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Abstract We explore the connection between K 3 categories and 0-cycles on holomorphic symplectic
varieties. In this paper, we focus on Kuznetsov’s noncommutative K 3 category associated to a nonsingular

cubic 4-fold.

By introducing a filtration on the CH1-group of a cubic 4-fold Y , we conjecture a sheaf/cycle
correspondence for the associated K 3 category AY . This is a noncommutative analog of O’Grady’s

conjecture concerning derived categories of K 3 surfaces. We study instances of our conjecture involving

rational curves in cubic 4-folds, and verify the conjecture for sheaves supported on low degree rational
curves.

Our method provides systematic constructions of (a) the Beauville–Voisin filtration on the CH0-group

and (b) algebraically coisotropic subvarieties of a holomorphic symplectic variety which is a moduli space
of stable objects in AY .
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0. Introduction

0.1. K 3 categories and the Beauville–Voisin filtration

The purpose of this paper is to study the interactions between K 3 categories and the

Beauville–Voisin conjecture for holomorphic symplectic varieties.

A triangulated category is called a K 3 category if it has the same Serre functor and

Hochschild homology as the derived category of coherent sheaves on a K 3 surface. New

examples of K 3 categories are constructed using the derived categories of certain Fano

varieties and semiorthogonal decompositions; see [17, 19, 21].

Let A be a K 3 category. If M is a nonsingular projective moduli space of stable objects

with respect to a stability condition [10] on A, then it is a holomorphic symplectic

variety. The nondegenerate holomorphic 2-form is given by the Serre functor and the

Mukai pairing,

Ext1A(E, E)×Ext1A(E, E)→ Ext2A(E, E)
tr
−→ C.

The Beauville–Voisin conjecture [6, 39, 41] predicts that the Chow group CH0(M) admits

an increasing filtration

S0CH0(M) ⊂ S1CH0(M) ⊂ · · · ⊂ S 1
2 dim M CH0(M) = CH0(M) (0.1)

which is opposite to the conjectural Bloch–Beilinson filtration. Let K0(A) be the

Grothendieck group of the triangulated category A and let

pA : A→ K0(A)
be the natural map. We have the following speculation on the structure of A.

Speculation 0.1. Let A be a K 3 category.

(a) There exists an increasing filtration S•(A) on K0(A) which governs the

Beauville–Voisin filtration (0.1) for any moduli space M as above. More precisely,

the i-th piece Si CH0(M) is spanned by the classes of E ∈ M with pA(E) ∈ Si (A).
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K 3 categories, cubic fourfolds, and BV filtration 3

(b) For every object E ∈ A, we have

pA(E) ∈ Sd(E)(A)

with d(E) = 1
2 dim Ext1A(E, E).

Speculation 0.1(b) can be viewed as a sheaf/cycle correspondence for the K 3 category

A. For a nonsingular projective moduli space M , Speculation 0.1(b) implies exactly that

S 1
2 dim M CH0(M) = CH0(M).

0.2. O’Grady’s conjecture

The first evidence of Speculation 0.1 is the case A = Db(X) where X is a K 3 surface.

In [31], O’Grady introduced a filtration S•(X) on the Chow group CH0(X),

S0(X) ⊂ S1(X) ⊂ · · · ⊂ Si (X) ⊂ · · · ⊂ CH0(X).1

Here Si (X) is the union of [z] +Z · [oX ] with z an effective 0-cycle of length i and [oX ] ∈

CH0(X) the Beauville–Voisin canonical class [8].

The following generalized version of O’Grady’s conjecture [31] is proven in [34], based

on earlier results of Huybrechts, O’Grady, and Voisin in [15, 31, 40].

Theorem 0.2. For any object E ∈ Db(X), we have

c2(E) ∈ Sd(E)(X).

Theorem 0.2 established a sheaf/cycle correspondence for Db(X). Moreover, O’Grady’s

filtration is indeed expected to govern the Beauville–Voisin filtration for any nonsingular

moduli space M of stable objects in Db(X); see [34] for further details.

0.3. Cubic fourfolds and one-cycles

In this paper, we discuss Speculation 0.1 for K 3 categories other than the derived

categories of K 3 surfaces.

Let Y ⊂ P5 be a nonsingular cubic hypersurface. Kuznetsov constructed in [17] a K 3
category AY as a full subcategory of Db(Y ),

AY = {E ∈ Db(Y ) : Ext∗Db(Y )(OY (i), E) = 0 for i = 0, 1, 2}. (0.2)

If Y is very general, then AY is not equivalent to Db(X) of a K 3 surface X .2 Hence AY
is viewed as a noncommutative K 3 surface.

Our first result introduces a filtration on the Chow group CH1(Y ), which serves as a

candidate of the filtration in Speculation 0.1.3 We briefly describe the construction below;

see § 1 for more details.

1The pull-back via the map K0(X)
c2
−→ CH0(X) induces a filtration on K0(X) as in Speculation 0.1(a).

2In fact, the category AY for a very general cubic 4-fold Y is not equivalent to the derived category of
twisted sheaves on a K 3 surface.
3Again, the filtration on K0(AY ) is obtained by pulling back via the natural maps K0(AY )→ K0(Y )

c3
−→

CH1(Y ).
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4 J. Shen and Q. Yin

Let F denote the Fano variety of lines in Y . We fix a uniruled divisor D on F ,

D F,

B

q

where q is a rational map whose general fibers are rational curves.

We call a line l ⊂ Y special (with respect to the uniruled divisor D) if the 0-cycle class

[l] ∈ CH0(F) is represented by a point on D. A line l is called canonical if it satisfies

3[l] = [H ]3 ∈ CH1(Y ),

where [H ] ∈ CH1(Y ) is the hyperplane class.

We define a filtration S•(Y ) on CH1(Y ),

S0(Y ) ⊂ S1(Y ) ⊂ · · · ⊂ Si (Y ) ⊂ · · · ⊂ CH1(Y ),

where Si (Y ) is the union of [l1+ l2+ · · ·+ li ] +Z · [l0] with lk (k > 0) special lines and l0
a canonical line. It is shown in Lemma 1.1 that the filtration S•(Y ) does not depend on

the choice of D and is “intrinsic” to Y .

We propose the following conjecture relating the K 3 category AY to the filtration

S•(Y ).

Conjecture 0.3. For any object E ∈ AY , we have

c3(E) ∈ Sd(E)(Y ).

Here c3 is the composition of the inclusion AY ⊂ Db(Y ) and

c3 : Db(Y )→ CH1(Y ).

See also Remark 2.4 for an equivalent formulation of Conjecture 0.3.

Comparing to the derived category of a K 3 surface, one advantage of studying the

K 3 category AY is that cubic 4-folds have a 20-dimensional moduli space. Hence our

filtration provides a candidate of the Beauville–Voisin filtration of certain holomorphic

symplectic varieties of K 3[n] type in 20-dimensional families.4

0.4. Rational curves

We study the interplay between Conjecture 0.3 and the geometry of rational curves in

nonsingular cubic 4-folds [7, 16, 22, 24].

Let

ι∗ : Db(Y )→ AY

be the left adjoint functor of the natural inclusion ι∗ : AY ↪→ Db(Y ). The following

theorem concerns low degree rational curves in Y .

4Stability conditions and moduli spaces of stable objects related to AY are explored in [4, 5, 22, 25].
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K 3 categories, cubic fourfolds, and BV filtration 5

Theorem 0.4. Let C ⊂ Y be a nonsingular connected rational curve of degree 6 4. If E is

a 1-dimensional sheaf supported5 on C, then Conjecture 0.3 holds for ι∗E.

deg C 1 2 3 4
min d(ι∗E) 2 2 4 5

For a nonsingular connected rational curve C of degree 6 4, we list in the table above

the minimal possible values of

d(ι∗E) = 1
2 dim Ext1AY

(ι∗E, ι∗E)

for all E . These numbers are related to the maximal rationally connected (MRC) fibration

on the moduli space of rational curves in Y ; see § 2 for further discussions.

0.5. Algebraically coisotropic subvarieties

Let M be a holomorphic symplectic variety of dimensional 2d. Following [41, Definition

0.6], a closed subvariety Zi ⊂ M of codimension i is called algebraically coisotropic if

there exists a diagram

Zi M,

Bi

q

such that the general fibers of q are i-dimensional, and the restriction of the holomorphic

2-form on M coincides with the pull-back of a holomorphic 2-form on Bi .

Voisin [41, Conjecture 0.4] conjectured that for every i 6 d, there exists an algebraically

coisotropic subvariety Zi 99K Bi of codimension i whose general fibers are constant cycle

subvarieties of M .6

This conjecture was addressed in [34] when M is a moduli space of stable objects in the

derived category of a K 3 surface. We discuss in § 3 the connection between Conjecture 0.3

and Voisin’s conjecture for the moduli spaces of stable objects in AY ; see Theorem 3.2.

The crucial geometric input is the construction in Lemma 1.8 of a special uniruled divisor

on the Fano variety F .

0.6. Conventions

Throughout, we work over the complex numbers C. All varieties are assumed to be

(quasi-)projective. Morphisms between triangulated categories are C-linear.

1. A filtration on CH1(Y )

Let Y ⊂ P5 be a nonsingular cubic 4-fold and let F be the Fano variety of lines in Y . In

this section, we present some basic properties of the filtration S•(Y ) introduced in § 0.3.

5Here we mean the reduced support of the sheaf E is C.
6A constant cycle subvariety is a subvariety whose points all share the same class in the CH0-group of
the ambient variety.
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6 J. Shen and Q. Yin

Our filtration on CH1(Y ), which is analogous to O’Grady’s filtration on the CH0-group

of a K 3 surface, relies heavily on the geometry of the Fano variety F .

1.1. Uniruled divisors

Uniruled divisors on F play an important role in the definition of the filtration S•(Y ).
Note that there exist uniruled divisors on the Fano variety of lines in any nonsingular

cubic 4-fold. Below is a geometric construction.

In [38], Voisin constructed a self-rational map

ϕ : F 99K F (1.1)

sending a general line l ⊂ Y to its residual line with respect to the unique plane P2
⊂ P5

tangent to Y along l. The exceptional locus of ϕ then gives a uniruled divisor on F ;

see [41, Proposition 4.4].

The following lemma asserts that the filtration S•(Y ) does not depend on the choice of

the uniruled divisor.

Lemma 1.1. If a line l ⊂ Y is special with respect to one uniruled divisor D ⊂ F, then it

is special with respect to any uniruled divisor of F.

Proof. We may assume that D is irreducible. Let D′ ⊂ F be another irreducible uniruled

divisor. We need to show that every point on D is rationally equivalent to a point on D′.
Let qF denote the Beauville–Bogomolov quadratic form on H2(F,Z). From the proof

of [11, Theorem 5.1], we see that either

qF (D, D′) 6= 0

or there exists a sequence of irreducible uniruled divisors Di (0 6 i 6 m) with D0 = D
and Dm = D′ satisfying

qF (Di , Di+1) 6= 0, i = 0, 1, . . . ,m− 1.

In the first case, by [11, Lemma 5.2] the intersection number of every rational curve

in the ruling of D and the divisor D′ is nonzero. Hence any point on D is rationally

equivalent to a point on D′, and Lemma 1.1 follows. In the second case we can use Di
(1 6 i 6 m− 1) as transitions.

1.2. Zero-cycles on F

We discuss the relationship between the class of a line in CH1(Y ) and the corresponding

point class in CH0(F).7

Let P = {(l, x) ∈ F × Y : x ∈ l} ⊂ F × Y be the incidence variety, which induces a

morphism

[P]∗ : CH0(F)→ CH1(Y ). (1.2)

A result of Paranjape [32] says that [P]∗ is surjective. The following fact is noted for

later reference.

7By abuse of notation, for a line l ⊂ Y we write both [l] ∈ CH1(Y ) and [l] ∈ CH0(F).
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K 3 categories, cubic fourfolds, and BV filtration 7

Lemma 1.2. The Chow groups CH0(F) and CH1(Y ) are torsion-free.

Proof. The statement for CH0(F) follows from Rŏıtman’s theorem [33]. For CH1(Y ),
since the morphism [P]∗ in (1.2) is surjective, it suffices to show that the kernel of [P]∗
is divisible. This is done by Shen and Vial in [36, Theorem 20.5] and the proof of [36,

Lemma 20.6].

We also show that special lines are sufficient to span CH1(Y ).

Proposition 1.3. Let j : D ↪→ F be a uniruled divisor. Then [P]∗ induces a natural

isomorphism

Im( j∗ : CH0(D)→ CH0(F))
∼
−→ CH1(Y ).

Proof. By [11, Theorem 5.1], the image

Im( j∗ : CH0(D)→ CH0(F)) ⊂ CH0(F)

does not depend on the choice of the uniruled divisor D ⊂ F . Hence we can choose D as

the exceptional locus of (1.1). Then [36, Proposition 19.5 and Theorem 20.5] imply that

Im( j∗ : CH0(D)→ CH0(F)) ' CH0(F)/Ker([P]∗) ' CH1(Y ).

By [36, 39], the Chow group CH0(F) carries a canonical 0-cycle class [oF ] of degree 1
which can be taken as any point lying on a constant cycle surface in F . Moreover, all

0-dimensional intersections of divisor classes and Chern classes of F are multiples of [oF ].

Recall that a line l ⊂ Y is canonical if

3[l] = [H ]3 ∈ CH1(Y )

where [H ] ∈ CH1(Y ) is the hyperplane class. The following lemma shows the existence of

canonical lines in Y and provides a complete criterion.

Lemma 1.4. A line l ⊂ Y is canonical if and only if

[l] = [oF ] ∈ CH0(F).

Proof. By the proof of [39, Lemma 3.2], there exists a surface Σ ⊂ F such that the class

of every point on Σ is [oF ] ∈ CH0(F). We first choose a line l0 ⊂ Y lying on Σ ⊂ F such

that there exists a plane P2
l0
⊂ P5 tangent to Y along l0. In particular, we have

[l0] = [oF ] ∈ CH0(F).

Let l ′0 be the residual line of l0 with respect to the plane P2
l0

,

P2
l0 · Y = 2l0+ l ′0.

By definition, we have [oF ] = ϕ∗([l0]) = [l ′0] ∈ CH0(F). It follows that

[H ]3 = [P]∗(2[l0] + [l ′0]) = 3[P]∗[oF ] ∈ CH1(Y ).

Hence by Lemma 1.2, a line l ⊂ Y is canonical if and only if

[P]∗[l] = [P]∗[oF ] ∈ CH1(Y ). (1.3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147474801800049X
Downloaded from https://www.cambridge.org/core. IP address: 223.104.3.173, on 06 Nov 2018 at 07:34:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147474801800049X
https://www.cambridge.org/core


8 J. Shen and Q. Yin

It suffices to show that (1.3) is equivalent to [l] = [oF ] ∈ CH0(F). Let

[l] = [oF ] + [l](2)+ [l](4) ∈ CH0(F)

be the motivic decomposition of the point class [l] ∈ CH0(F) constructed in [36, Part 3].

By [36, Theorem 20.5], the condition (1.3) is equivalent to [l](2) = 0, which implies

[l] = [oF ] after [34, Theorem 3.4].

Example 1.5. Let Y ⊂ P5 be a nonsingular cubic 4-folds which contains a plane. Then

there is a uniruled divisor

D F

X

j

q

over a K 3 surface X ; see [17] and [34, Section 3.2] for the construction. We identify the

Chow groups CH0(D) and CH0(X) via the push-forward q∗. By [34, Theorem 3.6], the

embedding j : D ↪→ F induces an injective morphism

j∗ : CH0(X) ' CH0(D) ↪→ CH0(F).

Applying Proposition 1.3, we find an isomorphism

[P]∗ j∗ : CH0(X)
∼
−→ CH1(Y ). (1.4)

We know from Lemma 1.1 that a line l ⊂ Y is special if and only if the class [l] ∈ CH1(Y )
corresponds to a point class [x] ∈ CH0(X) under the isomorphism (1.4). Lemma 1.4

and [34, Theorem 3.6] further imply that a line in Y is canonical if and only if its

corresponding point class on X is the Beauville–Voisin class [oX ] ∈ CH0(X).
In conclusion, our filtration on CH1(Y ) coincides with O’Grady’s filtration on CH0(X)

under the isomorphism (1.4).

1.3. Generalities on the filtration S•(Y )

We prove that S•(Y ) is a filtration into “cones” for any nonsingular cubic 4-fold Y . This

is parallel to [31, Corollary 1.7] in the K 3 surface case.

Proposition 1.6. Let α, α′ ∈ CH1(Y ).

(a) If α ∈ Si (Y ) and α′ ∈ Si ′(Y ), then α+α′ ∈ Si+i ′(Y ).

(b) If α ∈ Si (Y ), then mα ∈ Si (Y ) for any m ∈ Z.

(c) We have ⋃
i>0

Si (Y ) = CH1(Y ).

Statement (a) is immediate, and (c) follows from (b) and Proposition 1.3. The proof

of (b) requires the following lemmas.

Lemma 1.7. Let Y → T be a smooth family of cubic 4-folds over a nonsingular variety

T , and let α ∈ CH3(Y). If the restriction α|Yt ∈ CH1(Yt ) lies in Si (Yt ) for a very general

point t ∈ T , then the same holds for every point t ∈ T .
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K 3 categories, cubic fourfolds, and BV filtration 9

Proof. Let F → T be the relative Fano variety of lines associated to the family Y → T .

Since the construction of uniruled divisors in § 1.1 works universally over the moduli

space of nonsingular cubic 4-folds, we can find a relative uniruled divisor

D F

T

(1.5)

whose restriction to every fiber gives a uniruled divisor.

Let D(i)
→ T denote the i-th relative symmetric product of D. Consider the locus

Z =

{ i∑
k=1

lt,k ∈ D(i)
: α|Yt =

i∑
k=1

[lt,k] +m[lt,0] ∈ CH1(Yt )

}
⊂ D(i)

with lt,0 ⊂ Yt a canonical line. By the assumption that α|Yt ∈ Si (Yt ) for a very general

t ∈ T , the locus Z dominates the base T . A standard argument using Hilbert schemes

shows that Z is a countable union of Zariski closed subsets of D(i). Hence there exists a

component Z ′ ⊂ Z which dominates T via the natural projection Z ′→ T . The restriction

of Z ′ to every fiber of D(i)
→ T represents α|Yt as

α|Yt =

i∑
k=1

[lt,k] +m[lt,0] ∈ CH1(Yt )

with lt,k (k > 1) special and lt,0 canonical in Yt .

Lemma 1.8. Let Y be a general nonsingular cubic 4-fold and let F be its Fano variety

of lines. There exists a uniruled divisor j : D ↪→ F such that for every point x ∈ D and

m ∈ Z, we can find y ∈ D satisfying

m[x] = [y] +α ∈ CH0(D)

with j∗α = (m− 1)[oF ] ∈ CH0(F).
Proof. We first construct the uniruled divisor D ⊂ F .8 Let

P̌5
= PH0(P5,OP5(1))

be the projective space parametrizing hyperplanes H ⊂ P5. For 1 6 e 6 5, let Be denote

the closure of the locus formed by H ⊂ P5 such that the cubic 3-fold H ∩ Y has e nodes.

Since Y is general, the locus Be ⊂ P̌5 is nonempty and of codimension e. Consider the

incidence variety

W = {(l, H) ⊂ F × B4 : l ⊂ H ∩ Y } ⊂ F × B4,

together with the natural projections

W F.

B4

p

q

Note that the fiber q−1(H) is given by the Fano variety of lines in the cubic 3-fold H ∩ Y .

8We learned this construction from a talk by Kieran O’Grady.
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10 J. Shen and Q. Yin

If a cubic 3-fold H ∩ Y contains a node, a standard fact [12] says that the Fano variety

of lines in H ∩ Y is birational to the symmetric product C (2)
H of a genus 4 curve CH formed

by lines passing through the node. In our situation, the cubic 3-fold H ∩ Y contains 4
nodes for every H ∈ B4, and each extra node creates a node on the curve CH . Hence the

fiber q−1(H) is birational to C (2)
H such that the normalization EH of the curve CH has

genus 6 1. It follows that every fiber of q : W → B4 is birational to a P1-fibration over

EH , and the 3-fold W is uniruled. We define the uniruled divisor j : D ↪→ F to be the

image p(W ) ⊂ F .

Claim. For any H ∈ B4, consider the composition

f : q−1(H) ↪→ W
p
−→ F

which induces a morphism of Chow groups

f∗ : CH0(q−1(H))→ CH0(F).

Then there exists a point aH ∈ q−1(H) such that

f∗[aH ] = [oF ] ∈ CH0(F).

Proof of the Claim. Let H0 be a hyperplane lying in B5 ⊂ P̌5. Then the fiber q−1(H0)

is a rational surface, and the class of every point on q−1(H0) is [oF ] ∈ CH0(F); see [39,

Lemma 3.2] or [41, Proposition 4.5].

Let FH ⊂ F denote the subvariety of lines contained in the cubic 3-fold H ∩ Y . It suffices

to show that

FH ∩ FH0 6= ∅. (1.6)

For general hyperplanes H1 and H2, the intersection number [FH1 ] · [FH2 ] counts lines in

the nonsingular cubic surface H1 ∩ H2 ∩ Y . Hence

[FH ] · [FH0 ] = [FH1 ] · [FH2 ] = 27,

which proves (1.6).

For H ∈ B4, consider the canonical isomorphism

CH0(q−1(H)) ' CH0(E
(2)
H ). (1.7)

By resolution of singularities and the argument of [34, Lemma 2.2], any point class

[x] ∈ CH0(q−1(H)) corresponds to a point class [x ′] ∈ CH0(E
(2)
H ) under the isomorphism

(1.7). Let [a′H ] ∈ CH0(E
(2)
H ) denote the point class corresponding to [aH ] ∈ CH0(q−1(H))

as in the Claim. Since EH has genus 6 1, there is an isomorphism

CH0(E
(2)
H ) ' CH0(EH ).

Then the group law of elliptic curves gives a point y′ ∈ E (2)H satisfying

m[x ′] − [y′] = (m− 1)[a′H ] ∈ CH0(E
(2)
H )

for x ′ ∈ E (2)H and m ∈ Z. Again, via the isomorphism (1.7), we find y ∈ q−1(H) such that

m[x] = [y] + (m− 1)[aH ] ∈ CH0(q−1(H)).

This proves the lemma.
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Remark 1.9. In the argument above, we have constructed a uniruled divisor D ⊂ F
over an elliptic surface for a general cubic 4-fold. This special uniruled divisor will also

be used in § 3 for the connection between Conjecture 0.3 and Voisin’s conjecture [41,

Conjecture 0.4].

Proof of Proposition 1.6(b). It suffices to show that if l ⊂ Y is special, then for any m ∈ Z
there exists a special line l ′ ⊂ Y satisfying

m[l] = [l ′] + (m− 1)[l0] ∈ CH1(Y ). (1.8)

Here [l0] ∈ CH1(Y ) is the class of a canonical line.

First, we consider when Y is general. By Lemma 1.1, we can assume that the special

line l ⊂ Y lies in the uniruled divisor constructed in Lemma 1.8. Hence there exists a

special line l ′ such that

m[l] = [l ′] + (m− 1)[oF ] ∈ CH0(F).

We deduce (1.8) by Lemma 1.4 and by applying the correspondence

[P]∗ : CH0(F)→ CH1(Y ).

Next, we prove Proposition 1.6(b) for every nonsingular cubic 4-fold. We take T to be

the moduli space of nonsingular cubic 4-folds with Y → T the universal family. Consider

the relative uniruled divisor D→ T as in (1.5). Assume that the cubic 4-fold Y is given

by the fiber Yt0 over t0 ∈ T . A special line l ⊂ Y = Yt0 can be chosen from a point lying

on the uniruled divisor Dt0 . After taking a finite base change, we may assume that the

family D→ T admits a section s : T → D passing through l ∈ Dt0 . The section s gives a

special line lt for every cubic 4-fold Yt . Since Proposition 1.6(b) is proven for a general

cubic 4-fold, we have

m[lt ] ∈ S1(Yt )

for a general fiber Yt . Applying Lemma 1.7, we find

m[l] ∈ S1(Y ),

which proves (1.8).

Using the uniruled divisor constructed in Lemma 1.8, we actually obtain the following

stronger result.

Proposition 1.10. Let α ∈ CH1(Y ) and let m be a nonzero integer. We have γ ∈ Si (Y ) if

and only if mγ ∈ Si (Y ).

Proof. We only need to prove the ‘only if’ part. By Lemma 1.7 and an argument similar

to the proof of Proposition 1.6(b), we may assume Y to be general. Let l be any line lying

in the uniruled divisor D ⊂ F constructed in Lemma 1.8. Then the group law of elliptic

curves ensures that there exists a line l ′ ∈ D such that

m[l ′] = [l] + (m− 1)[oF ] ∈ CH0(F).

This proves the proposition.
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2. Rational curves in cubic fourfolds

Let Y be a nonsingular cubic 4-fold. In this section, we prove Theorem 0.4 and discuss

its connection to the moduli spaces of rational curves in Y .

2.1. The K 3 category AY

The K 3 category AY has been introduced by Kuznetsov via the semiorthogonal

decomposition of the derived category of a cubic 4-fold [17–19]. We first review some

basic properties of AY .

Following the notation in [17], let

Db(Y ) = 〈AY ,OY ,OY (1),OY (2)〉

denote the semiorthogonal decomposition of the derived category Db(Y ) with respect to

the exceptional collection OY ,OY (1),OY (2) ∈ Db(Y ). The induced component AY given

by (0.2) satisfies the following lemma.

Lemma 2.1 ([20, § 4]). Let E,F ∈ AY .

(a) For i > 3, we have ExtiDb(Y )(E,F) = 0.

(b) For i = 0, 1, 2, there are canonical isomorphisms

ExtiDb(Y )(E,F) ' Ext2−i
Db(Y )(F , E)

∨.

(c) We have

χ(E,F) =
2∑

i=0

(−1)i dim ExtiDb(Y )(E,F).

Let E,F ∈ AY . Since

ExtiDb(Y )(E,F) = ExtiAY
(E,F),

Lemma 2.1 yields

2 dim HomAY (E, E)− dim Ext1AY
(E, E) = χ(E, E). (2.1)

The natural inclusion ι∗ : AY ↪→ Db(Y ) admits a left adjoint functor

ι∗ : Db(Y )→ AY ,

which is the ‘projection’ from Db(Y ) to the K 3 category AY .

Lemma 2.2. Let [H ] ∈ CH1(Y ) be the hyperplane class, and let [l0] ∈ CH1(Y ) be the class

of a canonical line. For any α ∈ CH2(Y ), we have

[H ] ·α ∈ Z · [l0] ⊂ CH1(Y ).

Proof. Consider the following morphisms induced by j : Y ↪→ P5,

CH2(Y )
j∗
−→ CH2(P5)

j∗
−→ CH1(Y ).
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Since CH2(P5) = Z · [H ]2, the class

j∗ j∗α = 3[H ] ·α

is proportional to [H ]3. Hence the lemma follows from Lemma 1.2.

Corollary 2.3. For any E ∈ Db(Y ), we have c3(E) ∈ Si (Y ) if and only if c3(ι
∗E) ∈ Si (Y ).

Proof. Any E ∈ Db(Y ) fits into a distinguished triangle

G → E → ι∗ι
∗E → G[1] (2.2)

with G ∈ 〈OY ,OY (1),OY (2)〉. The corollary follows directly from (2.2) and Lemma 2.2.

Remark 2.4. As a consequence of Corollary 2.3, Conjecture 0.3 is equivalent to the

following: for any E ∈ Db(Y ), we have

c3(E) ∈ Sd(ι∗E)(Y ).

Recall the Mukai lattice on AY introduced in [2, Section 2]. Let Ktop(Y ) denote the

topological K -theory [3] of the cubic 4-fold Y , which is endowed with the Mukai vector

v : Ktop(Y )→ H∗(Y,Q)

and the Euler pairing χ(−,−). The Mukai lattice of AY is defined to be the abelian group

Ktop(AY ) = {κ ∈ Ktop(Y ) : χ([OY (i)], κ) = 0 for i = 0, 1, 2},

to which a weight 2 Hodge structure is associated; see [2, Definition 2.2].

Let

pr = pr0 ◦ pr1 ◦ pr2 : Ktop(Y )→ Ktop(AY )

be the projection map with

pri (κ) = κ −χ([OY (i)], κ) · [OY (i)].

For any E ∈ Db(Y ), we have

pr[E] = [ι∗E] ∈ Ktop(AY ).

We define the Mukai pairing on Ktop(AY ) to be the nondegenerate symmetric bilinear

form −χ(−,−), and we write κ2 for the self-pairing (κ, κ). Then (2.1) implies

dim Ext1AY
(E, E) = [E]2+ 2 dim HomAY (E, E) > [E]

2
+ 2 (2.3)

for any E ∈ AY .

Note also that for a line l ⊂ Y , the special classes

λi = [ι
∗Ol(i)] = pr[Ol(i)] ∈ Ktop(AY ), i = 1, 2,

span an A2-lattice

A2 =

(
2 −1
−1 2

)
⊂ Ktop(AY )

with respect to the Mukai pairing on Ktop(AY ).
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14 J. Shen and Q. Yin

2.2. One-dimensional sheaves

Let E be a 1-dimensional sheaf supported on a nonsingular connected rational curve

C ⊂ Y of degree e > 0. The class [E] ∈ K0(Y ) can be expressed in terms of line bundles

on C . In particular, there exist (uniquely determined) integers r > 0 and m such that

[E] = re[Ol(1)] +m[Cp] ∈ Ktop(Y ),

where Cp is the skyscraper sheaf of a point p ∈ Y . On the other hand, by [14,

Example 15.3.1], we have

c3(E) = 2r [C] ∈ CH1(Y ).

The following proposition gives the lower bound for

d(ι∗E) = 1
2 dim Ext1AY

(ι∗E, ι∗E).

Proposition 2.5. With the notation above,

(a) if e = 2k, then

d(ι∗E) > k2
+ 1;

(b) if e = 2k+ 1, then

d(ι∗E) > k2
+ k+ 2.

Note that the bounds above match the table in § 0.4 for e 6 4.

Proof. We have

pr[Cp] = λ2− λ1 ∈ Ktop(AY ).

Hence

[ι∗E] = re[ι∗Ol(1)] +m[ι∗Cp] = (re−m)λ1+mλ2 ∈ Ktop(AY ).

By the inequality (2.3), we find

2d(ι∗E) > [ι∗E]2+ 2

= ((re−m)λ1+mλ2)
2
+ 2

= 2(3m2
− 3mre+ r2e2)+ 2.

When e = 2k, we have

d(ι∗E) > 3(m− rk)2+ (r2k2
+ 1) > k2

+ 1.

When e = 2k+ 1, we have

d(ι∗E) > 3(m− rk)(m− rk− 1)+ (r2k2
+ rk+ 2) > k2

+ k+ 2.

We write b(e) for the bounds above,

b(e) =

 k2
+ 1 if e = 2k,

k2
+ k+ 2 if e = 2k+ 1.
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To deduce Theorem 0.4, it suffices to prove the following statement for e 6 4:

(†) For any nonsingular connected rational curve C ⊂ Y of degree e, we have

[C] ∈ Sb(e)(Y ).

Indeed, assuming (†) and applying Proposition 1.6(b), we find

c3(E) = 2r [C] ∈ Sb(e)(Y ).

Theorem 0.4 then follows from Proposition 2.5 since d(ι∗E) > b(e).
We prove (†) for e 6 4 in Sections 2.3 and 2.4. In [13], it is shown that the moduli space

of rational curves of a fixed degree e in Y is irreducible. By Lemma 1.7, the filtration

S•(Y ) is preserved under specialization. Hence we only need to consider general rational

curves C ⊂ Y .

2.3. Lines, conics, and twisted cubics

Let g ∈ CH1(F) be the polarization class given by the Plücker embedding of Gr(2, 6). We

also fix a uniruled divisor D ⊂ F in the class ag for some a > 0.

Proposition 2.6. For a general line l ⊂ Y , there exists a plane P2
l ⊂ P5 and special lines

l1, l2 ∈ D such that

P2
l · Y = l + l1+ l2.

Proof. Given a line l ⊂ Y , we write Sl for the surface in F formed by lines meeting l.
When l is general, the surface Sl is nonsingular by [37]. There is an involution

τl : Sl → Sl

defined as follows. If l ′ ∈ Sl is a line other than l, then τl(l ′) is the residual line of the

pair (l, l ′). If l ′ = l, then τl(l ′) = ϕ(l). For a point x ∈ l, there is a curve Cx ⊂ Sl formed

by lines passing through x . The following intersections on Sl are computed in [37]:

[Cx ]
2
= [l], [τl(Cx )]

2
= [ϕ(l)], g|Sl = [Cx ] + 2[τl(Cx )]. (2.4)

By [36, Lemma 18.2], the intersection number of g2
|Sl is

g2
|Sl = g2

· [Sl ] = 21.

Comparing with (2.4), we find

[Cx ] · [τl(Cx )] = 4,

which implies

g|Sl · τl∗(g|Sl ) = ([Cx ] + 2[τl(Cx )]) · ([τl(Cx )] + 2[Cx ]) = 24.

Consider the curve Dl ⊂ Sl given by the intersection of Sl and the uniruled divisor D.

To prove the proposition, it suffices to show that

Dl ∩ τl(Dl) 6= ∅.

This is achieved by computing the intersection number

[Dl ] · [τl(Dl)] = a2
· (g|Sl · τl∗(g|Sl )) = 24a2 > 0.

Now we prove Theorem 0.4 in degrees e 6 3.
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Proof of (†) for e 6 3. Let l0 ⊂ Y be a canonical line. For a general line l ⊂ Y ,

Proposition 2.6 shows the existence of lines l1, l2 ∈ D satisfying

[l] + [l1] + [l2] = [H ]3 ∈ CH1(Y ).

By Proposition 1.6, we have

[l] = −[l1] − [l2] + 3[l0] ∈ S2(Y ).

Next, let C ⊂ Y be a general conic. Then there is a plane P2
C ⊂ P5 containing C . Let l

be the residual line of the conic with respect to the plane P2
C ,

P2
C · Y = C + l.

We find

[C] = −[l] + 3[l0] ∈ S2(Y ).

Finally, let C ⊂ Y be a general twisted cubic, which is contained in a unique projective

space P3
C ⊂ P5. The intersection

YC = P3
C ∩ Y

is a nonsingular cubic surface. By [41, Proposition 4.8], there exists a pair of lines

l1, l2 ⊂ YC such that C lies in the linear system |OYC (l1− l2+ H ∩ YC )|, where H ⊂ P5 is

a hyperplane. This yields

[C] = [l1] − [l2] + 3[l0] ∈ S4(Y ).

2.4. Quartics and intermediate Jacobians

Let C ⊂ Y be a general quartic rational curve. Then C is contained in a unique hyperplane

H ⊂ P5, whose intersection with Y is a nonsingular cubic 3-fold

V = H ∩ Y.

The intermediate Jacobian of V is a principally polarized abelian 5-fold

JV = H2,1(V )∗/H3(V,Z).

Let S be the Fano surface of lines in V , and let Alb(S) be the Albanese variety of S.

By [12], the Abel–Jacobi map induces a canonical isomorphism

Alb(S)
∼
−→ JV . (2.5)

We fix a very ample uniruled divisor D ⊂ F as in § 2.3. Consider the curve R = D ∩ S
with R′→ R the normalization. The composition

j : R′→ R ↪→ S

induces a morphism

u : Jac(R′)→ Alb(S),

where Jac(R′) is the Jacobian of the nonsingular curve R′.
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Lemma 2.7. The morphism u : Jac(R′)→ Alb(S) is surjective.

Proof. It suffices to show that the morphism

j∗ : H1(S,Q)→ H1(R′,Q)
is injective. Suppose this does not hold. Then the projection formula would imply that

the bilinear form

H1(S,Q)× H1(S,Q)→ Q

〈α, β〉 =

∫
S
α ·β · [R]

is degenerate. This contradicts the ampleness of R.

We fix a point x0 ∈ R and write lx0 ⊂ V for the corresponding line. Let x ′0 ∈ R′ be a

point in the preimage of x0. For any k > 0, there is a morphism from the symmetric

product R′(k) to Jac(R′) with respect to x ′0,

fk : R′(k)→ Jac(R′), fk

(∑
i

x ′i

)
= OR′

(∑
i

x ′i − kx ′0

)
.

Let

hk : R′(k)→ JV

be the composition of fk : R′(k)→ Jac(R′), u : Jac(R′)→ Alb(S), and the isomorphism

(2.5).

Corollary 2.8. The morphism h5 is surjective.

Proof. Let g be the genus of the curve R′. Then the morphism

fg : R′(g)→ Jac(R′)

is surjective, and Lemma 2.7 implies that hg is also surjective. In particular, we have

g > dim JV = 5.

We show by induction that hk is surjective for any integer k in the range

5 6 k 6 g.

The base case is k = g. Now assume the surjectivity of hk+1. Consider the closed

embedding

R′(k) ↪→ R′(k+1) (2.6)

given by
∑

i x ′i 7→
∑

i x ′i + x ′0.
To show the surjectivity of the composition

hk : R′(k) ↪→ R′(k+1) hk+1
−−→ JV ,

it suffices to prove that the divisor R′(k) ⊂ R′(k+1) in (2.6) is ample. Let

σk+1 : R′k+1
→ R′(k+1)

be the natural quotient map. The pull-back of OR′(k+1)(R′(k)) via σk+1 is the ample line

bundle

OR′(x ′0)�OR′(x ′0)� · · ·�OR′(x ′0).
Since πk+1 is finite, we obtain the ampleness of R′(k) ⊂ R′(k+1).

We finish the proof of Theorem 0.4.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147474801800049X
Downloaded from https://www.cambridge.org/core. IP address: 223.104.3.173, on 06 Nov 2018 at 07:34:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147474801800049X
https://www.cambridge.org/core


18 J. Shen and Q. Yin

Proof of (†) for e = 4. First, note that there always exists a canonical line l0 ⊂ Y
contained in V . This can be deduced from the Claim in the proof of Lemma 1.8 and

specialization.

The Abel–Jacobi map

AJ : CH1(V )hom → JV

of the cubic 3-fold V is an isomorphism of abelian groups; see [35, Theorem 5.6] and the

references therein. Given the quartic C ⊂ V , consider

AJ([C] + [l0] − 5[lx0 ]) ∈ JV .

By Corollary 2.8, there exist 5 special lines l1, . . . , l5 such that

AJ([C] + [l0] − 5[lx0 ]) = AJ

( 5∑
i=1

[li ] − 5[lx0 ]

)
.

Hence we have

[C] =
5∑

i=1

[l1] − [l0] ∈ S5(Y ).

The argument above essentially proves the following result.

Corollary 2.9. For any α ∈ CH1(Y ) supported on a general hyperplane section H ∩ Y , we

have

α ∈ S5(Y ).

2.5. Another ten-dimensional example

Markushevich and Tikhomirov studied in [27, 28] the moduli space MMT of rank 2 vector

bundles supported on nonsingular hyperplane sections H ∩ Y with c1 = 0 and c2 = 2[l].
The (noncompact) moduli space MMT is nonsingular and holomorphic symplectic

of dimension 10. Moreover, every object in MMT lies in the K 3 category AY by [20,

Lemma 7.2].

As a consequence of Corollary 2.9, we have the following proposition.

Proposition 2.10. Conjecture 0.3 holds for any E ∈MMT, i.e.,

c3(E) ∈ S5(Y ).

Remark 2.11. Every object E ∈MMT is obtained from an extension

0→ OV → E(H)→ IE/V (2H)→ 0,

where V = H ∩ Y is a nonsingular hyperplane section and E is a nonsingular quintic

elliptic curve. The noncanonical part of c3(E) comes from the 1-cycle class of E .
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2.6. Moduli of rational curves

Theorem 0.4 is closely related to holomorphic symplectic varieties constructed via the

moduli spaces of rational curves in a cubic 4-fold, which we now discuss.

For convenience, we assume Y to be a general cubic 4-fold. Let Me denote the moduli

space of nonsingular connected rational curves of degree e in Y . By [13, 16], the variety

Me is irreducible of dimension 3e+ 1. For e 6 4, there is a MRC fibration

πe :Me 99KM′
e (2.7)

such that

(a) the base M′
e is a holomorphic symplectic variety;

(b) dim(M′
e) = b(e).

We briefly review the geometry of the map (2.7). When e = 1, the variety M′

1 is the

Fano variety F of lines and (2.7) is an isomorphism. When e = 2, we still have M′

2 = F
and the map (2.7) sends a conic to its residual line. Hence

dim(M′

1) = dim(M′

2) = 4.

When e = 3, the map (2.7) is constructed by Lehn, Lehn, Sorger, and van Straten

in [24], and the holomorphic symplectic 8-fold M′

3 is shown in [1] to be of K 3[4] type.

Finally, the case e = 4 is related to the recent work of Laza, Saccà, and Voisin [23, 42]. The

variety M′

4 is a holomorphic symplectic compactification of the (twisted) intermediate

Jacobian fibration associated to Y , which is deformation equivalent to O’Grady’s

10-dimensional variety [30].

In all four cases above, we expect9 that a birational model of the holomorphic

symplectic variety M′
e can be realized as a moduli space of stable objects in the K 3

category AY . Furthermore, for a general rational curve C ∈Me with EC = πe([C]) ∈ AY ,

there should exist integers k 6= 0 and m such that

c3(EC ) = k[C] +m[l0] ∈ CH1(Y ). (2.8)

Here l0 ⊂ Y is a canonical line.

Theorem 0.4 says that for e 6 4 and C ∈Me, we have

[C] ∈ S 1
2 dimM′

e
(Y ),

which is optimal in view of (2.8).

For e > 5, de Jong and Starr studied in [16] the canonical holomorphic 2-form on a

nonsingular projective model of the moduli space Me. Inspired by [16, Theorem 1.2], we

make the following speculation: for every e > 5, there exists an algebraically coisotropic

subvariety of a holomorphic symplectic variety M ,

Z M,

B

j

q

9This was verified for the Fano variety of lines in [5] and the Lehn–Lehn–Sorger–van Straten 8-fold
in [22].
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which satisfies a list of properties.

(a) The variety M (or its birational model) can be realized as a moduli space of stable

objects in AY .

(b) The general fibers of q are constant cycle subvarieties of M .

(c) For a general point z ∈ Z with Ez = j (z) ∈ AY , there exists a rational curve C ∈Me
and integers k 6= 0 and m such that

c3(Ez) = k[C] +m[l0] ∈ CH1(Y ).

Here l0 ⊂ Y is a canonical line.

(d) The dimension of B is 2b(e), where

b(e) =


3e
2

e even,

3e+ 1
2

e odd.

When e is odd, de Jong and Starr showed that the canonical holomorphic 2-form

on Me is nondegenerate. Hence we expect B 'Me.

The speculation above, together with Voisin’s proposal [41] and Speculation 0.1,

suggests the following optimal bound for the classes of rational curves of degree > 5
with respect to the filtration S•(Y ).

Conjecture 2.12. For any nonsingular connected rational curve C ⊂ Y of degree e > 5,

we have

[C] ∈ Sb(e)(Y ).

Remark 2.13. For e > 5, the bound b(e) grows linearly with e, and clearly we have

b(e) < b(e).

Since Me is expected to govern only the point classes on an algebraically coisotropic

subvariety in a holomorphic symplectic variety, the quadratic bound b(e) should not be

optimal for the classes of curves C ∈Me.10

Indeed, the following proposition provides a (nonoptimal) linear bound for any curve

in Y .11

Proposition 2.14. For any curve C ⊂ Y of degree e, we have

[C] ∈ S42e(Y ).

10When e = 5, the two bounds b(5) and b(5) agree. It is possible that M5 is birational to a holomorphic
symplectic variety.
11We thank Claire Voisin for suggesting this.
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Proof. We prove that there exist integers k > 0 and m such that

k[C] = −
(
[l1+ l2+ · · ·+ l21e]

)
+m[l0] ∈ CH1(Y ), (2.9)

where li ⊂ Y are lines and l0 ⊂ Y is a canonical line. The proposition follows immediately

from Proposition 1.10 and the e = 1 case of (†).

Recall that P = {(l, x) ∈ F × Y : x ∈ l} is the incidence variety with natural projections

pF : P → F, pY : P → Y.

Let D be a nonsingular divisor in the polarization class g ∈ CH1(F). We have the following

diagram

PD Y,

D

f

pD

where pD is the restriction of pF to D ⊂ F , and f is the composition of the inclusion

PD ↪→ P and pY . Then f is a finite morphism such that

deg f · [C] = f∗ f ∗[C] ∈ CH1(Y ). (2.10)

Since PD is a projective bundle over D, the class f ∗[C] can be uniquely expressed as

f ∗[C] = p∗Dα0+ p∗Dα1 · f ∗[H ] ∈ CH1(PD) (2.11)

with αi ∈ CHi (D) and [H ] ∈ CH1(Y ) the hyperplane class. A direct calculation (as in the

proof of [7, Proposition 6]) yields

α0 = −g|D ·α1, α1 = pD∗ f ∗[C].

In particular, we know that −α0 is an effective 0-cycle class on D. Combining (2.10) and

(2.11), we find

deg f · [C] = f∗(p∗Dα0)+ ( f∗ p∗Dα1) · [H ] ∈ CH1(Y ). (2.12)

Lemma 2.2 implies that ( f∗ p∗Dα1) · [H ] is proportional to the class of a canonical line.

The degree of the effective class −α0 is calculated by the intersection number

g|D ·α1 = g|D · pD∗ f ∗(e[l]) = e(g2
· [Sl ]) = 21e.

Here recall that Sl ⊂ F is the surface formed by lines passing through a given line l ⊂ Y .

The last equality above is given by [36, Lemma 18.2]. Hence (2.12) gives the required

expression (2.9).

3. Algebraically coisotropic subvarieties

Let M be a holomorphic symplectic variety of dimension 2d. In [41], Voisin proposed the

following conjecture.12

12It is clear that Conjecture 3.1 implies [41, Conjecture 0.4]. The converse is proven in [41, Theorem
1.3].
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Conjecture 3.1 [41, Conjecture 0.4]. For 0 6 i 6 d, there is a codimension i algebraically

coisotropic subvariety

Zi M,

Bi

q

such that the general fibers of q are i-dimensional constant cycle subvarieties of M.

The following theorem is the main result of this section, which shows that the

sheaf/cycle correspondence for AY can produce algebraically coisotropic varieties as in

Conjecture 3.1 for all holomorphic symplectic moduli spaces of stable objects in AY .

Theorem 3.2. Conjecture 0.3 implies Conjecture 3.1 if the holomorphic symplectic variety

M is a moduli space of stable objects in AY for a nonsingular cubic 4-fold Y .

3.1. K 3 surfaces

Let X be a K 3 surface. Theorem 3.2 is parallel to [34, Theorem 0.5(i)] which proves

Conjecture 3.1 when M is a moduli space of stable objects in Db(X). We briefly review

the main steps of the proof of [34, Theorem 0.5(i)].

For the moment, assume that the holomorphic symplectic variety M is a 2d-dimensional

moduli space of stable objects in Db(X).

Step 1. Let X (d) be the symmetric product. Consider the incidence

R = {(E, ξ) ∈ M × X (d) : c2(E) = [ξ ] +m[oX ] ∈ CH0(X)},

which is a countable union of Zariski closed subsets of M × X (d). We denote the

natural projections by

pM : R→ M, pX (d) : R→ X (d).

By a result by Marian and Zhao [26], all points on the same fiber of pX (d)

(resp. pM) have the same class in CH0(M) (resp. CH0(X (d))).

Step 2. O’Grady’s conjecture [31], which was proven in full generality in [34], implies

that both pM and pX (d) are surjective. Hence we can choose a component R0 ⊂ R
dominating M and X (d),

R0

M X (d).

pM
pX(d) (3.1)

Moreover, both morphisms pM and pX (d) in the diagram above are generically

finite.

Step 3. For i 6 d, the codimension i algebraically coisotropic subvarieties with constant

cycle fibers are dense in X (d). Hence we can always find an algebraically

coisotropic subvariety Z ⊂ X (d) such that the morphism pX (d) in (3.1) is
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generically finite over Z , and that the restriction of pM to p−1
X (d)(Z) is also

generically finite. Then

Z ′ = pM (p−1
X (d)(Z))

is a codimension i algebraically coisotropic subvariety of M which satisfies the

condition in Conjecture 3.1.

The main difficulty of the proof of Theorem 3.2 is the absence of the K 3 surface,

which breaks down all three steps above. We show how to overcome this issue using the

geometry of cubic 4-folds and their Fano varieties of lines.

3.2. Step 1

From now on, we take the holomorphic symplectic variety M to be a 2d-dimensional

moduli space of stable objects in the K 3 category AY . First, we modify Step 1 in § 3.1

by the following construction.

Let D ⊂ F be a uniruled divisor over a surface B,

D F.

B

j

q

We identify the Chow groups CH0(D) and CH0(B) via the isomorphism

q∗ : CH0(D)
∼
−→ CH0(B).

For k > 0, the embedding j : D ↪→ F induces a morphism

j (k)∗ : CH0(B(k))→ CH0(F).

We call W ⊂ B(k) an F-constant cycle subvariety if j (k)∗ [w] is constant in CH0(F) for

every point w ∈ W .

Lemma 3.3. There is a uniruled divisor D on F,

D F,

B

j

q

such that the surface B contains infinity many F-constant cycle curves {Ci } whose union

is Zariski dense in B.

Proof. First, we assume Y to be a general cubic 4-fold. In the proof of Lemma 1.8, we

have constructed a uniruled divisor q : D 99K B such that B admits a fibration

g : B → T

whose general fibers are elliptic curves. Moreover, the Claim in the proof of Lemma 1.8

implies that there exists a multi-section C ⊂ B of the morphism g which is an F-constant

cycle curve.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147474801800049X
Downloaded from https://www.cambridge.org/core. IP address: 223.104.3.173, on 06 Nov 2018 at 07:34:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147474801800049X
https://www.cambridge.org/core


24 J. Shen and Q. Yin

The required density is provided by the torsion structure of the elliptic curves on B.

More precisely, all irreducible components of the locus

Di = {x ∈ B : i[x − y] = 0 ∈ CH0(g−1(t)), y ∈ C, t ∈ T }

give the curves Ci for i > 0.

Since specializations preserve uniruled divisors and (possibly singular) elliptic curves,

we obtain the lemma for any cubic 4-fold.

The elliptic surface B in Lemma 3.3 plays the role of the K 3 surface X in § 3.1. Consider

the following incidence

R = {(E, ξ) ∈ M × B(d) : c3(E) = [P]∗ j (d)∗ [ξ ] +m[l0] ∈ CH1(Y )},

where [P]∗ is the correspondence in (1.2) and l0 is a canonical line. There are the two

projections

pM : R→ M, pB(d) : R→ B(d).
The argument in [26] gives the following result.

Proposition 3.4. Two objects E1, E2 ∈ M satisfy

[E1] = [E2] ∈ CH0(M)

if and only if

c3(E1) = c3(E2) ∈ CH1(Y ). (3.2)

Proof. We observe that the cycle class map

CHi (Y )→ H2i (Y,Z)
is injective when i 6= 3. The statement for i = 0, 1, and 4 is immediate, and the i = 2
case follows from [9, Theorem 1(i) and (ii)]. Then, by Lemma 1.2, the condition (3.2) is

equivalent to

ch(E1) = ch(E2) ∈ CH∗(Y )Q.
The rest of the proof is the same as in [26] via the (quasi-)universal family over M × Y .

As a consequence of Proposition 3.4, all points on the same fiber of pB(d) have the same

class in CH0(M). Moreover, by Proposition 1.3, every component of a fiber of pM is an

F-constant cycle subvariety.

3.3. Steps 2 and 3

We modify Steps 2 and 3 in § 3.1, and complete the proof of Theorem 3.2. Conjecture 0.3

now plays the role of O’Grady’s conjecture for K 3 surfaces.

The following proposition is parallel to [31, Proposition 1.3] and [40, Corollary 3.4].

Proposition 3.5. Assuming Conjecture 0.3, there is a component R0 ⊂ R with the

following diagram,

R0

M B(d),

pM
pB(d)

such that both morphisms pM and pB(d) are dominant and generically finite.
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Proof. Conjecture 0.3 implies that R→ M is dominant. Hence we can choose a

component R0 ⊂ R such that R0 → M is also dominant. Now it suffices to show that

the other projection pB(d) : R0 → B(d) is also dominant.

Note that there is a nondegenerate13 2-form ωB on B satisfying

j∗σ = q∗ωB,

where σ ∈ H0(F, �2
F ) is the holomorphic symplectic form on F . The 2-form ωB further

induces a nondegenerate 2-form ω
(d)
B on B(d). We only need to prove that the pull-back

of ω
(d)
B via pB(d) : R0 → B(d) coincides with the pull-back of the holomorphic symplectic

form on M via pM (up to scaling). This is deduced from the fact that fibers of pM are

F-constant cycle subvarieties in B(d) and from Mumford’s theorem [29].

This gives the required modification of Step 2. Finally, the density result of Lemma 3.3

plays the role of [34, Lemma 2.4], and the proof of Theorem 3.2 is identical to that of [34,

Theorem 0.5(i)].
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