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1. Introduction

1.1. Given a smooth projective variety X and a base point a, Gross and Schoen
introduced in [7] modified diagonal cycles Γn(X, a) on Xn. For instance, Γ2(X, a) =
∆X−[X×{a}]−[{a}×X ]. In general, if J ⊂ {1, . . . , n} we define a closed subvariety
XJ ⊂ Xn by the condition that xi = a for all i /∈ J ; the modified diagonal Γn(X, a)
is then an alternating sum of the small diagonals of the XJ .

Gross and Schoen proved a number of vanishing results for the modified diag-
onals of curves. In [3], Beauville and Voisin prove that for a K3 surface X there
is a distinguished point class oX ∈ CH0(X) and that Γ3(X, oX) = 0 in CH2(X3).
A consequence of this is that the intersection pairing Pic(X)⊗2 → CH0(X) takes
values in Q · oX and that c2(X) = 24 · oX .

Our interest in modified diagonals was sparked by the preprint [12] of O’Grady
and the questions he asked. We were quickly able to answer one of these questions in
the positive, proving that for a g-dimensional abelian variety X the class Γm(X, a)
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is torsion in CHg(Xm) for m > 2g and any choice of base point; see [11]. This result
is included in the present paper as Theorem 4.2.

1.2. In this paper, we give a simple motivic description of modified diagonals, and
we collect a number of basic results about them. We also introduce and study some
more general classes γn

X,a(α), for any α ∈ CH(X), which for α = [X ] give back the
modified diagonals Γn(X, a).

We work over an arbitrary field and consider algebraic cycles modulo an ade-
quate equivalence relation ∼. Throughout we work with Q-coefficients. (In particu-
lar, CH from now on means CH⊗Q.) We prove that Γn(X, a) ∼ 0 if and only if the
map γn

X,a is zero modulo ∼, and that this implies the vanishing of γn−s
X,a (α) for all

classes α in the image of the product map CH>0(X)⊗s → CH(X). We also prove
that if f : X → Y is surjective with generic fiber of dimension r then Γn(X, a) ∼ 0
implies that Γn−r(Y, f(a)) ∼ 0. Further we have a precise result about what hap-
pens when we change the base point (working in the Chow ring): if Γn(X, a) = 0
for some point a then for any other base point a′ we have Γ2n−2(X, a′) = 0.

In Sec. 4, we prove some sharp (or conjecturally sharp) vanishing results for
modified diagonals of curves and abelian varieties. For a curve C we use the base
point a to embed C in its Jacobian J . The vanishing of Γn(C, a) is then equivalent
to the vanishing of some components of the class [C] ∈ CH1(J) with respect to
the Beauville decomposition of CH(J). This is a problem that has been studied
independently of modified diagonals, notably by Polishchuk, Voisin and the second
author. Our Theorem 4.2 about modified diagonals of abelian varieties, which proves
a conjecture of O’Grady in [12], is an easy application of the results by Deninger
and Murre [5] about motivic decompositions of abelian varieties.

Finally, in Sec. 5, we prove a conjecture of O’Grady about modified diagonals
on double covers. Voisin [16] has recently proved a generalization of this result to
covers of higher degree.

2. Definition and Some Basic Properties of Modified Diagonals

Throughout, Chow groups are taken with Q-coefficients.

2.1. Let k be a field. Let X and Y be smooth projective k-varieties. If X is
connected, let Corri(X, Y ) = CHdim(X)+i(X × Y ). In general, write X as a dis-
joint union of connected varieties, say X =

∐
α Xα; then we let Corri(X, Y ) =⊕

α Corri(Xα, Y ). The elements of Corri(X, Y ) are called correspondences from
X to Y of degree i. If Z is a third smooth projective k-variety, composition of
correspondences

Corri(X, Y ) × Corrj(Y, Z) → Corri+j(X, Z)

is defined in the usual way: (θ, ξ) �→ prXZ,∗(pr∗XY (θ) · pr∗YZ (ξ)).
We denote by Motk the category of (covariant) Chow motives over k. The objects

are triples (X, p, m) with X a smooth projective k-variety, p an idempotent in
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Corr0(X, X), and m ∈ Z. The morphisms from (X, p, m) to (Y, q, n) are the ele-
ments of

q ◦ Corrm−n(X, Y ) ◦ p

(which is a subspace of Corrm−n(X, Y )), and composition of morphisms is given by
composition of correspondences. For example, the identity morphism on an object
(X, p, m) is p ◦ [∆X ] ◦ p, with ∆X ⊂ X × X the diagonal.

We have a covariant functor h : SmProjk → Motk, sending X to h(X) = (X,

∆X , 0) and sending a morphism f : X → Y to the class of its graph [Γf ] ∈
Corr0(X, Y ) = Hom(h(X), h(Y )). We usually write f∗ instead of [Γf ].

There is a tensor product in Motk, making it into a Q-linear tensor category,
such that h(X) ⊗ h(Y ) = h(X × Y ). The unit object for this tensor product is
the motive 1 = h(Spec(k)) of a point. If M = (X, p, m) is an object of Motk and
n ∈ Z, we let M(n) = (X, p, m + n). Then M(n) = M ⊗ 1(n), and 1(1) is the Tate
motive.

The Chow group of a motive M is defined by CH(M)=
⊕

i≥0 CHi(M), with
CHi(M)=HomMotk(1(i), M). If M is the motive of a smooth projective k-variety,
this gives back the classical Chow group with grading by the dimension of
cycles.

2.2. Let X be a connected smooth projective k-variety of dimension d with a
rational point a ∈ X(k). Then

π0 = X × {a} and π+ = [∆X ] − X × {a}
are orthogonal projectors, defining a decomposition

h(X) = h0(X) ⊕ h+(X). (2.2.1)

If there is a need to specify the base point, we use the notation h0(X, a) and
h+(X, a).

If f : X → Spec(k) is the structural morphism, a ◦ f is an idempotent endomor-
phism of X and π0 is just the induced endomorphism (a ◦ f)∗ of h(X). In particular,
f∗ : h0(X) → h(Spec(k)) = 1 is an isomorphism with inverse a∗. On Chow groups
we have CH(h0(X)) = Q · [a] ⊂ CH0(X).

2.3. We have a Künneth decomposition

h(Xn) = [h0(X) ⊕ h+(X)]⊗n =
⊕

J⊂{1,...,n}
hJ(Xn), (2.3.1)

where, for J ⊂ {1, . . . , n}, we define

hJ(Xn) = hν1(X) ⊗ · · · ⊗ hνn(X) with νi =

{
+ if i ∈ J,

0 if i /∈ J.
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The summand h{1,...,n}(Xn) = h+(X)⊗n will play a special role in what follows.
Identifying Xn × Xn with (X × X)n, the projector onto this summand is π⊗n

+ .

2.4. Definition. Retain the assumptions and notation of 2.2. For n ≥ 1 define

γn
X,a : h(X) → h(Xn)

by γn
X,a = π⊗n

+ ◦ ∆(n)
X,∗, where ∆(n)

X : X → Xn is the diagonal morphism. We
use the same notation γn

X,a for the induced map on Chow groups CH(X) →
CH(Xn) or on Chow groups modulo an adequate equivalence relation. Finally, we
define

Γn(X, a) ∈ CHd(Xn)

(with d = dim(X)) to be the image under γn
X,a of the fundamental class [X ] ∈

CHd(X).

2.5. If J is a subset of {1, . . . , n}, we identify XJ with the closed subvariety of
Xn given by

{(x1, . . . , xn) ∈ Xn |xi = a if i /∈ J}.
Let φJ = φX,J : XJ ↪→ Xn be the corresponding closed embedding. Let ∆(J)

X ⊂ XJ

be the small diagonal of XJ , viewed as a cycle on Xn.
If dim(X) = 0 then γn

X,a is the zero map. If d = dim(X) is positive, the cycle
Γn(X, a) is the modified diagonal cycle introduced by Gross and Schoen in [7].
Explicitly, for d > 0,

Γn(X, a) =
∑

∅�=J⊂{1,...,n}
(−1)n−|J| · [∆(J)

X ].

2.6. Remark. If dim(X) > 0 we can refine (2.2.1) to a decomposition

h(X) = h2d(X) ⊕ h�(X) ⊕ h0(X),

where h2d(X) and h�(X) are the submotives of h(X) defined by the projectors
π2d = {a} × X and π� = [∆X ] − X × {a} − {a} × X , respectively. For the study
of modified diagonals this does not lead to a refinement, however, as for n ≥ 2 the
morphism γn

X,a = π⊗n
+ ◦∆(n)

X,∗ is the same as the morphism π⊗n
� ◦∆(n)

X,∗. To see this
we have to show that

(∆(n)
X × idXn)∗π⊗n

+ = (∆(n)
X × idXn)∗π⊗n

�

in CH(X × Xn). (Use [5, Proposition 1.2.1].) Abbreviating ∆(n)
X to ∆ and writing

pi : Xn → X for the ith projection, the difference (∆(n)
X × idXn)∗[π⊗n

+ − π⊗n
� ] is a

linear combination of terms

(∆ × idXn)∗(β1 ⊗ · · · ⊗ βn) = (idX × p1)∗β1 · · · (idX × pn)∗βn,

where β1, . . . , βn ∈ {π2d, π�} and at least one βj equals π2d. Now note that

(idX × pi)∗π2d · (idX × pj)∗π2d = 0 and (idX × pi)∗π2d · (idX × pj)∗π� = 0
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for all i 
= j.

2.7. Proposition. Let f : X → Y be a morphism of connected smooth projective
k-varieties. Let a ∈ X(k) and let b = f(a).

(i) The morphism f∗ : h(X) → h(Y ) is the direct sum of two morphisms
h0(X, a) → h0(Y, b) and h+(X, a) → h+(Y, b).

(ii) We have γn
Y,b ◦ f∗ = f⊗n

∗ ◦ γn
X,a for all n ≥ 1.

(iii) Suppose f is generically finite of degree N . Then N · Γn
Y,b = f⊗n

∗ (Γn
X,a) for all

n ≥ 1.

Proof. For (i), if g : Y → Spec(k) is the structural morphism then π0(Y, b) =
b∗ ◦ g∗ = f∗ ◦ a∗ ◦ g∗ and π0(X, a) = a∗ ◦ g∗ ◦ f∗. Hence π0(Y, b) ◦ f∗ = f∗ ◦ π0(X, a),
and because π+ = id−π0 also π+(Y, b)◦f∗ = f∗ ◦π+(X, a). Part (ii) readily follows
from this and (iii) follows by applying (ii) to the class [X ].

3. Some Vanishing Results

3.1. In what follows, we consider an adequate equivalence relation ∼ on algebraic
cycles, as in [1, Sec. 3.1], and we write Motk,∼ for the corresponding category
of motives. If M is an object of Motk,∼, let Ai(M) = HomMotk,∼(1(i), M) and
A(M) =

⊕
i∈Z Ai(M). In particular, if X is a smooth projective k-variety, Ai(X) =

CHi(X)/∼.
Given a connected smooth projective k-variety X with base point a ∈ X(k), the

decomposition (2.3.1) induces a decomposition

A(Xn) =
⊕

J⊂{1,...,n}
AJ (Xn),

with AJ (Xn) = A(hJ (Xn)). This decomposition in general depends on the chosen
base point.

Define a grading A(Xn) = A[0](Xn)⊕· · ·⊕A[n](Xn) by letting A[m](Xn) be the
direct sum of all AJ (Xn) with |J | = m. In particular, A[n](Xn) = A(h+(X)⊗n).
This grading is not to be confused with the one given by the dimension of cycles.
We have an associated descending filtration Fil• of A(Xn), given by

FilrA(Xn) =
n−r⊕
m=0

A[m](Xn).

This means that the only terms that contribute to FilrA(Xn) are those coming from
submotives hν1(X)⊗· · ·⊗hνn(X) involving at least r factors h0(X). Alternatively,
a class in A(Xn) lies in FilrA(Xn) if and only if it is a linear combination of classes
of the form φJ,∗(α) for subsets J ⊂ {1, . . . , n} with n − |J | ≥ r. In particular, if
J ⊂ {1, . . . , n} and β is a class in FilsA(XJ) then φJ,∗(β) ∈ Fils+n−|J|A(Xn).

If f : X →Y is a morphism of smooth connected k-varieties and we take b = f(a)
as base point on Y , it follows from Proposition 2.7(i) that the induced map (fn)∗ :
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A(Xn) → A(Y n) is a graded map. In particular, it is strictly compatible with the
associated filtrations.

3.2. Remark. If α ∈ A(X) we have a class ∆(n)
X,∗(α) ∈ A(Xn). By definition,

γn
X,a(α) is the projection of this class onto the summand A[n](Xn). Hence γn

X,a(α) =

0 in A(Xn) if and only if ∆(n)
X,∗(α) ∈ Fil1A(Xn).

3.3. As before, let X be a connected smooth projective k-variety with a base point
a ∈ X(k). For n ≥ 1, consider the morphism δ(n) = (idXn−1 × ∆X) : Xn → Xn+1;
so δ(n)(x1, . . . , xn−1, xn) = (x1, . . . , xn−1, xn, xn).

If J ⊂ {1, . . . , n} is a subset with n /∈ J , the morphism δ
(n)
∗ : h(Xn) → h(Xn+1)

induces an isomorphism hJ(Xn) ∼−→ hJ(Xn+1). If n ∈ J , let Ĵ = J ∪ {n + 1}. In
this case we have a commutative diagram

X |J| ∼−−−→ XJ φJ−−−→ Xn

δ(|J|)
� �δ(n)|

XJ

�δ(n)

X |J|+1 ∼−−−→ X Ĵ φĴ−−−→ Xn+1 .

It follows that δ
(n)
∗ : A(Xn) → A(Xn+1) respects the filtrations.

3.4. Proposition. Let X be a connected smooth projective k-variety with a base
point a ∈ X(k). Let n be a positive integer.

(i) If γn
X,a(α) = 0 for some α ∈ A(X) then γn+1

X,a (α) = 0.
(ii) We have Γn(X, a) = 0 in A(Xn) if and only if γn

X,a : A(X) → A(Xn) is the
zero map.

Proof. (i) As remarked in 3.2, γn
X,a(α) = 0 if and only if ∆(n)

X,∗(α) ∈ Fil1A(Xn).

Now use that ∆(n+1) = δ(n) ◦ ∆(n) and the fact just explained that δ
(n)
∗ respects

the filtrations.
(ii) Assume that Γn(X, a) = 0 in A(Xn) and let α ∈ A(X). Because the map

γn
X,a is linear and γn

X,a[X ] = Γn(X, a) by definition, we may assume that α ∈ Ai(X)
for some i < dim(X). By the vanishing of Γn(X, a), the class of the small diagonal
∆(n)

X lies in Fil1A(Xn); this means we can write

[∆(n)
X ] =

∑
J�{1,...,n}

βJ

with βJ ∈ AJ (Xn). By definition of AJ(Xn) we have βJ = φJ,∗(bJ) for some class
bJ on XJ . To prove that ∆(n)

X,∗(α) = [∆(n)
X ] · pr∗n(α) lies in Fil1A(Xn) we now only

have to remark that

βJ · pr∗n(α) = φJ,∗(bJ · (prn ◦ φJ )∗(α)),

and that for J � {1, . . . , n} any class in the image of φJ,∗ lies in Fil1A(Xn).
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For the classes Γn(X, a) the stability result in (i) is O’Grady’s Proposition 2.4
in [12]. As we shall now show, part (ii) of the proposition can be refined. The idea
is that we can view Γm+n(X, a) as a correspondence from Xm to Xn.

3.5. Proposition. Let X be a connected smooth projective k-variety with base
point a ∈ X(k). Suppose m and n are positive integers such that Γm+n(X, a) = 0
in A(Xm+n). Then∑

∅�=K⊂{1,...,m}
(−1)|K| · γn

X,a(∆(K),∗
X (ξ)) = 0 in A(Xn)

for all classes ξ ∈ CH>0(Xm). Here ∆(K)
X : X → Xm denotes the composition of

the diagonal ∆X : X → XK and the closed embedding φK : XK ↪→ Xm.

Proof. We may assume dim(X) > 0. By definition,

Γm+n(X, a) =
∑

∅�=J⊂{1,...,m+n}
(−1)m+n−|J| · [∆(J)

X ].

Write the nonempty subsets J ⊂ {1, . . . , m+n} as J = K∪L with K ⊂ {1, . . . , m}
and L = {m + 1, . . . , m + n}. Viewing [∆(J)

X ] as a correspondence from Xm to Xn,
its effect on cycle classes is given by ξ �→ ∆(L)

X,∗(∆
(K),∗
X (ξ)), where in the notation

∆(L)
X,∗ we treat L as a subset of {1, . . . , n}.

If K = ∅, the map ∆(K)
X is the inclusion of the point (a, . . . , a) in Xm; so

∆(K),∗
X (ξ) = 0 for ξ ∈ CH>0(Xm). If K 
= ∅ then∑

L

(−1)m+n−|K∪L| · ∆(K∪L)
X,∗ (ξ) = (−1)m−|K| · γn

X,a(∆(K),∗
X (ξ))

and the proposition follows.

3.6. Corollary. If Γm+n(X, a) = 0 in A(Xm+n) then γn
X,a : A(X) → A(Xn) is

zero on the image of the product map A>0(X)⊗m → A(X). In particular, if
Γn+1(X, a) = 0 then γn

X,a(ξ) = 0 for all ξ ∈ A>0(X).

Proof. In the proposition, take ξ = ξ1 × · · · × ξm for classes ξi ∈ CH>0(X). For
K 
= {1, . . . , m} we have ∆(K),∗

X (ξ) = 0. For K = {1, . . . , m} we have ∆(K),∗
X (ξ) =

ξ1 · · · ξm. Hence we find that γn
X,a(ξ1 · · · ξm) = 0.

3.7. Corollary. Let f : X → Y be a surjective morphism of connected smooth
projective k-varieties. Let a ∈ X(k) and b = f(a). Let r = dim(X) − dim(Y ). If
Γn+r(X, a) = 0 for some n ≥ 1 then Γn(Y, b) = 0.

Proof. Let � ∈ CH1(X) be the first Chern class of an f -ample line bundle on X .
We have f∗(�r) ∈ CH0(Y ); so f∗(�r) = N · [Y ] for some integer N . By pulling back
to the generic point of Y we see that N 
= 0. So by 2.7(ii), Γn(Y, b) is proportional
to f⊗n

∗ (γn
X,a(�r)), which vanishes by Corollary 3.6.
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3.8. Remark. O’Grady has made the conjecture that for a complex hyperkähler
variety X of dimension 2n there should exist a base point a ∈ X(k) such that
Γ2n+1(X, a) = 0 in CH(X2n+1). By Corollary 3.6, if this is true then the intersection
pairing Pic(X)⊗2n → CH0(X) takes values in Q · [a]. This last property is known
(for a suitable choice of a ∈ X(k)) for Hilbert schemes of K3 surfaces and Fano
varieties of cubic 4-folds by results of Voisin [14, Theorems 1.4(2) and 1.5], and also
for generalized Kummer varieties by a result of Fu [6, Theorem 1.6].

The vanishing of Γm(X, a) implies that m > dim(X); see Theorem 4.1 below.
So for X hyperkähler of dimension 2n, the vanishing of Γ2n+1(X, a) is the strongest
possible result. By Corollary 3.7, if O’Grady’s conjecture is true then for all varieties
Y dominated by X we again have the optimal result that Γdim(Y )+1(Y, b) vanishes
in the Chow ring. This suggests that only very special varieties are dominated by
a hyperkähler variety. There is a very strong result on this by Hwang [8], which
refines earlier results of Matsushima: let X be a complex hyperkähler variety of
dimension 2n and Y a nonsingular projective variety with 0 < dim(Y ) < 2n; if
there exists a surjective morphism X → Y with connected fibers then Y ∼= Pn.
Another indication of this is given by a result of Lin [9, Theorem 1.1]. He takes for
X a Hilbert scheme of points on a complex K3 surface with infinitely many rational
curves, and he proves that if there exists a dominant rational map X ��� Y to a
variety Y with 0 < dim(Y ) < dim(X), then Y is rationally connected.

Part (ii) of the next lemma gives a refinement of the stability result in Propo-
sition 3.4(i).

3.9. Lemma. In the situation of 3.1, suppose [∆(n)
X ] ∈ FilrA(Xn) for some r ≥ 1.

(i) For all i ∈ {0, . . . , r} we have [∆(n−i)
X ] ∈ Filr−iA(Xn−i).

(ii) For all i ≥ 0 we have [∆(n+i)
X ] ∈ Filr+iA(Xn+i).

Proof. In both statements, it suffices to do the case i =1. Part (i) readily
follows from the definitions by taking the image of [∆(n)

X ] under a projection
Xn → Xn−1.

For (ii), suppose [∆(n)
X ] ∈ FilrA(Xn) with r ≥ 1. In particular, Γn(X, a) = 0 in

A(Xn), which by Proposition 3.4(i) implies that Γn+1(X, a) = 0 in A(Xn+1). We
can write this as an identity

[∆(n+1)
X ] =

∑
J

(−1)n−|J| · [∆(J)
X ]

in A(Xn+1), where the sum runs over the nonempty subsets J � {1, . . . , n + 1},
and where we recall that ∆(J)

X is the small diagonal of XJ , viewed as a cycle on
Xn+1. If |J | ≤ n − r then it is clear that ∆(J)

X ∈ Filr+1A(Xn+1). If not, then
n + 1 − r ≤ |J | ≤ n and by the assumption that [∆(n)

X ] ∈ FilrA(Xn) together
with (i) the small diagonal on XJ lies in Fil|J|−n+rA(XJ). Since ∆(J)

X is obtained
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by pushing forward this small diagonal via φJ : XJ ↪→ Xn+1, it again follows that
[∆(J)

X ] ∈ Filr+1A(Xn+1).

We now investigate how changing the base point affects the vanishing of
Γn(X, a).

3.10. Proposition. Let X be a connected smooth projective k-variety. Let a

and a′ be k-valued points of X. If Γn(X, a) = 0 in A(Xn) for some n > 1 then
Γ2n−2(X, a′) = 0 in A(X2n−2).

Proof. Let π′
+ = [∆X ] − X × {a′} be the projector that cuts out the motive

h+(X, a′). We write it as π′
+ = π+ + X × [{a} − {a′}]. This gives

(π′
+)⊗(2n−2) =

∑
J⊂{1,...,2n−2}

π⊗J
+ ⊗ (X × [{a} − {a′}])⊗J′

, (3.10.1)

where we write J ′ = {1, . . . , 2n − 2}\J .
By Corollary 3.6, the assumption that Γn(X, a) = 0 implies that γm

X,a(a′) = 0 for
all m ≥ n− 1. But γm

X,a(a′) = [{a′} − {a}]⊗m; so in (3.10.1) we may sum only over
the subsets J ⊂ {1, . . . , 2n−2} of cardinality ≥ n. On the other hand, by 3.9(ii) we
have [∆(2n−2)

X ] ∈ Filn−1A(X2n−2), which means that π⊗J
+ ⊗ (X × [{a} − {a′}])⊗J′

kills [∆(2n−2)
X ] for all index sets J with |J | > (2n − 2) − (n − 1) = n − 1. Together

this gives that (π′
+)⊗(2n−2)[∆(2n−2)

X ] = 0, i.e. Γ2n−2(X, a′) = 0.

As an example, on a K3 surface X with distinguished point class oX we have
Γ3(X, oX) = 0 by [3, Proposition 3.2]. By Proposition 3.2 it follows that for any
base point a ∈ X(k) we have Γ4(X, a) = 0, and by Corollary 3.6 we in fact find
that Γ3(X, a) = 0 if and only if a = oX in CH0(X).

We finish this section by reproving Proposition 0.2 of O’Grady’s paper [12],
which is an easy consequence of the above.

3.11. Proposition. Let X and Y be connected smooth projective k-varieties with
base points a ∈ X(k) and b ∈ Y (k). Suppose that Γm(X, a) = 0 in A(Xm) and
Γn(Y, b) = 0 in A(Y n) for some positive integers m and n. Then Γm+n−1(X ×
Y, (a, b)) = 0 in A((X × Y )m+n−1).

Proof. By Lemma 3.9(ii) we have

[∆(m+n−1)
X ] ∈ FilnA(Xm+n−1), [∆(m+n−1)

Y ] ∈ FilmA(Y m+n−1).

This means we can write [∆(m+n−1)
X ] =

∑
J φX,J,∗(αJ ), where the sum runs over

the subsets J ⊂ {1, . . . , m + n − 1} of cardinality at most m − 1, and where αJ

is a class on XJ . Similarly, [∆(m+n−1)
Y ] =

∑
K φY,K,∗(βK), where the subsets K ⊂

{1, . . . , m + n − 1} have cardinality at most n − 1 and βK ∈ A(Y K).
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Writing p : (X × Y )m+n−1 → Xm+n−1 and q : (X × Y )m+n−1 → Y m+n−1 for
the projections,

[∆m+n−1
X×Y ] = p∗[∆(m+n−1)

X ] · q∗[∆(m+n−1)
Y ].

Given subsets J , K ⊂ {1, . . . , m + n − 1} of cardinality at most m − 1 and
n − 1, respectively, there is an index ν ∈ {1, . . . , m + n − 1} that is not in
J ∪ K. Setting L = {1, . . . , ν̂, . . . , m + n − 1} it is then clear that p∗φX,J,∗(αJ) ·
q∗φY,K,∗(βK) is a class in the image of the push-forward under φX×Y,L : (X×Y )L ↪→
(X × Y )m+n−1. Hence, [∆m+n−1

X×Y ] ∈ Fil1A((X × Y )m+n−1), which means that
Γm+n−1(X × Y ) = 0.

4. Vanishing Results on Curves and Abelian Varieties

We begin by recalling a result of O’Grady [12] about the vanishing of modified
diagonals in cohomology.

4.1. Theorem. Let X be a connected smooth projective k-variety with base
point a ∈ X(k). Let d = dim(X) and let e be the dimension of the image of
the Albanese map alb : X → Alb(X). Then Γn(X, a) ∼hom 0 if and only if
n > d + e.

Proof. The argument that follows is due to O’Grady [12]. Let H• denote �-
adic cohomology for some prime � 
= char(k). Throughout, we view H•(X) =⊕2d

i=0 Hi(X) as a superspace; in particular, if i is odd then Symm(Hi) has ∧mHi(X)
as its underlying vector space.

The cohomology class [Γn] of Γn(X, a) lies in the degree 2d(n − 1)-part of
Symn(H•(X)). We have

Symn(H•(X)) =
⊕

m=(m0,...,m2d)
|m|=n

2d⊗
j=0

Symmj (Hj(X)),

where the summand S(m) =
⊗

j Symmj (Hj(X)) lies in degree
∑2d

j=0 j · mj . By
Remark 2.6 we know that the component of [Γn] in S(m) is zero if m0 > 0 or
m2d > 0. Next consider a sequence m = (m0, m1, . . . , m2d) with m0 = m2d = 0. The
component of [Γn] in S(m) is then the same as the component of the cohomology
class of the small diagonal ∆(n)

X . If µ = (m2d, m2d−1, . . . , m0) is the reverse sequence,
the intersection pairing on Symn(H•(X)) ⊂ H•(Xn) restricts to a perfect pairing
S(m) × S(µ) → k, and for m′ 
= µ the pairing S(m) × S(m′) → k is zero. For
β ∈ S(µ) we have [∆(n)

X ] · β = deg(∆∗(β)), and we claim that this is zero whenever
m2d−1 > 2e. Assuming this for a moment, the “if” statement in the theorem follows,
as the highest degree we can get under the restrictions m0 = m2d = 0 and m2d−1 ≤
2e is 2e(2d− 1)+ (n− 2e)(2d− 2) = 2e+ 2nd− 2n, so that for n > d + e we cannot
reach degree 2d(n − 1).
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It remains to be shown that for i > 2e the multiplication map ∆∗ : SymiH1 ×
(X) → Hi(X) is zero. For this we use that H1(alb) = alb∗ : H1(AlbX) → H1(X)
is an isomorphism. We have a commutative diagram

But Hi(alb) factors through Hi(alb(X)), which is zero for i > 2e.
Finally we show that Γd+e(X, a) is not homologically trivial, which by Propo-

sition 3.4(i) gives the “only if” in the theorem. The only sequence m = (m0,

m1, . . . , m2d) with |m| = d+ e and m0 = m2d = 0 that reaches degree 2d(d+ e− 1)
is m = (0, . . . , 0, d − e, 2e, 0). With µ the reverse sequence, it suffices to produce
an element β ∈ S(µ) = Sym2eH1(X)⊗ Symd−eH2(X) for which ∆∗(β) has degree

= 0. For this we take polarizations L1 ∈ H2(AlbX) and L2 ∈ H2(X); then take
β = Sym2eH1(alb)(Le

1) ⊗ Ld−e
2 . Because the map H2e(alb) is injective, ∆∗(β) has

positive degree and we are done.

Next we turn to abelian varieties. The result we prove was conjectured by
O’Grady in the first version of [12]. He also proved it for g ≤ 2.

4.2. Theorem. Let X be an abelian variety of dimension g over a field k. Let
a ∈ X(k) be a base point. Then Γn(X, a) = 0 in CH(Xn) for all n > 2g.

Proof. We give X the group structure for which a is the origin. For m ∈ Z let
mult(m) : X → X be the endomorphism given by multiplication by m. By [5,
Corollary 3.2], we have a motivic decomposition h(X) =

⊕2g
i=0 hi(X) in Motk that is

stable under all endomorphisms mult(m)∗, and such that mult(m)∗ is multiplication
by mi on hi(X). (The result is stated in [5] for the cohomological theory but is
easily transcribed into the homological language.) The relation with (2.2.1) is that
h0(X, a) = h0(X) and h+(X, a) =

⊕
i>0 hi(X).

For n ≥ 1 this induces a decomposition

h(Xn) =
⊕

i=(i1,...,in)

n⊗
j=1

hij (X),

where the sum runs over the elements i = (i1, . . . , in) in {0, . . . , 2g}n. Under this
decomposition we have

hr(Xn) =
⊕
|i|=r

n⊗
j=1

hij (X),

where the sum runs over the n-tuples i with |i| = i1 + · · · + in equal to r.
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Now observe that [∆(n)
X ] ∈ CH(h2g(Xn)), because mult(m)∗[∆

(n)
X ] = m2g · [∆(n)

X ]
for all m. The theorem follows, since for n > 2g and i = (i1, . . . , in) in {0, . . . , 2g}n

with |i| = 2g there is at least one index j with ij = 0.

Next we turn to curves. Part (i) of the next result is due to Gross and Schoen;
see [7, Proposition 3.1]. This result is also an immediate consequence of Theo-
rem 4.1. Part (ii) is due to Polishchuk; see [13, Corollary 4.4(iv)]. Part (iii) is
essentially due to Polishchuk and the first author in [10] (see especially the proof
of [13, Theorem 8.5]) but we need to combine the calculations that are done there
with some known facts about the Chow ring of the Jacobian, as we shall now
explain.

4.3. Theorem. Let C be a complete nonsingular curve of genus g over a field k

with a base point a ∈ X(k). Then we have the following :

(i) Γn(C, a) ∼hom 0 for all n > 2;
(ii) Γn(C, a) ∼alg 0 (modulo torsion) for all n > gonality(C);
(iii) Γn(C, a) = 0 in CH1(Cn) for all n > g + 1.

Proof. For curves of genus 0 the result is trivial. (Because we work modulo torsion,
we may extend the ground field and assume C = P1; then note that the diagonal
of P1 × P1 is rationally equivalent to ({pt} × P1) + (P1 × {pt}).) Hence we may
assume g > 0. Let ι : C → J be the closed embedding associated with the base
point a. As discussed above, h(J) =

⊕2g
i=0 hi(J). This means we can decompose

[ι(C)] ∈ CH1(J) as

[ι(C)] =
2g∑

i=0

γi

with γi ∈ CH(hi(J)). In particular, for m ∈ Z we have mult(m)∗(γi) = mi · γi. It is
known that:

(a) γi 
= 0 only for i ∈ {2, . . . , g + 1};
(b) γi is torsion modulo algebraic equivalence for i > gonality(C);
(c) γi is homologically trivial for i 
= 2.

In fact, (c) holds because mult(m)∗ acts on H2g−2(J) as multiplication by m2,
(a) follows from the precise summation range in the main theorem of [2] (in the
notation of [2] our γi lies in CHg−1

i−2 (J)), and (b) is a result of Colombo and van
Geemen [4].

We denote by C [d] the dth symmetric power of C and let C [•] =
∐

d≥0 C [d], which
is a monoid scheme. Let CH(C[•]) =

⊕
d≥0 CH(C [d]), which is a Q-algebra for the

Pontryagin product. The maps ud : C [d] → J give us a morphism u : C [•] → J ,
which induces a homomorphism u∗ : CH(C [•]) → CH(J). By [10, Theorem 3.4],
there is a Q-subalgebra K ⊂ CH(C[•]) such that the restriction of u∗ to K gives
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an isomorphism K
∼−→ CH(J). Further, by [10, Lemma 8.4 and the proof of Theo-

rem 8.5], all classes Γn(C, a) lie in this subalgebra K and we have, for n ≥ 2,

u∗(Γn(C, a)) = n! ·
2g∑

i=0

S(i, n) · γi,

where S(i, n) denotes the Stirling number of the second kind. Note that S(i, n) = 0
if n > i. Putting together these facts, the theorem follows from (a)–(c) above.

4.4. Let us now discuss to what extent the above results are sharp.
For abelian varieties, our result in Theorem 4.2 is sharp, since by Theorem 4.1

Γ2g(X, a) is not even homologically trivial. The same remark applies to part (i) of
Theorem 4.3.

Part (ii) of Theorem 4.3 is conjecturally sharp for the generic curve C of genus g.
In fact, under the genericity assumption it is expected that γi is not algebraically
trivial for i = �(g + 3)/2� = gonality(C). We refer to [15] for recent results (in
characteristic 0) towards this conjecture.

Finally, (iii) of Theorem 4.3 is sharp for the generic pointed curve in character-
istic 0. This is proven by the second author in [17, Proposition 5.14], which gives
γg+1 
= 0.

5. Double Covers

The following result proves a conjecture made by O’Grady in [12]. We had originally
hoped to extend this to more general covers, but our method leads to some nontrivial
combinatorial problems. As Voisin [16] has obtained such a more general result using
a different argument, we restrict ourselves to double covers. As in Sec. 3, we consider
an adequate equivalence relation ∼ and we define A(X) = CH(X)/∼.

5.1. Theorem. Let f : X → Y be a double cover. Let σ be the corresponding
involution of X. Let a ∈ X(k) be a base point such that a ∼ σ(a), and write
b = f(a). If Γn(Y, b) = 0 in A(Y n) then Γ2n−1(X, a) = 0 in A(X2n−1).

5.2. As a preparation for the proof we need to introduce some notation. Given
an integer m and a subset J ⊂ {1, . . . , m}, let ZJ ⊂ Xm denote the image of the
morphism ζJ : X → Xm for which

prj ◦ ζJ =

{
σ if j ∈ J,

idX if j /∈ J.

If J ′ is the complement of J , we have ZJ′ = ZJ . Further, Z∅ = Z{1,...,m} = ∆(m)
X .

For r ≤ m, let

Vr =
∑

J⊂{1,...,m}
|J|=r

[ZJ ].
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It follows from the previous remarks that Vm−r = Vr and that V0 = Vm = [∆(m)
X ].

We write V
(m)
r if there is a need to specify m.

The pull-back of the class [∆(m)
Y ] is 1

2 ·∑m
r=0 Vr.

5.3. For (i, j) ∈ {1, . . . , m} × {1, . . . , m + 1}, consider the morphism φi,j : Xm →
Xm+1 given by

(x1, . . . , xm) �→ (x1, . . . , xj−1, σ(xi), xj , . . . , xm).

Let Φ be the sum of the graphs of the φi,j ; so, Φ =
∑

i,j [Γφi,j ]. This is a cor-
respondence of degree 0 from Xm to Xm+1. Again we write Φ(m) if we want to
specify m.

5.4. Lemma. For r ≤ m we have

Φ∗(V (m)
r ) = r(m + 1 − r) · V (m+1)

r + (r + 1)(m − r) · V (m+1)
r+1 .

Proof. Given j ∈ {1, . . . , m}, let αj : {1, . . . , m} → {1, . . . , m + 1} be the
strictly increasing map such that j is not in the image of αj . Fix some subset
K ⊂ {1, . . . , m + 1}. We have to count the number of choices for J ⊂ {1, . . . , m}
with |J | = r and an index pair (i, j) as above such that φi,j,∗[ZJ ] = [ZK ]. It is clear
that there are no such choices unless |K| = r or |K| = r + 1. If |K| = r then we
can choose j /∈ K and i ∈ α−1

j (K) arbitrarily; once these choices are made there is
a unique J ⊂ {1, . . . , m} with |J | = m such that φi,j,∗[ZJ ] = [ZK ]. Note that the
number of choices in this case is (m + 1 − r)r. Similarly, if |K| = r + 1 we have to
choose j ∈ K and i /∈ α−1

j (K) and then there is again a unique choice for J such
that φi,j,∗[ZJ ] = [ZK ]. In this case the number of choices is (r + 1)(m − r).

5.5. Lemma. Notation and assumptions as in Theorem 5.1. If Γn(Y, b) = 0 in
A(Y n) then

∑m+n
r=0 rj(m+n− r)j ·V (m+n)

r lies in Fil1A(Xm+n) for all m ≥ j ≥ 0.

Proof. We use induction on m. For m = 0 the assumption that Γn(Y, b) = 0 means
that [∆(n)

Y ] ∈ Fil1A(Y n). Pulling back to Xn and using that a ∼ σ(a) we find that∑n
r=0 Vr lies in Fil1A(Xn).
Assuming the assertion is true for some m, let us prove it for m+1. By Proposi-

tion 3.4, [∆(n)
Y ] ∈ Fil1A(Y n) implies that [∆(n+1)

Y ] ∈ Fil1A(Y n+1). So the assertion
for j < m + 1 follows from the induction hypothesis, replacing n with n + 1.

It remains to consider the case j = m + 1. Let

W = Φ(m+n)
∗

(
m+n∑
r=0

rm(m + n − r)m · V (m+n)
r

)
.

By the induction assumption,
∑m+n

r=0 rm(m+n−r)m ·V (m+n)
r lies in Fil1A(Xm+n),

and by the same argument as in 3.3, Φ∗ : A(Xn) → A(Xn+1) respects the filtra-
tions; hence, W ∈ Fil1A(Xm+n+1).
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By Lemma 5.4, W equals

m+n∑
r=0

rm(m + n − r)m ·
(
r(m + n + 1 − r) · V (m+n+1)

r

+ (r + 1)(m + n − r) · V (m+n+1)
r+1

)

=
m+n+1∑

s=0

(
sm+1(m + n − s)m(m + n + 1 − s)

+ (s − 1)ms(m + n + 1 − s)m+1
)
· V (m+n+1)

s

=
m+n+1∑

s=0

s(m + n + 1 − s) ·
(
sm(m + n − s)m

+ (s − 1)m(m + n + 1 − s)m
)
· V (m+n+1)

s .

Putting x = s and y = m + n + 1 − s we have

sm(m + n − s)m + (s − 1)m(m + n + 1 − s)m

= xm(y − 1)m + (x − 1)mym

=
m∑

j=0

(−1)j

(
m

j

)
· (xj + yj)xm−jym−j.

As x + y = m + n + 1 is constant, we can rewrite this as 2xmym +
∑m−1

j=0 cj · xjyj

for some constants c0, . . . , cm−1. Hence

W = 2 ·
m+n+1∑

s=0

sm+1(m + n + 1 − s)m+1 · V (m+n+1)
s

+
m∑

j=1

cj−1

(
m+n+1∑

s=0

sj(m + n + 1 − s)j · V (m+n+1)
s

)
.

As we have already shown that for j < m + 1

m+n+1∑
s=0

sj(m + n + 1 − s)j · V (m+n+1)
s ∈ Fil1A(Xm+n+1),

the same is true for the remaining term, i.e. for j = m + 1.

Proof of Theorem 5.1. Taking m = n−1 in Lemma 5.5 and using that V
(2n−1)
r =

V
(2n−1)
2n−1−r, we find that

n−1∑
r=0

(r(2n − 1 − r))j · V (2n−1)
r = 0 in A(X2n−1)/Fil1
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for all j ∈ {0, 1, . . . , n − 1}. The n × n matrix

((r(2n − 1 − r))j)r,j=0,...,n−1

is a Vandermonde matrix with distinct entries in the second column (j = 1). There-
fore, [∆(2n−1)

X ] = V
(2n−1)
0 ∈ Fil1A(X2n−1), which means that Γ2n−1(X, a) = 0.
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