨
C
→ πd∗QJd

C
[−], Fd

i : π∨
∗ QJ∨

C
→ πd∗QJd

C
[2i− 2g]

and its inverse

(Fd)−1 =
∑

i

(Fd)−1
i : πd∗QJd

C
→ π∨

∗ QJ∨
C

[−], (Fd)−1
i : πd∗QJd

C
→ π∨

∗ QJ∨
C

[2i− 2g].
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The Chow self-correspondences in (12) then induce (unshifted) endomorphisms

pd
i = Fd

i ◦ (Fd)−1
2g−i : πd∗QJd

C
→ πd∗QJd

C
,

p∨
i = (Fd)−1

i ◦ F
d
2g−i : π∨

∗ QJ∨
C
→ π∨

∗ QJ∨
C
.

By (FV) and Proposition 1.3, the sheaf-theoretic pd
i (resp. p∨

i ) are pairwise orthogonal idem-
potents satisfying

(14) idπd∗QJd
C

= Fd ◦ (Fd)−1 =
2g∑

i=0
pd

i , idπ∨
∗ QJ∨

C

= (Fd)−1 ◦ Fd =
2g∑

i=0
p∨

i .

This, together with the fact that the category Db
c(B) is pseudo-abelian [15, Lemma 2.24],

yields natural decompositions of the pushforward complexes πd∗QJd
C

and π∨
∗ QJ∨

C
.

Proposition 1.4 ([17, Remark 2 after Corollary 3.2] and [35, Corollaries 4.6 and 4.7]). The
identities (14) induce direct sum decompositions

πd∗QJd
C

=
2g⊕

i=0
(πd∗QJd

C
)(i), (πd∗QJd

C
)(i) := Im(pd

i ) ∈ Db
c(B),

π∨
∗ QJ∨

C
=

2g⊕
i=0

(π∨
∗ QJ∨

C
)(i), (π∨

∗ QJ∨
C

)(i) := Im(p∨
i ) ∈ Db

c(B).

Moreover, for 0 ≤ i ≤ 2g we have

(πd∗QJd
C

)(i) ≃ H i(πd∗QJd
C

)[−i], (π∨
∗ QJ∨

C
)(i) ≃ H i(π∨

∗ QJ∨
C

)[−i].

Note that the decomposition theorem [16] for smooth maps is in general not canonical;
the content of Proposition 1.4 is that the Fourier transform provides a natural choice for
both πd : Jd

C → B and π∨ : J∨
C → B. Taking global cohomology, we obtain direct sum

decompositions

H∗(Jd
C ,Q) =

2g⊕
i=0

H∗(Jd
C ,Q)(i), H∗(Jd

C ,Q)(i) := Im
(
pd

i : H∗(Jd
C ,Q)→ H∗(Jd

C ,Q)
)
,

H∗(J∨
C ,Q) =

2g⊕
i=0

H∗(J∨
C ,Q)(i), H∗(J∨

C ,Q)(i) := Im
(
p∨

i : H∗(J∨
C ,Q)→ H∗(J∨

C ,Q)
)
.

The proof of (FV), following Beauville, uses the “multiplication by N” map of the abelian
scheme J∨

C :

(15) [N ] : J∨
C → J∨

C , N ∈ Z.

It is ultimately reduced to the following lemma.

Lemma 1.5. For N ≡ 1 (mod r), we have

([N ]× idJd
C

)∗c1(Pd) = Nc1(Pd) ∈ CH1(J∨
C ×B Jd

C).



THE INTRINSIC COHOMOLOGY RING OF THE UNIVERSAL COMPACTIFIED JACOBIAN 13

Proof. First, for N ≡ 1 (mod r), we consider the N -th tensor power of the universal sheaf

(F∨)⊗N ∈ Coh(C ×B J ∨
C )(1).

Since the norm map is a group homomorphism, we obtain a trivialization along the multisec-
tion D in (8):

Norm
(
(F∨)⊗N |D×BJ ∨

C

)
≃
(
Norm(F∨|D×BJ ∨

C
)
)⊗N

≃ OJ ∨
C
.

This yields a morphism
[N ] : J ∨

C → J ∨
C

lifting (15) and under which we have

(idC × [N ])∗F∨ ≃ (F∨)⊗N ∈ Coh(C ×B J ∨
C ).

Next, we compare the pullback of the Poincaré line bundle ([N ]× idJ d
C

)∗Pd with (Pd)⊗N ,
both living in Coh(J ∨

C ×B J d
C)(d,0) for N ≡ 1 (mod r). In fact, for the purpose of the first

Chern class (with Q-coefficients) it suffices to perform a base change along D → B and
compare the pullback of the line bundles. In other words, up to replacing B by D, we may
assume that C → B also admits a section

(16) s : B → C.

The section yields another untwisted universal line bundle

F ′ ∈ Coh(C ×B J∨
C)

which is trivialized along both sJ∨
C

: J∨
C → C ×B J∨

C and the zero section 0C : C → C ×B J∨
C .

After the natural identification

Coh(C ×B J∨
C) ≃ Coh(C ×B J ∨

C )(0)

we have
F∨ ≃ F ′ ⊗ p∗

J ∨
C
L ∈ Coh(C ×B J ∨

C )(1),

where L ∈ Coh(J ∨
C )(1) is a line bundle and pJ ∨

C
: C ×B J ∨

C → J ∨
C is the projection. We then

switch back to the multisection D in (8) and find

Norm(F∨|D×BJ ∨
C

) ≃ Norm(F ′|D×BJ ∨
C

)⊗ L⊗r ≃ OJ ∨
C
.

Hence

(17) L⊗r ≃ Norm(F ′|D×BJ ∨
C

)∨ ∈ Coh(J ∨
C )(0).

The section in (16) also identifies Jd
C with J0

C . Let

P ′ ∈ Coh(J∨
C ×B Jd

C)
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denote the pullback of the normalized Poincaré line bundle on J∨
C×B J

0
C via this identification.

Then, by [35, Corollary 4.5], we have

(18) Pd ≃ P ′ ⊗ p∗
J ∨

C
L⊗d ∈ Coh(J ∨

C ×B J d
C)(d,0).

Applying ([N ]× idJ d
C

)∗ on both sides, we find

([N ]× idJ d
C

)∗Pd ≃ ([N ]× idJ d
C

)∗P ′ ⊗ p∗
J ∨

C
[N ]∗L⊗d

≃ (P ′)⊗N ⊗ p∗
J ∨

C
[N ]∗L⊗d ∈ Coh(J ∨

C ×B J d
C)(d,0)

where the second isomorphism follows from properties of the normalized Poincaré line bundle.
For comparison we also

(Pd)⊗N ≃ (P ′)⊗N ⊗ p∗
J ∨

C
(L⊗d)⊗N ∈ Coh(J ∨

C ×B J d
C)(d,0).

Therefore, to prove the lemma it suffices to show

(19) [N ]∗c1(L) = Nc1(L) ∈ CH1(J∨
C).

This is a consequence of (17): in fact, viewing L⊗r as an untwisted line bundle on the abelian
scheme π∨ : J∨

C → B, we know from (17) that L⊗r is fiberwise homologically trivial, and that
the pullback of L⊗r along the zero section 0 : B → J∨

C is trivial. Using the see-saw theorem[46,
II.8], this implies

[N ]∗L⊗r ≃ (L⊗r)⊗N ∈ Coh(J∨
C)

and hence
[N ]∗(rc1(L)) = Nrc1(L) ∈ CH1(J∨

C),
which gives (19) after dividing by r. □

Proof of Proposition 1.2. The second identity in (11) immediately implies for k ̸= 2g,∑
i+j=k

(Fd)−1
j ◦ F

d
i = 0 ∈ CHk−g(J∨

C ×B J∨
C).

We now apply ([N ]× idJ∨
C

)∗ to the identity above. For N ≡ 1 (mod r), we find

([N ]× idJ∨
C

)∗

 ∑
i+j=k

(Fd)−1
j ◦ F

d
i

 =
∑

i+j=k

(Fd)−1
j ◦ ([N ]× idJd

C
)∗chi(Pd)

=
∑

i+j=k

(Fd)−1
j ◦

([N ]× idJd
C

)∗c1(Pd)i

i!

=
∑

i+j=k

N i(Fd)−1
j ◦ F

d
i ,

where the last equality uses Lemma 1.5. Hence for k ̸= 2g, we have∑
i+j=k

N i(Fd)−1
j ◦ F

d
i = 0 ∈ CHk−g(J∨

C ×B J∨
C)
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for infinitely many integers N , which implies the vanishing of each individual term on the
left-hand side. □

Proof of Proposition 1.3. We have

[∆J∨
C/B] =

2g∑
i=0

p∨
i , ([N ]× idJ∨

C
)∗p∨

i = N2g−ip∨
i

where the second identity follows from the previous proof. By [17, Theorem 3.1], these iden-
tities already force the p∨

i to coincide with the unique pairwise orthogonal idempotents con-
structed by Deninger–Murre for the motivic decomposition of the abelian scheme J∨

C . □

1.3. Convolution. For the smooth family πd : Jd
C → B, the convolution product

∗d : DbCoh(J ∨
C )(−d) ×DbCoh(J ∨

C )(−d) → DbCoh(J ∨
C )(−d)

is by definition the Fourier dual to the usual tensor product on DbCoh(J d
C)(0), i.e.,

F ∗d G := FM(Pd)−1(FMPd(F )⊗ FMPd(G)), F,G ∈ DbCoh(J ∨
C )(−d).

In terms of Fourier–Mukai kernels, this corresponds to the convolution kernel

(20) Kd := (Pd)−1 ◦ O∆sm
J d

C
/B
◦ (Pd ⊠ Pd) ∈ DbCoh(J ∨

C ×B J ∨
C ×B J ∨

C )(d,d,−d).

Here O∆sm
J d

C
/B

is the structure sheaf of the µ×3
r -gerbe over the small relative diagonal

∆sm
Jd

C/B
⊂ Jd

C ×B Jd
C ×B Jd

C

which is the kernel for the tensor product on DbCoh(J d
C)(0), and again the subscript (d, d,−d)

specifies the characters of the three µr-actions.
Similarly, the Chow-theoretic convolution product is defined via the convolution class

(21) Cd := (Fd)−1 ◦ [∆sm
Jd

C/B
] ◦ (Fd × Fd) ∈ CH∗(J∨

C ×B J∨
C ×B J∨

C)

viewed as a correspondence between J∨
C×BJ

∨
C and the third factor J∨

C . Note that Cd is a priori
both of mixed degree and dependent on d; however, the following proposition shows otherwise.

Proposition 1.6. For any integer d, the convolution class Cd in (21) is represented by the
relative graph of the group law of the abelian scheme π∨ : J∨

C → B:

+ : J∨
C ×B J∨

C → J∨
C , G+ ⊂ J∨

C ×B J∨
C ×B J∨

C ,

i.e., we have
Cd = [G+] ∈ CHg(J∨

C ×B J∨
C ×B J∨

C).

In particular, Cd is pure of codimension g and is independent of d.
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Assuming Proposition 1.6, we may abbreviate Cd to C and derive some immediate cohomo-
logical consequences. Via the cycle class map

CHi(J∨
C ×B J∨

C ×B J∨
C)→ H2i(J∨

C ×B J∨
C ×B J∨

C ,Q)
≃ HomDb

c(B)(π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C
, π∨

∗ QJ∨
C

[2i− 4g])

the codimension g class C induces the convolution product

(22) ∗ : π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C
→ π∨

∗ QJ∨
C

[−2g];

see [35, Section 2.2.3]. Similarly, the codimension 2g class [∆sm
Jd

C/B
] induces the usual cup

product
∪ : πd∗QJd

C
⊗ πd∗QJd

C
→ πd∗QJd

C
.

The two product structures are interchanged by the Fourier transform (13) and its inverse:
we have a commutative diagram

(23)

π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C

π∨
∗ QJ∨

C
[−2g]

πd∗QJd
C

[−]⊗ πd∗QJd
C

[−] πd∗QJd
C

[−].

∗

Fd⊗Fd Fd

∪

In this diagram, the vertical arrows are a priori mixed-degree correspondences; we do not yet
specify the shifts in the bottom row, which will become clearer in the next section. Taking
global cohomology, we also obtain a commutative diagram

Hm(J∨
C ,Q)⊗Hn(J∨

C ,Q) Hm+n−2g(J∨
C ,Q)

H∗(Jd
C ,Q)⊗H∗(Jd

C ,Q) H∗(Jd
C ,Q).

∗

Fd⊗Fd Fd

∪

The proof of Proposition 1.6 follows the same lines as (FV) and traces back to properties
of the convolution kernel (20).

Proof of Proposition 1.6. The statement for d = 0 is classical; see [30, Theorem 1.3.1]. We
now show that the Chern character of the convolution kernel

ch(Kd) ∈ CH∗(J∨
C ×B J∨

C ×B J∨
C)

is independent of d. Since the relative Todd classes are pulled back from the base and are
obviously independent of d, by applying Riemann–Roch we obtain the same statement for
arbitrary d. As in the proof of Lemma 1.5, up to a finite flat base change along D → B we
may assume that C → B admits a section (16).

Let G+ denote the µ×3
r -gerbe over the relative graph G+ of the group law of π∨ : J∨

C → B.
For d = 0, the Poincaré line bundle P0 is untwisted, and Mukai’s original argument [45, (3.7)]
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shows that K0 is just the structure sheaf OG+ . More generally, we have by (18) that Kd is the
pushforward to J ∨

C ×B J ∨
C ×B J ∨

C of

p∗
1L⊗d ⊗ p∗

2L⊗d ⊗ p∗
3L⊗(−d) ∈ Coh(G+)(d,d,−d)

where the pi : G+ → J ∨
C are the three projections and the rest of the notation is as in the

proof of Lemma 1.5.
Therefore, by Riemann–Roch it suffices to show

(24) c1(p∗
1L ⊗ p∗

2L ⊗ p∗
3L∨) = 0 ∈ CH1(G+).

Arguing as in the proof of Lemma 1.5, we consider L⊗r viewed as an untwisted line bundle on
the abelian scheme π∨ : J∨

C → B. Since L⊗r is fiberwise homologically trivial and pulls back
trivially along the zero section 0 : B → J∨

C , the see-saw theorem implies (see [46, II.8])

+∗L⊗r ≃ p∗
1L⊗r ⊗ p∗

2L⊗r ∈ Coh(J∨
C ×B J∨

C)

or equivalently
p∗

1L⊗r ⊗ p∗
2L⊗r ⊗ p∗

3L⊗(−r) ≃ 0 ∈ Coh(G+).
Hence

rc1(p∗
1L ⊗ p∗

2L ⊗ p∗
3L∨) = 0 ∈ CH1(G+),

which gives (24) after dividing by r. □

1.4. Degree-independence. We are ready to state and prove our main theorem for Jacobian
families of nonsingular curves.

Theorem 1.7. Let πd : Jd
C → B and π∨ : J∨

C → B be as in Section 1.1, and recall the
decompositions of the pushforward complexes from Proposition 1.4.

(i) (Strong Fourier-stability) For integers i, j, k with 0 ≤ i, j ≤ 2g, the restriction–
projection of Fd

k to

Fd
k : (π∨

∗ QJ∨
C

)(i) → (πd∗QJd
C

)(j)[2k − 2g]

is nonzero only if j = k = 2g − i. Similarly, the restriction–projection of (Fd)−1
k to

(Fd)−1
k : (πd∗QJd

C
)(i) → (π∨

∗ QJ∨
C

)(j)[2k − 2g]

is nonzero only if j = k = 2g − i. There are mutually inverse isomorphisms

(π∨
∗ QJ∨

C
)(2g−i)[2g − 2i]

Fd
i−−−−−⇀↽−−−−−

(Fd)−1
2g−i

(πd∗QJd
C

)(i).

(ii) (Strong multiplicativity) For 0 ≤ i, j, k ≤ 2g, the restriction–projection of the cup-
product ∪ to

∪ : (πd∗QJd
C

)(i) ⊗ (πd∗QJd
C

)(j) → (πd∗QJd
C

)(k)

is nonzero only if k = i+ j.
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(iii) (Degree-independence) For integers d, d′, there is an isomorphism

πd∗QJd
C
≃ πd′∗QJd′

C
∈ Db

c(B)

which is compatible with the decompositions (as in Proposition 1.4) and the cup-
products on both sides.

Proof. By definition, the first restriction–projection in (i) is induced by the Chow correspon-
dence

(25) pd
j ◦ Fd

k ◦ p∨
i = Fd

j ◦ (Fd)−1
2g−j ◦ F

d
k ◦ p∨

i .

Applying (FV), we see that (25) is nonzero only if j = k, in which case we find

Fd
j ◦ (Fd)−1

2g−j ◦ F
d
j ◦ p∨

i = Fd
j ◦ p∨

2g−j ◦ p∨
i .

The pairwise orthogonality of the p∨
i from Proposition 1.3 shows that (25) is nonzero only

if j = k = 2g − i. The second restriction–projection comes from the Chow correspondence

p∨
j ◦ (Fd)−1

k ◦ p
d
i = p∨

j ◦ (Fd)−1
k ◦ F

d
i ◦ (Fd)−1

2g−i

which for the same reason is nonzero only if j = k = 2g− i. The third statement in (i) follows
from the first two together with the identities (14).

For (ii), we perform Fourier transforms as in (23), and apply (i) to get a commutative
diagram

(π∨
∗ QJ∨

C
)(2g−i)[2g − 2i]⊗ (π∨

∗ QJ∨
C

)(2g−j)[2g − 2j] (π∨
∗ QJ∨

C
)(2g−k)[2g − 2k]

(πd∗QJd
C

)(i) ⊗ (πd∗QJd
C

)(j) (πd∗QJd
C

)(k).

∗

Fd
i ⊗Fd

j≃ Fd
k

≃

∪

Looking at the top row and comparing with the shift in (22), we see that for the bottom row
to be nonzero we must have

2g − 2k − (2g − i)− (2g − j) = −2g,

i.e., k = i+ j.
Finally, for any integer d, we have by (i) mutually inverse graded isomorphisms

2g⊕
i=0

(π∨
∗ QJ∨

C
)(2g−i)[2g − 2i]

⊕Fd
i−−−−−−⇀↽−−−−−−

⊕(Fd)−1
2g−i

2g⊕
i=0

(πd∗QJd
C

)(i).

Moreover, by (ii) the above isomorphisms are compatible with the convolution product on
the left-hand side and the cup-product on the right-hand side. This proves (iii) as both the
decomposition and the convolution product on the left-hand side are independent of d, by
Propositions 1.3 and 1.6. The proof of Theorem 1.7 is now complete. □

The following corollary is immediate after taking global cohomology.
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Corollary 1.8. For any integer d, the cohomology

H∗(Jd
C ,Q) =

⊕
i,m

Hm(Jd
C ,Q)(i)

is a bigraded H∗(B,Q)-algebra. For integers d, d′, there is an isomorphism

H∗(Jd
C ,Q) ≃ H∗(Jd′

C ,Q)

of bigraded H∗(B,Q)-algebras. □

Remark 1.9. (i) So far our argument has been purely Chow-theoretic; the same argument
would prove that the Chow ring CH∗(Jd

C) is, as a bigraded CH∗(B)-algebra, indepen-
dent of d.

(ii) Although we assumed the base B to be a nonsingular quasiprojective variety, Theo-
rem 1.7 and Corollary 1.8 hold equally for the degree d universal Jacobian

πd : Jd
g →Mg

over the moduli stack of nonsingular curves of genus g. The quickest way is to add a
level ℓ ≥ 3 structure to obtain a finite Galois cover of Mg by a nonsingular quasipro-
jective variety B. The multisection D in (8) is chosen to be invariant under the
Sp2g(Z/ℓZ)-action. The rest of the argument is obviously independent of the level
structure.

2. Compactified Jacobians

We proceed to integral locally planar curves and their compactified Jacobians. We begin by
reviewing results in [35] which provide a new characterization of the perverse filtration on the
cohomology of a compactified Jacobian family and establish its multiplicativity. We then prove
that the associated graded with respect to the perverse filtration has a ring structure which is
independent of the degree of the compactified Jacobian; see Theorem 2.6 and Corollary 2.7.

2.1. Perverse filtration. Let C → B be a flat projective family of integral locally planar
curves of arithmetic genus g over a nonsingular quasiprojective base variety B, and for any
integer d, let

πd : Jd
C → B

be the associated compactifed Jacobian family parameterizing degree d rank 1 torsion-free
sheaves. We assume that the total space J

d
C is nonsingular. Of particular interest is the

case B = Mint
g , i.e., the moduli stack of integral stable curves of genus g. The reason for

treatingMint
g as a nonsingular quasiprojective variety is the same as in Remark 1.9(ii), where

one replaces the level ℓ structure by the level structures constructed in [1] for all of Mg,n.
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The Beilinson–Bernstein–Deligne–Gabber decomposition theorem [10], applied to the proper
map πd : Jd

C → B and the constant sheaf Q
J

d
C

, yields a non-canonical decomposition

(26) πd∗QJ
d
C
≃

2g⊕
k=0
Hd

(k), Hd
(k) := pHk+dim B(πd∗QJ

d
C

)[−k − dimB] ∈ Db
c(B).

Here pH i(−) is the i-th perverse cohomology functor. What remain canonical are the per-
verse truncation functors pτ≤•(−), pτ≥•(−) applied to the pushforward complex πd∗QJ

d
C

: for
0 ≤ k ≤ 2g, there are natural distinguished triangles

pτ≤k+dim B(πd∗QJ
d
C

)→ πd∗QJ
d
C
→ pτ≥k+1+dim B(πd∗QJ

d
C

) +1−−→,

pτ≤k−1+dim B(πd∗QJ
d
C

)→ pτ≤k+dim B(πd∗QJ
d
C

)→ Hd
(k)

+1−−→ .(27)

Taking global cohomology and setting

PkH
∗(Jd

C ,Q) := Im
(
H∗(B, pτ≤k+dim B(πd∗QJ

d
C

))→ H∗(B, πd∗QJ
d
C

) = H∗(Jd
C ,Q)

)
,

we obtain the perverse filtration

P0H
∗(Jd

C ,Q) ⊂ P1H
∗(Jd

C ,Q) ⊂ · · · ⊂ P2gH
∗(Jd

C ,Q) = H∗(Jd
C ,Q)

and the canonical identification

GrP
k H

∗(Jd
C ,Q) = H∗(B,Hd

(k)).

2.2. Perverse filtration via Fourier. A new characterization of the perverse filtration
P•H

∗(Jd
C ,Q) (as well as its sheaf-theoretic counterpart) was given in [35] using Fourier trans-

forms. We review the construction and key results needed for the main Theorem 2.6. These
results will be axiomatized and extended to more general situations in Section 3.

As in the nonsingular case we fix once and for all

J
∨
C := J

0
C , π∨ := π0 : J∨

C → B.

The perverse truncations pτ≤•(π∨
∗ QJ

∨
C

), pτ≥•(π∨
∗ QJ

∨
C

), the shifted perverse sheaves H∨
(•), and

the perverse filtration P•H
∗(J∨

C ,Q) are defined accordingly.
By considering families of rank 1 torsion-free sheaves trivialized along an r-fold multisection

D ⊂ C → B,

whose existence follows again from [14, Theorem 1.1], and by applying Arinkin’s construc-
tion [3], we obtain a Poincaré sheaf

Pd ∈ Coh(J ∨
C × J

d
C)(d,0)
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on the relative product of certain µr-gerbes J ∨
C ,J

d
C over J∨

C , J
d
C ; see [35, Proposition 4.3].

We then use singular Riemann–Roch for quotient stacks [18, 19] to defined the Chow-theoretic
Fourier transform

Fd =
∑

i

Fd
i ∈ CH∗(J∨

C ×B J
d
C), Fd

i ∈ CH2g−i+dim B(J∨
C ×B J

d
C)

and its inverse

(Fd)−1 =
∑

i

(Fd)−1
i ∈ CH∗(Jd

C ×B J
∨
C), (Fd)−1

i ∈ CH2g−i+dim B(Jd
C ×B J

∨
C);

see [35, Sections 2.4 and 4.4]. Further, under the cycle class maps

CH2g−i+dim B(J∨
C ×B J

d
C)→ HBM

4g−2i+2 dim B(J∨
C ×B J

d
C ,Q)

≃ HomDb
c(B)(π∨

∗ QJ
∨
C
, πd∗QJ

d
C

[2i− 2g]),

CH2g−i+dim B(Jd
C ×B J

∨
C)→ HBM

4g−2i+2 dim B(Jd
C ×B J

∨
C ,Q)

≃ HomDb
c(B)(πd∗QJ

d
C
, π∨

∗ QJ
∨
C

[2i− 2g]),

we obtain the sheaf-theoretic Fourier transform and its inverse

Fd =
∑

i

Fd
i : π∨

∗ QJ
∨
C
→ πd∗QJ

d
C

[−], Fd
i : π∨

∗ QJ
∨
C
→ πd∗QJ

d
C

[2i− 2g]

(Fd)−1 =
∑

i

(Fd)−1
i : πd∗QJ

d
C
→ π∨

∗ QJ
∨
C

[−], (Fd)−1
i : πd∗QJ

d
C
→ π∨

∗ QJ
∨
C

[2i− 2g];

see [35, Section 2.2.2].
The starting point is the following weaker version of the Fourier vanishing, as compared

with Proposition 1.2.

Proposition 2.1 (1
2Fourier vanishing [35, Sections 3.5 and 4.4]). For all i+ j < 2g, we have

(Fd)−1
j ◦ F

d
i = 0 ∈ CH3g−i−j+dim B(J∨

C ×B J
∨
C),(1

2FV1)

Fd
j ◦ (Fd)−1

i = 0 ∈ CH3g−i−j+dim B(Jd
C ×B J

d
C).(1

2FV2)

Note that only (1
2FV1) was stated and used in [35]. Here for our purpose we shall need

(1
2FV2) whose proof is identical to that of (1

2FV1); see also [36, Proposition 2.9].
We define for 0 ≤ k ≤ 2g Chow self-correspondences

pd
≤k :=

∑
i≤k

Fd
i ◦ (Fd)−1

2g−i ∈ CHg+dim B(Jd
C ×B J

d
C),

p∨
≤k :=

∑
i≤k

(Fd)−1
i ◦ F

d
2g−i ∈ CHg+dim B(J∨

C ×B J
∨
C).

With half of the Fourier vanishing (1
2FV1) (resp. (1

2FV2)) we can only conclude that the pd
≤k

(resp. p∨
≤k) are semi-orthogonal idempotents, i.e.,

pd
≤l ◦ pd

≤k = pd
≤k, p∨

≤l ◦ p∨
≤k = p∨

≤k, k ≤ l.
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The same statements hold for the induced sheaf-theoretic idempotents

pd
≤k :=

∑
i≤k

Fd
i ◦ (Fd)−1

2g−i : πd∗QJ
d
C
→ πd∗QJ

d
C
,

p∨
≤k :=

∑
i≤k

(Fd)−1
i ◦ F

d
2g−i : π∨

∗ QJ
∨
C
→ π∨

∗ QJ
∨
C
.

Again, we can talk about the image of the sheaf-theoretic pd
≤k (resp. p∨

≤k) since the cate-
gory Db

c(B) is pseudo-abelian [15, Lemma 2.24]. The following result crucially relies on the
full support property of the pushforward complexes πd∗QJ

d
C

and π∨
∗ QJ

∨
C

; we will come back
to this point later in Section 3.

Theorem 2.2 (Realization [35, Corollary 4.6(ii)]). For 0 ≤ k ≤ 2g, the natural inclusion
Im(pd

≤k)→ πd∗QJ
d
C

realizes the perverse truncation

pτ≤k+dim B(πd∗QJ
d
C

)→ πd∗QJ
d
C

and provides a non-canonical splitting

(28) πd∗QJ
d
C
≃ pτ≤k+dim B(πd∗QJ

d
C

)⊕ pτ≥k+1+dim B(πd∗QJ
d
C

).

Similarly, the inclusion Im(p∨
≤k)→ π∨

∗ QJ
∨
C

realizes the perverse truncation

pτ≤k+dim B(π∨
∗ QJ

∨
C

)→ π∨
∗ QJ

∨
C

and provides a non-canonical splitting

(29) π∨
∗ QJ

∨
C
≃ pτ≤k+dim B(π∨

∗ QJ
∨
C

)⊕ pτ≥k+1+dim B(π∨
∗ QJ

∨
C

).

Here the splitting (28) (resp. (29)) is given by the image of

(30) qd
≥k+1 := idπd∗Q

J
d
C

− pd
≤k =

∑
i≥k+1

Fd
i ◦ (Fd)−1

2g−i : πd∗QJ
d
C
→ πd∗QJ

d
C
,

and respectively,

(31) q∨
≥k+1 := idπ∨

∗ Q
J

∨
C

− p∨
≤k =

∑
i≥k+1

(Fd)−1
i ◦ F

d
2g−i : π∨

∗ QJ
∨
C
→ π∨

∗ QJ
∨
C
.

Remark 2.3. Unlike in Proposition 1.3, this time we do not claim the Chow (or sheaf-theoretic)
idempotents p∨

≤k to be independent of the degree d. Each image Im(p∨
≤k) ∈ Db

c(B), on the
other hand, is canonically isomorphic to pτ≤k+dim B(π∨

∗ QJ
∨
C

) and hence independent of d.

An important outcome of Theorem 2.2 is the multiplicativity of the perverse filtration
P•H

∗(Jd
C ,Q). There is also a stronger, sheaf-theoretic version concerning the cup-product

(32) ∪ : πd∗QJ
d
C
⊗ πd∗QJ

d
C
→ πd∗QJ

d
C
.
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Theorem 2.4 (Multiplicativity [35, Corollary 4.6(iii)]). For integers k, l, the perverse trun-
cation

∪ : pτ≤k+dim B(πd∗QJ
d
C

)⊗ pτ≤l+dim B(πd∗QJ
d
C

)→ πd∗QJ
d
C
.

of the cup-product in (32) factors through

∪ : pτ≤k+dim B(πd∗QJ
d
C

)⊗ pτ≤l+dim B(πd∗QJ
d
C

)→ pτ≤k+l+dim B(πd∗QJ
d
C

).

In other words, the composition

pτ≤k+dim B(πd∗QJ
d
C

)⊗ pτ≤l+dim B(πd∗QJ
d
C

)→ πd∗QJ
d
C
⊗ πd∗QJ

d
C

∪−→ πd∗QJ
d
C

→ τ≥k+l+1+dim B(πd∗QJ
d
C

)

is zero.

As a result, the cup-product naturally descends via (27) to a collection of morphisms

(33) ∪ : Hd
(k) ⊗H

d
(l) → H

d
(k+l).

Setting the sheaf-theoretic associated graded

(34) Hd :=
2g⊕

k=0
Hd

(k) ∈ D
b
c(B),

we obtain a cup-product

(35) ∪ : Hd ⊗Hd → Hd

making Hd a graded ring object in Db
c(B). Note however that (32) and (35) are in general not

compatible with the non-canonical isomorphism (26).
The proof of Theorem 2.4 again involves the convolution product defined via the Chow class

Cd := (Fd)−1 ◦ [∆sm
J

d
C/B

] ◦ (Fd × Fd) ∈ CH∗(J∨
C ×B J

∨
C ×B J

∨
C),

where ∆sm
J

d
C/B

⊂ J
d
C ×B J

d
C ×B J

d
C is the relative small diagonal responsible for the cup-

product (32). A key step in establishing Theorem 2.4 is a dimension bound

(36) Cd ∈ CH≤2g+dim B(J∨
C ×B J

∨
C ×B J

∨
C)

which is weaker than the pure codimension g statement in Proposition 1.6. The proof of the
dimension bound further traces back to the support of the convolution kernel

(37) Kd := (Pd)−1 ◦ O∆sm
J d

C /B

◦ (Pd ⊠ Pd) ∈ DbCoh(J ∨
C ×B J

∨
C ×B J

∨
C)(d,d,−d).

Here O∆sm
J d

C /B

is the structure sheaf of the µ×3
r -gerbe over ∆sm

J
d
C/B

; see [35, Section 4.4].
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Via the cycle class map

CH≤2g+dim B(J∨
C ×B J

∨
C ×B J

∨
C)→ HBM

≤4g+2 dim B(J∨
C ×B J

∨
C ×B J

∨
C ,Q)

≃ HomDb
c(B)(π∨

∗ QJ
∨
C
⊗ π∨

∗ QJ
∨
C
, π∨

∗ QJ
∨
C

[≥−2g])

the class Cd induces the sheaf-theoretic convolution product

∗d : π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C
→ π∨

∗ QJ∨
C

[≥−2g];

see [35, Section 2.2.3]. By definition, there is a commutative diagram interchanging the two
product structures

(38)

π∨
∗ QJ

∨
C
⊗ π∨

∗ QJ
∨
C

π∨
∗ QJ

∨
C

[≥−2g]

πd∗QJ
d
C

[−]⊗ πd∗QJ
d
C

[−] πd∗QJ
d
C

[−].

∗d

Fd⊗Fd Fd

∪

We are particular interested in the lowest codimension (= g) component of Cd in (36); we
call it the reduced convolution class

(39) Cd
red ∈ CH2g+dim B(J∨

C ×B J
∨
C ×B J

∨
C).

The following proposition is crucial to the proof of the degree-independence Theorem 2.6(iii).

Proposition 2.5. The reduced convolution class Cd
red in (39) is independent of the degree d.

Proof. Since the convolution kernel Kd in (37) is shown in [35, Proposition 3.2 and Section 4.4]
to be supported in codimension g, the component Cd

red is simply given by the fundamental
class of the codimension g support of Kd. On the other hand, [35, Corollary 4.5] shows that
étale locally the Kd only differ by tensoring a line bundle, and hence have the same support.
In particular, the class Cd

red is independent of d. □

Therefore, Cd
red can be abbreviated to Cred, and induces a reduced convolution product

(40) ∗red : π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C
→ π∨

∗ QJ∨
C

[−2g]

which is independent of d.
We finish with a brief summary of the parallel statements in global cohomology.

(i) The cohomological Fourier transforms induce two sequences of semi-orthogonal idem-
potents pd

≤k, p
∨
≤k, which give a new description of the perverse filtrations

PkH
∗(Jd

C ,Q) = Im
(
pd

≤k : H∗(Jd
C ,Q)→ H∗(Jd

C ,Q)
)
,

PkH
∗(J∨

C ,Q) = Im
(
p∨

≤k : H∗(J∨
C ,Q)→ H∗(J∨

C ,Q)
)
.
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(ii) The perverse filtration P•H
∗(Jd

C ,Q) is multiplicative with respect to the cup-product,
i.e., for integers k, l we have

∪ : PkH
∗(Jd

C ,Q)⊗ PlH
∗(Jd

C ,Q)→ Pk+lH
∗(Jd

C ,Q).

In particular, the associated graded

(41) Hd :=
⊕
k,m

GrP
k H

m(Jd
C ,Q)

inherits a cup-product
∪ : Hd ⊗Hd → Hd

making it a bigraded H∗(B,Q)-algebra. By definition, elements in Hm(B,Q) have
bigrading (0,m).

(iii) There is a commutative diagram

Hm(J∨
C ,Q)⊗Hn(J∨

C ,Q) H≥m+n−2g(J∨
C ,Q)

H∗(Jd
C ,Q)⊗H∗(Jd

C ,Q) H∗(Jd
C ,Q).

∗d

Fd⊗Fd Fd

∪

Moreover, the reduced convolution product

∗red : Hm(J∨
C ,Q)⊗Hn(J∨

C ,Q)→ Hm+n−2g(J∨
C ,Q)

is independent of d.

2.3. Degree-independence. Our main theorem for compactified Jacobian families of inte-
gral locally planar curves is the following.

Theorem 2.6. Let πd : Jd
C → B and π∨ : J∨

C → B be as in Sections 2.1 and 2.2.
(i) (Weak Fourier-stability) For integers k, l, the perverse truncation

Fd
l : pτ≤k+dim B(π∨

∗ QJ
∨
C

)→ πd∗QJ
d
C

[2l − 2g]

is zero if l < 2g − k, and factors through

Fd
l : pτ≤k+dim B(π∨

∗ QJ
∨
C

)→ pτ≤l+dim B(πd∗QJ
d
C

)[2l − 2g]

if l ≥ 2g − k. Similarly, the perverse truncation

(Fd)−1
l : pτ≤k+dim B(πd∗QJ

d
C

)→ π∨
∗ QJ

∨
C

[2l − 2g]

is zero if l < 2g − k, and factors through

(Fd)−1
l : pτ≤k+dim B(πd∗QJ

d
C

)→ pτ≤l+dim B(π∨
∗ QJ

∨
C

)[2l − 2g]
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if l ≥ 2g− k. For 0 ≤ k ≤ 2g, Fd
k and (Fd)−1

2g−k induce mutually inverse isomorphisms

(42) H∨
(2g−k)[2g − 2k]

Fd
k−−−−−⇀↽−−−−−

(Fd)−1
2g−k

Hd
(k).

(ii) (Multiplicativity for ∗red) For integers k, l, the perverse truncation

∗red : pτ≤k+dim B(π∨
∗ QJ

∨
C

)⊗ pτ≤l+dim B(π∨
∗ QJ

∨
C

)→ π∨
∗ QJ

∨
C

[−2g],

of the reduced convolution product in (40) factors through

∗red : pτ≤k+dim B(π∨
∗ QJ

∨
C

)⊗ pτ≤l+dim B(π∨
∗ QJ

∨
C

)→ pτ≤k+l−2g+dim B(π∨
∗ QJ

∨
C

)[−2g],

In particular, the reduced convolution product descends to a collection of morphisms

(43) ∗red : H∨
(k) ⊗H

∨
(l) → H

∨
(k+l−2g)[−2g].

(iii) (Degree-independence) The graded ring object Hd ∈ Db
c(B) in (34) is completely deter-

mined by the morphisms ∗red. In particular, for integers d, d′, there is an isomorphism

Hd ≃ Hd′ ∈ Db
c(B)

of graded ring objects.

Proof. Essentially all three parts are consequences of the 1
2Fourier vanishing. We begin with

part (i). In view of the realization Theorem 2.2, for the first statement of (i) it suffices to show

Fd
l ◦ p∨

≤k = 0, l < 2g − k,(44)

qd
≥l+1 ◦ Fd

l = 0,(45)

where qd
≥l+1 is defined in (30). Expanding the left-hand side of both equations

Fd
l ◦ p∨

≤k =
∑
i≤k

Fd
l ◦ (Fd)−1

i ◦ F
d
2g−i,

qd
≥l+1 ◦ Fd

l =
∑

i≥l+1
Fd

i ◦ (Fd)−1
2g−i ◦ F

d
l ,

we see that (44) (resp. (45)) follows directly from (1
2FV2) (resp. (1

2FV1)). The second state-
ment of (i) is parallel.

To prove (42) we first observe that

(Fd)−1
2g−k ◦ p

d
≤k−1 = 0;

hence (Fd)−1
2g−k descends to a well-defined morphism

(Fd)−1
2g−k : Hd

(k) → H
∨
(2g−k)[2g − 2k].

Similarly, Fd
k descends to a well-defined morphism

Fd
k : H∨

(2g−k)[2g − 2k]→ Hd
(k).
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To show that they are inverse to each other, we consider the identities

pd
≤k = Fd ◦ (Fd)−1 ◦ pd

≤k =
∑

i≥2g−k

Fd
2g−i ◦ (Fd)−1

i ◦ p
d
≤k

= Fd
k ◦ (Fd)−1

2g−k ◦ p
d
≤k +

∑
i>2g−k

Fd
2g−i ◦ (Fd)−1

i ◦ p
d
≤k(46)

where the second identity holds both by (1
2FV1) and for dimension reasons. Now the condi-

tion i > 2g − k translates to 2g − i < k, which implies that the entire second term in (46)
factors through

pτ≤k+dim B(πd∗QJ
d
C

)→ pτ≤k−1+dim B(πd∗QJ
d
C

).

Therefore we have
id = Fd

k ◦ (Fd)−1
2g−k : Hd

(k) → H
d
(k).

The other direction is parallel. This proves (i).
For (ii) we consider via (38) the identity

∗d = (Fd)−1 ◦ ∪ ◦ (Fd ⊗ Fd).

For dimension reasons we then have

(47) ∗red =
∑

i

∑
j

(Fd)−1
2g−i−j ◦ ∪ ◦ (Fd

i ⊗ Fd
j ).

Again, in view of the realization Theorem 2.2, to prove (ii) it suffices to show

q∨
≥k+l+1−2g ◦ ∗red ◦ (p∨

≤k ⊗ p∨
≤l) = 0

where q∨
≥k+l+1−2g is defined in (31). We expand ∗red using (47), and find

q∨
≥k+l+1−2g ◦ ∗red ◦ (p∨

≤k ⊗ p∨
≤l)

=
∑

i

∑
j

q∨
≥k+l+1−2g ◦ (Fd)−1

2g−i−j ◦ ∪ ◦
(
(Fd

i ◦ p∨
≤k)⊗ (Fd

j ◦ p∨
≤l)
)

=
∑

i≥2g−k

∑
j≥2g−l

q∨
≥k+l+1−2g ◦ (Fd)−1

2g−i−j ◦ ∪ ◦
(
(Fd

i ◦ p∨
≤k)⊗ (Fd

j ◦ p∨
≤l)
)

where the second identity uses (1
2FV2). This time the conditions i ≥ 2g − k and j ≥ 2g − l

translate to
2g − i− j ≤ k + l − 2g.

But then we have
q∨

≥k+l+1−2g ◦ (Fd)−1
2g−i−j = 0

for such i, j, k, l by (1
2FV2). This proves (ii).
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For (iii) we consider the following diagram

(48)

H∨
(2g−k)[2g − 2k]⊗H∨

(2g−l)[2g − 2l] H∨
(2g−k−l)[2g − 2k − 2l]

Hd
(k) ⊗H

d
(l) Hd

(k+l),

∗red

Fd
k

⊗Fd
l

Fd
k+l

∪

(Fd)−1
2g−k

⊗(Fd)−1
2g−l

(Fd)−1
2g−k−l

where the top and bottom rows are given by (43) and (33), respectively, and the vertical arrows
are isomorphisms by (42). We claim that the diagram commutes. Indeed, decomposing

∗d =
∑
c≥g

∗dc , ∗dc : π∨
∗ QJ∨

C
⊗ π∨

∗ QJ∨
C
→ π∨

∗ QJ∨
C

[2c− 4g]

according to the codimension, we have ∗dg = ∗red. There are identities

∪ ◦ (pd
≤k ⊗ pd

≤l) = Fd ◦ ∗d ◦
(
((Fd)−1 ◦ pd

≤k)⊗ ((Fd)−1 ◦ pd
≤l)
)

=
∑
c≥g

∑
i≥2g−k

∑
j≥2g−l

Fd
5g−i−j−c ◦ ∗dc ◦

(
((Fd)−1

i ◦ p
d
≤k)⊗ ((Fd)−1

j ◦ p
d
≤l)
)

(49)

where the second identity uses both (1
2FV1) and dimension constraints. We observe that (49)

contains the term

Fd
k+l ◦ ∗red ◦

(
((Fd)−1

2g−k ◦ p
d
≤k)⊗ ((Fd)−1

2g−l ◦ p
d
≤l)
)

and all the other terms satisfy
5g − i− j − c < k + l.

By (i), this means that all the other terms in (49) factor through
pτ≤k+dim B(πd∗QJ

d
C

)⊗ pτ≤l+dim B(πd∗QJ
d
C

)→ pτ≤k+l−1+dim B(πd∗QJ
d
C

)

and hence descend to zero. This shows the commutativity of the diagram (48).
Finally, for any integer d, we conclude from (i) that there are mutually inverse graded

isomorphisms

(50) H̃∨ :=
2g⊕

k=0
H∨

(2g−k)[2g − 2k]
⊕Fd

k−−−−−−⇀↽−−−−−−
⊕(Fd)−1

2g−k

2g⊕
k=0
Hd

(k) = Hd.

Moreover, by the commutative diagram (48), the above isomorphisms are compatible with
the reduced convolution product ∗red on the left-hand side, and the cup product ∪ on the
right-hand side. This proves (iii) since by Proposition 2.5, the product ∗red on the left-hand
side is independent of d. The proof of Theorem 2.6 is now complete. □

We deduce immediately the d-independence of the associated graded Hd in (41) by taking
global cohomology.
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Corollary 2.7. For integers d, d′, there is an isomorphism

Hd ≃ Hd′

of bigraded H∗(B,Q)-algebras.

Remark 2.8. It is natural to ask if Corollary 2.7 also holds at the Chow level. The question is
whether there is a canonically defined Chow-theoretic perverse filtration P•CH∗(J∨

C), which
in particular satisfies

PkCH∗(J∨
C) = Im

(
p∨

≤k : CH∗(J∨
C)→ CH∗(J∨

C)
)

regardless of the degree d; see also Remark 2.3. The answer is expected to be yes assuming
certain Bloch–Beilinson type motivic conjectures in the relative setting.

3. Fine compactified Jacobians

As we see in Section 2, the main geometric ingredients in treating the associated graded
with respect to the perverse filtration are

(i) Ngô’s full support theorem;
(ii) a theory of Fourier transforms.

In the first part of this section we describe a general framework handling the cohomology ring
of a dualizable abelian fibration, extending [35]. Then in the second part we apply this to
fine compactified Jacobians of reduced locally planar curves both in the global and the local
settings, and prove Theorems 0.7 and 0.9 respectively.

Remark 3.1. Strictly speaking, the cases discussed in Sections 1 and 2 fall outside the frame-
work of dualizable abelian fibrations. Instead, they can be viewed as “twisted” variants.
Because these sections focus on degree independence, where normalizations and gerbes play a
crucial role, we address them explicitly and do not incorporate them into the general frame-
work. This clarifies the main ideas while also helping to avoid overly heavy notation in the
framework.

3.1. Dualizable abelian fibrations. We recall the notion of dualizable abelian fibration
following [35].

We say that π : M → B is an abelian fibration if both M and B are nonsingular varieties,
π is flat and proper, and the restriction of M to a certain nonempty open subset

πU : MU → U ⊂ B

is an abelian scheme.
We say that π∨ : M∨ → B is dual to the abelian fibration π : M → B, if π∨ : M∨ → B is

an abelian fibration and there exists an open subset U ⊂ B over which π and π∨ form dual
abelian schemes. We say that

P ∈ DbCoh(M∨ ×B M)
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is a normalized Poincaré complex, if the restriction of P to M∨
U ×UMU recovers the normalized

Poincaré line bundle L. Here MU ,M
∨
U are dual abelian schemes over some open U ⊂ B.

Definition 3.2 (Dualizable abelian fibration [35]). A dualizable abelian fibration consists of
the following data

(M,B,M∨,P,K).

Here π : M → B is an abelian fibration of relative dimension g with a dual abelian fibration
π∨ : M∨ → B satisfying the following.

(a1) (Poincaré) There is a normalized Poincaré complex P ∈ DbCoh(M∨ ×B M) which
admits an inverse P−1 ∈ DbCoh(M ×B M∨), i.e.,

P−1 ◦ P ≃ O∆M∨/B
, P ◦ P−1 ≃ O∆M/B

.

(a2) (Convolution) There is an object K ∈ DbCoh(M∨ ×B M
∨ ×B M

∨) supported in codi-
mension ≥ g, which satisfies

(51) P ◦ K ≃ O∆sm
M/B
◦ (P ⊠ P).

Here ∆sm
M/B ⊂M×BM×BM is the small relative diagonal, and O∆sm

M/B
◦(P⊠P) stands

for composing P with O∆sm
M/B

via the first (resp. second) factor of M ×B M ×B M .
We refer to K as the convolution kernel.

(b) (Support) Both morphisms π, π∨ have full support, i.e., every simple perverse sheaf
that appears in the pushforward complex π∗QM or π∨

∗ QM∨ has support B.

We denote by FMP : DbCoh(M∨) → DbCoh(M) the Fourier–Mukai transform associated
with P. Then the object K in (a2) induces a convolution product

∗ : DbCoh(M∨)×DbCoh(M∨)→ DbCoh(M∨), F ∗G = p3∗(p∗
1F ⊗ p∗

2G⊗K)

where the pi : M∨ ×B M∨ ×B M∨ →M∨ are the three projections. We have by definition

FMP(F ∗G) ≃ FMP(F )⊗ FMP(G), F,G ∈ DbCoh(M∨).

Remark 3.3. We refer to [35, Section 1] for more details and explanations on dualizable abelian
fibrations. Note that there is a minor difference between the definition above and the one
in [35]. The condition (b) in [35, Definition 1.2] only requires that π has full support; here for
our purpose we need both maps π, π∨ to have full support in order to relate the projection
operators on each side with the perverse filtration.

Following [35, Section 2.4] (see also Section 2.2), the Poincaré complex P and its inverse
P−1 induce the Chow-theoretic Fourier transform

F =
∑

i

Fi ∈ CH∗(M∨ ×B M), Fi ∈ CH2g−i+dim B(M∨ ×B M)
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and its inverse

F−1 =
∑

i

F−1
i ∈ CH∗(M ×B M∨), F−1

i ∈ CH2g−i+dim B(M ×B M∨);

they also act sheaf-theoretically as in Section 2.2.

3.2. Cup-product, Fourier vanishing, and convolution. We define the shifted perverse
sheaves H(k) associated with the decomposition of the pushforward complex π∗QM as in (26);
a key observation of [35] is that the compatibility of the perverse truncation functors and the
cup-product (a.k.a. multiplicitivity) for dualizable abelian fibrations is governed by certain
Fourier vanishing results.

Definition 3.4 (1
2Fourier vanishing). The conditions (1

2FV1) and (1
2FV2) refer to the follow-

ing statements: for all i+ j < 2g, we have

F−1
j ◦ Fi = 0 ∈ CH3g−i−j+dim B(M∨ ×B M∨),(1

2FV1)

Fj ◦ F−1
i = 0 ∈ CH3g−i−j+dim B(M ×B M).(1

2FV2)

By [35, Theorem 2.6(iii)], if the dualizable abelian fibration satisfies (1
2FV1), then the mul-

tiplicitivity holds for the perverse truncation functors. In particular, we obtain the following.

Theorem 3.5. Assume that the dualizable abelian fibration

(M,B,M∨,P,K)

satisfies (1
2FV1). Then the cup-product on π∗QM induces a cup-product on the associated

graded

∪ : HM ⊗HM → HM , HM :=
2g⊕

k=0
H(k) ∈ Db

c(B).

In particular, we may view HM ∈ Db
c(B) as a graded ring object endowed with ∪.

Theorem 3.5 only needs (1
2FV1) on M∨ ×B M∨. The argument in Section 2 shows that, if

we also have the other (1
2FV2), then we may describe the graded ring object HM associated

with M using the convolution kernel K on M∨ ×B M∨ ×B M∨.
More precisely, we consider the Chow-theoretic convolution class

C := F−1 ◦ [∆sm
M/B] ◦ (F× F) ∈ CH∗(M∨ ×B M∨ ×B M∨).

Using (51) and singular Riemann–Roch (see [35, Lemma 2.8]), we also have

C = td(−p∗
12TM∨×BM∨) ∩ τ(K)

where p12 : M∨ ×B M∨ ×B M∨ → M∨ ×B M∨ is the projection to the first two factors,
TM∨×BM∨ is the virtual tangent bundle of the l.c.i. scheme M∨ ×B M∨, and τ(−) is the
Baum–Fulton–MacPherson tau-class. In particular, the dimension bound in Definition 3.2(a2)
implies

C ∈ CH≤2g+dim B(M∨ ×B M∨ ×B M∨).
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We then consider the codimension g component of C:

(52) Cred ∈ CH2g+dim B(M∨ ×B M∨ ×B M∨)

which we call the reduced convolution class.

Theorem 3.6. Let (M,B,M∨,P,K) be a dualizable abelian fibration satisfying both (1
2FV1)

and (1
2FV2). Then the graded ring object HM ∈ Db

c(B) is completely determined by the reduced
convolution class Cred in (52). In particular, given two dualizable abelian fibrations

(M,B,M∨,P,K), (M ′, B,M∨,P ′,K′)

satisfying (1
2FV1) and (1

2FV2), we have two convolution classes

C,C′ ∈ CH≤2g+dim B(M∨ ×B M∨ ×B M∨)

induced by K,K′ respectively. If we have a match for the reduced parts

Cred = C′
red ∈ CH2g+dim B(M∨ ×B M∨ ×B M∨),

then there is an isomorphism
HM ≃ HM ′ ∈ Db

c(B)

of graded ring objects.

Proof. The proof is essentially identical to the one given for compactified Jacobians associated
with integral curves in Section 2. For a dualizable abelian fibration

(M,B,M∨,P,K),

we show that the graded ring object HM is isomorphic via the Fourier transform to H̃M∨

endowed with the convolution product induced by Cred, as in (50). The proof of Theorem 2.6
works verbatim, since the only geometric inputs required are

(i) the dimension bound for the support of the convolution kernel K,
(ii) the 1

2Fourier vanishing, and
(iii) the full support property of π, π∨,

all of which remain valid in the general setting. The rest of the argument is entirely formal. □

Remark 3.7. Under the assumption of Theorem 3.6, statements parallel to Theorem 2.6 hold.
Our result also shows that the induced cup product on the associated graded of the cohomology
with respect to the perverse filtration

HM :=
⊕
k,m

GrP
k H

m(M,Q)

only relies on the reduced convolution class Cred on M∨×BM
∨×BM

∨. As in Remark 2.8, the
parallel statements at the Chow level is conditional on certain Bloch–Beilinson type motivic
conjectures.
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In the next sections, we apply Theorem 3.6 to fine compactified Jacobians over the moduli
space Mg,n of stable marked curves, and for versal deformations of a reduced locally planar
curve, which completes the proofs of Theorems 0.7 and 0.9.

3.3. Relative fine compactified Jacobians. Let C → B be a flat projective family of con-
nected reduced locally planar curves of arithmetic genus g over a nonsingular base variety B,
with a section s : B → C through the smooth locus of C → B. Let g : J0

C → B be the relative
Picard space parameterizing pairs

(Cb, Lb), Lb ∈ J
0
Cb
,

where Cb ⊂ C is the fiber over a closed point b ∈ B and Lb is a multidegree 0 line bundle on Cb.
The commutative group scheme J0

Cb
is irreducible, admitting a Chevalley decomposition

0→ Rb → J
0
Cb
→ Ab → 0

with Rb an commutative affine group and Ab an abelian variety. This defines a constructible
function

δ : B → Z≥0, b 7→ dimRb.

For an irreducible closed subscheme Z ⊂ B, we define δ(Z) to be δ(b) with b ∈ Z a general
closed point; alternatively, we have

δ(Z) = min{δ(b), b ∈ Z}.

Following [47], we say that C → B is δ-regular, if we have

δZ ≤ codimB(Z)

for any irreducible closed Z ⊂ B.
To study fine compactified Jacobians in the relative setting, we consider the polarization sta-

bility conditions of Esteves [20]; this specializes to the stability conditions of Kass–Pagani [27]
and Melo [39] for the universal curve over Mg,n, and the stability conditions considered in
Migliorini–Shende–Viviani [44] for versal deformations of a reduced locally planar curve.

Since the explicit form of a stability condition is not important for our purpose, in the
following we only describe the definitions of stability conditions and relative fine compactified
Jacobians briefly; we refer to [40] for more details. We mainly need the existence of relative
fine compactified Jacobians and some properties which we will emphasize.

Recall that a polarization ϕb of degree d on a connected reduced curve Cb is an assignment
of a rational number to each irreducible component of Cb, whose total sum over all irreducible
components is d. A polarization as above yields a stability condition for Cb, which allows us to
consider stable and semistable rank 1 torsion-free sheaves on Cb via inequalities with respect
to ϕb. A stability condition ϕb is called nondegenerate if there are no strictly semistable
sheaves. In this case, the fine compactified Jacobian J

ϕb

Cb
is the moduli space of ϕb-stable

rank 1 torsion-free sheaves on Cb. For two different nondegenerate stability conditions ϕb, ϕ
′
b
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associated with the same curve Cb, the fine compactified Jacobians Jϕb

Cb
, J

ϕ′
b

Cb
are birational but

are not isomorphic in general; see [40, Theorem B].
Now we consider the relative case. A polarization stability condition for the family C → B

is a polarization on each closed fiber Cb which is compatible with specializations [40, Section 5].
Once we fix a polarization stability condition

ϕ := {ϕb, b ∈ B}

for C → B which is nondegenerate (i.e., each ϕb is nondegenerate), we can consider the relative
fine compactified Jacobian

π : Jϕ
C → B

parameterizing (Cb, Fb) with Fb a ϕb-stable rank 1 torsion-free sheaf on Cb.

Remark 3.8. Strictly speaking, the relative fine compactified Jacobian Jϕ
C may be an algebraic

space. But for the purpose of proving Theorem 0.9 one can always perform an étale base change
over B so that Jϕ

C stays a scheme.

For the rest of this section, we assume that we are given a family of curves C → B as above,
and two nondegenerate (polarization) stability conditions ϕ, ϕ′ of degree 0, satisfying

(i) the family C → B is δ-regular, and
(ii) the total spaces of the associated relative fine compactified Jacobians

π : Jϕ
C → B, π′ : Jϕ′

C → B

are nonsingular varieties.
We note that Jϕ

C contains a Zariski dense open subset Jϕ
C parameterizing line bundles. The

normalized (with respect to the section s : B → C) Poincaré line bundle L is well-defined over

Jϕ′

C ×B J
ϕ
C ∪ J

ϕ′

C ×B Jϕ
C ,

and it can be extended to a maximal Cohen–Macaulay sheaf

P := j∗L ∈ Coh(Jϕ′

C ×B J
ϕ
C)

via the open embedding

j : Jϕ′

C ×B J
ϕ
C ∪ J

ϕ′

C ×B Jϕ
C ↪→ J

ϕ′

C ×B J
ϕ
C ;

this was proven in [41] which was built on Arinkin’s construction [3].

Theorem 3.9 ([3, 41]). The Fourier–Mukai transform

FMP : DbCoh(Jϕ′

C )→ DbCoh(Jϕ
C)

is an equivalence, whose inverse

FMP−1 : DbCoh(Jϕ
C)→ DbCoh(Jϕ′

C )
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is induced by
P−1 := P∨ ⊗ p∗

J
ϕ
C

ω
J

ϕ
C/B

[g] ∈ DbCoh(Jϕ
C ×B J

ϕ′

C ).

Here p
J

ϕ
C

: Jϕ
C ×B J

ϕ′

C → J
ϕ
C is the projection.

For the triple (Jϕ
C , B, J

ϕ′

C ), Theorem 3.9 guarantees (a1) of Definition 3.2 with the Poincaré
complex given by the Fourier–Mukai kernel P. For (a2), we also need to consider the convo-
lution kernel

(53) K := P−1 ◦ O∆sm
J

ϕ
C

/B

◦ (P ⊠ P) ∈ DbCoh(Jϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C )

associated with P, where ∆sm
J

ϕ
C/B

is the relative small diagonal.
Next, we describe the support of K. Let B◦ ⊂ B be the largest open subset such that the

restriction of C → B, denoted by C◦ → B◦, is smooth. Then the restriction of both π, π′

to B◦ are identical to the Jacobian fibration

π◦ : J0
C◦ → B◦.

The restriction of the convolution kernel K over B◦ is the structure sheaf of the relative graph Γ
of the group law of π◦ (denoted G+ in Section 1.3):

Γ := {(Cb, L1, L2, L3) ∈ J0
C◦ ×B J0

C◦ ×B J0
C◦ , b ∈ B◦, L1, L2, L3 ∈ Pic0(Cb), L1 ⊗ L2 = L3}.

The following proposition is a slight extension of Arinkin’s support property [35, Proposi-
tion 3.2]. It plays the role of (the easier) Proposition 2.5 in the case of integral curves.

Proposition 3.10 (Reduced convolution class). The support of the convolution kernel

Supp(K) ⊂ Jϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C .

is of codimension g. Moreover, the Zariski closure

Γ ⊂ Jϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C

is the only codimension g irreducible component of Supp(K); in particular, the codimension g

support of K is independent of the stability condition ϕ.

Proof. The proof is parallel to that of [35, Proposition 3.2]; the arguments there need to be
generalized from integral curves to reduced curves, and this was already worked through in [41]
(in order to establish Theorem 3.9). For the reader’s convenience, in the following, we explain
in more detail that the δ-regularity assumption not only guarantees that the support of K is
of codimension g as in [35, Proposition 3.2], but also determines the support completely as
stated here in the proposition.

We consider

K3 := p123∗ (p∗
14P ⊗ p∗

24P ⊗ p∗
34P) ∈ DbCoh(Jϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C )
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where the pijk, pij are the natural projections from J
ϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C ×B J
ϕ
C . The convolution

kernel (53) is governed by K3; it suffices to show that the restriction of K3 over B \ B◦ has
codimension > g.

We consider b ∈ B \B◦ (in particular, δ(b) > 0), and a point

(F1, F2, F3) ∈ Zb := Supp(K3) ∩ (Jϕ′
b

Cb
)×3.

By an identical argument as in the proof of [35, Proposition 3.2], we have

(54)
3⊗

i=1
(Fi|Creg

b
) ≃ OCreg

b

where Creg
b ⊂ Cb is the regular locus; we note that [35, Proposition 3.2] only handles inte-

gral locally planar curves, but the proof of [41, Proposition 6.3] generalizes all the relevant
arguments to reduced ones.

Next, we recall the natural action

µb : J0
Cb
× (Jϕ′

b
Cb

)×3 → (Jϕ′
b

Cb
)×3, (L,F1, F2, F3) 7→ (L⊗ F1, L⊗ F2, L⊗ F3).

It is a smooth morphism of relative dimension g. Hence we have

(55) codim
(J

ϕ′
b

Cb
)×3

(Zb) = codim
J

0
Cb

×(J
ϕ′

b
Cb

)×3

(
µ−1

b (Zb)
)
.

Let
σb : µ−1

b (Zb)→ (Jϕ′
b

Cb
)×3

be the composition of the natural inclusion µ−1
b (Zb) ↪→ J

0
Cb
× (Jϕ′

b
Cb

)×3, and the projection to
the second factor; every closed fiber of σb lies in the irreducible group variety J

0
Cb

. By the
proof of [3, Corollary 7.6], (54) implies that any closed fiber of σb has dimension ≤ δ(b), while
a fiber over any closed point lying in the Zariski dense open subset

(Jϕ′
b

Cb
)×3 ⊂ (Jϕ′

b
Cb

)×3

is 0-dimensional. In particular, for each b ∈ B we have

codim
J

0
Cb

×(J
ϕ′

b
Cb

)×3

(
µ−1

b (Zb)
)
> g − δ(b)

which by (55) further implies

codim
(J

ϕ′
b

Cb
)×3

(Zb) > g − δ(b).

Consequently, we deduce from the δ-regularity of C → B that there is no irreducible codi-
mension g component contained in the support of K3 over B \ B◦. This completes the proof
of the proposition. □
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Remark 3.11. Arinkin’s arguments [3] can further be applied to show that K is a Cohen–
Macaulay sheaf supported on the Zariski closure of Γ. This is not needed for our purpose, and
we leave it to the interested reader.

By Theorem 3.9 and Proposition 3.10, the data

(Jϕ
C , B, J

ϕ′

C ,P,K)

satisfy both (a1, a2) of Definition 3.2. Recall the Fourier transforms F,F−1 induced by P,P−1

respectively. We note that the 1
2Fourier vanishing also follows from the δ-regularity of C → B.

Proposition 3.12 (1
2Fourier vanishing [35, Section 3.5]). For all i+ j < 2g, we have

F−1
j ◦ Fi = 0 ∈ CH3g−i−j+dim B(Jϕ′

C ×B J
ϕ′

C ),(1
2FV1)

Fj ◦ F−1
i = 0 ∈ CH3g−i−j+dim B(Jϕ

C ×B J
ϕ
C).(1

2FV2)

Proof. The proof is identical to that in [35, Section 3.5] for integral curves. The δ-regularity
is used here in a parallel way as in the proof of Proposition 3.10. Indeed, instead of K3, we
consider another sequence of objects

K̃(N) := P−1 ◦ (i∗P)⊗N ∈ DbCoh(Jϕ′

C × J
ϕ′

C ), N ∈ Z>0

where i : Jϕ′

C ×B J
ϕ′

C ↪→ J
ϕ′

C × J
ϕ′

C is the closed embedding. These objects are supported on
J

ϕ′

C ×B J
ϕ′

C , and we can deduce the codimension estimate

codim
J

ϕ′
C ×BJ

ϕ′
C

(
Supp(K̃(N))

)
≥ g

by a similar proof as for Proposition 3.10 using δ-regularity. Then an argument via the Adams
operations as in [35, Section 3.5.2] yields the desired (1

2FV1).
The other half (1

2FV2) can be deduced similarly; see [36, Proposition 2.9]. □

As before, let Hϕ
(k) be the shifted perverse sheaves associated with the decomposition of the

pushforward complex π∗QJ
ϕ
C

as in (26). The following theorem is an application of Theorem 3.6
to relative fine compactified Jacobians.

Theorem 3.13. With the notation as above, assume that both morphisms

π : Jϕ
C → B, π′ : Jϕ′

C → B

have full support. We have the following.
(i) The associated graded

Hϕ :=
2g⊕

k=0
Hϕ

(k) ∈ D
b
c(B)

is naturally a graded ring object induced by the cup-product on π∗QJ
ϕ
C

.
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(ii) There is an isomorphism

Hϕ ≃ Hϕ′ ∈ Db
c(B)

of graded ring objects.

Proof. For (i), we first note that

(56) (Jϕ
C , B, J

ϕ′

C ,Pϕϕ′ ,Kϕϕ′)

is a dualizable abelian fibration; here we add subscripts for the Poincaré sheaf P and the
convolution kernel K to indicate the dependence on the stability conditions. Indeed, as we
mentioned before Proposition 3.12, (a1, a2) of Definition 3.2 are satisfied, and (b) is also
satisfied by the assumption of the theorem. Therefore, we obtain (i) from Theorem 3.5 and
Proposition 3.12.

Now we prove (ii). By setting ϕ = ϕ′ in (56), we obtain another dualizable abelian fibration

(57) (Jϕ′

C , B, J
ϕ′

C ,Pϕ′ϕ′ ,Kϕ′ϕ′).

Proposition 3.10 implies that the reduced convolution classes associated with Kϕϕ′ and Kϕ′ϕ′

respectively coincide; both are given by

[Γ] ∈ CH2g+dim B(Jϕ′

C ×B J
ϕ′

C ×B J
ϕ′

C ).

Therefore, we obtain (ii) by applying Theorem 3.6 to (56) and (57). □

Remark 3.14. We note that δ-regularity of C → B is not sufficient to guarantee the full
support property (i.e., Definition 3.2(b)) of π : Jϕ

C → B. For example, an elliptic fibration
with reducible fibers is always δ-regular, but it has 0-dimensional supports.

3.4. Proofs of Theorems 0.7 and 0.9. Theorems 0.7 and 0.9 are immediate consequences
of Theorem 3.13.

Proof of Theorem 0.7. We consider the universal curve

(58) Cg,n →Mg,n

over the moduli of stable marked curves (or rather, the base change to the moduli of stable
marked curves with a level structure constructed in [1]). Since we assume n ≥ 1, there is a
section through the smooth locus of the family. Using this section, universal fine compactified
Jacobians of different degrees are identified. So we only need to prove that

H0,ϕ
g,n ≃ H0,ϕ′

g,n

with ϕ, ϕ′ nondegenerate. In view of Theorem 3.13, it suffices to check that
(i) the universal curve (58) is δ-regular,
(ii) the universal fine compactified Jacobian J

0,ϕ
g,n is nonsingular, and

(iii) the morphism π : J0,ϕ
g,n →Mg,n has full support,
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where we assume in (ii, iii) that ϕ is nondegenerate.
Indeed, (ii) is given by [27, Corollary 4.4]; (i) and (iii) are given by [44, Fact 2.4 and

Theorem 1.9]. This completes the proof. □

Proof of Theorem 0.9. We can use a nonsingular closed point on the reduced locally planar
curve C0 to reduce to the case where both ϕ, ϕ′ are nondegenerate stability conditions of
degree 0 for C0.

Under the assumption of Theorem 3.13, for any closed fiber Cb of the family C → B there
is a multiplicative perverse filtration

P0H
∗(Jϕb

Cb
,Q) ⊂ P1H

∗(Jϕb

Cb
,Q) ⊂ · · · ⊂ P2gH

∗(Jϕb

Cb
,Q) = H∗(Jϕb

Cb
,Q),

so that the associated graded Hϕb
Cb

is a bigraded Q-algebra; for two nondegenerate stability
conditions ϕ, ϕ′, we further have an isomorphism of bigraded Q-algebras:

Hϕb
Cb
≃ Hϕ′

b
Cb
.

Therefore, to prove Theorem 0.9, it suffices to check that for any reduced locally planar
curve C0, there is a δ-regular family C → B containing C0 as a closed fiber, such that

(i) any nondegenerate stability condition of degree 0 for C0 can be extended to a nonde-
generate stability condition for C → B,

(ii) the relative fine compactified Jacobian associated with the nondegenerate stability
condition given by (i) is nonsingular, and the morphism to the base has full support.

Indeed, both (i) and (ii) are guaranteed by taking a versal deformation C → B of C0 as
in [44, Facts 2.3, 2.4, and Theorem 2.12], and the proof is complete. □

4. Dependence on the stability

In this section we complete the proof of Theorem 0.6. Discussions in Sections 4.1-4.3 apply
generally to arbitrary g and n ≥ 1. Starting from the end of Section 4.5 we specialize to the
case n = 1.

4.1. Space of stability conditions. For the definition of stability conditions, we refer to
Kass–Pagani [27]. Recall that a stability condition ϕ is nondegenerate if there exists no
strictly ϕ-semistable multidegree.

Let Mtl
g,n ⊂ Mg,n be the locus of treelike curves; these are stable marked curves whose

graph is a tree with any number of self-loops attached, and they form an open substack
of Mg,n. A stability condition ϕ of degree 0 is called semismall if the trivial line bundle on
the universal curve over Mtl

g,n is ϕ-stable. When ϕ is semismall and nondegenerate, ϕ-stable
fine compactified Jacobians are canonically isomorphic over Mtl

g,n.
Since we assumed n ≥ 1, for any nondegenerate stability condition ϕ of degree d we can

find ϕ′ nondegenerate and semismall such that the corresponding universal fine compactified



40 Y. BAE, D. MAULIK, J. SHEN, AND Q. YIN

Jacobians are isomorphic to each other:

J
d,ϕ
g,n ≃ J

0,ϕ′

g,n .

To see this, we can use the section given by the marking to change the degree, and twist by a
vertical divisor to change the bidegree for curves with 2 components and 1 separating node;
this governs the locus of treelike curves Mtl

g,n ⊂Mg,n by [27, Corollary 3.6].

4.2. Divisors on fine compactified Jacobians. From now on, we assume that ϕ is a
nondegenerate stability condition of degree d, and π : Jd,ϕ

g,n → Mg,n is the corresponding
universal fine compactified Jacobian.

Let Cg,n → J
d,ϕ
g,n be the universal curve and let F be the universal sheaf on Cg,n trivialized

along the section given by the first marking. By [21], the universal sheaf F is the pushforward
of the universal admissible line bundle L on the universal quasistable curve

p : Cqs
g,n → J

d,ϕ
g,n.

Here the admissible line bundle has degree 1 on each unstable component of Cqs
g,n. This

universal family induces natural tautological classes, which generate a ring

R∗(Jd,ϕ
g,n) ⊂ CH∗(Jd,ϕ

g,n),

called the tautological ring of the universal fine compactified Jacobian J
d,ϕ
g,n. Applying the

cycle class map, we can also consider the cohomological counter-part of the tautological ring

RH∗(Jd,ϕ
g,n,Q) ⊂ H∗(Jd,ϕ

g,n,Q).

Although most of the cohomological arguments in this section take place in the tautological
ring RH∗(Jd,ϕ

g,n,Q), all relevant tautological classes will be given in explicit form. For this
reason, we do not provide a complete definition of the tautological ring here, and instead refer
the interested reader to [4, 6] for further details.

We first introduce several (tautological) divisor classes on Jd,ϕ
g,n; they will be used throughout

this section:
Θ := −1

2p∗(c1(L)2), κ0,1 := p∗(c1(L) ∪ c1(ωp,log)),

and
ξi = x∗

i c1(L), ψi = x∗
i c1(ωp), 1 ≤ i ≤ n.

Here xi : Jd,ϕ
g,n → Cqs

g,n is the section corresponding to the i-th marking, and ωp (resp. ωp,log) is
the relative dualizing (resp. log-canonical) line bundle.

We also recall the tautological ring

RH∗(Mg,n,Q) ⊂ H∗(Mg,n,Q)

and the standard tautological classes

κi, λi ∈ RH2i(Mg,n,Q), ψi ∈ RH2(Mg,n,Q);
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see [50]. Classes on Mg,n can also be viewed as classes on J
d,ϕ
g,n via the pullback

π∗ : H∗(Mg,n,Q) ↪→ H∗(Jd,ϕ
g,n,Q).

Lemma 4.1. We have
RH2(Jd,ϕ

g,n,Q) = H2(Jd,ϕ
g,n,Q).

In particular, the group H2(Jd,ϕ
g,1 ,Q) is spanned by the classes Θ, κ0,1 modulo classes pulled

back from RH2(Mg,1,Q).

Proof. By [24], the Chow group CH1(Jg,n) is spanned by tautological classes. Since Jd,ϕ
g,n is

nonsingular, the excision sequence implies that R1(Jd,ϕ
g,n) = CH1(Jd,ϕ

g,n). By the Lefschetz (1, 1)
theorem, it suffices to show that H2,0(Jd,ϕ

g,n) = 0.
The rational Abel–Jacobi mapMg,n+g 99K J

d,ϕ
g,n with respect to the last g markings admits

a resolution a :M′
g,n+g → J

d,ϕ
g,n via a birational modification M′

g,n+g →Mg,n+g with M′
g,n+g

nonsingular. Since a is proper and surjective, the pullback map

a∗ : H∗(Jd,ϕ
g,n,Q)→ H∗(M′

g,n+g,Q)

is injective. As birational transformations do not affect H2,0(−), the vanishing of H2,0(Jd,ϕ
g,n)

follows from the fact that H2,0(Mg,n+g) = 0 by [2, Theorem 2.2]. □

4.3. Vanishing via the perverse filtration. Now we consider the perverse filtration (1)
associated with the fibration π : Jd,ϕ

g,n → Mg,n. We recall the following proposition from [6,
Proposition 8.7].

Proposition 4.2. Taking cup-product with the class κ0,1 ∈ H2(Jd,ϕ
g,n,Q) satisfies

κ0,1∪ : PkH
m(Jd,ϕ

g,n,Q)→ Pk+1H
m+2(Jd,ϕ

g,n,Q).

for any k,m. The same holds for the class ξi ∈ H2(Jd,ϕ
g,n,Q).

This means that the class κ0,1 and ξi have strong perversity 1 in the sense of [34]. For
example, Proposition 4.2 immediately implies

(59) Θk ∪ κl
0,1 ∪

∏
i

ξmi
i ∈ P2k+l+

∑
i

mi
H2k+2l+2

∑
i

mi(Jd,ϕ
g,n,Q).

We also recall the following lemma (see [6, Lemma 8.6]) which shows that perversity implies
vanishing after pushing forward.

Lemma 4.3. If α ∈ P2g−1H
∗(Jd,ϕ

g,n,Q), then

π∗α = 0 ∈ H∗(Mg,n,Q).

As we will apply later, Proposition 4.2 and Lemma 4.3 yield vanishing of the classes

π∗(Θk ∪ κl
0,1)

for many values of k, l; this significantly simplifies our calculations.
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4.4. Outline of the proof. We prove Theorem 0.6 by contradiction. Since Jd,ϕ
g,1 is isomorphic

to J
0,ϕ′

g,1 for some nondegenerate semismall stability condition ϕ′, we only consider stability
conditions which are nondegenerate and semismall.

Let ϕ1, ϕ2 be nondegenerate semismall stability conditions, and suppose that there exists a
graded ring isomorphism

(60) f : H∗(J0,ϕ1
g,1 ,Q) ≃−→ H∗(J0,ϕ2

g,1 ,Q)

which is linear over H∗(Mg,1,Q). Since the top-degree cohomology of both fine compactified
Jacobians is one-dimensional, there exists a nonzero constant c ∈ Q× depending only on f

such that
c ·
∫

J
0,ϕ1
g,1

Ξ =
∫

J
0,ϕ2
g,1

f(Ξ)

for all Ξ ∈ H∗(J0,ϕ1
g,1 ,Q). In particular, for any γ ∈ H∗(Mg,1,Q) and k, l ∈ Z≥0, we must have

c ·
∫

J
0,ϕ1
g,1

Θk ∪ κl
0,1 ∪ γ =

∫
J

0,ϕ2
g,1

f(Θ)k ∪ f(κ0,1)l ∪ γ.

For i = 1, 2, let πi : J0,ϕi

g,1 →Mg,1 be the natural projection. By the Poincaré duality forMg,1,
the equality of the integrals above implies

(61) c · π1∗(Θk ∪ κl
0,1) = π2∗(f(Θ)k ∪ f(κ0,1)l) ∈ H∗(Mg,1,Q).

For our purpose, it suffices to show that (61) does not hold for some choices of nondegenerate
semismall stability conditions ϕ1, ϕ2.

By Lemma 4.1, there exist unique

a, b, s, t ∈ Q, β, β′ ∈ RH2(Mg,1,Q)

such that
f(Θ) = aΘ + bκ0,1 + β, f(κ0,1) = sΘ + tκ0,1 + β′.

As k and l varies, the relation (61) imposes constraints on the coefficients c, a, b, s, t, and the
classes β, β′. In the following, we show that these constraints cannot always be satisfied as
long as the genus g is at least 4. Our main tool is the tautological relations obtained from
the theory of universal double ramification cycles [4] over the universal Picard stack. These
relations, as we will review in the next section, impose strong constraints on the classes

πi∗(Θk ∪ κl
0,1) ∈ H∗(Mg,1,Q).

4.5. Universal double ramification cycle relations. Let Picg,n be the universal Picard
stack over the moduli stack Mg,n of prestable curves of genus g with n markings. Let Picg,n,d

be the connected component parameterizing line bundles of total degree d.
Let ϕ be a nondegenerate stability condition of degree d. Using the universal admissible

line bundle as in Section 4.2, there exists a morphism to the universal Picard stack

(62) φ : Jd,ϕ
g,n → Picg,n,d.
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The tautological divisor classes in Section 4.2 induced by the universal admissible line bun-
dle L are naturally defined on the universal Picard stack, whose pullback along φ recover
the corresponding classes on the universal fine compactified Jacobians; we will use the same
notation to denote these classes on Picg,n,d and Jd,ϕ

g,n respectively. The universal double rami-
fication cycle relations are on Picg,n,d; pulling back along (62) yields relations on Jd,ϕ

g,n for any
nondegenerate stability condition ϕ.

We first recall the universal double ramification cycle introduced in [4] (see also [6]). Let d
be a fixed integer. Consider a tuple of integers a = (a1, . . . , an) ∈ Zn and b ∈ Z with∑

i

ai = d+ b(2g − 2 + n).

For given integers a and b, the universal double ramification cycle class

uniDRc
g(b; a) ∈ CHc(Picg,n,d)

is a certain algebraic class that governs the Abel–Jacobi theory of families of prestable curves.
We state in the following theorem some properties of the universal double ramification

cycles needed in our argument. For N ∈ Z, the “multiplication by N” map

[N ] : Picg,n,0 → Picg,n,0

is given by the N -th tensor power of the universal line bundle.

Theorem 4.4. Let d ∈ Z be fixed. Let a ∈ Zn and b ∈ Z with
∑

i ai = d+ b(2g − 2 + n).
(i) When d = 0, the pullback

[N ]∗uniDRc
g(b; a)

admits an explicit expression as a polynomial in N of degree 2c.
(ii) The class uniDRc

g(b; a) admits an explicit expression as a polynomial in a2, . . . , an,
and b of total degree 2c. Here the variable a1 does not show up due to the relation
between the ai and b.

(iii) For c > g, we have the vanishing

uniDRc
g(b; a) = 0 ∈ CHc(Picg,n,d).

Proof. Part (i) is from [6, Proposition 6.4]. When d = 0, (ii) is from [52, 54]. For general
d ∈ Z, we consider the isomorphism given by twisting by the first marking

τd : Picg,n,d
≃−→ Picg,n,0, (C, {xi}, L)→ (C, {xi}, L(−dx1)).

Then (ii) follows from the functoriality of uniDRc
g(b; a) under τ∗

d ; see [4, Section 7.4]. Part (iii)
is from [4, Theorem 0.8]. □

We mainly focus on the case d = 0, n = 1, for which we can refine the relation in Theo-
rem 4.4(iii) as follows. For all w,m ≥ 0, we have

(63) [uniDRc
g(b; a1)]weight=w, deg=m = 0,
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where the weight w refers to the coefficient of Nw, and the degree m is the degree as a poly-
nomial in b. The left-hand side of (63) admits an explicit expression in terms of tautological
classes. We note that a special case of (63) was used in [5].

We present the explicit forms of some special cases of (63), which will be used in our proof;
we refer to [4, Section 0.3] for further details. We consider pairs (Γ, δ) consisting of a prestable
graph Γ of genus g with n legs, and a degree δ : V (Γ) → Z on the set of vertices of Γ. Each
pair defines a Picard substack PicΓδ

with prescribed degeneration, together with a natural
morphism

jΓδ
: PicΓδ

→ Picg,n

of degree |Aut(Γδ)|. We use [Γδ] to denote the class given by the pushforward of the funda-
mental class (jΓδ

)∗1. For a fine compactified Jacobian J
d,ϕ
g,n with a ϕ-stable multidegree δ on

a quasistable graph Γ, let Jd,ϕ
Γδ

denote the pullback of PicΓδ
along (62).

Partial normalization along the edges of Γ induces a morphism

(64) PicΓδ
→

∏
v∈V (Γ)

Picg(v),n(v),δ(v) .

We also need to consider generalizations of the classes [Γδ]; they are natural classes of the
form

[Γδ, α]
given by the stratum Γδ decorated by a tautological class α pulled back from the factors
Picg(v),n(v),δ(v). These generalized boundary classes appear as terms of the double ramification
cycle relations.

As an example of (63), the relation

[uniDRg+1
g (b; a1)]weight=2g+1, deg=1 = 0

on the Picard stack Picg,1,0 is of the form

(65)

Θg ∪ κ0,1
g! = −Θg

g! ∪
∑

g1+g2=g

∑
d+d′=0

d(2g1 − 1)
[

d′

g2

d

g1
1

]

+ Θg−1

(g − 1)! ∪
∑

g1+g2=g−1

∑
d+d′=0

d3g1
6
[

d′

g2

d

g1
1

]
+ (other terms).

Here the number δ(v) at a vertex v in the graphs above refers to the assigned degree, and the
number gi below the vertex is the genus of the vertex. The infinite sum becomes finite after
pulling back the relation along (62).

Remark 4.5. In the formula (63), we only explicitly wrote out the main terms of the identity.
Every term of the identity is of the form

coefficient ·Θk ∪ [Γδ, α].
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As we discussed in Section 4.2, our main application of the universal double ramification cycle
relations is to handle the pushforward of monomials of Θ and κ0,1 toMg,1. After pulling back
the relation via (62) and pushing forward toMg,1, many terms vanish for dimension reasons.
Namely, if the stabilization of the graph Γ has higher codimension than the pushforward class,
then the corresponding term will vanish. In particular, these terms are not relevant for our
arguments so we use other terms to denote them for notational convenience. This convention
is applied throughout Section 4 for all universal double ramification cycle relations.

We recall some further relations on the stacks

Picg,1,0, Picg,2,d, Picg,3,d

given by Theorem 4.4(iii); although we mainly consider the case d = 0, n = 1 as in (65), we
need the other two stacks to handle boundary strata.

• On Picg,1,0: we first define

κ̃1 := 1
2

−κ1 + (2g − 1)2ψ1 −
∑

g1+g2=g
g1,g2≥1

(2g1 − 1)2
[

g2 g1
1

] ∈ CH1(Mg,1).

Here Mg,1 is the moduli stack of prestable curves with 1 marking, and κ1, ψ1 and the boundary
strata (appeared on the right-hand side) are standard tautological classes on Mg,1 as in [7].
The relation

[uniDRg+1
g (b; a1)]weight=2g, deg=2 = 0

is of the form

(66)

Θg−1 ∪ κ2
0,1

(g − 1)!2! = −Θg ∪ κ̃1
g!

+ Θg−1

(g − 1)! ∪
∑

g1+g2=g−1

∑
d+d′=0

6d2(2g1)2

48
[

d′

g2

d

g1
1

]

+ Θg−2 ∪ κ0,1
(g − 2)! ∪

∑
g1+g2=g−1

∑
d+d′=0

d3(2g1)
12

[
d′

g2

d

g1
1

]

+ Θg−2

(g − 2)! ∪
∑

g1+g2=g−1

∑
d+d′=0

d4(2g1)2

32
[

d′

g2

d

g1

ψh + ψh′

1
]

+ (other terms).

Here in the fourth term on the right-hand side, we use e = (h, h′) to denote an edge, and
ψh, ψh′ are the ψ-classes at the corresponding half-edges.
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• On Picg,2,d: the relation

[uniDRg+1
g (b; 0, 2gb+ d)]deg=1 = 0

is of the form

(67)

Θg ∪ κ0,1
g! = 2g · Θg ∪ ξ2

g!

+ 2gd · Θg ∪ ψ2
g!

+ Θg

g! ∪
∑

g1+g2=g

∑
e+e′=d

−2g1e ·
[

e

g1
e′

g2
1 2

]
+ (other terms).

• On Picg,3,d: the relation

[uniDRg+1
g (0; a, d− a, 0)]deg=1 = 0

is of the form

(68)

Θg ∪ (ξ2 − ξ1)
g! = Θg

g! ∪
∑

g1+g2=g

∑
e+e′=d

e ·
[

e

g1
e′

g2
1 2

3 ]

+ Θg

g! ∪
∑

g1+g2=g

∑
e+e′=d

(d− e) ·
[

e

g1
e′

g2
2 1

3 ]
+ (other terms),

and the relation
[uniDRg+1

g (0; a, d− a, 0)]deg=0 = 0
is of the form

(69) Θg+1

(g + 1)! = −Θg

g! ∪
(
dξ2 + d2

2 ψ2

)
+ (other terms).

We conclude this section by recalling a result of [6] where a closed formula for the pushfor-
ward of monomials of divisors is obtained when the perversities of the divisors sum exactly
to 2g; these classes are presented in terms of the double ramification cycle formulas over the
moduli of stable curves Mg,n [26]. Let a ∈ Zn and b ∈ Z with

∑
i ai = b(2g − 2 + n). The

trivial line bundle induces a map e :Mg,n → Picg,n,0. The double ramification cycle formula
is then defined by

DRc
g(b; a) = e∗uniDRc

g(b; a).
By Theorem 4.4(ii), this is a polynomial in a2, . . . , an, and b; we use

[DRc
g(b; a)]

bma
k2
2 ···akn

n
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to denote the coefficient of the monomial bmak2
2 · · · akn

n of DRc
g(b; a). We refer to [26] for explicit

formulas for these classes.

Theorem 4.6 ([6, Theorem 1.1]). Let π : Jd,ϕ
g,n → Mg,n be the universal fine compactified

Jacobian associated with a nondegenerate stability condition ϕ where the universal line bundle
is trivialized along the first marking. Let l,m, k2, · · · , kn be nonnegative integers with

2l +m+
n∑

i=2
ki = 2g.

Then we have

π∗

(
Θl

l! ∪
(−κ0,1)m

m! ∪
n∏

i=2

ξki

ki!

)
= (−1)g−l[DRc

g(b; a)]
bma

k2
2 ···akn

n
;

in particular, the pushforward is independent of the stability condition ϕ.

4.6. Constraints. In this section, we assume the existence of the ring isomorphism (60) in
Section 4.4, so that the relation (61) holds for ϕ1, ϕ2. We derive constraints on c, a, b, s, t ∈ Q,
and β, β′ ∈ RH2(Mg,1,Q).

Lemma 4.7. We have
ag = c ̸= 0, s = 0.

Proof. Since πi∗(Θg) = g!, we have

c · g! = π1∗(Θg) = π2∗((aΘ + bκ0,1 + β)g) = agg!

where the second equality follows from (61) and the last equality follows from the perversity
bound of Proposition 4.2 and the vanishing given by Lemma 4.3. We conclude that ag = c.

By a similar argument using the perversity bound of Proposition 4.2, we have

0 = c · π1∗(κg
0,1) = π2∗((sΘ + tκ0,1 + β′)g) = sgg!.

Therefore s = 0. □

Lemma 4.8. If g ≥ 2, we have
a = t2.

Proof. We first prove that [DR1
g(b; a1)]b2 is a nonzero class in H2(Mg,1,Q). Restricting to

Mg,1 ⊂Mg,1, we have

[DR1
g(b; a1)]b2 = 1

2(−κ1 + (2g − 1)2ψ1).

Let p :Mg,1 →Mg be the forgetful map. Then we have

p∗(−κ1 + (2g − 1)2ψ1) = 8g(g − 1)2 · [Mg] ̸= 0 ∈ H0(Mg,Q).

Therefore, we deduce from Theorem 4.6 that

(70) π1∗
(
Θg−1 ∪ κ2

0,1
)

= π2∗(Θg−1 ∪ κ2
0,1) ̸= 0.
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On the other hand, by (61) combined with (59), we obtain that

c · π1∗(Θg−1 ∪ κ2
0,1) = π2∗((aΘ + bκ0,1 + β)g−1 ∪ (tκ0,1 + β′)2) = ag−1t2 · π2∗(Θg−1 ∪ κ2

0,1),

from which we deduce
ag = c = ag−1t2.

Here we applied Lemma 4.7 and (70). The desired identity is concluded. □

Lemma 4.9. If g ≥ 2, we have

β′ = 2b
t

[DR1
g(b; a1)]b2 .

Proof. We first prove that

(71) π1∗(Θg ∪ κ0,1) = π2∗(Θg ∪ κ0,1) = 0.

We pull back the relation (65) to J0,ϕi

g,1 and then push it forward to Mg,1. The left-hand side
calculates (71). Now we consider the right-hand side: The first term does not contribute since
the stability condition forces d = d′ = 0. By dimension considerations, the only potentially
contributing term from the second term is when g1 = 0; however, this term also vanishes
because its coefficient is a multiple of g1. Therefore, (71) is concluded.

By (61), we obtain

0 = c · π1∗(Θg ∪ κ0,1) = π2∗((aΘ + bκ0,1 + β)g ∪ (tκ0,1 + β′)).

Expanding the right-hand side, only the terms

(72) π2∗(Θg ∪ κ0,1), π2∗(Θg−1 ∪ κ2
0,1), π2∗(Θg ∪ β′)

contribute by (59) and Lemma 4.3. We conclude the desired formula for β′ by comparing the
coefficients of the terms in (72) in the equation

π2∗((aΘ + bκ0,1 + β)g ∪ (tκ0,1 + β′)) = 0,

combined with Lemma 4.8, (70), and the fact

π2∗(Θg ∪ β′) = g!β′

given by the projection formula. □

Corollary 4.10. If g ≥ 2, we have

t · π1∗

(
Θg−1

(g − 1)! ∪
κ3

0,1
3!

)
= t2 · π2∗

(
Θg−1

(g − 1)! ∪
κ3

0,1
3!

)

+ 4b ·
(

[DR2
g(b; a1)]b4 −

1
2([DR1

g(b; a1)]b2)2
)
.
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Proof. By (61) and Lemma 4.7, we obtain

(73) c · π1∗(Θg−1 ∪ κ3
0,1) = π2∗((aΘ + bκ0,1 + β)g−1 ∪ (tκ0,1 + β′)3).

Expanding the right-hand side, only the terms

(74) π2∗(Θg−1 ∪ κ3
0,1), π2∗(Θg−1 ∪ κ2

0,1 ∪ β′), π2∗(Θg−2 ∪ κ4
0,1)

contribute by (59) and Lemma 4.3.
The second term of (74) simplifies to

π2∗
(
Θg−1 ∪ κ2

0,1 ∪ β′) = π2∗(Θg−1 ∪ κ2
0,1) ∪ β′

= −2!(g − 1)![DR1
g(b; a1)]b2 ∪

2b
t

[DR1
g(b; a1)]b2

where the first equality follows from the projection formula and the second follows from (70)
and Lemma 4.9. By Theorem 4.6, the third term of (74) equals to

π2∗(Θg−2 ∪ κ4
0,1) = 4!(g − 2)![DR2

g(b; a1)]b4 .

We conclude the desired formula by comparing the coefficients of the terms in (73) and (74)
respectively. □

4.7. Explicit computation. Throughout this section we always assume that the stability
condition ϕ is nondegenerate and semismall. To complete the proof of Theorem 0.6, we provide
an explicit expression of the class

(75) π∗(Θg−1 ∪ κ3
0,1) ∈ H4(Mg,1,Q), π : J0,ϕ

g,1 →Mg,1

in terms of tautological classes onMg,1. This will be achieved in Proposition 4.14 below which
is the main result of this section.

The boundary stratum associated with a prestable graph containing unstable vertices cor-
responds to a lower-genus fine compactified Jacobian. Consider the boundary stratum J

0,ϕ
Γδ

of J0,ϕ
g,1 corresponding to the prestable graph Γ and the ϕ-stable multidegree δ : V (Γ) → Z.

Suppose that Γ is obtained by subdividing m edges of a stable graph Γs; we label these m edges
by e1, . . . , em. Let Γ̃ be the stable graph obtained from Γs by separating the edges e1, . . . , em.
We have a canonical identification V (Γs) = V (Γ̃).

For each edge ek = (hk, h
′
k), we label the two additional legs of Γ̃ by 2k and 2k + 1 (the

order does not matter). By [6, Lemma 2.4], there exists a nondegenerate stability condition ϕ̃
of degree −m over Mg−m,1+2m such that the stratum J

−m,ϕ̃

Γ̃δ
is identified by the following
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diagram

(76)
J

−m,ϕ̃

Γ̃δ
J

−m,ϕ̃
g−m,1+2m J

0,ϕ
g,1

MΓ̃ Mg−m,1+2m Mg,1,

πs

ȷ

π

j
Γ̃ jm

Here jm denotes the morphism gluing the 2k-th and (2k + 1)-th markings for 1 ≤ k ≤ m,
and jΓ̃ is the gluing morphism associated with Γ̃. In particular, over J−m,ϕ̃

Γ̃δ
, there are two

universal curves: the first is a family of stable curves of genus g −m with 1 + 2m markings,
and the second is a family of quasistable curves of genus g with one marking.

The genus g −m universal curve over J−m,ϕ̃

Γ̃δ
together with (64) defines a morphism

(77) φs : J−m,ϕ̃

Γ̃δ
→

∏
v∈V (Γ̃)

Picg(v),n(v),δ(v).

For each vertex v, denote by

Θ[v], κ0,1[v], ξi[v], ψi[v] ∈ H2(J−m,ϕ̃

Γ̃δ
,Q)

the pullback of the corresponding classes from Picg(v),n(v),δ(v) along φs.

Lemma 4.11. Let ȷ : J−m,ϕ̃

Γ̃δ
→ J

0,ϕ
g,1 be the morphism in (76).

(i) For l ≥ 1, we have

Θl ∪ [Γδ] = ȷ∗

 ∑
v∈V (Γ̃)

Θ[v]− 1
2

m∑
k=1

(ξ2k + ξ2k+1)


l

.

(ii) For l ≥ 1, we have

κl
0,1 ∪ [Γδ] = ȷ∗

 ∑
v∈V (Γ̃)

κ0,1[v]


l

.

(iii) Let e = (h, h′) be an edge of Γ connecting a stable vertex and an unstable vertex
associated to k-th subdivided edge ek, where h′ be the half edge attached to the unstable
vertex. Then we have

[Γδ, ψh′ ] = ȷ∗(ξ2k − ξ2k+1).
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Proof. The genus g universal quasistable curve over J−m,ϕ̃

Γ̃δ
induces a morphism

φ : J−m,ϕ̃

Γ̃δ
→

∏
w∈V (Γ)

Picg(w),n(w),δ(w).

For each w ∈ V (Γ), we have the natural projection

pw :
∏

w∈V (Γ)
Picg(w),n(w),δ(w) → Picg(w),n(w),δ(w).

Consider the following relation in CH∗(Picg,n,d):

Θ ∪ [Γδ] =
∑

w∈V (Γ)
[Γδ, φ

∗p∗
wΘ].

When w ∈ V (Γ) is a stable vertex, then φ∗p∗
wΘ = Θ[w]. Therefore, it is enough to consider

the case when w is an unstable vertex of Γ. When w is an unstable vertex, the degree at w
should be 1 by the stability condition. The relation uniDR1

0(0; a+ 1,−a) = 0 on Pic0,2,1 yields

Θ + 1
2(ξ1 + ξ2) + (other terms) = 0.

After pulling back this relation along pw ◦ φ, the other terms do not contribute due to the
stability conditions. Therefore, the result holds for m = 1. The general case of (i) follows by
a similar argument.

The argument for (ii) is parallel. It suffices to consider κ0,1[w] with w an unstable vertex
of Γ, and then it follows from the relation uniDR1

0(b; a,−a) = 0 on Pic0,2,1.
Part (iii) follows from the relation uniDR1

0(a+ 1,−a) = 0 on Pic0,2,−1; see [6, (34)]. □

We return to the computation of the pushforward (75); the contributions from strata away
from the tree-like locus will play an important role.

We consider the classes
[Γ1], . . . , [Γg−1] ∈ H4(Mg,1,Q)

given by the stable graphs

Γg1 :=
[

g2

vg1

g1

wg1

1
]
,

where g1 and g2 denote the genera of the two vertices wg1 and vg1 with g1 + g2 = g − 1
and g1 ≥ 1.

By [27, Corollary 3.6], the stability condition ϕ over Mg,1 is uniquely determined by its
values at stable graphs of the form

(i) two vertices with one edge connecting them, and
(ii) Γg−1.
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For an integer z, let ϕ(z) be a sequence of nondegenerate semismall stability conditions which
are identical for all the graphs in (i) above, and for Γg−1 we assign

ϕ(z)(vg−1) = z + ϵ, ϕ(z)(wg−1) = −z − ϵ, 0 < ϵ≪ 1
g − 1 .

The values of ϕ(z) on the other graphs Γg1 are determined by the following formula.

Lemma 4.12. Let ϕ(z) be the nondegenerate semismall stability condition as above. Then
the value of ϕ(z) on the graph Γg1 is given by

ϕ(z)(vg1) = g1
(g − 1) · (z + ϵ), ϕ(z)(wg1) = − g1

(g − 1) · (z + ϵ).

Proof. Consider the stable graph Γ̃ with g vertices labeled u0, u1, . . . , ug−1, where g(u0) = 0
and g(u1) = · · · = g(ug−1) = 1. For i = 0, . . . , g, the vertex ui is connected to ui−1 by one
edge (with ug := u0), and the first marking is attached to u0.

We show that the values ϕ(z)(u1), . . . , ϕ(z)(ug−1) are all equal. For each 1 ≤ i ≤ g − 2,
consider the contraction of graphs Γ̃→ Γ̃i in which the vertices uk for k ̸= i, i+1 are contracted
to u0. The graph Γ̃i admits a symmetry interchanging the vertices ui and ui+1. Since ϕ(z) is
compatible with both contractions and the symmetries of stable graphs, we obtain

ϕ(z)(ui) = ϕ(z)(ui+1), 1 ≤ i ≤ g − 2.

Therefore we have ϕ(z)(u1) = · · · = ϕ(z)(ug−1).
On the other hand, there is a contraction Γ̃→ Γ0 contracting the vertices ui for 1 ≤ i ≤ g−1

to a single vertex. Compatibility of ϕ(z) with contractions then yields

ϕ(z)(u0) = ϕ(z)(vg−1).

Since ϕ(z) is a stability condition of degree 0, we have

ϕ(z)(u0) + (g − 1)ϕ(z)(u1) = 0,

and the desired equality follows from the compatibility of ϕ(z) with contractions. □

Let
δ : V (Γ)→ Z

be a multidegree which is stable with respect to ϕ(z). On the graph Γg1 , the stability condition
(see [27, Definition 4.1]) forces ∣∣δ(vg1)− ϕ(z)(vg1)

∣∣ ≤ 1.

So there are only two possible ϕ(z)-stable multidegrees, and we denote them by

(78) δ(vg1) = δg1(z), δ(wg1) = −δg1(z)

and

(79) δ(vg1) = δg1(z) + 1, δ(wg1) = −δg1(z)− 1
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respectively. In particular, the constant δg1(z) is an invariant dependent on the stability
condition ϕ(z).

Let Γ′
g1 be the quasistable graph obtained by subdividing one of the edges of Γg1 . Denote

by v′
g1 and w′

g1 the associated stable vertices of Γ′
g1 . The stability condition forces

(80) δ(v′
g1) = δg1(z), δ(w′

g1) = −δg1(z)− 1.

In particular, there is a unique ϕ(z)-stable multidegree on Γ′
g1 .

For the fibration
π : J0,ϕ(z)

g,1 →Mg,1,

we can express the pullback of the stratum class [Γg1 ] as

π∗[Γg1 ] = [Γ+
g1 ] + [Γ−

g1 ],

where the classes [Γ+
g1 ] and [Γ−

g1 ] correspond to the strata with multidegrees (78) and (79)
respectively.

Lemma 4.13. Assume that 1 ≤ g1 ≤ g − 1.
(i) We have the relation

π∗

(
Θg−1 ∪ κ0,1

(g − 1)! ∪ [Γ+
g1 ]
)

= 2g1 · [Γg1 ].

(ii) We have the vanishing

π∗(Θg−2 ∪ κ2
0,1 ∪ [Γ+

g1 ]) = π∗(Θg−2 ∪ κ2
0,1 ∪ [Γ−

g1 ]) = 0.

Sketch of the proof. The universal double ramification cycle relations provide an algorithm to
calculate the classes of the form

(81) π∗(Θk ∪ κl
0,1 ∪ [Γ±

g1 ]) ∈ H4(Mg,1,Q), k + l = g,

which leads to the proof of both identities above. Since the full proof is lengthy but the
idea is straightforward, we summarize the computational scheme here and leave the details to
Section 4.9.

A class (81) must be a multiple of the class [Γg1 ], and it suffices to determine the coefficient.
First, we use Lemma 4.11 to distribute the monomial Θk∪κl

0,1 among the vertices of Γ±
g1 ; then

we apply the relations in Section 4.5 at each vertex. For dimension reasons, the only terms that
can contribute nontrivially to the pushforward are those corresponding to the stratum Γ′

g1 ,
decorated by monomials of Θ divisors on stable vertices. These terms can be computed by
successive applications of the universal double ramification cycle relations. □

Proposition 4.14. We have

π∗

(
Θg−1

(g − 1)! ∪
κ3

0,1
3!

)
=

g−1∑
g1=1

ag1(ϕ(z)) · [Γg1 ]
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where the constants ag1(ϕ(z)) ∈ Q depend on the stability condition ϕ(z) as

ag1(ϕ(z)) = −4(2g1)3

48

(
δg1(z)− 1

2

)
.

Proof. We multiply 1
3κ0,1 on each side of (66). By (71) and the projection formula, the first

term vanishes:

π∗(Θg ∪ κ0,1 ∪ κ̃1) = π∗(Θg ∪ κ0,1) ∪ κ̃1 = 0.

The third and the fourth terms also do not contribute to the pushforward. To see this, by
the vanishing Lemma 4.13(ii), we have for any g1 ≥ 1 the vanishing

π∗(Θg−2 ∪ κ2
0,1 ∪ [Γ+

g1 ]) = π∗(Θg−2 ∪ κ2
0,1 ∪ [Γ−

g1 ]) = 0.

When g1 = 0, the corresponding term vanishes because the coefficient is a multiple of g1. A
similar argument shows that the fourth term also does not contribute to the pushforward.

Thus only the second term contributes to the pushforward. By Lemma 4.13 and (78), the
contribution from the stratum Γ+

g1 pushes forward to

−2(2g1)3

48 (δg1(z))2 · [Γg1 ].

Since π∗[Γg1 ] = [Γ+
g1 ] + [Γ−

g1 ], the projection formula implies

π∗

(
Θg−1 ∪ κ0,1

(g − 1)! ∪ [Γ−
g1 ]
)

= −2g1 · [Γg1 ].

Therefore, by (79), the contribution from the stratum Γ−
g1 is

2(2g1)3

48 ((δg1(z) + 1)2) · [Γg1 ].

Adding the two contributions yields the formula for ag1(ϕ(z)). □

Lemma 4.15. The classes [Γ1], . . . , [Γg−1] are linearly independent in H4(Mg,1,Q).

Proof. We proceed by explicit intersection theory. When g1 ̸= i, the vanishing∫
Γg1

ψ3g−3−3i
1 ∪ κ3i−1 = 0

holds for dimension reasons. On the other hand, we have∫
Γi

ψ3g−3−3i
1 ∪ κ3i−1 =

∫
Mg−1−i,3

ψ3g−3−3i
1 ·

∫
Mi,2

κ3i−1 =
∫

Mg−1−i

κ3g−3i−6 ·
∫

Mi

κ3i−3

which is nonzero by [22, (28)]. □
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4.8. Proof of Theorem 0.6. Suppose that there is an isomorphism

f : H∗(J0,ϕ(z)
g,1 ,Q)→ H∗(J0,ϕ(z′)

g,1 ,Q)

of H∗(Mg,1,Q)-algebras sending

f(Θ) = aΘ + bκ0,1 + β, f(κ0,1) = sΘ + tκ0,1 + β′.

By Lemmas 4.7, 4.8, and 4.9, we must have

s = 0, a = t2, β′ = 2b
t

[DR1
g(b; a1)]b2 .

By an explicit calculation, we get

[DR2
g(b; a1)]b4 −

1
2([DR1

g(b; a1)]b2)2 =
g−1∑
g1=1

(2g1)4

48 · [Γg1 ].

Therefore, by Proposition 4.14 and Lemma 4.15, both sides of the equation in Corollary 4.10
can uniquely be expressed in terms of linear combinations of Γg1 with g1 = 1, . . . , g − 1;
comparing their coefficients, we obtain

(82) t

(
δg1(z)− 1

2

)
= t2

(
δg1(z′)− 1

2

)
− 4b(2g1), g1 = 1, . . . , g − 1.

To complete the proof, it suffices to find two degrees z, z′ such that (82) has no solutions
with b ∈ Q, t ∈ Q×.

In fact, we just take:
z = 0, z′ = 2.

When z = 0, we have δg1(0) = 0 for all g1. On the other hand, when z′ = 2, by (4.7) and
Lemma 4.12 we obtain

δg1(2) =

0 if g1 <
g−1

2

1 if g1 ≥ g−1
2 .

For g ≥ 4, a nontrivial rational solution (b, t) to (82) must satisfy

− t2 = − t
2

2 − 8b, − t2 = t2

2 − 8b(g − 1), − t2 = t2

2 − 8b(g − 2)

by considering g1 = 1, g − 2, g − 1. This is clearly impossible which completes the proof of
Theorem 0.6. □

Remark 4.16. When t = 1, the condition (82) is always satisfied for a pair of integers z, z′ with

z′ = z + b(2g − 2), b ∈ Z.

This is because of the existence of an isomorphism

J
0,ϕ(z)
g,1

≃−→ J
0,ϕ(z′)
g,1 , (C, x1, L) 7→ (C, x1, L⊗ ω⊗−b

C,log ⊗OC(b(2g − 1)x1)⊗O(α))
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inducing the obvious ring isomorphism f . Here α is the unique vertical divisor on the universal
curve Cg,1 → Mg,1 chosen so that L ⊗ ω⊗−b

C,log ⊗ OC(b(2g − 1)x1) ⊗ O(α) has multidegree 0
over Mtl

g,1.

4.9. Proof of Lemma 4.13. Now we prove Lemma 4.13. We provide here the details for the
proof of (i); the proof of (ii) is similar and simpler.

For notational convenience, we set

v := vg1 , w := wg1 ,

so that g(w) = g1:

Γg1 =
[

g2

v

g1

w
1

]
.

Let e = (h, h′) be one of the two edges of Γg1 with h the half-edge attached to w. We consider
the morphism (77). By Lemma 4.11(i, ii), we have

(83) Θg−1 ∪ κ0,1
(g − 1)! ∪ [Γ+

g1 ] =
∑

j1+j2=g−1

[
Γ+

g1 ,
κ0,1[v] ∪ (Θ[v])j1 ∪ (Θ[w])j2

j1!j2!

]

+
∑

k1+k2=g−1

[
Γ+

g1 ,
κ0,1[w] ∪ (Θ[v])k1 ∪ (Θ[w])k2

k1!k2!

]
.

(i) The first summation. We show that the first summation of (83) does not contribute to
the pushforward along π : J0,ϕ(z)

g,1 →Mg,1.

Case 1: j1 ≥ g(v). We apply the relation (67) at the vertex v, with the second marking
of Picg(v),3,δ(v) identified with the first marking of Γ+

g1 . Since the universal line bundle is
trivialized along the first marking, we have ξ2[v] = 0. In (67), the terms supported on
unstable boundary strata do not contribute, because the vertex v cannot further degenerate
to a stratum containing an unstable vertex (recall that any unstable vertex must have degree 1)
by the stability condition (80). The terms supported on stable boundary strata also do not
contribute for dimension reasons. Therefore, only the second term of (67) remains.

For the monomials (Θ[v])m ∪ (ψ2[v])n with m ≥ g(v) + 1, we can apply (69) at the vertex v
repeatedly to reduce to monomials with m ≤ g(v) and n ≥ 1. However, since ψ2[v] = π∗ψ1,
we obtain

π∗((ψ2[v])n ∪ (Θ[v])m ∪ (Θ[w])j2) = ψn
1 ∪ π∗(Θ[v])m ∪ (Θ[w])j2) = 0

where the last equality holds for dimension reasons. Therefore, monomials with j1 ≥ g(v) do
not contribute to the pushforward.

Case 2: j1 < g(v). In this case we have j2 > g(w). Hence the relation (69) can be ap-
plied at the vertex w. Let st : Mg(w),2 → Mg(w),2 be the stabilization morphism. By [7,
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Proposition 3.14], we have

(84) st∗ψ1 = ψ1 −
[

0 g(w)
1 2

]
.

First, consider the terms without boundary strata. After repeatedly applying the rela-
tion (69), such terms reduce to a linear combination of

(Θ[w])g(w) ∪ (ξ2[w])j3 ∪ (st∗ψ2[w])j4 , j3 + j4 ≥ 1.

If j4 ≥ 1, then the pushforward of[
Γ+

g1 , κ0,1[v] ∪ (Θ[v])j1 ∪ (Θ[w])g(w) ∪ (ξ2[w])j3 ∪ (st∗ψ2[w])j4
]

is zero for dimension reasons. Hence, we assume j4 = 0 and j3 ≥ 1. We identify the half-edge h
with the second marking of w, and h′ with the first marking of w. Since

ξ2[w] = ξh = ξh′ = ξ1[v],

we may move (ξ2[w])j3 to the vertex v. Then the codimension of the tautological class at v
exceeds g(v); by a similar argument as above, this term does not contribute after the push-
forward.

Next, consider the terms with boundary strata. For dimension reasons, the only possi-
ble contributions are divisor classes with an unstable vertex. If the vertex w is decorated
by st∗ψ2[w], the pushforward again vanishes for dimension reasons. By Lemma 4.11, we are
reduced to computing the pushforward of

ȷ∗(κ0,1[v] ∪ (Θ[v])j1 ∪ (ξ1[v])j2−g(w)−1 ∪ (Θ[w])g(w))

where ȷ : Jδ(v),ϕv

g(v),3 × J
−δ(v)−1,ϕw

g(w),2 → J
0,ϕ
g,1 is defined in (76). The cohomology class from the first

factor has perversity

2j1 + j2 − g(w) = 2g(v) + g(w)− j2 < 2g(v).

Therefore, by Lemma 4.3, the pushforward of this term also vanishes.

(ii) The second summation. We return to (83). By a similar argument as above, in the
second summation on the right-hand side, only the term[

Γ+
g1 ,

(Θ[v])g(v)

g(v)! ∪ (Θ[w])g(w) ∪ κ0,1[w]
g(w)!

]
contributes to the pushforward along π. By (67) on Picg(w),2,−δ(v), we have

(85) (Θ[w])g(w) ∪ κ0,1[w]
g(w)! = 2g(w) · (Θ[w])g(w) ∪ ξh

g(w)! − 2g(w)δ(v) · (Θ[w])g(w) ∪ ψh

g(w)!

+ (Θ[w])g(w)

g(w)! ∪
∑

G1+G2=g(w)

∑
e+e′=−δ(v)

−2G1e ·
[

e

G1

e′

G2

h′ h
]
.
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In the following, we compute the contribution of each individual term on the right-hand side
of (85).

For the first term of (85), consider the relation (68) on Picg(v),3,δ(v), with the second marking
identified by h′. Since we have trivialized the universal line bundle along the first marking, it
follows that ξ1 = 0. Therefore,

π∗
(
(Θ[v])g(v) ∪ (Θ[w])g(w) ∪ ξh

)
= π∗

(
(Θ[v])g(v) ∪ ξh′ ∪ (Θ[w])g(w)

)
= 0,

where the first equality uses ξh = ξh′ , and the second follows from the fact that the boundary
stratum in (68) does not contribute under the stability condition (80). This shows that the
first term of (85) does not contribute to the pushforward.

For the second term of (85), we have

π∗

[
Γ+

g1 ,
(Θ[v])g(v) ∪ (Θ[w])g(w) ∪ ψh

g(v)!g(w)!

]
= π∗

[
Γ′

g1 ,
(Θ[v])g(v) ∪ (Θ[w])g(w)

g(v)!g(w)!

]
= [Γg1 ],

where the first equality follows from (84) together with the projection formula, and the second
from Lemma 4.11. Hence the second term of (85) contributes −2g(w)δ(v) · [Γg1 ].

For the third term of (85), the boundary stratum contributes to the pushforward only
when it is unstable for dimension reasons; hence G1 = 0 or G1 = g(w). Since the coefficient
is proportional to G1, we only consider the case G1 = g(w); hence e = −δ(v) − 1 by (80).
Therefore, the third term of (85) contributes 2g(w)(δ(v) + 1) · [Γg1 ].

After summing all contributions of (85), we obtain the desired formula. □
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abélienne, Algebraic geometry (Tokyo/Kyoto, 1982), 238–260, Lecture Notes in Math., 1016, Springer–
Verlag, Berlin, 1983.

[9] A. Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), no. 4, 647–651.
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