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Abstract. The purpose of this paper is to study motivic aspects of the Hitchin system
for GLn. Our results include the following. (a) We prove the motivic decomposition con-
jecture of Corti–Hanamura for the Hitchin system; in particular, the decomposition theorem
associated with the Hitchin system is induced by algebraic cycles. This yields an uncondi-
tional construction of the motivic perverse filtration for the Hitchin system, which lifts the
cohomological/sheaf-theoretic perverse filtration. (b) We prove that the inverse of the rela-
tive Hard Lefschetz symmetry is induced by a relative algebraic correspondence, confirming
the relative Lefschetz standard conjecture for the Hitchin system. (c) We show a strong
perversity bound for the normalized Chern classes of a universal bundle with respect to the
motivic perverse filtration; this specializes to the sheaf-theoretic result obtained earlier by
Maulik–Shen. (d) We prove a χ-independence result for the relative Chow motives associated
with Hitchin systems.

Our methods combine Fourier transforms for compactified Jacobian fibrations associated
with integral locally planar curves, nearby and vanishing cycle techniques, and a Springer-
theoretic interpretation of parabolic Hitchin moduli spaces.
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0. Introduction

The topology of the Hitchin system has been intensively studied over decades. In [45], Ngô
proved the fundamental lemma of the Langlands program by reducing it to the study of the
decomposition theorem [7] for the Hitchin system; the topological mirror symmetry conjecture
of Hausel–Thaddeus [26] was proven by comparing the decomposition theorem for Hitchin
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systems associated with the Langlands dual groups SLn and PGLn [23, 35]; the decomposition
theorem for the Hitchin system further yields a perverse filtration on the singular cohomology
of the Hitchin moduli space, whose interaction with the non-abelian Hodge theory is the main
theme of the P=W conjecture [9], recently proven [37, 24, 38]; the decomposition theorem for
the Hitchin system also appears naturally in enumerative geometry, particularly in the study
of BPS invariants [15, 36, 30, 17].

Most of these developments relied heavily on topological and sheaf-theoretic approaches. On
the other hand, hints from several recent results [22, 33, 29, 38] suggest that there should be a
motivic theory hidden behind the cohomological structures mentioned above. The purpose of
this work is to study motivic aspects of the decomposition theorem and the perverse filtration
for the Hitchin system. The upshot is that the geometry of the Hitchin system provides
us powerful tools to construct algebraic cycles on the moduli of Higgs bundles, lifting many
cohomological statements to the motivic level.

0.1. Hitchin systems. We work over the complex numbers C. Let Σ be a nonsingular
projective curve of genus g ≥ 2. Let Mn,d be the moduli space of stable Higgs bundles with
coprime rank n and degree d on Σ; it carries the structure of an integrable system, known as
the Hitchin system:

(1) f : Mn,d → B,

which is a proper and surjective morphism to an affine space B. We use Rf to denote the
relative dimension of (1). By the decomposition theorem of Beilinson, Bernstein, Deligne, and
Gabber [7], the derived pushforward Rf∗QMn,d

∈ Db
c(B) admits a decomposition into (shifted)

semisimple perverse sheaves:

(2) Rf∗QMn,d
[dimMn,d −Rf ] ≃

2Rf⊕
i=0

pHi
(
Rf∗QMn,d

[dimMn,d −Rf ]
)

[−i] ∈ Db
c(B)

where the semisimple summands on the right-hand side satisfy the Lefschetz symmetry

(3) σi : pHRf −i
(
Rf∗QMn,d

[dimMn,d −Rf ]
) ≃−−→ pHRf +i

(
Rf∗QMn,d

[dimMn,d −Rf ]
)

induced by cup-product with i-th power of a relative ample class σ. The decomposition (2)
is an important invariant for the Hitchin system (1) and has played a crucial role in all the
stories mentioned above. For example, recent resolutions of the P=W conjecture show that
the (cohomological) perverse filtration

(4) P0H
∗(Mn,d,Q) ⊂ P1H

∗(Mn,d,Q) ⊂ · · · ⊂ H∗(Mn,d,Q)

induced by (2) matches the double-indexed weight filtration associated with the corresponding
character variety via non-abelian Hodge theory:

PkH
∗(Mn,d,Q) = W2kH

∗(Mchar,Q).



ALGEBRAIC CYCLES AND HITCHIN SYSTEMS 3

Furthermore, the Lefschetz symmetry (3) matches the curious Hard Lefschetz for the character
variety [25, 40].

Our first result is that both the decomposition (2) and the filtration (4) are motivic in
a strong sense. In particular, this confirms the motivic decomposition conjecture of Corti–
Hanamura [16] for the Hitchin system.

Theorem 0.1 (Motivic decomposition). There exists a decomposition of the relative diagonal
into orthogonal projectors:

[∆Mn,d/B] =
2Rf∑
i=0

ri, ri ◦ ri = ri, ri ◦ rj = 0, i ̸= j,

which induces a sheaf-theoretic decomposition (2). Here [∆Mn,d/B] and ri lie in the Chow group
of the relative product Mn,d×BMn,d, and the composition is taken as relative correspondences.

Our method also yields immediately the relative Lefschetz standard conjecture for the
Hitchin system, which shows the algebraicity of the inverse of (3).

Theorem 0.2 (Relative Lefschetz). For any relative ample class σ and i > 0, the inverse of
the Lefschetz symmetry (3) is induced by an algebraic cycle Zσ,i on Mn,d ×B Mn,d:

Zσ,i : pHRf +i
(
Rf∗QMn,d

[dimMn,d −Rf ]
) ≃−−→ pHRf −i

(
Rf∗QMn,d

[dimMn,d −Rf ]
)
.

Under the language of [16], we obtain from Theorem 0.1 a decomposition in the category
of relative Chow motives over B:

(5) h (Mn,d) =
⊕
i

hi(Mn,d) ∈ CHM(B)

with

h(Mn,d) = (Mn,d, [∆Mn,d/B], 0), hi(Mn,d) = (Mn,d, ri, 0)

whose homological realization under the Corti–Hanamura functor

CHM(B) → Db
c(B)

recovers (2). As a consequence, we obtain a motivic perverse filtration

(6) P•h(Mn,d) ⊂ h(Mn,d);

see Section 2.1. This motivic perverse filtration specializes to both the cohomological perverse
filtration (4) and a perverse filtration on the Chow groups of Mn,d; the latter has not yet been
much studied.
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0.2. Motivic strong perversity of Chern classes. Let U be a universal Higgs bundle
over Σ ×Mn,d. After normalization, it induces a canonical Chern character

c̃h(U) :=
∑
k

c̃hk(U) ∈ CH∗(Σ ×Mn,d), c̃hk(U) ∈ CHk(Σ ×Mn,d)

which is independent on the choice of the universal bundle U . It was proven in [37] that the
cohomology class c̃hk(U) has strong perversity k, i.e., its action on the direct image complex

c̃hk(U) : Rf∗QΣ×Mn,d
→ Rf∗QΣ×Mn,d

[2k]

via cup-product satisfies that

(7) c̃hk(U) : pτ≤iRf∗QΣ×Mn,d
→
(

pτ≤i+kRf∗QΣ×Mn,d

)
[2k].

Here, we also use f to denote the product morphism Σ × Mn,d → Σ × B and consider the
corresponding perverse filtration. Specializing to global cohomology, the equation (7) yields

c̃hk(U) : PiH∗(Σ ×Mn,d,Q) → Pi+kH
∗+2k(Σ ×Mn,d,Q),

which further implies the P=W conjecture; we refer to [37, Section 2] for details on the
reduction.

In this paper, we show that the sheaf-theoretic strong perversity (7) for Chern classes can
be lifted motivically using the motivic perverse filtration (6).

Theorem 0.3 (Motivic strong perversity of Chern classes). We have for any i, k ∈ Z:

c̃hk(U) : Pih(Σ ×Mn,d) → Pi+kh(Σ ×Mn,d)(k) ∈ CHM(Σ ×B).

Here the action is given by cup-product and (k) stands for the k-th Tate twist.

0.3. Motivic χ-independence. Now we consider two degrees d, d′ which are both coprime
to n. The Hitchin systems associated with Mn,d,Mn,d′ share the same base,

fd : Mn,d → B, fd′ : Mn,d′ → B.

Here we use f• to indicate the dependence on the degree.
The following result was predicted by the Hausel–Thaddeus conjecture on the topological

mirror symmetry [26], and was first proven by Groechenig–Wyss–Ziegler [23] for perverse
sheaves via point counting over finite fields and Maulik–Shen [36] for Hodge modules using
support theorem and the vanishing cycle functor:

(8) Rfd∗QMn,d
≃ Rfd′∗QMn,d′ .

This equation is an instance of the χ-independence phenomenon: the moduli space of Higgs
bundles can be viewed as the moduli space of 1-dimensional stable sheaves properly supported
on the surface T ∗Σ in the curve class n[Σ], and (8) implies that the decomposition theorem is
independent on the choice of the Euler characteristic χ (= deg + (1 − g)n) of the sheaves. This
phenomenon has tight connections to enumerative geometry [46], and has been generalized
to singular moduli spaces using cohomological Donaldson–Thomas theory [36, 30]. Recently,
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Hoskins and Pepin Lehalleur [29] proved the χ-independence of the Chow motives of the
moduli of Higgs bundles:

(9) h(Mn,d) = h(Mn,d′) ∈ CHM(pt).

We prove a motivic χ-independence result for the relative Chow motives over B, which
enhances both the sheaf-theoretic result (8) and the motivic result (9).

Theorem 0.4 (Motivic χ-independence). Assume (n, d) = (n, d′) = 1, we have an isomor-
phism of relative Chow motives:

(10) h(Mn,d) ≃ h(Mn,d′) ∈ CHM(B)

preserving the motivic perverse filtrations

Pkh(Mn,d) ≃ Pkh(Mn,d′) ∈ CHM(B).

Remark 0.5. (a) To the best of our knowledge, the isomorphism of the relative Chow
motives (10) (even without the motivic perverse filtrations) was not known before.
After pushing to a point, this recovers the isomorphism (9) of Hoskins and Pepin
Lehalleur.

(b) By Proposition 2.4, we obtain that fd : Mn,d → B and fd′ : Mn,d′ → B have isomorphic
motivic decompositions; i.e., there exists motivic decompositions

h(Mn,d) =
⊕
i

hi(Mn,d), h(MMn,d′ ) =
⊕
i

hi(Mn,d′)

satisfying that
hi(Mn,d) ≃ hi(Mn,d′) ∈ CHM(B).

0.4. Background and relations to other work. In this section, we discuss briefly some
background and relations to some previous work.

0.4.1. Motivic decomposition conjecture. Let f : X → B be a proper morphism of nonsingular
varieties. The motivic decomposition conjecture of Corti–Hanamura [16] predicts that in
general the sheaf-theoretic decomposition

Rf∗QX [dimX −Rf ] ≃
2Rf⊕
i=0

pHi (Rf∗QX [dimX −Rf ]) [−i], Rf := dimX ×B X − dimX

admits a motivic lifting. More precisely, as in the statement of Theorem 0.1, they conjectured
that there is a decomposition of the relative diagonal cycle into orthogonal projectors

[∆X/B] =
2Rf∑
i=0

ri, ri ◦ ri = ri, ri ◦ rj = 0, i ̸= j,

which induces a sheaf-theoretic decomposition as above. In general, the conjectural existence
of the motivic decomposition is wide open. We note two major challenges in constructing
such a decomposition. First, in the special case when X is a nonsingular projective variety
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and B is a point, the motivic decomposition conjecture is equivalent to the existence of a
Chow–Künneth decomposition for X. This was conjectured by Murre [44], and has only been
verified in very limited cases. Second, even if we are able to find orthogonal projectors over
a Zariski dense open subset U ⊂ B (e.g. the locus where f is smooth), it is unclear if these
projectors over U can be extended to orthogonal projectors over B. In particular, the cycles
given by the Zariski closures of the orthogonal projectors over U are not orthogonal projectors
in general, and understanding the behaviour of the “boundary” is crucial.

Recently there have been some attempts to apply the theory of motivic intermediate ex-
tension of Wildeshaus to construct motivic decompositions for certain proper morphisms with
Tate fibers; we refer to [13] and references therein for more details.

0.4.2. Derived equivalences. For a certain class of examples, one approach to the motivic
decomposition conjecture is to use symmetries of the derived category of coherent sheaves. It
was first found by Beauville [5] and Deninger–Murre [18] over 35 years ago that descending
Mukai’s Fourier transform [43] from the derived category of coherent sheaves to algebraic
cycles yields a motivic decomposition for an abelian scheme f : A → B. Later, the Fourier
transform was further used by Künnerman [31] to construct a Lefschetz decomposition. In this
case the morphism f is smooth and each summand appeared in the decomposition theorem is
a (shifted) semisimple local system.

The case of abelian fibrations with singular fibers is more complicated, and the perverse
t-structure comes into play. On the derived category side, Arinkin [3] extended the Fourier–
Mukai transform to compactified Jacobian fibrations associated with a family of projective in-
tegral locally planar curves. Arinkin’s work was motivated by an attempt to understanding the
classical limit of the geometric Langlands correspondence for Hitchin systems [3, Section 4.5].
Recently, motivated by the P=W conjecture for Hitchin moduli spaces [9, 12, 37, 24], a theory
of Fourier transform for relative Chow motives was established in [38] using the Arinkin sheaf.
As a consequence of the Fourier theory and Ngô’s support theorem [45], it was obtained in [38]
that the motivic decomposition conjecture holds for compactified Jacobians fibrations associ-
ated with projective integral locally planar curves. We note that, for the singular fibers, this
approach matches the complexity of the Arinkin sheaf with the complexity of intermediate
extensions of the local systems.

0.4.3. Hitchin systems. For the Hitchin system (1), the techniques described above imply the
motivic decomposition conjecture for the Hitchin system over a Zariski open subset Bell ⊂ B,
called the elliptic locus, formed by integral spectral curves. This open subset is exactly the
locus over which the Hitchin fibers are integral. However, to the best of our knowledge, it
is not yet known how to extend Arinkin’s derived equivalence [3] from the elliptic locus to
the total Hitchin base B. Even worse, the full support theorem fails for (1); the results
of [10] suggest that the supports of the decomposition theorem associated with (1) are very
complicated and there is no complete description by far. In view of the approach of [1], the
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lack of the control of the supports provides also the difficulty in proving the relative Lefschetz
standard conjecture. The main point of this paper is to give a proof of these conjectures
for the Hitchin system (1) in the absence of the aforementioned geometric ingredients. As
a byproduct, we show that Corti–Hanamura’s motivic decomposition conjecture is preserved
under specialization; see Corollary 4.2.

0.5. Acknowledgements. J.S. gratefully acknowledges the hospitality of both the math de-
partment of MIT and the Isaac Newton Institute at Cambridge during his stay in the spring
of 2024 where part of this work was completed.

D.M. was supported by a Simons Investigator Grant. J.S. was supported by the NSF grant
DMS-2301474, a Sloan Research Fellowship, and a Simons Fellowship during his visit at the
Isaac Newton Institute.

1. Moduli of Higgs bundles

In this section, we review the geometry of the moduli of Higgs bundles. Throughout, we fix
a nonsingular projective curve Σ of genus g ≥ 2, and fix two integers n, d with (n, d) = 1.

1.1. Moduli spaces. We denote by Mn,d the moduli space of stable Higgs bundles

(E , θ), θ : E → E ⊗ ωΣ, rk(E) = n, deg(E) = d,

where the stability condition is with respect to the slope µ(E , θ) = deg(E)/rk(E). The moduli
space admits a proper morphism to an affine space

(11) f : Mn,d → B :=
n⊕
i=1

H0
(
Σ, ω⊗i

Σ

)
.

This map is given by calculating the characteristic polynomial of the Higgs field θ:

f(E , θ) = (tr(θ), tr(∧2θ), · · · ,det(θ)) ∈ B,

and is now known as the Hitchin system.1 The moduli space Mn,d is a holomorphic symplectic
variety and the Hitchin system f is a Lagrangian fibration [27, 28].

By the Beauville–Narasimhan–Ramanan correspondence [6], the Hitchin base B can be
viewed as the parameter space of spectral curves; these are properly supported curves in the
open surface TotΣ(ωΣ) that are degree n covers of the 0-section Σ. We define the elliptic
locus Bell ⊂ B to be the open subset formed by integral spectral curves. The results of [38,
Theorem 0.3 and Section 4] thus establish the motivic decomposition for the restricted Hitchin
system

f ell : M ell
n,d → Bell.

1Later, when we need to consider the moduli spaces Mn,d with different d, we will write fd to indicate the
dependence of the Hitchin system on the degree.
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As we commented in Section 0.4.2, at the level of algebraic cycles it is not easy to extend
orthogonal projectors from Bell to B. A plausible approach is to extend first Arinkin’s Fourier–
Mukai transform from M ell

n,d to the total space Mn,d, and then extend the Fourier theory of
relative Chow motives of [38] as well. Even if we are able to achieve this, a potential difficulty
is the complexity of the supports (see Remark 1.1 below) which makes it hard to calculate the
homological realization of the projectors.

Instead, our approach in this paper is to first construct orthogonal projectors for certain
parabolic Higgs moduli space which we review in the following sections; then we show that
these projectors induce the desired orthogonal projectors of the original Hitchin system. This
path of reduction using parabolic Higgs moduli spaces was applied in proving the P=W con-
jecture: it was first used in the proof of Hausel–Mellit–Minets–Schiffmann [24], and was later
also used in the proof of Maulik–Shen–Yin [38, Section 5.4].

Remark 1.1. We can also consider the moduli space of stable D-twisted Higgs bundles

(E , θ), θ : E → E ⊗ ωΣ(D)

as in [14] with D ≥ 0 an effective divisor. The case of D = 0 recovers the Hitchin system (11)
we considered above. We note that the decomposition theorem for the Hitchin system are very
different when D = 0 and D > 0 respectively. For D > 0, Chaudouard–Laumon [14] showed
that every simple summand that appeared in the decomposition theorem has full support B.
This full-support property has been generalized to singular moduli spaces without coprime
assumption on n and d [36] and has many applications [35, 22, 29, 37]. However, when D = 0,
the behaviour of the supports for the Hitchin system is very different. In [10], the authors
classified all the supports over an open subset of the Hitchin base formed by reduced spectral
curves. However it is not well understood what are all the possible supports outside this open
subset. A question raised by Mauri–Migliorini [39, Question 1.5] asked if the full support
property holds for the singular moduli space of rank n and degree d = 0. In Section 4.3.5, we
will discuss briefly how to extend the results of this paper to the D-twisted case.

1.2. Parabolic Higgs bundles. In this section, we review the parabolic Higgs moduli space
(c.f. [24, Section 8.4]).

We fix a point p ∈ Σ. Denote by Mpar the moduli space of stable parabolic Higgs bun-
dles (E , θ, Fp), where (E , θ) is a meromorphic Higgs bundle

(E , θ), θ : E → E ⊗ ωΣ(p), rk(E) = n, deg(E) = d,

Fp is a complete flag of E over the point p such that the residue resp(θ) of the Higgs field over
the point p preserves the flag Fp. The stability condition here requires that any parabolic
sub-Higgs bundle has a smaller slope.

We record the following lemma which is a direct consequence of the Riemann–Roch formula.

Lemma 1.2. We have
H0(Σ, ωΣ) = H0(Σ, ωΣ(p)).
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Note that, since resp(θ) preserves a complete flag, its eigenvalues naturally lie in an affine
space

An :=
{

(λ1, · · · , λn)| λi ∈ A1
}
,

and Lemma 1.2 ensures that the sum of the eigenvalues is always 0; in other words, the image
of χp lies in a codimension 1 hyperplane

A =
{

(λ1, · · · , λn)|
∑
i

λi = 0
}

⊂ An.

As a result, the moduli space admits a natural morphism

(12) χp : Mpar → A ≃ An−1

which is in fact smooth. Each closed fiber is a moduli of stable parabolic Higgs bundles with
specified eigenvalues at p; this is a nonsingular symplectic variety.

For our purposes, we take a general line T (≃ A1) ⊂ A passing through the origin and
restrict the family (12) over T :

χp : Mpar
T → T.

This family connects two types of Hitchin moduli spaces which we now describe:
(a) Let η ∈ T be a general point which represents n distinct eigenvalues satisfying the

condition that no proper subset of the eigenvalues has sum 0. We denote by Wη the
linear system parameterizing spectral curves with fixed eigenvalues η over p ∈ Σ. Let
C → Wη be the universal spectral curve. By the generality of η and Lemma 1.2,
every curve in the family C → Wη is integral. The fiber Mpar

η := χ−1
p (η) fits into the

following Cartesian diagram:

Mpar
η J

e
C

W̃η Wη.

Here the right vertical arrow is the (twisted) compactified Jacobian fibration of de-
gree e, W̃η can be viewed as the parameter space of spectral curves lying in Wη with a
marking over p ∈ Σ, and the bottom horizontal arrow is the projection to Wη which is
a natural Sn-quotient.2 The Hitchin fibration associated with Mpar

η is the composition
of a vertical and a horizontal maps in the diagram above

hη : Mpar
η → Wη.

Let T ◦ ⊂ T be the Zariski open subset such that the spectral curves in Wη are integral
for any η ∈ T ◦. We thus obtain a morphism

h◦ : Mpar,◦ → W ◦

2Here e is an integer determined by the degree d of the Higgs bundles and is coprime to n.
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satisfying that Mpar,◦ is a compactified Jacobian fibration over a base W̃ ◦, and W ◦ is
the quotient of W̃ ◦ by the permutation group Sn.

(b) The central fiber Mpar
0 := χ−1

p (0) together with its associated Hitchin system

h0 : Mpar
0 → W0

is a classical object, known as the moduli of stable strongly parabolic Higgs bundles.
The variety Mpar

0 parameterizes triples (E , θ, Fp) with similar condition as for stable
parabolic Higgs bundle, but the main change is that the residue of the Higgs field
preserves the flag in a stronger sense:

resp(θ) : Fp,j → Fp,j+1.

In other words, Mpar
0 is the moduli of stable parabolic Higgs bundles with nilpotent

residue.
In conclusion, by specializing over T , we are able to connect the geometry of a compactified

Jacobian fibration to the Hitchin system associated with the moduli of strongly parabolic
Higgs bundles:

h◦ : Mpar,◦ → W ◦ ⇝ h0 : Mpar
0 → W0.

We conclude this section by further connecting the latter to the more classical Hitchin
system f : Mn,d → B via a correspondence following [24, Section 8.6].

1.3. Correspondences. We consider the closed subvariety parameterizing parabolic Higgs
bundles with 0-residue at p,

(13) M̃0 = {resp(θ) = 0} ⊂ Mpar
0 = {resp(θ) is nilpotent}.

In particular, every parabolic Higgs bundle in M̃0 has no pole at p ∈ Σ. Hence there is a
well-defined forgetful map:

(14) M̃0 → Mn,d, (E , θ, Fp) 7→ (E , θ)

where every closed fiber is isomorphic to a flag variety Fln parameterizing all possible choices
of flags.

We summarize the discussion above in the diagram

(15)
M̃0 Mpar

0

Mn,d

ι

π

where ι is the closed embedding (13) and π is the smooth projection (14). All the three moduli
spaces in (15) map to a common base W0 with all the induced natural diagrams commuting:
the map from Mpar

0 is the parabolic Hitchin map h0, the map from M̃0 is the induced map,
and the map from Mn,d is the Hitchin map f : Mn,d → B composed with the natural inclusion
of the linear subspace B ⊂ W0.
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Our purpose is to construct certain algebraic cycles on Mn,d ×B Mn,d which serve as or-
thogonal projectors. The diagram (15) allows us to construct cycles for Mn,d from Mpar

0 , i.e.,
we have

Γ : CH∗(Mpar
0 ×W0 M

par
0 ) → CH∗(Mn,d ×B Mn,d)

given by the formula

Γ(α) := t[M̃0] ◦ α ◦ [M̃0].

Throughout, the Chow groups are taken with rational coefficients, and here we view [M̃0] to
be a correspondence from Mn,d to Mpar

0 via (15) and t[M̃0] to be its transpose. The change of
indices of the Chow groups through Γ is given by the dimension formula:

codim(ι) = rel.dim(π) =
(
n

2

)
;

in particular, Γ sends CHdimMpar
0

(Mpar
0 ×W0 M

par
0 ) to CHdimMn,d

(Mn,d ×B Mn,d).
The following lemma gives a sufficient condition for Γ(α) to vanish.

Lemma 1.3. Suppose we are given a flat, surjective morphism p : Z → W0 with Z irreducible
and nonsingular and that there exists a factorization of α

α := α2 ◦ α1 ∈ CHdimMpar
0

(Mpar
0 ×W0 M

par
0 )

such that either

α1 ∈ CH>dim(Mpar
0 ×W0Z)−(n

2)(Mpar
0 ×W0 Z) or α2 ∈ CH>dim(Mpar

0 ×W0Z)−(n
2)(Z ×W0 M

par
0 ).

Then we have

Γ(α) = 0 ∈ CHdimMn,d
(Mn,d ×W0 Mn,d) = CHdimMn,d

(Mn,d ×B Mn,d).

Proof. We prove the vanishing under the first hypothesis; the argument under the second
hypothesis is identical. If we consider the composition α1 ◦ [M̃0] ∈ CH(Mn,d ×W0 Z), the
assumption on α1 implies that this lives in degree strictly larger than

dim(Mpar
0 ×W0 Z) − 2

(
n

2

)
.

The assumption on p implies that this bound equals

dimMpar
0 + dimZ − dimW0 − 2

(
n

2

)
= dimMn,d + dimZ − dimW0

which is the dimension of Mn,d ×W0 Z. As a result, we have the vanishing of α1 ◦ [M̃0] so Γ(α)
vanishes as well. □
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We conclude this section by giving an overview of the rest of the paper. Our strategy is
to first construct projectors for compactified Jacobian fibrations and show that these alge-
braic cycles satisfy the desired properties as in Theorems 0.3 and 0.4 using the techniques
of [38]. We will discuss this in Section 2, which solves the problems for hη : Mpar

η → Wη of
Section 1.2(a). Then applying the specialization and the correspondence Γ, we obtain alge-
braic cycles for Mn,d; we further apply a Springer theory argument to show that these cycles
form orthogonal projectors as desired. This is treated in Section 3. Finally, in Section 4, we
show that the projectors obtained via Γ have the correct homological realization under the
Corti–Hanamura functor.

2. Projectors for compactified Jacobians

In this section, we first introduce the notion of motivic perverse filtrations. Then we treat
the case of compactified Jacobians associated with locally planar curves, where our main tool
is the Fourier theory developed in [38]. For our purpose, we need a slight extension of the
results of [38] in Section 2.3. Then we apply these results to the parabolic Hitchin system
of Section 1.2(a), which further allows us to prove analogues of Theorems 0.1, 0.3, and 0.4
for h0 : Mpar

0 → W0.

2.1. Motivic perverse filtrations. In this section, we define a motivic perverse filtration,
which lifts its cohomological counterpart to the theory of relative Chow motives of Corti–
Hanamura.

The theory of relative Chow motives [16] is built to be compatible with the decomposition
theorem, adapts well to non-proper bases, and admits natural Chow/homological realiza-
tions [21]. We refer to [38, Section 2.2] for a brief review of the theory.

We work over a nonsingular base variety B. Recall that the group of degree k relative
correspondences between two nonsingular proper B-schemes X,Y is3

CorrkB(X,Y ) := CHdimY−k(X ×B Y ).

Compositions of relative correspondences are defined via refined intersection theory. The
category of relative Chow motives CHM(B) consists of objects triples (X, p,m) where X is a
nonsingular proper B-scheme, p ∈ Corr0

B(X,X) is a projector, and m ∈ Z. For example, the
motive of X is

h(X) := (X, [∆X/B], 0)

where ∆X/B is the relative diagonal. Morphisms between two motives M = (X, p,m),
N = (Y, q, n) are

HomCHM(B)(M,N) := q ◦ Corrn−m
B (X,Y ) ◦ p.

3Here we assume Y irreducible. For reducible Y , we decompose Y = ⊔αYα and define the group of corre-
spondences accordingly.
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Note that in [38, Section 2.3.3], we also introduced relative binary correspondences

CorrkB(X,Y ;Z) := CHdimZ−k(X ×B Y ×B Z)

where X,Y, Z are nonsingular proper B-schemes. Binary morphisms from M = (X, p,m),
N = (Y, q, n) to P = (Z, r, p) are given by

r ◦ Corrp−m−n
B (X,Y ;Z) ◦ (p × q).

For example, the motivic cup-product

∪ : h(X) × h(X) → h(X)

is induced by the class of the relative small diagonal

[∆sm
X/B] ∈ Corr0

B(X,X;X);

see [38, Section 2.3.3] for more details. Finally, the degree k Chow group of M = (X, p,m) is

CHk(M) := HomCHM(B)(h(B/B),M(k))

where M(k) := (X, p,m+ k) is the k-th Tate twist of M .
Recall the Corti–Hanamura realization functor

(16) CHM(B) → Db
c(B)

which sends the motive h(X) for f : X → B to the direct image complex Rf∗QX . The
latter admits a natural (sheaf-theoretic) perverse filtration induced by the perverse truncation
functor.

Let f : X → B be a proper morphism with X irreducible and nonsingular, and let Rf be
the defect of semismallness dimX ×B X − dimX.

Definition 2.1. We say that a sequence of motives

Pkh(X) = (X, pk, 0), 0 ≤ k ≤ 2Rf ,

which are all summands of h(X), form a motivic perverse filtration for f , if
(a) (Termination) P2Rf

h(X) = h(X);
(b) (Realization) under the Corti–Hanamura functor (16) the natural inclusion

P•h(X) ↪→ h(X)

specializes to the natural inclusion induced by the perverse truncation functor
pτ≤•+(dimX−Rf )Rf∗QX ↪→ Rf∗QX ;

(c) (Semi-orthogonality) for any k we have the relation

pk+1 ◦ pk = pk.
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We note that (c) together with an easy induction implies

(17) pl ◦ pk = pk, k < l.

Indeed, we have

pl ◦ pk = pl ◦ pk+1 ◦ pk = pl ◦ pl−1 ◦ · · · ◦ pk+1 ◦ pk = pl−1 ◦ · · · ◦ pk+1 ◦ pk = pk.

On the other hand, this does not mean that Pkh(X) is a summand of Plh(X) if k < l. So if
we define directly

rk := pk − pk−1,

they are only semi-orthogonal:
rl ◦ rk = 0, k < l,

and we lose control of the other half of the orthogonality

rl ◦ rk
?= 0, k ≥ l.

In particular, the rk are not necessarily projectors. However, the following proposition in [38]
shows that the existence of a motivic perverse filtration is equivalent to the existence of a
motivic decomposition.

Proposition 2.2. [Motivic perverse filtration = motivic decomposition] A motivic perverse
filtration induces a motivic decomposition

h(X) =
2Rf⊕
i=0

hi(X) ∈ CHM(B).

Proof. The proof was given in the [38, Section 2.5.5]; we include it here for completeness.
Assume that the motives Pkh(X) = (X, pk, 0) induce a motivic perverse filtration. We consider
the modification of projectors:

p̃k := pk ◦ · · · ◦ p2Rf
, pk := p̃k − p̃k−1.

Using (17), it is straightforward to verify that both p̃k and pk are projectors satisfying the
relations

p̃l ◦ p̃k = p̃k ◦ p̃l = p̃k, k < l.

In particular, we have

P̃kh(X) = P̃k−1h(X) ⊕ hk(X) ∈ CHM(B)

with
P̃kh(X) := (X, p̃k, 0), hk(X) := (X, pk, 0).

We see from (b) that both motives P̃kh(X) and Pkh(X) have the same realization under (16),
which is the one given by the perverse truncation functor. In particular, the projector pk
realizes taking the corresponding perverse cohomology of the complex Rf∗QX . This finishes
the proof of the proposition. □
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In the following, we further extend the equivalence between motivic perverse filtrations and
motivic decompositions of Proposition 2.2 to isomorphism classes.

Assume that
f : X → B, f ′ : X ′ → B

admit motivic perverse filtrations

(18) Pkh(X) = (X, pk, 0), Pkh(X ′) = (X ′, p′
k, 0), 0 ≤ k ≤ 2Rf = 2Rf ′ .

Definition 2.3. We say that an isomorphism of relative Chow motives

C : h(X) ≃−−→ h(X ′), C−1 : h(X ′) ≃−−→ h(X)

with
C ∈ Corr0

B(X,X ′), C−1 ∈ Corr0
B(X ′, X)

preserves the motivic perverse filtrations (18), if for any k we have

(19) q′
k+1 ◦ C ◦ pk = 0, qk+1 ◦ C−1 ◦ p′

k = 0.

Here
qk+1 := [∆X/B] − pk, q′

k+1 := [∆X′/B] − p′
k.

The following proposition shows that, for two relative Chow motives, an isomorphism pre-
serving motivic filtrations automatically yields isomorphic motivic decompositions as well.

Proposition 2.4. With the notation as above, assume that there is an isomorphism between
the relative Chow motives h(X) and h(X ′) preserving the motivic perverse filtrations (18).
Then the following holds:

(a) For any k we have an isomorphism

Pkh(X) ≃ Pkh(X ′) ∈ CHM(B).

compatible with the inclusions Pkh(X) ↪→ h(X) and Pkh(X ′) ↪→ h(X ′).
(b) The motivic decompositions of h(X), h(X ′) given by Proposition 2.2 are isomorphic,

i.e., for any k we have an isomorphism

hk(X) ≃ hk(X ′) ∈ CHM(B).

Proof. We first prove (a). Assume that the correspondences C,C−1 induce an isomorphism
between h(X), h(X ′) preserving the perverse filtrations. We claim that the morphisms between
the relative Chow motives

p′
k ◦ C ◦ pk : Pkh(X) → Pkh(X ′), pk ◦ C−1 ◦ p′

k : Pkh(X ′) → Pkh(X)

are inverse to each other. In fact, we have

pk = pk ◦ C−1 ◦ C ◦ pk = pk ◦ C−1 ◦ (p′
k + q′

k+1) ◦ C ◦ pk

= pk ◦ C−1 ◦ p′
k ◦ C ◦ pk
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where we used q′
k+1 ◦ C ◦ pk = 0 in the last equation. This proves

pk ◦ C−1 ◦ p′
k ◦ C ◦ pk = pk;

the other identity is parallel. To show that this isomorphism is compatible with C and the
inclusions into h(X) and h(X ′), it suffices to show that

C ◦ pk = p′
k ◦ (p′

k ◦ C ◦ pk)

which again follows via the condition that C preserves the motivic filtration. We have com-
pleted the proof of (a).

Now we prove (b); we follow the notation in the proof of Proposition 2.2. As in (a), it
suffices to show that

(20) (p̃k − p̃k−1) ◦ C−1 ◦
(
p̃′
k − p̃′

k−1
)

◦ C ◦ (p̃k − p̃k−1) = p̃k − p̃k−1;

the other identity follows from a parallel argument. Expanding the left-hand side of (20), we
obtain 8 terms, each of which is of the form

± p̃i1 ◦ C−1 ◦ p̃′
i2 ◦ C ◦ p̃i3 , i1, i2, i3 ∈ {k − 1, k}.

We claim that

(21) p̃i1 ◦ C−1 ◦ p̃′
i2 ◦ C ◦ p̃i3 = p̃min{i1,i2,i3}.

Since at least two of the three indices i1, i2, i3 are equal, without loss of generality we treat
here the case i2 = i3. By (17) and the first equation of (19), we have

C ◦ pk = p′
l ◦ C ◦ pk, k ≤ l,

which further yields

p̃′
i2 ◦ C ◦ p̃i2 = p′

i2 ◦ · · · ◦ p′
2Rf

◦ C ◦ pi2 ◦ · · · ◦ p2Rf

= C ◦ pi2 ◦ · · · ◦ p2Rf

= C ◦ p̃i2 .

Consequently, (21) follows:

p̃i1 ◦ C−1 ◦ p̃′
i2 ◦ C ◦ p̃i2 = p̃i1 ◦ C−1 ◦ C ◦ p̃i2

= p̃i1 ◦ p̃i2

= p̃min{i1,i2}.

Finally, (20) is deduced immediately from (21), which completes the proof of (b). □

In many cases, it is more natural to work with a motivic perverse filtration, rather than
a motivic decomposition. This is because they carry the same information, but the extra
complexity of obtaining the orthogonal projectors from the semi-orthogonal projectors, as in
the proof of Proposition 2.2, is formal and not essential. This in particular is the case for
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compactified Jacobian fibrations [38, Section 2.5.5] as we will also review below, where the
semi-orthogonal projectors are of better form; see Theorem 2.5.

2.2. Compactified Jacobians. Throughout this section, we work with the general setting
that C → B is a flat family of integral projective curves of arithmetic genus g with planar
singularities over an irreducible base B; we will specialize to the case of spectral curves in
Section 2.4. We assume that the total space C is nonsingular with a multi-section

D ⊂ C → B

of degree r which is finite and flat over B. For any integer d, the degree d compactified Jacobian
exists as a scheme étale locally over the base B since there is always a section of C → B étale
locally, while globally the degree d compactified Jacobian JdC exists only as an algebraic space.
For convenience, we assume that for any degree d, the compactified Jacobian J

d
C is a quasi-

projective variety. This is, for example, satisfied when C → B arises as a linear system of a
nonsingular surface, where the quasi-projectivity follows from the fact that the compactified
Jacobian arises as the moduli space of certain semistable torsion sheaves on the surface. We
further assume that JdC is nonsingular. In order to work with the universal family, we also
need to consider the moduli stack of the degree d compactified Jacobian, which is a Gm-gerbe
over JdC . Following [38, Section 4.2], we rigidify this stack by imposing the condition that
the universal family is trivialized along the multi-section; this gives a Deligne–Mumford stack
which is a µr-gerbe over the scheme:

J d
C → J

d
C ;

see [38, Proposition 4.1]. The rigidification condition we imposed implies that there is a
universal sheaf Fd over C ×B J d

C satisfying

det
(
pJ∗

(
Fd
∣∣
J d

C×CD

))
≃ OJ d

C
∈ Pic

(
J d
C

)
.

Here pJ is the projection to compactified Jacobian factor.
Now we consider two integers d, e. Arinkin’s work [3] shows that the universal sheaves

Fd,Fe induce a pair of Fourier–Mukai kernels

(22) Pe,d ∈ DbCoh
(
J e
C × J d

C

)
, P−1

e,d ∈ DbCoh
(
J d
C × J e

C

)
.

The associated Fourier–Mukai transforms are equivalences of categories

FMPe,d
: DbCoh(J e

C)(−d)
≃−−→ DbCoh(J d

C)(e), FMP−1
e,d

= FM−1
Pe,d

,

where DbCoh(Jm
C )(k) is the isotypic category consisting of objects for which the action of µr

on the fibers is given by the character λ 7→ λk of µr. The objects (22) induce (Chow-theoretic)
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Fourier transforms

Fe,d := td
(

−TJ e
C×BJ d

C

)
∩ τ(Pe,d) ∈ CH∗(J e

C ×B J d
C) = CH∗(JeC ×B J

d
C),

F−1
e,d := td(−(πd ×B πe)∗TB) ∩ τ(P−1

e,d ) ∈ CH∗(J d
C ×B J e

C) = CH∗(JdC ×B J
e
C).

Here π• is the natural projection to the base B, TJ e
C×BJ d

C
is the virtual tangent bundle, τ(−)

is the tau-class used in the Riemann–Roch theorem of Baum–Fulton–MacPherson [4], and we
identify the (rational) Chow groups of the coarse moduli spaces and the gerbes; we refer to
[38, Section 4] for more details.

The correspondences Fe,d,F
−1
e,d are of mixed degrees, and we have decompositions

Fe,d =
∑
i≥0

(Fe,d)i, (Fe,d)i ∈ Corri−gB (JeC , J
d
C)

F−1
e,d =

∑
i≥0

(F−1
e,d)i, (F−1

e,d)i ∈ Corri−gB (JdC , J
e
C).

For a fixed d, in order to define a motivic perverse filtration associated with πd : JdC → B using
the Fourier transform, we need to choose a degree e, whose associated compactified Jacobian
fibration will serve as the “dual” side; see Step 1 of [38, Section 4.4]. In this paper, we choose
this degree uniformly to be 1; this choice will be important for applying the Abel–Jacobi
map C → J

1
C to build a connection between the Fourier transform and the normalized Chern

classes of a universal bundle for a Hitchin-type moduli space. We define

(23) pk :=
∑
i≤k

(F1,d)i ◦ (F−1
1,d)2g−i ∈ Corr0

B(JdC , J
d
C).

The following theorem proven in [38] confirmed the motivic decomposition conjecture for
the compactified Jacobian fibration associated with C → B, with the projectors constructed
above.

Theorem 2.5 ([38, Corollary 4.5(i)]). For every 0 ≤ k ≤ 2g, the self-correspondence pk is a
projector for πd : JdC → B, and the motives

Pkh(JdC) := (JdC , pk, 0) ∈ CHM(B), 0 ≤ k ≤ 2g

form a motivic perverse filtration. Moreover, every submotive Pkh(JdC) admits a canonical
orthogonal complement Qk+1h(JdC):

h(JdC) = Pkh(JdC) ⊕Qk+1h(JdC), Qk+1h(JdC) = (JdC , qk+1, 0)

with
qk+1 := [∆

J
d
C/B

] − pk =
∑
i≥k+1

(F1,d)i ◦ (F−1
1,d)2g−i.
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The orthogonal complements Q•h(JdC) allow us to directly formulate the condition that a
correspondence to h(JdC) has image lying in a certain piece of the motivic perverse filtration;
we refer to the statements in Theorem 2.6 below as examples.

Now we consider two natural operations on the relative Chow motive h(JdC). The first is
induced by the correspondence (F1,d)k:

(F1,d)k : h(J1
C)(g − k) → h(JdC).

The second is the multiplicative structure given by the cup-product:

∪ : h(JdC) × h(JdC) → h(JdC).

The following theorem shows the compatibility between the motivic perverse filtration of
Theorem 2.5 and the two operations above.

Theorem 2.6. The following hold for πd : JdC → B.
(a) We have a morphism

(F1,d)k : h(J1
C)(g − k) → Pkh(JdC).

More precisely, the following composition is zero:

h(J1
C)(g − k)

(F1,d)k−−−−→ h(JdC) → Qk+1h(JdC).

(b) The motivic perverse filtration is multiplicative:

∪ : Pkh(JdC) × Plh(JdC) → Pk+lh(JdC).

More precisely, the following composition is zero:

Pkh(JdC) × Plh(JdC) ∪−−→ h(JdC) → Qk+l+1h(JdC).

Statement (a) was proven in [38, Corollary 4.5(iv)] by setting e = 1. However, (b) does not
follow directly from the multiplicativity result [38, Corollary 4.5(iii)] (since we cannot make
e1 = e2 = e1 + e2 = 1); we postpone the proof to Section 2.3. The following result is an
immediate consequence of the multiplicativity.

Corollary 2.7. Assume that α ∈ CHl(JdC) lies in the k-th piece of the perverse filtration, i.e.,

α ∈ CHl(Pkh(JdC)).

Then cupping with α interacts with the motivic perverse filtration as follows:

α : Pih(JdC) → Pi+kh(JdC)(l).

Proof. It suffices to prove the relation

qi+k+1 ◦ ∆∗α ◦ pi = 0



20 D. MAULIK, J. SHEN, AND Q. YIN

on the relative product JdC ×B J
d
C , where ∆ : JdC ↪→ J

d
C ×B J

d
C is the diagonal embedding.

Theorem 2.6(b) reads
qi+k+1 ◦ [∆sm

J
d
C/B

] ◦ (pk × pi) = 0

which is a relation on the relative triple product. Therefore, we have

0 = p23∗

(
p∗

1α ∩
(
qi+k+1 ◦ [∆sm

J
d
C/B

] ◦ (pk × pi)
))

= qi+k+1 ◦ p23∗

(
p∗

1α ∩
(

[∆sm
J

d
C/B

] ◦ (pk × pi)
))

= qi+k+1 ◦ ∆∗pk(α) ◦ pi

= qi+k+1 ◦ ∆∗α ◦ pi.

Here pij , pi are the natural projections from the relative triple product JdC ×B J
d
C ×B J

d
C to

the corresponding factors. This completes the proof. □

Next, we discuss the motivic χ-independence phenomenon for compactified Jacobian fibra-
tions. For two integers d, d′, we consider the correspondence

Cd,d′ :=
2g∑
i=0

(F1,d′)i ◦ (F−1
1,d)2g−i ∈ Corr0

B(JdC , J
d′

C ).

Recall that r is the degree of the multisection D ⊂ C we fixed at the beginning.

Theorem 2.8. Assume d, d′ are two integers coprime to r. Then Cd,d′ induces an isomorphism

Cd,d′ : h(JdC) ≃−→ h(Jd
′

C )

preserving the motivic perverse filtrations

Cd,d′ : Pkh(JdC) ≃−→ Pkh(Jd
′

C ).

Moreover, the inverse of Cd,d′ is given by Cd′,d,

(24) Cd′,d ◦ Cd,d′ = [∆
J

d
C/B

], Cd,d′ ◦ Cd′,d = [∆
J

d′
C /B

].

Both Theorem 2.6(b) and Theorem 2.8 are proven in the next section, which rely on a
generalized version of the Fourier vanishing established in [38].

2.3. Proofs of Theorem 2.6(b) and Theorem 2.8. In [38, Section 4.4], we establish a
series of relations between the Fourier components, known as Fourier vanishing (FV). For two
integers d, e, this vanishing states that

(FV) (F−1
e,d)i ◦ (Fe,d)j = 0, i+ j < 2g.

In this section, we prove a generalized Fourier vanishing given as follows:
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Proposition 2.9. Let d, d′, e, e′ be integers. Then if e is coprime to r, we have

(FV1) (F−1
e′,d)i ◦ (Fe,d)j = 0, i+ j < 2g.

If d is coprime to r, we have

(FV2) (Fe,d)i ◦ (F−1
e,d′)j = 0, i+ j < 2g.

Proof. The proof of (FV1) follows closely that of (FV) in [38, Proof of Corollary 4.5(i)], where
we used the Adams operations ψN (−) of [2, Section 4] to scale the Poincaré sheaf Pe,d in K-
theory. By applying the tau-class τ(−) to the K-theory classes supported in codimension g:

P−1
e,d ◦ ψN (Pe,d) ∈ K∗(J e

C ×B J e
C)

for infinitely many N , we were able to obtain (FV) for each pair of i, j satisfying i+j < 2g. The
crucial point here is that the functor τ(−) of [20] is only covariant under proper representable
morphisms of quotient stacks. By choosing

N ≡ 1 (mod r)

we made sure that the class

p∗
12ψ

N (Pe,d) ⊗ p∗
23P−1

e,d ∈ K∗(J e
C ×B J d

C ×B J e
C)(d,0,−d)

descends to a class in K∗(J e
C×BJ

d
C×BJ e

C) in order to apply τ(−) to the proper representable
morphism

p13 : J e
C ×B J

d
C ×B J e

C → J e
C ×B J e

C .

Here pij are the natural projections to the corresponding factors.
Now, under the assumptions of (FV1), we consider the K-theory classes supported in codi-

mension g:
P−1
e′,d ◦ ψN (Pe,d) ∈ K∗(J e

C ×B J e′

C).
Since (e, r) = 1, we have ae ≡ 1 (mod r) for some integer a. Then by taking

N = aN ′, N ′ ≡ e′ (mod r),

we get an infinite sequence of classes

p∗
12ψ

N (Pe,d) ⊗ p∗
23P−1

e′,d ∈ K∗(J e
C ×B J d

C ×B J e′

C)(ae′d,0,−d)

which descend to K∗(J e
C ×B J

d
C ×B J e′

C). The argument of [38, Proof of Corollary 4.5(i)] then
applies verbatim to yield (FV1).

For the proof of (FV2), we can either repeat the whole argument by switching the compo-
sition order of the Fourier transform and its inverse, or simply observe that the transpose of

(Fe,d)i ◦ (F−1
e,d′)j

is precisely

(25) (F−1
d′,e)j ◦ (Fd,e)i.
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This is an immediate consequence of the symmetry in Arinkin’s formula [3, (1.1)] for the
Poincaré sheaf; see also [38, Footnote 12]. Therefore, (FV2) follows from (FV1) and (25) by
replacing e with d, e′ with d′, d with e, and by switching i and j. □

We are ready to prove Theorems 2.6(b) and 2.8. We begin with the latter.

Proof of Theorem 2.8. We first prove the identities (24). We expand

[∆
J

d
C/B

] = F1,d ◦ F−1
1,d′ ◦ F1,d′ ◦ F−1

1,d

=
∑
i,j,l,m

(F1,d)i ◦ (F−1
1,d′)j ◦ (F1,d′)l ◦ (F−1

1,d)m.(26)

For degree reasons the terms in (26) vanish unless i + j + l + m = 4g. Applying the Fourier
vanishing (FV2) with d, d′ coprime to r, we find that the nonvanishing terms in (26) must also
satisfy i+ j ≥ 2g, l +m ≥ 2g. Hence both inequalities are actual equalities and we have

[∆
J

d
C/B

] =

 2g∑
i=0

(F1,d)i ◦ (F−1
1,d′)2g−i

 ◦

 2g∑
l=0

(F1,d′)l ◦ (F−1
1,d)2g−l

 = Cd′,d ◦ Cd,d′ ,

which proves the first identity in (24). The second identity follows by symmetry.
It remains to verify that Cd,d′ ,Cd′,d preserve the motivic perverse filtrations. This amounts

to showing the relations (19) where pk, qk+1 (resp. p′
k, q

′
k+1) denote the projectors for JdC

(resp. Jd
′

C ). By symmetry it suffices to prove the first identity:

q′
k+1 ◦ Cd,d′ ◦ pk = 0.

The left-hand side can be expressed as

(27)

 ∑
i≥k+1

(F1,d′)i ◦ (F−1
1,d′)2g−i

 ◦

 2g∑
j=0

(F1,d′)j ◦ (F−1
1,d)2g−j

 ◦

∑
m≤k

(F1,d)m ◦ (F−1
1,d)2g−m

 .
This time applying (FV1) with e = 1 to (27), we see that the nonvanishing terms must satisfy

2g − i+ j ≥ 2g, 2g − j +m ≥ 2g, i ≥ k + 1, m ≤ k,

or, equivalently,
k ≥ m ≥ j ≥ i ≥ k + 1.

This is absurd, and hence (27) vanishes. □

The proof of Theorem 2.6(b) is slightly more complicated but follows a similar pattern. For
two integers e1, e2, recall from [38, Proof of Corollary 4.5(iii)] the Chow-theoretic convolution
kernel4

Ke1,e2,d ∈ Corr≥−g
B (Je1

C , J
e2
C ; Je1+e2

C ),

4The convolution kernel was denoted Ce1,e2,d in [38].
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which satisfies

(28) Fe1+e2,d ◦ Ke1,e2,d ◦
(
F−1
e1,d

× F−1
e2,d

)
= [∆sm

J
d
C/B

].

Proof of Theorem 2.6(b). We need to show the vanishing

(29) qk+l+1 ◦ [∆sm
J

d
C/B

] ◦ (pk × pl) = 0 ∈ Corr0
B(JdC , J

d
C ; JdC).

By (28) we have

qk+l+1 ◦ [∆sm
J

d
C/B

] ◦ (pk × pl) = qk+l+1 ◦ Fe1+e2,d ◦ Ke1,e2,d ◦
(
(F−1
e1,d

◦ pk) × (F−1
e2,d

◦ pl)
)

=

 ∑
i3≥k+l+1

(F1,d)i3 ◦ (F−1
1,d)2g−i3

 ◦

∑
j3

(Fe1+e2,d)j3

 ◦ Ke1,e2,d(30)

◦

∑
j1

(F−1
e1,d

)j1

 ◦

∑
i1≤k

(F1,d)i1 ◦ (F−1
1,d)2g−i1


×

∑
j2

(F−1
e2,d

)j2

 ◦

∑
i2≤l

(F1,d)i2 ◦ (F−1
1,d)2g−i2

 .
So far the choices of e1, e2 have been arbitrary. But if we choose e1, e2 such that e1 + e2 is
coprime to r, then by applying (FV1) with e = 1 or e = e1 + e2 we see that the nonvanishing
terms in (30) must satisfy

j1 + i1 ≥ 2g, j2 + i2 ≥ 2g, 2g − i3 + j3 ≥ 2g.

This implies

j1 ≥ 2g − k, j2 ≥ 2g − l, j3 ≥ k + l + 1.

Therefore we have

(31) qk+l+1 ◦ [∆sm
J

d
C/B

] ◦ (pk × pl) = qk+l+1 ◦

 ∑
j3≥k+l+1

(Fe1+e2,d)j3

 ◦ Ke1,e2,d

◦

 ∑
j1≥2g−k

(F−1
e1,d

)j1

 ◦ pk

×

 ∑
j2≥2g−l

(F−1
e2,d

)j2

 ◦ pl


Comparing degrees, we find that the right-hand side of (31) lies in

Corr≥−g+(k+l+1−g)+(g−k)+(g−l)
B (JdC , J

d
C ; JdC) = Corr≥1

B (JdC , J
d
C ; JdC),

while the left-hand side lies in Corr0
B(JdC , J

d
C ; JdC). This shows the desired vanishing (29). □
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2.4. Parabolic Higgs bundles: general residue. Theorems 2.5, 2.6, and 2.8 in Section 2.2
are analogues of our main theorems in the general setting of compactified Jacobians. For our
purpose, we specialize to the case where C → B arises as a family of spectral curves. The
main results of this section are Theorems 2.11, 2.12, and 2.13 which treat the case for the
Hitchin system associated with parabolic Higgs bundles with general residue.

For the curve Σ, we consider nonsingular surface

S := TotΣ(ωΣ(p)).

Now we work with a family of curves C → B as in Section 2.2, imposing the extra condition
that they lie in the linear system |nΣ| in the surface S; in particular, every curve Cb ⊂ S is a
degree n finite cover over the zero-section Σ. We have a natural evaluation map

ev : C → S ×B.

The composition of ev with the projection S × B → Σ × B gives the spectral cover together
with a (degree n) multisection:

π : C → Σ ×B, D := π−1(p×B).

For each curve Cb with a degree n spectral cover πb : Cb → Σ, the multisection over this fiber
is Db = π−1

b (p).
Next, we introduce the normalized Chern character of Section 0.2. Let Mmero be the moduli

space of stable meromorphic Higgs bundles on the curve Σ, which parameterizes slope stable
(meromorphic) Higgs bundles:

(E , θ), θ : E → E ⊗ ωΣ(p), rk(E) = n, deg(E) = d.

Here we call them meromorphic Higgs bundles since they can be viewed as Higgs bundles
which are allowed to have a simple pole at p. The variety Mmero is nonsingular, and the
coprime condition (n, d) = 1 ensures the existence of a universal bundle U on Σ × Mmero.
The reason we work first with this moduli space is that all the moduli spaces in Section 1.2,
including the original moduli space Mn,d, admit natural morphisms to Mmero, and the pullback
of the universal bundle gives a universal bundle on each moduli space. So the normalized
Chern character

c̃h(U) ∈ CH∗ (Σ ×Mmero) ,

yields the normalized Chern character for each moduli space of Section 1.2. This strategy was
taken in [38, Section 5.4].

In cohomology, the normalization is given by a class

δ := π∗
ΣδΣ + π∗

MδM ∈ H2(Σ ×Mmero,Q),

with π• the natural projections, satisfying that

c1(U) + δ ∈ H1(Σ,Q) ⊗H1(Mmero,Q) ⊂ H2(Σ ×Mmero,Q);
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this determines δ completely. Then the normalized Chern character is defined to be

c̃h(U) := ch(U) ∪ exp (δ) ∈ H∗(Σ ×Mmero,Q),

which is canonical and independent of the choice of U . We refer to [12, Section 0.3] for more
details.

For our purpose, we need to lift δ (associated with a universal bundle U) canonically to a
divisor

(32) δ := π∗
ΣDΣ + π∗

MDM ∈ CH1(Σ ×Mmero).

We first determine DM using the marked point p ∈ Σ:

DM := c1(U)|p×Mmero ∈ CH1(Mmero).

Now we determine DΣ, which is eventually written as a linear combination of the point
class of p and the canonical divisor KΣ on the curve Σ. Pick a nonsingular spectral curve
Cb ⊂ TotΣ(ωΣ(p)); a Higgs bundle in Mmero associated with the spectral curve Cb can be
represented by a line bundle LCb

on Cb of degree l(n, d) ∈ Z, where l(n, d) is a number only
depending on n, d and is coprime to n. In particular, we have

c1(LCb
) − l(n, d)

n
·Db = c1(LCb

) − l(n, d)
n

· π∗
b [p] = 0 ∈ H2(Cb,Q).

Finally, there is a unique constant λ0 ∈ 1
nZ such that

c1(U) − l(n, d)
n

· π∗
b [p] + λ0 ·KΣ = 0 ∈ H2(Σ, 0).

We set
DΣ := − l(n, d)

n
· [p] + λ0 ·KΣ,

in (32), which defines the normalized Chern character

(33) c̃h(U) := ch(U) ∪ exp(δ) ∈ CH∗(Σ ×Mmero).

We denote by c̃hk(U) its degree k part:

c̃h(U) =
∑
k

c̃hk(U), c̃hk(U) ∈ CHk(Σ ×Mmero).

By definition, the normalized Chern character (33) does not depend on the choice of the
universal bundle U , and its image under the cycle class map recovers the normalized Chern
character in cohomology.

Next, we give an explicit description of the normalized Chern character for the moduli
space Mpar

η for a general η ∈ T as in Section 1.2(a); it admits a compactified Jacobian
fibration over W̃η. For notational convenience, we denote by C → W̃η the family of spectral
curves. Therefore we have

Mpar
η = J

e
C , e = l(n, d).
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We consider the diagram

(34)
C J

1
C

Σ × W̃η

AJ

π

where the horizontal map is the Abel–Jacobi map

AJ : C → J
1
C , (x ∈ Cb) 7→ m∨

x/Cb
.

The diagram (34) yields a relative correspondence over W̃η:

[C] ∈ CHdimC(Σ × J
1
C).

Proposition 2.10 ([38]). Let U be a universal bundle over Σ × J
e
C = Σ × Mpar

η . Then we
have

c̃h(U) = F1,d ◦ [C] ∈ CH∗(Σ × J
d
C).

Proof. Applying the Grothendieck–Riemann–Roch (GRR) formula to [38, Proposition 4.7] as
in the proof of [38, Proposition 5.1(a)], we express the Chern character of the universal 1-
dimensional torsion free sheaf over the universal spectral curve C in terms of F1,d. Then the
result follows from applying further the GRR formula along π : C → Σ × W̃η, expressing the
Chern character of a universal bundle over Σ in terms of the Chern character of a universal
torsion free sheaf over C [38, Section 5].

Note that the term − l(n,d)
n · [p] in the normalization comes from the line bundle N of [38,

Proposition 4.7], and the second term λ0 · KC arise from the Todd contribution of the GRR
calculation along π : C → Σ × W̃η. □

The morphism hη : Mpar
η → Wη can be written as a composition

Mpar
η = J

e
C → W̃η → Wη

where the first map is the compactified Jacobian fibration associated with C → W̃ , and the
second is a finite map given by Sn-quotient.

Theorem 2.11. The morphism hη : Mpar
η → Wη admits a motivic perverse filtration, where

the projectors are induced by those for the compactified Jacobian fibration J
e
C → W̃η given in

Theorem 2.5.

Proof. By Theorem 2.5, we have the semi-orthogonal projectors for the map J
e
C → W̃η,

pk ∈ CHdim J
e
C

(JeC ×
W̃η

J
e
C), 0 ≤ k ≤ 2g.

Then under the natural morphism

CHdim J
e
C

(JeC ×
W̃η

J
e
C) → CHdim J

e
C

(JeC ×Wη J
e
C)
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induced by W̃η → Wη, we obtain semi-orthogonal projectors for the latter:

pk ∈ CHdim J
e
C

(JeC ×Wη J
e
C), 0 ≤ k ≤ 2g.

Finally, we need to check that these projectors have the correct homological realization, which
follows from the fact that the pushforward along the finite map

Db
c(W̃η) → Db

c(Wη)

is t-exact with respect to the perverse t-structure. □

The following theorem determines the perversity of the normalized Chern character.

Theorem 2.12. Taking cup-product with the normalized Chern character satisfies

c̃hk(U) : Pih(Σ × J
e
C) → Pi+kh(Σ × J

e
C)(k) ∈ CHM(Σ ×Wη).

Here the motivic perverse filtration for Σ × J
e
C → Σ × Wη is given by the pullback of the

motivic perverse filtration for hη : JeC → Wη.

Proof. As in the proof of Theorem 2.11, it suffices to prove the corresponding statement in the
category CHM(Σ × W̃η). Then pushing forward along Σ × W̃η → Σ × Wη yields the desired
statement over Wη.

Recall the perverse filtration on CH∗(JeC) induced by the motivic perverse filtration asso-
ciated with the compactified Jacobian fibration J

e
C → W̃η. We first note that

c̃hk(U) ∈ PkCHk(Σ × J
e
C).

This is a direct consequence of Proposition 2.10:

c̃hk(U) = (F1,d)k ◦ [C]

combined with Theorem 2.6(a). Then applying Corollary 2.7 to

Σ × J
e
C → Σ × W̃η

completes the proof of the theorem. □

The next theorem concerning the χ-independence phenomenon is immediately deduced from
Theorem 2.8 by pushing forward along W̃η → Wη.

Theorem 2.13. Assume e, e′ are two integers coprime to n. Then Ce,e′ from Theorem 2.8
induces an isomorphism

Ce,e′ : h(JeC) ≃−→ h(Je
′

C) ∈ CHM(Wη)
preserving the motivic perverse filtrations

Ce,e′ : Pkh(JeC) ≃−→ Pkh(Je
′

C).

Moreover, the inverse of Ce,e′ is given by Ce′,e,

Ce′,e ◦ Ce,e′ = [∆J
e
C/Wη

], Ce,e′ ◦ Ce′,e = [∆
J

e′
C /Wη

].
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2.5. Parabolic Higgs bundles: nilpotent residue. In the previous section, we have es-
tablished the desired results for

hη : Mpar
η → Wη

associated with parabolic Higgs bundles with general residue. The proofs in fact give the
results for the family

h◦ : Mpar,◦ → W ◦

over T ◦ introduced in Section 1.2(a), which puts together the fibrations hη for η ∈ T ◦. By
applying the specialization map

η ∈ T ◦ ⇝ 0 ∈ T

for Chow groups, all the results concerning relations of algebraic cycles hold for

h0 : Mpar
0 → W0.

Theorem 2.14. The morphism h0 : Mpar
0 → W0 admits a motivic perverse filtration, where

the projectors are induced by specializing the projectors of hη : Mpar
η → W̃η with η ∈ T ◦ given

in Theorem 2.11.

As we discussed above, the projectors we obtain from specialization automatically satisfy
the conditions (a, c) in the definition of motivic perverse filtration. It remains to prove (b),
i.e., the homological realization recovers the perverse truncation functor. This will be proven
in Section 4.1.

Theorem 2.15. Let U be a universal bundle over Σ ×Mpar
0 . Then we have

c̃hk(U) : Pih(Σ ×Mpar
0 ) → Pi+kh(Σ ×Mpar

0 )(k) ∈ CHM(Σ ×W0).

Proof. Since the statement can be expressed in terms of a relation of algebraic cycles:

qi+k+1 ◦ ∆∗c̃hk(U) ◦ pi = 0

with ∆ : Mpar
0 ↪→ Mpar

0 ×W0 M
par
0 the relative diagonal, it follows from specializing the

corresponding relation for hη : Mpar
η → Wη established in Theorem 2.12. □

Similarly, by a straightforward specialization argument, we obtain from Theorem 2.13 the
following theorem concerning the χ-independence.

Theorem 2.16. Assume d, d′ are two integers coprime to n. Let Mpar
0 ,Mpar

0
′ be the parabolic

moduli spaces associated with the degrees d, d′ respectively. Then there is an isomorphism

h(Mpar
0 ) ≃ h(Mpar

0
′)

preserving the motivic perverse filtrations

Pkh(Mpar
0 ) ≃ Pkh(Mpar

0
′).
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Remark 2.17. We conclude this section by noting that the motivic perverse filtration we
introduced in Theorem 2.14 is independent of the choice of the 1-dimensional family T . Indeed,
we consider the Hitchin system associated with the total space of the moduli of stable parabolic
Higgs bundles

Mpar → W

in Section 1.2. The Fourier transform can be defined over a Zariski open subset W ◦ of the
base W formed by integral spectral curves, and the projectors pk we obtained in Theorem 2.15
is the specialization of the projectors over W ◦. Here we choose to work with a 1-dimensional
family T for convenience (e.g. in the sheaf-theoretic argument of Section 4).

3. Projectors and Springer theory

In this section, we study the correspondences given by (15) connecting Mpar
0 and Mn,d. Our

main purpose is to prove Proposition 3.5, which yields a candidate for the motivic perverse
filtration (42) for f : Mn,d → B. For the approach, we reduce the Higgs case to a local
model where the correspondence (15) is understood via classical Springer theory. This lifts
several cohomological results of [24, Section 8] motivically. Springer theoretic interpretations
of parabolic Hitchin moduli spaces have previously been used in [19] in the study of Kac
polynomials.

3.1. Springer theory. For our purpose, we consider the case G = PGLn. We denote by B, T
the Borel subgroup given by upper triangular matrices and the maximal torus given by diag-
onal matrices respectively. We use g, b, t to denote the corresponding Lie algebra. The Weyl
group is the permutation group Sn which acts on t naturally. Let

c := g // G ≃ t //Sn

be the categorical quotient, and we have a natural morphism

χ : g → c

which can be viewed as calculating the characteristic polynomial of a matrix. We consider the
Grothendieck–Springer resolution over the base c:

g̃ g

c.

q

χ

The fibers over 0 ∈ c recovers the symplectic resolution of the nilpotent cone

q0 : Ñ0 → N0

by the total cotangent bundle of the flag variety Ñ = T ∗Fl, while the fibers over a general η ∈ c

(e.g. the corresponding matrix has distinct eigenvalues) is a natural quotient of the Weyl group:

qη : Ñη → Nη = Ñη/Sn.
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From this description, we see that any element w ∈ Sn induces a self-correspondence of Ñη.
As we will illustrate in the next section, the local analog of the correspondence (15) is (the G-
equivariant version of) the following:

(35)
Fl Ñ0 = T ∗Fl

pt

ι

π

where ι is the closed embedding of the 0-section. The following lemma collects a few standard
results in Springer theory, which concerns the self-correspondences

(36) [Fl] ◦ t[Fl] ∈ CH∗(Ñ0 × Ñ0) = Corr∗(Ñ0, Ñ0)

and

(37) t[Fl] ◦ [Fl] ∈ CH∗(pt) = Corr∗(pt, pt).

Lemma 3.1. (a) The self-correspondence (36) of Ñ0 is the specialization of the self-
correspondence of Ñη induced by the longest element w0 in the Weyl group Sn.

(b) The self-correspondence of (37) of a point is

ϵn! · id ∈ Corr0(pt, pt).

Here ϵ = ±1 is a sign dependent on n.
(c) There is a natural Weyl group Sn action on the cohomology H∗(Ñ0,Q); the anti-

invariant part is 1-dimensional concentrated in the top degree cohomology:

H∗(Ñ0,Q)sgn = Q
[
2
(
n

2

)]
.

Here the shift is given by the dimension dim Fl =
(n

2
)
. Furthermore, the cohomological

correspondences:

[Fl] : H∗(Ñ0,Q) → H∗−(n
2)(pt,Q) = Q, t[Fl] : H∗−(n

2)(pt,Q) = Q → H∗(Ñ0,Q)

are projecting to the anti-invariant part, and the natural inclusion from the anti-
invariant part respectively.

Remark 3.2. The correspondences [Fl], t[Fl] are naturally G-equivariant and relative over N0.
All the statements above concerning the correspondences hold G-equivariantly and relatively.
For example, the statement of (c) actually is obtained from a sheaf-theoretic result: the Weyl
group Sn acts on the derived push-forward

Rq0∗QÑ0
∈ Db

c(N0)

induced by the Sn-structure of qη : Ñη → Nη. The correspondences

[Fl] : Rq0∗QÑ0
→ Q0

[
−2
(
n

2

)]
, t[Fl] : Q0

[
−2
(
n

2

)]
→ Rq0∗QÑ0

∈ Db
c(N0)
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are projecting to the anti-invariant part and the natural inclusion from the anti-invariant
part respectively. Then the cohomological statement of Lemma 3.1(c) is obtained by further
pushing forward the sheaf-theoretic statements to a point.

As a consequence of Lemma 3.1(a), if we take a self-correspondence of Nη, pull it back along

qη : Ñη × Ñη → Nη × Nη,

and specialize it to a self-correspondence of Ñ0, then this resulting self-correspondence com-
mute with (36). In the next section, we will use a global version of this result to analyze the
correspondence

(38) [M̃0] ◦ t[M̃0] ∈ Corr∗
W0(Mpar

0 ,Mpar
0 ).

3.2. Hitchin moduli spaces. Recall the moduli space Mmero of stable meromorphic Higgs
bundles of Section 2.4. It admits a natural evaluation map at the point p ∈ Σ:

(39) evp : Mmero → g/G

as we introduce below.
We denote by Mab the abelian Hitchin moduli space

Mab = Pic0(Σ) ×H0(Σ, ωΣ(p))

which parameterize rank 1 Higgs bundles. There is a natural action of Mab on Mmero by

(L, σ) · (E , θ) = (L ⊗ E , σ + θ), (L, σ) ∈ Mab, (E , θ) ∈ Mmero

where the sum σ + θ is defined in the sense that we view both σ, θ as morphisms

L ⊗ E → L ⊗ E ⊗ ωΣ(p).

The quotient space
M̂mero := Mmero/Mab

is a nonsingular Deligne–Mumford stack, known as the moduli space of stable meromor-
phic PGLn-Higgs bundles, which admits a natural evaluation map at the point p. The
evaluation map (39) for the original moduli space the composition of the quotient map and
the PGLn-evaluation map:

Mmero ↠ M̂mero evp−−→ g/G.

Proposition 3.3. The morphism (39) is smooth and surjective.

Proof. The quotient map Mmero ↠ M̂mero is smooth. Therefore, the smoothness of the
composition follows from the smoothness of the second evaluation map which has been proven
in [35, Propositin 4.1] via deformation theory. □
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Remark 3.4. We do not work directly with the evaluation map associated with GLn for the
following reasons. First, Lemma 1.2 implies that the image of evp for a GLn-Higgs bundle has
trace 0; in particular the trace lies naturally in

g = {tr = 0} ⊂ gln.

Second, when we pass from the moduli stack of GLn-stable Higgs bundle to the corresponding
moduli space, we need to rigidify the automorphism group C∗ ⊂ GLn. Working with the
evaluation map associated with G = PGLn is more convenient which resolves both issues.

Now we may use the evaluation map to pull back natural morphisms in Springer theory. As
a first example, the pullback of (39) via the (G-equivariant) Groethendieck–Springer resolution
recovers the parabolic moduli space

Mpar g̃/G

Mmero g/G.

evp

q

evp

This further yields the specialization

Mpar
η

evp−−→ Ñη/G ⇝ Mpar
0

evp−−→ Ñ0/G.

Finally, the pullback along evp of the G-equivariant version of the diagram (35)

(40)
Fl/G Ñ0/G

pt/G

ι

π

recovers the diagram (15). Since all the maps evp are obtained via base change from (39),
they are all smooth and surjective by Proposition 3.3.

Recall the Sn-quotient map
Mpar
η → J

e
C

of Section 1.2(a) for general η ∈ T .

Proposition 3.5. Assume that the self-correspondence

Zη ∈ Corr∗
Wη

(Mpar
η ,Mpar

η )

is pulled back from J
e
C ×Wη J

e
C . Let

Z0 ∈ Corr∗
W0(Mpar

0 ,Mpar
0 )

be the specialization of Zη. Then (38) commutes with Z0, i.e., we have(
[M̃0] ◦ t[M̃0]

)
◦ Z0 = Z0 ◦

(
[M̃0] ◦ t[M̃0]

)
∈ Corr∗

W0(Mpar
0 ,Mpar

0 ).
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Proof. The correspondence (15) is induced by the pullback of the correspondence (40) via the
evaluation maps, we obtain that

(41) ev∗
(
[Fl/G] ◦ t[Fl/G]

)
= [M̃0] ◦ t[M̃0].

Here the evaluation map is given by

ev : Mpar
0 ×W0 M

par
0 → Ñ0/G× Ñ0/G.

The G-equivariant version of Lemma 3.1(a) then implies that the correspondence (41) is the
specialization of a self-correspondence of Mpar

η induced by w0 ∈ Sn. The latter commutes with
the pullback of any self-correspondence of JeC = Mpar

η /Sn, which proves the proposition. □

Recall the morphism Γ from Section 1.3. From now on, we use

ppar
k ∈ Corr0

W0(Mpar
0 ,Mpar

0 ), k = 0, 1, · · · , 2(dimMpar
0 − dimW0)

to denote the projectors associated with the motivic perverse filtration of Theorem 2.14.

Proposition 3.6. The following statements hold.
(a) We have

Γ([∆Mpar
0 /W0 ]) = ϵn! · [∆Mn,d/B].

Here ϵ = ±1 is as in Lemma 3.1(b).
(b) We have the vanishing

Γ(ppar
k ) = 0, k <

(
n

2

)
.

(c) We have the stabilization

Γ(ppar
k ) = [∆Mn,d/B], k ≥ 2(dimMpar

0 − dimW0) −
(
n

2

)
.

(d) We have the semi-orthogonality relation

Γ(ppar
l ) ◦ Γ(ppar

k ) = ϵn! · Γ(ppar
k ), k < l.

Proof. (a) follows from pulling back the local statement of Lemma 3.1(b). (b) and (c) follow
from Lemma 1.3 and the construction of ppar

k in terms of the specialization of algebraic cycles
of the form (23). (d) is a consequence of part (a) and Proposition 3.5:

Γ(ppar
l ) ◦ Γ(ppar

k ) = t[M̃0] ◦ ppar
l ◦

(
[M̃0] ◦ t[M̃0]

)
◦ ppar

k ◦ [M̃0]

=
(
t[M̃0] ◦ [M̃0]

)
◦ t[M̃0] ◦

(
ppar
l ◦ ppar

k

)
◦ [M̃0]

= ϵn! · t[M̃0] ◦ ppar
k ◦ [M̃0]

= ϵn! · Γ(ppar
k ).

Here we have used that every ppar
k satisfies the assumption of Z0 in Proposition 3.5, and we

applied (a) to deduce the third identity. □
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By a direct dimension calculation, we have

(dimMpar
0 − dimW0) −

(
n

2

)
= Rf .

Therefore, after rescaling and relabelling as

pk := ϵ

n! · Γ
(
ppar
k−(n

2)

)
,

we obtain the projectors

(42) pk ∈ Corr0
B(Mn,d,Mn,d), k = 0, 1, · · · , 2Rf .

In Section 4, we will prove that (42) forms a motivic perverse filtration; as for Theorem 2.14,
we only need to show that the homological realization of pk recovers the perverse truncation
functor.

4. Sheaf-theoretic operations

The purpose of this section is to prove a general specialization result for the decomposition
theorem (Proposition 4.1). Then we apply it to the Hitchin systems we studied in the previous
sections and complete the proofs of all the main theorems.

4.1. Specializations. In this section, we finish the proof of Theorem 2.14 by addressing the
compatibility of the Chow and sheaf-theoretic specialization maps, and their relationship with
the perverse truncation.

Our setup is the following: let T be a nonsingular curve and let π : B → T be a smooth
morphism. Consider two proper morphisms f : X → B, g : Y → B such that the compositions
π ◦ f : X → T , π ◦ g : Y → T are smooth:

X Y

B

T

f g

π

We think of f : X → B, g : Y → B as two families of proper morphisms over T .
Let η ∈ T (resp. 0 ∈ T ) be a general (resp. the special) point. Suppose we are given a

correspondence
Zη ∈ Corr∗

Bη
(Xη, Yη) = CH∗(Xη ×Bη Yη).

Then by the specialization map for Chow groups via

Xη → Bη ⇝ X0 → B0,

we obtain a correspondence

Z0 ∈ Corr∗
Bη

(Xη, Yη) = CH∗(X0 ×B0 Y0).
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Also recall from [16, Lemma 2.21] that the cycle class cl(Zη) ∈ HBM
2∗ (Xη ×Bη Yη,Q) induces a

morphism in Db
c(Bη):

(43) cl(Zη) : Rfη∗QXη → Rgη∗QYη [∗],

where we ignore the precise shifting index. Similarly, we have a morphism in Db
c(B0):

(44) cl(Z0) : Rf0∗QX0 → Rg0∗QY0 [∗].

Proposition 4.1. Let Zη,Z0 be as above. For k ∈ Z, if

(45) pHk(cl(Zη)) : pHk(Rfη∗QXη ) → pHk(Rgη∗QYη [∗])

is an isomorphism (resp. zero), then the same holds for

(46) pHk(cl(Z0)) : pHk(Rf0∗QX0) → pHk(Rg0∗QY0 [∗]).

Proof. Let Z ∈ CH∗(X×BY ) be the Zariski closure of (the spread-out of) Zη ∈ CH∗(Xη×BηYη).
The cycle class cl(Z) ∈ HBM

2∗ (X ×B Y,Q) induces a morphism in Db
c(B):

(47) cl(Z) : Rf∗QX → Rg∗QY [∗].

Then by construction and proper base change, the morphism cl(Z0) in (44) is obtained by
applying i∗ to (47) for the inclusion i : B0 ↪→ B:

cl(Z0) = i∗cl(Z) : Rf0∗QX0 → Rg0∗QY0 [∗].

We give an alternative construction of (44) via nearby and vanishing cycles following [11, 8].
Recall the distinguished triangle

(48) i∗[−1] → ψB[−1] can−−→ ϕB
+1−−→

where ψB, ϕB : Db
c(B) → Db

c(B0) are the nearby and vanishing cycle functors respectively.
Since X is smooth over T , we have ϕXQX ≃ 0 ∈ Db

c(X0) and by proper base change for ϕ,

ϕBRf∗QX ≃ Rf0∗ϕXQX ≃ 0 ∈ Db
c(B0).

Similarly, we have
ϕBRg∗QY ≃ Rg0∗ϕYQY ≃ 0 ∈ Db

c(B0).

We now apply the distinguished triangle (48) to the morphism cl(Z) in (47), which yields a
commutative diagram

(49)
Rf0∗QX0 Rg0∗QY0 [∗]

ψBRf∗QX ψBRg∗QY [∗].

cl(Z0)

≃ ≃
ψBcl(Z)

Here both columns are isomorphisms since the vanishing cycles are trivial, and the crucial point
is that the bottom morphism ψBcl(Z) is fully determined by the morphism cl(Zη) in (43).
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Finally, we recall the fact that ψB[−1] is perverse t-exact, and hence commutes with taking
perverse cohomology. Therefore, if (45) is an isomorphism (resp. zero), then

pHk(ψBcl(Z)) : pHk(ψBRf∗QX) → pHk(ψBRg∗QY [∗])

is also an isomorphism (resp. zero). By the diagram (49) the same holds for (46). □

A useful consequence of Proposition 4.1 is that the validity of the Corti–Hanamura motivic
decomposition conjecture is preserved under specialization. This also completes the proof of
Theorem 2.14.

Corollary 4.2. Let X f−→ B
π−→ T be as above, with f proper and π, π ◦ f smooth. If the

motivic decomposition conjecture holds for Xη → Bη, then the specializations of the projectors
provide a motivic decomposition for X0 → B0.

Proof. The (semi-)orthogonal projectors of Xη → Bη specialize immediately to (semi-)orthog-
onal projectors of X0 → B0, while the relative diagonal class [∆Xη/Bη

] specializes to [∆X0/B0 ].
Now Proposition 4.1 guarantees that the homological realization of the specialized projectors
recovers the decomposition theorem for X0 → B0. □

4.2. Correspondences. For our purpose, we connect the decomposition theorem associated
with the Hitchin maps:

h0 : Mpar → W0, f : Mn,d → B ⊂ W0.

The diagram (15) yields sheaf-theoretic correspondences
(50)

[M̃0] : Rh0∗QMpar
0

→ Rf∗QMn,d

[
−2
(
n

2

)]
, t[M̃0] : Rf∗QMn,d

[
−2
(
n

2

)]
→ Rh0∗QMpar

0

which take places in the derived category Db
c(W0).

The following lemma is a global version of Lemma 3.1(c).

Lemma 4.3. There is a natural Weyl group Snaction on the object

Rh0∗QMpar
0

∈ Db
c(W0);

the anti-invariant part is(
Rh0∗QMpar

0

)sgn
= Rf∗QMn,d

[
−2
(
n

2

)]
∈ Db

c(W0).

Furthermore, under this isomorphism the correspondences (50) are projecting to the anti-
invariant part and the natural inclusion from the anti-invariant part respectively.

Proof. By Proposition 3.3, the diagram (15) is the pullback of local case (35) along smooth
morphisms evp. Therefore, Lemma 4.3 follow from pulling back the G-equivariant version of
Lemma 3.1(c) (see Remark 3.2). □
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4.3. Proofs of Theorems 0.1, 0.2, 0.3, 0.4. In this section, we complete the proofs of all
the main theorems.

4.3.1. Proof of Theorem 0.1. We start with the proof of Theorem 0.1. By Proposition 2.2,
it suffices to show that the correspondences we constructed in (42) form a motivic perverse
filtration. By Proposition 3.6, it remains to check that the homological realization

pkRf∗QMn,d
→ Rf∗QMn,d

recovers the perverse truncation
pτ≤k+dimBRf∗QMn,d

↪→ Rf∗QMn,d
.

We know that this statement holds for h0 : Mpar
0 → W0 and ppar

k by Theorem 2.14 (proven in
Section 4.1). Now, we consider the correspondence of pk given by the composition:

pk : Rf∗QMn,d

[M̃0]−−−→ Rh0∗QMpar
0

[
2
(
n

2

)]
ppar

k−−→ Rh0∗QMpar
0

[
2
(
n

2

)]
t[M̃0]−−−→ Rf∗QMn,d

.

By Lemma 4.3, we have a direct sum decomposition induced by the Sn-action:

(51) Rh0∗QMpar
0

[
2
(
n

2

)]
= (Rh0∗QMpar

0
)sgn

[
2
(
n

2

)]
⊕ others,

and applying pk to Rf∗QMn,d
is induced by applying ppar

k on the first factor above. In partic-
ular, it coincides with the perverse truncation. This completes the proof. □

4.3.2. Proof of Theorem 0.2. We first note the following result of [1, Proposition 6.4].

Fact 1. The compactified Jacobian fibration

J
e
C → Wη

of Section 1.2(a) satisfies the relative Lefschetz standard conjecture.

More precisely, this is due to the resolutions of the Lefschetz standard conjecture for abelian
varieties [32, 31] and the fact that the decomposition theorem associated with a compactified
Jacobian fibration associated with integral locally planar curves has full support by Ngô sup-
port theorem [45].

Our strategy is to reduce the case of f : Mn,d → B to JeC → Wη. Let σ ∈ H2(Mn,d,Q) be
a relative ample class. By [34], we can write σ in terms of tautological classes as follows. We
first recall that we have a canonical isomorphism

(52) H2(Mn,d,Q) = H2(M̂n,d,Q) ⊕H2(JΣ,Q)

where M̂n,d is the PGLn-Higgs moduli space and JΣ is the Jacobian variety of the curve Σ;
see [9, Section 2.4]. The first summand on the right-hand side of (52) spans a 1-dimensional
subspace, generated by the relative ample tautological class given by the Künneth component
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of normalized second Chern character c̃h2(U) with respect to the point class [pt] ∈ H2(Σ,Q)
on the curve. This class can be lifted to the (Q-)divisor class

c2([Σ]) := πM∗
(
π∗

Σ[Σ] ∪ c̃h2(U)
)

∈ Pic(Mn,d)Q.

Therefore, under the decomposition (52), we may present the relative ample class η as

(53) σ = c2([Σ]) + θ

where θ is induced by an ample divisor on JΣ. The right-hand side is the pullback of a divisor
on Mmero with the same tautological presentation (53). As in Section 2.4, pulling back this
class yields relative ample classes on each variety Mpar

η with η ∈ T .
In conclusion, we obtain the following fact.

Fact 2. There exists a divisor σpar
0 ∈ Pic(Mpar

0 )Q satisfying

(54) π∗σ = ι∗σpar
0

where ι, π are defined in the diagram (15). Moreover, this divisor σpar
0 is obtained as the

specialization of a relative ample divisor

σpar
η ∈ Pic(Mpar

η )Q

for general η.

Note that in general the cup-product with respect to an algebraic cycle E is induced by a
correspondence given by the ∆∗E, where ∆ is the (relative) diagonal. Now we consider the
correspondences

∆∗σ
i ∈ Corr∗

B(Mn,d,Mn,d), ∆∗(σpar
0 )i ∈ Corr∗

W0(Mpar
0 ,Mpar

0 ).

Fact 3. We have
Γ
(
∆∗(σpar

0 )i
)

= ϵn! · ∆∗σ
i ∈ Corr∗

B(Mn,d,Mn,d).
In particular, after the homological realization we obtain the commutative diagram

Rf∗QMn,d
Rf∗QMn,d

[2i]

Rh0∗QMpar
0

[
2
(n

2
)]

Rh0∗QMpar
0

[
2
(n

2
)

+ 2i
]
.

ϵn!·(∪σi)

[M̃0]
∪(σpar

0 )i

t[M̃0]

Proof of Fact 3. It suffices to show the following relation of correspondences

(55) t[M̃0] ◦ ∆∗(σpar
0 )i = ∆∗σ

i ◦ t[M̃0] ∈ Corr∗
W0(Mpar

0 ,Mn,d).

Then by Proposition 3.6(a), we have

Γ(∆∗(σpar
0 )i) = t[M̃0] ◦ ∆∗(σpar

0 )i ◦ [M̃0] = ∆∗σ
i ◦ t[M̃0] ◦ [M̃0] = ϵn! · ∆∗σ

i,
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which proves Fact 3. To see the relation (55), we expand the left-hand side
t[M̃0] ◦ ∆∗(σpar

0 )i = p13∗δ
!
(
∆∗(σpar

0 )i × t[M̃0]
)

= p13∗δ
!
((
q∗

2(σpar
0 )i ∩ [∆Mpar

0 /W0 ]
)

× t[M̃0]
)

= p13∗δ
!
(
[∆Mpar

0 /W0 ] ×
(
r∗

1(σpar
0 )i ∩ t[M̃0]

))
= r∗

1(σpar
0 )i ∩ t[M̃0] = t(ι∗(σpar

0 )i ∩ [M̃0]).

Here δ! is the refined Gysin pullback with respect to the regular (absolute diagonal) embed-
ding ∆ : Mpar

0 → Mpar
0 × Mpar

0 , and p13 : Mpar
0 ×W0 M

par
0 ×W0 Mn,d → Mpar

0 ×W0 Mn,d,
q2 : Mpar

0 ×W0 M
par
0 → Mpar

0 , and r1 : Mpar
0 ×W0 Mn,d → Mpar

0 are the natural projections.
Similarly, we compute the right-hand side of (55):

∆∗σ
i ◦ t[M̃0] = p13∗δ

!
(
t[M̃0] × ∆∗σ

i
)

= p13∗δ
!
(
t[M̃0] ×

(
r∗

1σ
i ∩ [∆Mn,d/B]

))
= p13∗δ

!
((
q∗

2σ
i ∩ t[M̃0]

)
× [∆Mn,d/B]

)
= q∗

2σ
i ∩ t[M̃0] = t(π∗σi ∩ [M̃0]).

This time δ! is the refined Gysin pullback with respect to ∆ : Mn,d → Mn,d × Mn,d, and
p13, q2, r1 are the corresponding natural projections. Hence (55) follows from (54). □

Now we construct the cycle Zσ,i for the relative ample class σ on Mn,d. We start with the
cycle given by Fact 1 for JeC . Its pullback to Mpar

η yields a correspondence

Zσpar
η ,i ∈ Corr∗

Wη
(Mpar

η ,Mpar
η )

which gives the inverse of the Lefschetz symmetry induced by (σpar
η )i for general η. Moreover,

since the cycle is pulled back from a self-correspondence of JeC = Mpar
η /Sn, its induced

isomorphism respects the isotypic decomposition with respect to the Sn-action.
By Proposition 4.1, its specialization

(56) Zσpar
0 ,i ∈ Corr∗

W0(Mpar
0 ,Mpar

0 )

gives the inverse of the Lefschetz symmetry induced by (σpar
0 )i and respects the decomposition

given by the Sn-structure. In particular, the correspondence (56) induces an isomorphism on
the perverse cohomology sheaves of the first summand of (51).

Finally, we set
Zσ,i := Γ

(
Zσpar

0 ,i

)
∈ Corr∗

B(Mn,d,Mn,d).

As in the proof of Theorem 0.1 in Section 4.3.1, the diagram of Fact 3 together with Lemma 4.3
implies that the sheaf-theoretic operator ∪σi coincides with the restriction of the opera-
tor ∪(σpar

0 )i to the anti-invariant component with respect to the Sn-equivariant structure.
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Since the inverse operator (56) of ∪(σpar
0 )i also respects the decomposition (51), we conclude

that the homological realization of Zσ,i gives the inverse of ∪σi as desired. □

4.3.3. Proof of Theorem 0.3. We consider the diagram

(57)
Σ × M̃0 Σ ×Mpar

0

Σ ×Mn,d

ι

π

given by the base change of (15). For convenience, we use the same notation for this diagram
as for (15); e.g. we still use [M̃0] to denote the correspondence from Σ ×Mn,d to Σ ×Mpar

0 .
By the construction of the normalized Chern character, we have

π∗c̃h(U) = ι∗c̃h(U).

Here the normalized Chern character on the left-hand side lies over Σ×Mn,d and the normalized
Chern character on the right-hand side lies over Σ × Mpar

0 ; their match after pulling back
to Σ × M̃0 follows from the fact that both normalized Chern characters are pulled back
from Σ ×Mmero. By the same argument as for Fact 3 in Section 4.3.2, we have

(58) Γ
(
∆∗c̃hk(U)

)
= ϵn! · ∆∗c̃hk(U) ∈ Corr∗

Σ×B(Σ ×Mn,d,Σ ×Mn,d)

where the two sides concern the normalized Chern characters on Σ × Mpar
0 and Σ × Mn,d

respectively. Recall the projectors pk from (15) and we use the same notation to denote the
pullback of these projectors to the varieties in (57). We define

qk+1 := ∆Σ×Mn,d/Σ×B − pk = ϵ

n! · Γ
(

∆Σ×Mpar
0 /Σ×B − ppar

k−(n
2)

)
,

where the second identity is a consequence of Proposition 3.6(a).
For our purpose, we want to prove the relation:

qi+k+1 ◦ ∆∗c̃hk(U) ◦ pi = 0;

using (58) this can be rewritten as

(59) Γ
(
qpar
i+k+1−(n

2)

)
◦ Γ

(
∆∗c̃hk(U)

)
◦ Γ

(
ppar
i−(n

2)

)
= 0.

Since all the correspondences

qpar
i+k+1−(n

2)
, ∆∗c̃hk(U), ppar

i−(n
2)

∈ Corr∗
Σ×W0(Σ ×Mpar

0 ,Σ ×Mpar
0 )

are given by specializations of cycles pulled back from correspondences for JeC , by Proposi-
tion 3.5 the relation (59) follows from the relation

qpar
i+k+1−(n

2)
◦ ∆∗c̃hk(U) ◦ ppar

i−(n
2)

= 0 ∈ Corr∗
Σ×W0(Σ ×Mpar

0 ,Σ ×Mpar
0 ).

This is given by Theorem 2.15. The proof is completed. □
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4.3.4. Proof of Theorem 0.4. We denote by

C ∈ Corr0
W0(Mpar

0 ,Mpar
0

′), C′ ∈ Corr0
W0(Mpar

0
′
,Mpar

0 )

the correspondences constructed in Theorem 2.16 inducing an isomorphism

h(Mpar
0 ) ≃ h(Mpar

0
′).

Then an identical argument as above (using Proposition 3.5) implies that

C := ϵ

n! · C ∈ Corr0
B(Mn,d,Mn,d′), C

′ := ϵ

n! · C′ ∈ Corr0
B(Mn,d′ ,Mn,d)

induces an isomorphism as desired. □

4.3.5. Remarks on the twisted case. As in Remark 1.1, one can also consider the D-twisted
case with D > 0. Here we discuss briefly the possible strategies to prove the main theorems
in the D-twisted case.

The decomposition theorem associated with f : MD
n,d → BD has full support; see Remark 1.1

and [14]. In this case, Theorem 0.2 follows directly from [1, Proposition 6.4] as Fact 1 above,
and the argument of Section 4.3.3 is not needed.

On the other hand, due to the failure of the D-twisted version of Lemma 1.2, for gen-
eral η ∈ T we can only guarantee that all the spectral curves are reduced, but there may
exist non-integral ones. Therefore, the extension of Arinkin’s Fourier–Mukai transform over
reduced locally planar curves [41, 42] may be needed to construct the projectors for the motivic
decomposition.

5. Questions and conjectures

In this section, we discuss some conjectures and open questions concerning algebraic cycles
for the Hitchin system.

5.1. Multiplicativity. A central question raised by de Cataldo, Hausel, and Migliorini in
accompany with their discovery of the P=W conjecture (see [9, Introduction]) is the multi-
plicativity of the perverse filtration:

(60) ∪ : PkH∗(Mn,d,Q) × PlH
∗(Mn,d,Q) → Pk+lH

∗(Mn,d,Q).

This phenomenon now is a consequence of the resolutions of the P=W conjecture, whose
proofs rely heavily on the tautological generation result of Markman [34].

In general, the multiplicativity holds for Leray filtrations associated with proper morphisms,
but fails for the perverse filtration. The main reason is that the (sheaf-theoretic) cup-product
does not interact nicely with the perverse truncation functor in general.

For the Hitchin system, we expect that the sheaf-theoretic enhancement of (60) holds.

Conjecture 5.1. The cup-product interacts with the perverse truncation functor as follows

∪ : pτ≤kRf∗QMn,d
× pτ≤lRf∗QMn,d

→ pτ≤k+l−(dimMn,d−Rf )Rf∗QMn,d
.
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By the proof of Theorem 0.1, the perverse filtration and its sheaf-theoretic enhancement
are governed by the algebraic cycles pk, qk. We propose the following conjecture which further
strengthens Conjecture 5.1; this also provides an explanation of the multiplicativity phenom-
enon in terms of tautological relations concerning pk, qk.

Conjecture 5.2. The motivic perverse filtration (5) is multiplicative with respect to cup-
product, i.e., the following relations hold

qk+l+1 ◦ [∆sm
Mn,d/B

] ◦ (pk × pl) = 0 ∈ CH∗(Mn,d ×B Mn,d ×B Mn,d).

Here ∆sm
Mn,d/B

is the relative small diagonal in the relative triple product.

By Theorem 2.6(b), Conjecture 5.2 holds for the parabolic Hitchin system hη : Mpar
η → Wη

for general η or the elliptic part of the Hitchin system f ell : M ell
n,d → Bell. From the perspective

of this paper, the main difficulty in approaching Conjecture 5.2 is to understand the small
diagonal cycle for Mn,d using parabolic moduli spaces.

5.2. Refined motivic decomposition. Support theorems yield rich structures for the de-
composition theorem associated with the Hitchin system. For example, by studying the de-
composition theorem over the locus Bred ⊂ B of the Hitchin base formed by reduced spectral
curves, de Cataldo, Heinloth, and Migliorini showed in [10] that every partition of n con-
tributes a support of Rf∗QMn,d

. Therefore, following the philosophy of Corti–Hanamura [16],
we expect to have the motives which lift the contribution of the support indexed by each
partition.

Question 5.3. Can we find algebraic cycles which yield a refinement of the motivic decom-
position (5) based on supports of the decomposition theorem for f : Mn,d → B?

The conjectural refinement of Question 5.3 is mysterious for the following reasons. As we
commented in Remark 1.1, if we consider the decomposition theorem for the D-twisted Hitchin
system, the support theorem behaves very differently for D = 0 and D > 0. In particular, the
decomposition theorem has full support when D > 0. Therefore, the conjectural motives of
Question 5.3, which lift the contribution of smaller supports of the decomposition theorem,
should only exist for D = 0.

5.3. Singular moduli spaces. When the degree d is not coprime to the rank n, the Hitchin
moduli space Mn,d is singular. Many properties concerning the decomposition theorem and
the perverse filtration in the coprime setting are expected to be generalized to the non-coprime
setting. We expect that there should exist algebraic cycles which induce these sheaf-theoretic
structures.

A challenging question in this direction is to construct relative BPS motives for all Mn,d

without the coprime assumption. More precisely, from the perspective of cohomological
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Donaldson–Thomas theory the role played by the constant sheaf Qn,d should be replaced
by a mysterious perverse sheaf, called the BPS sheaf

ΦBPS,d ∈ Perv(Mn,d),

when Mn,d is possibly singular. This perverse sheaf recovers the (shifted) constant sheaf
QMn,d

[dimMn,d] when (n, d) = 1, but is in general more complicated than the intersection
cohomology complex ICMn,d

; see [46] or [36, Section 0.4]. The sheaf-theoretic χ-independence
result (8) is generalized by Kinjo–Koseki [30] using the BPS perverse sheaf:

(61) Rfd∗ΦBPS,d ≃ Rfd′∗ΦBPS,d′ .

Question 5.4. Can we lift the sheaf-theoretic χ-independence identity (61) to relative Chow
motives over the Hitchin base B?

When (n, d) ̸= 1, we have
ΦBPS,d = ICMn,d

⊕ φd

where φd is a perverse sheaf supported on the singular locus of Mn,d. It would be interesting
to see how the extra summand φd is detected by algebraic cycles. The BPS motive which
lifts Rfd∗ΦBPS,d may be viewed as the motivic Gopakumar–Vafa invariant associated with the
local Calabi–Yau 3-fold X := TotΣ(ωΣ ⊕ OΣ).
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[14] P.-H. Chaudouard and G. Laumon, Un théorème du support pour la fibration de Hitchin, Ann. Inst. Fourier
(Grenoble) 66 (2016), no. 2, 711–727.

[15] W. Y. Chuang, D. E. Diaconescu, and G. Pan, BPS states and the P=W conjecture, Moduli spaces,
132–150, London Math. Soc. Lecture Note Ser., 411, Cambridge Univ. Press, Cambridge, 2014.

[16] A. Corti and M. Hanamura, Motivic decomposition and intersection Chow groups. I, Duke Math. J. 103
(2000), no. 3, 459–522.

[17] B. Davison, L. Hennecart, and S. Schlegel Mejia. BPS Lie algebras for totally negative 2-Calabi–Yau
categories and nonabelian Hodge theory for stacks, arXiv:2212.07668.

[18] C. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine
Angew. Math. 422 (1991), 201–219.

[19] G. Dobrovolska, V. Ginzburg, and R. Travkin, Moduli spaces, indecomposable objects and potentials over
a finite field, arXiv:1612.01733.

[20] D. Edidin and W. Graham, Riemann–Roch for equivariant Chow groups, Duke Math. J. 102 (2000), no. 3,
567–594.

[21] B. B. Gordon, M. Hanamura, and J. P. Murre, Relative Chow–Künneth projectors for modular varieties,
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