
Algebraic Geometry 3 (2) (2016) 179–210

doi:10.14231/AG-2016-009

Cycles on curves and Jacobians:

a tale of two tautological rings

Qizheng Yin

Abstract

We connect two notions of tautological ring: one for the moduli space of curves (af-
ter Mumford, Faber, etc.), and the other for the Jacobian of a curve (after Beauville,
Polishchuk, etc.). The motivic Lefschetz decomposition on the Jacobian side produces
relations between tautological classes, leading to results about Faber’s Gorenstein con-
jecture on the curve side. We also relate certain Gorenstein properties on both sides
and verify them for small genera. Further, we raise the question whether all tautological
relations are motivic, giving a possible explanation why the Gorenstein properties may
not hold.

1. Introduction

Tautological classes are classes of algebraic cycles carrying certain geometric information. They
form a ring called the tautological ring. Classically there are two such notions of tautological
ring: one introduced by Mumford [Mum83] for the moduli space of curves, and the other by
Beauville [Bea04] for the Jacobian of a curve (and modulo algebraic equivalence).

1.1. Curve side. Denote by Mg the moduli space of smooth curves of genus g, and by p : Cg →
Mg the universal curve. Consider the classes κi = p∗(K

i+1), with K the relative canonical divisor.
The tautological ring R(Mg) is defined to be the Q-subalgebra of the Chow ring CH(Mg) (with
Q-coefficients) generated by {κi}.

The study of R(Mg) is partly motivated by Faber’s Gorenstein conjecture [Fab99], which
predicts that R(Mg) is a Gorenstein ring with socle in degree g − 2. The difficulty is to find
enough relations between the generators: starting from g = 24, all known methods have failed to
do so. On the other hand, apart from numerical evidence, there has been no convincing reason
for or against the conjecture.

One may consider variants of R(Mg) for the universal curve Cg and its relative powers C n
g .

There is also a pointed version, namely over the moduli of smooth pointed curves Mg,1. In all
cases one can ask about the corresponding Gorenstein properties.
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Q. Yin

1.2. Jacobian side. Let J be the Jacobian of a smooth pointed curve (C, x0). The point x0

induces an embedding C ↪→ J . Since J is an abelian variety, its Chow ring carries a second
ring structure and also the action of the multiplication by N ∈ Z. The tautological ring T (J)
is defined to be the smallest Q-subspace of CH(J) (with Q-coefficients) containing the curve
class [C] and stable under both ring structures as well as the multiplication by N . One can prove
that T (J) is finitely generated (with respect to the intersection product) and write down an
explicit set of generators.

In a series of papers ([Pol05, Pol07b, Pol07a], etc.), Polishchuk applied powerful tools to the
study of T (J), such as the Beauville decomposition, the Fourier transform and the Lefschetz
decomposition (or the sl2-action). Notably, he used the third tool to construct relations between
the generators. For the generic curve (and modulo algebraic equivalence), he conjectured that
they give all the relations (see [Pol05, Introduction]).

Polishchuk’s approach also brings a motivic touch to the subject. The hidden background is
the so-called motivic Lefschetz decomposition, and the relations obtained this way are simply
dictated by the motive of J .

1.3. Main results. Our first result extends the Jacobian side to the relative (or universal)
setting. Denote by Jg,1 the universal Jacobian over Mg,1. The tautological ring T (Jg,1) is
defined similarly. By studying the sl2-action on T (Jg,1), we obtain the following statement
(Theorem 4.5).

Theorem 1. The ring T (Jg,1) has an explicit finite set of generators (with respect to the
intersection product). The sl2-action on T (Jg,1) can also be described explicitly in terms of the
generators.

Our second result connects the tautological rings on both sides. Denote by Cg,1 the universal

curve over Mg,1, and by C n
g,1 (respectively, C

[n]
g,1 ) its nth power (respectively, symmetric power)

relative to Mg,1. The tautological rings R
(
C n
g,1

)
and R

(
C

[n]
g,1

)
are defined accordingly. Further,

one passes to the limit C
[∞]
g,1 = lim−→C

[n]
g,1 and gets the tautological ring R

(
C

[∞]
g,1

)
. Then we have

the following comparison (Corollary 4.7 and Theorem 6.4).

Theorem 2. The ring R
(
C

[∞]
g,1

)
is a polynomial algebra over T (Jg,1). In particular, the ring

R(Mg,1) is a Q-subalgebra of T (Jg,1).

Following Polishchuk, we use the sl2-action on T (Jg,1) to produce tautological relations.
With these relations, we are able to confirm that R(Mg,1) (respectively, R(Mg)) is Gorenstein
for g 6 19 (respectively, g 6 23). As far as our computation goes, we seem to recover all the

Faber–Zagier relations. Moreover, the socle condition for R
(
C

[n]
g,1

)
allows us to formulate the

corresponding Gorenstein property for T (Jg,1), which is again confirmed for g 6 7. Our third
result is an equivalence of Gorenstein properties (Theorem 7.15).

Theorem 3. The ring T (Jg,1) is Gorenstein if and only if R
(
C

[n]
g,1

)
is Gorenstein for all n > 0.

It follows that R
(
C

[n]
g,1

)
(respectively, R

(
C

[n]
g

)
) is Gorenstein for g 6 7 and for all n > 0.

1.4. We also say a few words on the value of this paper and how it relates to other work. By
the work of Petersen and Tommasi [PT14, Pet13], the Gorenstein conjectures for the tautological
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rings of M̄g,n and M ct
g,n are known to be false already when g = 2. So it is tempting to believe

that R(Mg) may not be Gorenstein in general. Here we provide a possible explanation for this.
Following Polishchuk’s conjecture and philosophy in [Pol05], we may ask the following question.

Question. Are all relations of motivic nature?

This question, whose precise statement can be found in Conjecture 7.17, has a certain geo-
metric (rather than numerical) flavor. A positive answer to it would contradict the Gorenstein
conjecture, and thus give an alternative description of the tautological rings.

More recently, a new set of relations for various tautological rings (including R
(
C

[n]
g

)
) was

conjectured by Pixton [Pix12] and proven by Pandharipande, Pixton and Zvonkine in coho-
mology [PPZ15], and by Janda in the Chow ring [Jan13]. In [Pix13, Appendix A], Pixton collected

data about the discrepancies between his relations and the Gorenstein expectations for R
(
C

[n]
g

)
.

Our third result then shows that after g = 24 for n = 0, g = 20 for n = 1, etc., the value g = 8 is
the ultimate critical value for any large n. It is one of the most interesting cases to test various
Gorenstein properties.

Conventions. We work over an arbitrary field k. Throughout, Chow rings CH = ⊕i CHi are
with Q-coefficients and graded by codimension. The symbol CHi is used only relatively to a fixed
base scheme S: if X is a smooth projective scheme over S with connected fibers, we write CHi(X)
for its Chow group of relative dimension i cycles with Q-coefficients. We set sl2 := Q·e+Q·f+Q·h,
with [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .

2. Tautological rings around a relative curve

We recall several tautological rings associated with a relative pointed curve. Then we focus on
the universal situation, namely over the moduli space, where (an analog of) Faber’s Gorenstein
conjecture is stated. Throughout this section we work in the context of pointed curves, and we
include a comparison with the unpointed counterpart at the end.

2.1. Let k be a field, and let S be a smooth connected variety of dimension d over k. Consider
a relative curve p : C → S of genus g, that is, a smooth projective scheme over S with geomet-
rically connected fibers of relative dimension 1 and of genus g. We assume g > 0. We further
assume that C/S admits a section (marked point) x0 : S → C.

For n > 1, denote by pn : Cn → S (respectively, p[n] : C [n] → S) the nth power (respectively,
symmetric power) of C relative to S. Write σn : Cn → C [n] for the symmetrization map. For
convenience we set C0 = C [0] := S.

2.2. We describe a few geometric classes in the Chow rings CH(Cn), which serve as the building
blocks of the tautological rings. First, denote by K ∈ CH1(C) the first Chern class of the relative
cotangent bundle Ω1

C/S . Also write [x0] :=
[
x0(S)

]
∈ CH1(C).

Next, define classes

κi := p∗
(
Ki+1

)
∈ CHi(S) for i > 0 , ψ := x∗0(K) ∈ CH1(S) .

We have κ0 = (2g − 2)[S], and it is convenient to write κ−1 := 0. Also note that x∗0
(
[x0]
)

= −ψ
by adjunction.
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Further, we view the CH(Cn) as CH(S)-algebras by pulling back via pn. We then keep the
same notation {κi} and ψ for the pull-backs of these classes to Cn. For 1 6 j 6 n, let prj : Cn → C
be the projection to the jth factor, and for 1 6 k < l 6 n, let prk,l : C

n → C2 be the projection
to the kth and lth factors. Denote by ∆ the diagonal in C2, and write

Kj := pr∗j (K) ∈ CH1(Cn) ,

[x0,j ] := pr∗j
(
[x0]
)
∈ CH1(Cn) ,

[∆k,l] := pr∗k,l
(
[∆]
)
∈ CH1(Cn) .

Definition 2.3. Let n > 0. The tautological ring of Cn, denoted by R(Cn), is the Q-subalgebra
of CH(Cn) generated by the classes {κi}, ψ, {Kj} and

{
[x0,j ]

}
(if n > 1), and

{
[∆k,l]

}
(if n > 2).

Elements in R(Cn) are called tautological classes.

In particular, the ring R(S) := R(C0) is generated by {κi} and ψ.

Remark 2.4. Alternatively, one may define R(Cn) in the style of Faber and Pandharipande
[FP00, FP05]. For n > 1 and m > 0, consider maps

T = (T1, . . . , Tm) : Cn → Cm

such that each Ti : C
n → C is a projection of Cn to one of its factors (when m = 0 we set

T = pn : Cn → S). These maps are called tautological maps. The tautological rings
{
R(Cn)

}
then form the smallest system of Q-subalgebras satisfying [x0] ∈ R(C) and stable under pull-
backs and push-forwards via all tautological maps. The proof is not difficult and is essentially in
[Loo95, Proposition 2.1].

2.5. For n > 1, the map σn : Cn → C [n] induces an isomorphism of Q-algebras

σ∗n : CH
(
C [n]

) ∼−→ CH(Cn)Sn ,

where CH(Cn)Sn is the symmetric (or Sn-invariant) part of CH(Cn). Note that σn,∗ ◦ σ∗n = n!.
The tautological ring of C [n] is then defined to be

R(C [n]) := (σ∗n)−1
(
R(Cn)

)
=

1

n!
σn,∗

(
R(Cn)

)
.

When n = 0 we set R(C [0]) := R(C0) (= R(S)).

2.6. Universal setting. The study of tautological rings was initiated by Mumford [Mum83],
and later carried on extensively by Faber, Pandharipande, etc., in the context of various moduli
spaces of curves and compactifications. We refer to [Fab99, Pan02, Fab13, FP13] for an overview
of major questions.

Our situation concerns the moduli space of smooth pointed curves of genus g over k, denoted
by Mg,1 (g > 0 as before). It is isomorphic to the universal curve Cg over the moduli of smooth
genus g curves Mg. We have dim(Mg,1) = dim(Mg) + 1 = 3g− 3 + 1. The stacky nature of Mg,1

does not play a role here. In fact, since Mg,1 admits a finite cover by a smooth connected variety
(see [Mum83, Part I, Section 2]), its Chow theory with Q-coefficients can be easily defined. In
principle, one may regard Mg,1 as a smooth connected variety from here on.

Denote by Cg,1 the universal curve over Mg,1. The tautological rings R(C n
g,1) and R

(
C

[n]
g,1

)
(and in particular R(Mg,1)) are thus defined by the same recipe as above, with S = Mg,1.
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2.7. In [Fab99], Faber proposed the Gorenstein description of the tautological ring of Mg (see
below). We adapt this idea to our context.

First, by the work of Looijenga [Loo95] and Faber [Fab97], we have

Ri(C n
g,1) = 0 for i > g − 1 + n and Rg−1+n(C n

g,1) ' Q . (2.1)

Then for 0 6 i 6 g − 1 + n, consider the pairing

Ri
(
C n
g,1

)
×Rg−1+n−i(C n

g,1

) ·−→ Rg−1+n
(
C n
g,1

)
' Q . (2.2)

The following is an analog of Faber’s Gorenstein conjecture.

Speculation 2.8. For n > 0 and 0 6 i 6 g− 1 + n, the pairing (2.2) is perfect. In other words,
the ring R(C n

g,1) is Gorenstein with socle in degree g − 1 + n.

Note that Rg−1+n
(
C n
g,1

)
is Sn-invariant. Restricting to the symmetric part, one would have

the same Gorenstein property for R
(
C

[n]
g,1

)
; that is, there is a perfect pairing

Ri
(
C

[n]
g,1

)
×Rg−1+n−i(C [n]

g,1

) ·−→ Rg−1+n
(
C

[n]
g,1

)
' Q . (2.3)

2.9. Speculation 2.8 is closely related to the Gorenstein conjecture for the tautological ring
of M rt

g,n, the moduli space of stable n-pointed genus g curves with rational tails. The latter is
stated in [Pan02]. In fact, for n = 0 we have exactly C 0

g,1 = Mg,1 = M rt
g,1. More generally there

is a surjective map M rt
g,n+1 −� C n

g,1, which can be expressed as a sequence of blow-ups. The
Gorenstein properties on both sides were recently shown to be equivalent by Petersen [Pet15].

Moreover, Speculation 2.8 was proven for g = 1, 2 by Tavakol [Tav11, Tav14] (he went on to
prove the Gorenstein conjecture for the tautological rings of M rt

1,n and M rt
2,n).

2.10. Unpointed version. Having stated everything in terms of pointed curves, we provide
a translation to the classical, unpointed version.

Consider the universal curve Cg over Mg and its relative powers C n
g and symmetric powers

C
[n]
g . The tautological rings R(C n

g ) are defined to be generated by {κi}, {Kj} and
{

[∆k,l]
}

, that

is, classes not involving the section x0. One also defines R(Mg) and R(C
[n]
g ) accordingly.

Since Mg,1 ' Cg, there are isomorphisms

C n
g,1 ' C n

g ×Mg Mg,1 ' C n+1
g and C

[n]
g,1 ' C [n]

g ×Mg Mg,1 ' C [n]
g ×Mg Cg .

Under these isomorphisms, we have a dictionary for tautological classes: the class ψ ∈ R(C n
g,1)

corresponds to Kn+1 ∈ R(C n+1
g ), and [x0,j ] ∈ R(C n

g,1) corresponds to [∆j,n+1] ∈ R(C n+1
g ). The

dictionary gives isomorphisms of Q-algebras

R
(
C n
g,1

)
' R

(
C n+1
g

)
and R

(
C

[n]
g,1

)
' R

(
C n+1
g

)Sn ,

where Sn acts on the first n factors of C n+1
g .

One can also formulate the corresponding Gorenstein properties for R(C n
g ) and R

(
C

[n]
g

)
(note that Rg−2+n(C n

g ) = Rg−2+n
(
C

[n]
g

)
' Q). It is immediate that the Gorenstein properties

for R(C n
g,1) and R(C n+1

g ) are equivalent, and that R
(
C

[n]
g,1

)
being Gorenstein implies R

(
C

[n+1]
g

)
being Gorenstein.

183



Q. Yin

3. The Chow ring of the relative Jacobian

We review three important structures on the Chow ring of the relative Jacobian, namely the
Beauville decomposition, the Fourier transform and the Lefschetz decomposition. We also dis-
cuss their motivic background. A picture called the Dutch house is presented to visualize these
structures.

3.1. As in the previous section, we take S a smooth connected variety of dimension d over k.
Let p : C → S be a relative curve of genus g > 0, together with a section x0 : S → C. Denote by
π : J → S the associated relative Jacobian. By definition J := Pic0(C/S) is an abelian scheme
of relative dimension g. The section x0 induces an embedding ι : C ↪→ J , which sends (locally)
a section x of C/S to ι(x) := OC(x−x0). The composition ι◦x0 is then the zero section o : S → J .
To summarize, we have the following diagram:

C J

S

ι

p π

x0 o

(3.1)

3.2. The (abelian) group structure on J gives the addition and scalar multiplication maps

µ : J ×S J → J and [N ] : J → J for N ∈ Z .

The Chow ring CH(J) carries a second ring structure called the Pontryagin product, denoted
by ∗ . It sends α ∈ CHi(J) and β ∈ CHj(J) to

α ∗ β := µ∗
(

pr∗1(α) · pr∗2(β)
)
∈ CHi+j−g(J) , (3.2)

where pr1, pr2 : J ×S J → J are the two projections.

3.3. Beauville decomposition. By the work of Beauville [Bea86] (later generalized to the
relative setting by Deninger and Murre [DM91]), the Chow ring CH(J) can be decomposed into
eigenspaces with respect to the action of [N ]. More precisely, for 0 6 i 6 g + d, we have

CHi(J) =

min{i+d,2i}⊕
j=max{i−g,2i−2g}

CHi
(j)(J) , (3.3)

with

CHi
(j)(J) :=

{
α ∈ CHi(J) : [N ]∗(α) = N2i−jα for all N ∈ Z

}
.

The decomposition is multiplicative: for α ∈ CHi
(j)(J) and β ∈ CHk

(l)(J), we have α · β ∈
CHi+k

(j+l)(J) and α ∗ β ∈ CHi+k−g
(j+l) (J).

3.4. To introduce the two other structures, recall that J has a canonical principal polarization
λ : J

∼−→ J t. Denote by P (the pull-back of) the Poincaré line bundle on J×S J , trivialized along
the two zero sections. We write ` ∈ CH1(J ×S J) for its first Chern class.

Also associated with the polarization is a relatively ample divisor class θ ∈ CH1
(0)(J). There

are identities

θ = −1
2∆∗(`) and ` = pr∗1(θ) + pr∗2(θ)− µ∗(θ) , (3.4)
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where ∆: J → J ×S J is the diagonal map. Note that we adopted the sign convention explained
in [Bea10, Section 1.6].

3.5. Fourier transform. The class exp(`), viewed as a correspondence, induces the Fourier
transform F : CH(J)→ CH(J). It sends α ∈ CH(J) to

F (α) := pr2,∗
(

pr∗1(α) · exp(`)
)
.

We have the following identities (see [Bea86, Section 1] or [DM91, Section 2]):

F (α ∗ β) = F (α) ·F (β) , F (α · β) = (−1)gF (α) ∗F (β) and F ◦F = (−1)g[−1]∗ .

Further, there are isomorphisms

F : CHi
(j)(J)

∼−→ CHg−i+j
(j) (J) .

Hence, by applying F to CHi(J) and by collecting components of different codimensions, one
recovers the Beauville decomposition.

3.6. Lefschetz decomposition. By Künnemann [Kün93], the classical Lefschetz decomposi-
tion in cohomology can be lifted to the Chow ring of an abelian scheme. In the case of the relative
Jacobian, Polishchuk [Pol07a] showed that the decomposition can be reconstructed geometrically.

Write [C] :=
[
ι(C)

]
∈ CHg−1(J) for the curve class, and [C](j) ∈ CHg−1

(j) (J) for the compo-

nents of [C] in the Beauville decomposition. First, we have identities

θ =
1

(g − 1)!
[C]
∗(g−1)
(0) = −F

(
[C](0)

)
. (3.5)

On CH(J), define operators

e : CHi
(j)(J)→ CHi+1

(j) (J) , α 7→ −θ · α ,

f : CHi
(j)(J)→ CHi−1

(j) (J) , α 7→ −[C](0) ∗ α , (3.6)

h : CHi
(j)(J)→ CHi

(j)(J) , α 7→ (2i− j − g)α .

Then the operators e, f and h generate a Q-linear representation of sl2, which induces the
Lefschetz decomposition on CH(J). See [Pol07a, Theorem 2.6] for the proof of this statement.
Note that we followed Polishchuk’s sign convention by setting e to be −θ.

From now on we refer to (3.6) as the sl2-action.

Remark 3.7. There is an identity (see [Bea04, Section 2.3(iv)] or [Pol08, Lemma 1.4])

F = exp(e) exp(−f) exp(e) on CH(J) .

This means that if we represent e, f by the matrices
(

0 1
0 0

)
,
(

0 0
1 0

)
∈ sl2(Q), respectively, then F

corresponds to the matrix
(

0 1
−1 0

)
∈ SL2(Q). As the Fourier transform induces the Beauville

decomposition, we see that among the three structures given above, the Lefschetz decomposition
(or the sl2-action) may be viewed as the deepest.

3.8. Motivic background. We briefly discuss the motivic interpretation of the structures
above. See [DM91] and [Kün93] for more details.
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Denote by R(J/S) the relative Chow motive of J . Then R(J/S) admits a decomposition

R(J/S) =

2g⊕
i=0

Ri(J/S) ,

with [N ]∗ acting on Ri(J/S) by multiplication by N i. It follows that

CHi
(j)(J) = CHi

(
R2i−j(J/S)

)
.

Moreover, the Fourier transform F induces isomorphisms

F : Ri(J/S)
∼−→ R2g−i(J/S)(g − i) ,

where (-) stands for Tate twists. Finally, we have the motivic Lefschetz decomposition

Ri(J/S) =

bi/2c⊕
k=max{0,i−g}

ek
(
Ri−2k

prim (J/S)(−k)
)
,

where Riprim(J/S) is the primitive part of Ri(J/S) with respect to the sl2-action.

3.9. We find it convenient to replace the codimension grading on CH(J) by a new, motivic
grading. We write

CH(i,j)(J) := CH
(i+j)/2
(j) (J) , or equivalently CH(2i−j,j)(J) := CHi

(j)(J) ,

so that [N ]∗ acts on CH(i,j)(J) by multiplication by N i. In other words, we set

CH(i,j)(J) = CH
(
Ri(J/S)

)
∩ CH(j)(J) .

The Beauville decomposition (3.3) then takes on the form

CH(J) =
⊕
i,j

CH(i,j)(J) , (3.7)

with 0 6 i 6 2g, max{−i, i− 2g} 6 j 6 min{i, 2g − i}+ 2d and i+ j even.

Expressions under the new grading are simple (if not simpler): for α ∈ CH(i,j)(J) and β ∈
CH(k,l)(J), we have α · β ∈ CH(i+k,j+l)(J) and α ∗ β ∈ CH(i+k−2g,j+l)(J). Also, the Fourier
transform F induces

F : CH(i,j)(J)
∼−→ CH(2g−i,j)(J) .

Further, we have θ ∈ CH(2,0)(J). The sl2-action in (3.6) becomes

e : CH(i,j)(J)→ CH(i+2,j)(J) , α 7→ −θ · α ,
f : CH(i,j)(J)→ CH(i−2,j)(J) , α 7→ −[C](0) ∗ α ,
h : CH(i,j)(J)→ CH(i,j)(J) , α 7→ (i− g)α .

3.10. Dutch house. We present a useful picture that illustrates the structures given above
and combines the motivic aspect. It also allows us to make clear statements without complicated
indices. The picture is inspired by [Moo09, Figure 1]. We call it the Dutch house due to its
resemblance to a traditional Dutch trapgevel (crow-stepped gable).

In Figure 1, the (i, j)th block represents the component CH(i,j)(J) in the Beauville decom-
position. The columns then read the motivic decomposition R(J/S) = ⊕iRi(J/S), and the rows
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Fourier transform F

2d

g

2g

0, 0 2, 0 4, 0 6, 0 8, 0

1, 1 3, 1 5, 1 7, 1

0, 2 2, 2 4, 2 6, 2 8, 2

1, 3 3, 3 5, 3 7, 3

0, 4 2, 4 4, 4 6, 4 8, 4

1, 5 3, 5 5, 5 7, 5

0, 6 2, 6 4, 6 6, 6 8, 6

1, 7 3, 7 5, 7 7, 7

0, 8 2, 8 4, 8 6, 8 8, 8

1, 9 3, 9 5, 9 7, 9

0, 10 2, 10 4, 10 6, 10 8, 10

1, 11 3, 11 5, 11 7, 11

0, 12 2, 12 4, 12 6, 12 8, 12

1, 13 3, 13 5, 13 7, 13

0, 14 2, 14 4, 14 6, 14 8, 14

1, 15 3, 15 5, 15 7, 15

0, 16 2, 16 4, 16 6, 16 8, 16

1, 17 3, 17 5, 17 7, 17

0, 18 2, 18 4, 18 6, 18 8, 18

1, 19 3, 19 5, 19 7, 19
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Figure 1. Mon dessin no 1: the outside of the Dutch house (g = 4 and d = 10)

read Beauville’s grading j. As a result, components with the same codimension lie on a dashed
line from upper left to lower right.

It is not difficult to verify that the house shape results from the precise index range of (3.7).
The width of the house depends on the genus g, while the height (without roof) depends on d =
dim(S). In particular, when S = k, the house reduces to the roof only. Here Figure 1 is drawn
based on the universal Jacobian over S = M4,1, with d = dim(M4,1) = 10.

As is shown in the picture, the Fourier transform F acts as the reflection over the middle
vertical line. The operator e in the sl2-action shifts classes to the right by 2 blocks, while f shifts
classes to the left by 2 blocks. Finally, the middle column of the house has weight zero with
respect to h.
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Remark 3.11. Note that we have not drawn the components CH(i,j)(J) with negative j. On the
one hand, when S = k the Beauville conjecture predicts the vanishing of those components (see
[Bea86, Section 2]). On the other hand, all classes we shall encounter are in CH(i,j)(J) with j > 0,
that is, inside the house.

3.12. The isomorphisms of motives (see [DM91, Example 1.4])

R0(J/S) R2g(J/S)(g)

R(S/S)

F
∼

π∗

∼
π∗
∼

induce the following isomorphisms of Q-algebras:(⊕d
i=0 CH(0,2i)(J), ·

) (⊕d
i=0 CH(2g,2i)(J), ∗

)
(

CH(S), ·
)

F
∼

π∗

∼
π∗
∼ (3.8)

The gradings are preserved as π∗ : CHi(S)
∼−→ CH(0,2i)(J) and π∗ : CH(2g,2i)(J)

∼−→ CHi(S).

In particular, the Chow ring CH(S) may be regarded as a Q-subalgebra of (CH(J), ·) via π∗,
or as a Q-subalgebra of (CH(J), ∗) via π∗. In terms of the Dutch house, we may identify CH(S)
with the zeroth column or with the 2gth column of the house.

4. The tautological ring of the relative Jacobian

We define the tautological ring T (J) of the relative Jacobian. We determine its generators and
give explicit formulae for the sl2-action in terms of the generators. A consequence is that by
pulling back via π∗ : CH(S) → CH(J), one can identify R(S) with the Q-subalgebra of T (J)
located on the zeroth column of the Dutch house. Throughout this section we work in the setting
of (3.1).

Definition 4.1. The tautological ring of J , denoted by T (J), is the smallest Q-subalgebra of(
CH(J), ·, ∗

)
(that is, subalgebra with respect to both · and ∗) that contains [C] ∈ CHg−1(J)

and that is stable under [N ]∗ for all N ∈ Z. Elements in T (J) are called tautological classes.

This notion of tautological ring was introduced by Beauville [Bea04] in the context of a Ja-
cobian variety and modulo algebraic equivalence. Since then it has been studied in various con-
texts. We refer to [Pol05, Pol07b, Her07, vdGK07, Moo09] for more details. In the relative set-
ting, Polishchuk considered a much bigger tautological ring, including all classes in π∗

(
CH(S)

)
(see [Pol07a, Section 4]). Our minimalist version turns out to be the right one for studying the
tautological ring of S.

Remark 4.2. (i) The ring T (J) is stable under the Beauville decomposition, the Fourier trans-
form and the Lefschetz decomposition (or the sl2-action). Indeed, by definition T (J) is graded
by codimension. Also, by applying [N ]∗ with various N we have [C](0) ∈ T (J). Then it follows
from (3.5) and (3.6) that T (J) is stable under the sl2-action. As is shown in Remark 3.7, this
implies the stability of T (J) under all three structures on CH(J).
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(ii) Alternatively, one may define T (J) to be the smallest Q-subalgebra of
(

CH(J), ·
)

con-
taining [C] ∈ CHg−1(J) and stable under the sl2-action (and thus stable under the other two
structures). In fact, being stable under the Beauville decomposition is the same as being stable
under [N ]∗. Since F interchanges · and ∗, the ring is also stable under ∗.

4.3. Since the two products · and ∗ do not commute with each other, it is a priori not clear
whether T (J) is finitely generated. We give an affirmative answer to this question by writing
down an explicit set of generators.

Recall that [C](j) ∈ T(2g−2−j,j)(J). By the index range of (3.7), we have [C](j) = 0 for j < 0
and for j > 2g − 2. Now consider for i 6 j + 2 and i+ j even

θ(j−i+2)/2 · [C](j) ∈ T(2g−i,j)(J) .

Denote its Fourier dual by

pi,j := F
(
θ(j−i+2)/2 · [C](j)

)
∈ T(i,j)(J) .

As examples we have p2,0 = F
(
[C](0)

)
= −θ and p0,0 = F

(
θ · [C](0)

)
= g[J ]. The index range

of (3.7) implies pi,j = 0 when i < 0 or j < 0 or j > 2g − 2.

Figure 2 depicts the classes {pi,j} inside the Dutch house with g = 8. Also shown in the
picture is the pull-back of the class ψ via π∗, again denoted by ψ, which lies in CH(0,2)(J). Note
that when d = dim(S) is small, classes above the roof vanish as well.

4.4. By definition, the operator e in the sl2-action is the intersection with p2,0. Also, it is not
difficult to verify that

f(pi,j) = pi−2,j .

One of the questions is to calculate the class f(pi,jpk,l). This turns out to be the key to the
following theorem.

Theorem 4.5. (i) The ring T (J) coincides with the Q-subalgebra of
(

CH(J), ·
)

generated by
the classes {pi,j} and ψ. In particular, it is finitely generated.

(ii) The operator f acts on polynomials in {pi,j} and ψ via the degree 2 differential operator

D :=
1

2

∑
i,j,k,l

(
ψpi−1,j−1pk−1,l−1 −

(
i+ k − 2

i− 1

)
pi+k−2,j+l

)
∂pi,j∂pk,l +

∑
i,j

pi−2,j∂pi,j . (4.1)

To prove the theorem, we begin with a lemma that computes the pull-back of θ via the
embedding ι : C ↪→ J . It is probably known to experts, and is implicit in [Pol07a, Theorem 2.6].

Lemma 4.6. We have the identity

ι∗(θ) = 1
2K + [x0] + 1

2ψ in CH1(C) . (4.2)

Proof. The goal is to calculate ι∗(θ) = −ι∗
(
F ([C](0))

)
and we start from ι∗

(
F ([C])

)
. Consider
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Fourier transform F

2g − 2

2g

p0,0

ψ, p0,2

p0,4

p0,6

p0,8

p0,10

p0,12

p0,14

p1,1

p1,3

p1,5
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p1,11

p1,13

p2,0
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p2,14

p3,1

p3,3
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p4,6
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p7,9

p7,11

p7,13

p8,6
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p8,10
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p8,14

p9,7
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p9,11
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Figure 2. Mon dessin no 2: the inside of the Dutch house (g = 8)

the following three cartesian squares:

C ×S C J ×S C C

C ×S J J ×S J J

C J

ι×S idC

idC ×Sι

pr2

idJ ×Sι ι

ι×S idJ

pr1

pr2

pr1

ι

where pr1 and pr2 stand for the two projections in all cases. Then we have

ι∗
(
F ([C])

)
= ι∗ pr2,∗

(
pr∗1 ι∗([C]) · exp(`)

)
= pr2,∗(idJ ×Sι)∗

(
(ι×S idJ)∗ pr∗1([C]) · exp(`)

)
= pr2,∗(idJ ×Sι)∗

(
(ι×S idJ)∗([C ×S J ]) · exp(`)

)
= pr2,∗(idJ ×Sι)∗(ι×S idJ)∗(ι×S idJ)∗(exp(`))

= pr2,∗(ι×S idC)∗(idC ×Sι)∗(ι×S idJ)∗(exp(`))

= pr2,∗(ι×S ι)∗(exp(`))

= pr2,∗
(

exp((ι×S ι)∗(`))
)
.
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The second identity in (3.4) and the theorem of the square imply (see [Pol07a, Formula (2.1)])

(ι×S ι)∗(`) = [∆]− pr∗1([x0])− pr∗2([x0])− ψ , (4.3)

where ∆ is the diagonal in C ×S C. It follows that

ι∗
(
F ([C]

)
) = pr2,∗

(
exp

(
[∆]− pr∗1([x0])− pr∗2([x0])− ψ

))
= pr2,∗

(
exp

(
[∆]− pr∗1([x0])

))
· exp(−[x0]− ψ) .

(4.4)

Observe that on the left-hand side of (4.4), we have

ι∗
(
F ([C])

)
=

2g−2∑
j=0

ι∗
(
F ([C](j))

)
,

with ι∗
(
F ([C](j))

)
∈ CHj+1(C). Hence ι∗

(
F ([C](0))

)
is just the codimension 1 component of

ι∗
(
F ([C])

)
. Expanding the exponentials in (4.4) while keeping track of the codimension, we

obtain

ι∗(F
(
[C](0))

)
= pr2,∗

(
1
2

(
[∆]− pr∗1([x0])

)2)− pr2,∗
(
[∆]− pr∗1([x0])

)
· ([x0] + ψ)

= pr2,∗

(
1
2

(
[∆]− pr∗1([x0])

)2)
= 1

2 pr2,∗([∆] · [∆])− pr2,∗
(
[∆] · pr∗1([x0])

)
+ 1

2 pr2,∗ pr∗1([x0] · [x0]) .

The first two terms in the previous expression are easily calculated: we have

pr2,∗([∆] · [∆]) = −K and pr2,∗
(
[∆] · pr∗1([x0])

)
= [x0] .

For the term pr2,∗ pr∗1
(
[x0] · [x0]

)
, consider the following cartesian square:

C ×S C C

C S

pr2

pr1 p

p

Then we have

pr2,∗ pr∗1([x0] · [x0]) = p∗p∗([x0] · [x0]) = p∗p∗x0,∗x
∗
0([x0]) = p∗x∗0([x0]) = −ψ .

Summarizing, we find ι∗
(
F ([C](0))

)
= −K/2− [x0]− ψ/2.

Proof of Theorem 4.5. Suppose that we have proven statement (ii) and that ψ ∈ T (J). Consider
the Q-subalgebra of

(
CH(J), ·

)
generated by the classes {pi,j} and ψ. We denote it by T ′(J)

and we have T ′(J) ⊂ T (J). By definition T ′(J) is stable under the action of e ∈ sl2. Now,
statement (ii) shows that T ′(J) is also stable under the action of f ∈ sl2. It then follows from
Remark 3.7 that T ′(J) is stable under F . In particular, the classes

{
[C](j)

}
are in T ′(J).

Since T (J) is the smallest Q-subalgebra containing [C] and stable under the sl2-action, there is
necessarily an equality T ′(J) = T (J), which proves statement (i).

Statement (ii) follows essentially from [Pol07a, formula (2.9)]. We just need to translate the
notation carefully. Following Polishchuk, we write η := K/2 + [x0] + ψ/2, which by (4.2) is
equal to ι∗(θ). We also have f = −X̃2,0(C)/2 in his notation. Define operators p̃i,j on CH(J) by
p̃i,j(α) := pi,j · α. Then the fact that

pi,j = F
(
θ(j−i+2)/2 · [C](j)

)
= F

(
ι∗
(
η(j−i+2)/2

)
(j)

)
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is translated into

p̃i,j =
1

i!
X̃0,i

(
η(j−i+2)/2

)
.

We apply formula (2.9) in loc. cit. and find

[f, p̃i,j ] = − 1

2 · i!
[
X̃2,0(C), X̃0,i

(
η(j−i+2)/2

)]
=

1

(i− 1)!
X̃1,i−1

(
η(j−i+2)/2

)
− 1

(i− 2)!
X̃0,i−2

(
η(j−i+4)/2

)
.

Note that the second equality above also involves the fact that X̃i,0(C) = 0 for i 6 1 (see [Pol07a,
Lemma 2.8]), and that x∗0(η) = x∗0ι

∗(θ) = o∗(θ) = 0. We continue to calculate[
[f, p̃i,j ], p̃k,l

]
=

1

(i− 1)!k!

[
X̃1,i−1

(
η(j−i+2)/2

)
, X̃0,k

(
η(l−k+2)/2

)]
− 1

(i− 2)!k!

[
X̃0,i−2

(
η(j−i+4)/2

)
, X̃0,k

(
η(l−k+2)/2

)]
.

Applying the same formula, we have
[
X̃0,i−2

(
η(j−i+4)/2

)
, X̃0,k

(
η(l−k+2)/2

)]
= 0 and[

X̃1,i−1

(
η(j−i+2)/2

)
, X̃0,k

(
η(l−k+2)/2

)]
= kψX̃0,k−1

(
η(l−k+2)/2

)
X̃0,i−1

(
η(j−i+2)/2

)
− kX̃0,i+k−2

(
η(j−i+l−k+4)/2

)
.

We thus obtain[
[f, p̃i,j ], p̃k,l

]
=

1

(i− 1)!(k − 1)!

(
ψX̃0,k−1

(
η(l−k+2)/2

)
X̃0,i−1

(
η(j−i+2)/2

)
− X̃0,i+k−2

(
η(j−i+l−k+4)/2

))
= ψp̃k−1,l−1p̃i−1,j−1 −

(
i+ k − 2

i− 1

)
p̃i+k−2,j+l

= ψp̃i−1,j−1p̃k−1,l−1 −
(
i+ k − 2

i− 1

)
p̃i+k−2,j+l .

(4.5)

On the other hand, since f
(
[J ]
)

= 0, we have

[f, p̃i,j ]
(
[J ]
)

= f(pi,j) = pi−2,j . (4.6)

The identities (4.5) and (4.6) imply that for any polynomial P in {pi,j} and ψ, we have

f
(
P ({pi,j}, ψ)

)
= D

(
P ({pi,j}, ψ)

)
,

where D is the differential operator defined in (4.1) (see [Pol07b, Section 3]).

It remains to prove that ψ ∈ T (J). To see this, we apply D to the class p2
1,1 ∈ T (J), which

gives

D
(
p2

1,1

)
= ψp2

0,0 −
(

0

0

)
p0,2 = g2ψ − p0,2 .

Hence ψ =
(
D(p2

1,1) + p0,2

)
/g2 ∈ T (J).

Corollary 4.7. For i > 0, we have the identity

p0,2i = π∗

 1

2i+1

∑
06j6i

(
i+ 1

j + 1

)
ψi−jκj + ψi

 . (4.7)
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Moreover, we have the following isomorphisms of Q-algebras (similar to those in (3.8)):(⊕d
i=0 T(0,2i)(J), ·

) (⊕d
i=0 T(2g,2i)(J), ∗

)
(
R(S), ·

)
F
∼

π∗

∼
π∗
∼ (4.8)

In particular, the ring R(S) may be regarded as a Q-subalgebra of
(
T (J), ·

)
via π∗.

Proof. By the isomorphisms (3.8) we have

p0,2i = F
(
θi+1 · [C](2i)

)
= π∗π∗

(
θi+1 · [C](2i)

)
= π∗π∗

(
θi+1 · [C]

)
.

Hence it suffices to calculate π∗
(
θi+1 · [C]

)
. Applying (4.2) and the projection formula, we get

π∗
(
θi+1 · [C]

)
= p∗

((
1
2K + [x0] + 1

2ψ
)i+1

)
=

∑
j+k+l=i+1
j,k,l>0

(i+ 1)!

j!k!l!

1

2j+l
p∗
(
Kj · [x0]k · ψl

)
.

Applying the projection formula again, to p : C → S and x0 : S → C, we find

p∗
(
Kj · [x0]k · ψl

)
= ψl · p∗

(
Kj · [x0]k

)
=

{
ψl · κj−1 if k = 0 ,

ψl · x∗0
(
Kj · [x0]k−1

)
= (−1)k−1ψi if k > 1 ,

with the convention κ−1 = 0. It follows that

π∗
(
θi+1 · [C]

)
=

∑
j+l=i+1
j,l>0

(i+ 1)!

j!l!

1

2i+1
ψlκj−1 +

∑
j+k+l=i+1
j,k,l>0

(i+ 1)!

j!k!l!

1

2j+l
(−1)k−1ψi

−
∑

j+l=i+1
j,l>0

(i+ 1)!

j!l!

1

2i+1
(−1)ψi

=
1

2i+1

∑
06j6i

(
i+ 1

j + 1

)
ψi−jκj +

(
1
2 − 1 + 1

2

)i+1
ψi +

(
1
2 + 1

2

)i+1
ψi

=
1

2i+1

∑
06j6i

(
i+ 1

j + 1

)
ψi−jκj + ψi ,

which proves the identity (4.7).

Now since ⊕di=0T(0,2i)(J) is generated by the classes {p0,2i} and ψ, we have one inclusion

⊕di=0T(0,2i)(J) ⊂ π∗
(
R(S)

)
. For the other inclusion, it follows from (4.7) and induction on j that

one can also express π∗(κj) as linear combinations of {p0,2i} and ψ. So we have ⊕di=0T(0,2i)(J) =
π∗
(
R(S)

)
, and the rest follows from (3.8).

5. The Chow rings of the relative infinite symmetric power

A nice way to treat the Chow rings of all C [n] simultaneously is to consider the relative infinite
symmetric power C [∞]. It allows us to lift structures from the Chow ring of J . We recall the defini-
tion of C [∞] and its Chow theories. Our reference is the paper of Moonen and Polishchuk [MP10],
which generalizes the work of Kimura and Vistoli [KV96] to the relative setting.
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5.1. We retain the notation of Sections 2 and 3. For n > 1, define maps ϕn : C [n] → J and
φn := ϕn ◦ σn : Cn → J , which send (locally) n sections x1, . . . , xn of C/S to the class OC(x1 +
· · · + xn − nx0). Note that ϕ1 = φ1 = ι : C ↪→ J . For convenience we set ϕ0 = φ0 := o : S → J .
We have the following diagram in addition to (3.1):

Cn C [n] J

S

σn

φn

pn

ϕn

p[n] π (5.1)

5.2. We introduce the relative infinite symmetric power of C, which is defined to be the ind-
scheme

C [∞] := lim−→
(
S = C [0] ↪→ C ↪→ C [2] ↪→ C [3] ↪→ · · ·

)
.

Here the transition maps εn : C [n−1] ↪→ C [n] are given by adding a copy of x0 (in particular,
ε1 = x0 : S → C). We write p[∞] : C [∞] → S for the limit of p[n] : C [n] → S.

The collection of ϕn : C [n] → J induces ϕ : C [∞] → J . Moreover, the monoidal structure on J
can be lifted to C [∞]: the addition maps µn,m : C [n] ×S C [m] → C [n+m] give rise to

µ : C [∞] ×S C [∞] → C [∞] ,

while the diagonal maps ∆N : C [n] → C [Nn] give rise to

[N ] : C [∞] → C [∞] for N > 0 .

Unlike the case of J , there are (at least) two different notions of Chow ring for C [∞]. One is
graded by codimension and the other by relative dimension. For this reason, we also distinguish
the two gradings on CH(J): we write CH•(J) :=

(
⊕i CHi(J), ·

)
and CH•(J) :=

(
⊕i CHi(J), ∗

)
.

Definition 5.3. (i) The Chow cohomology of C [∞] of codimension i is the inverse limit

CHi(C [∞]) := lim←−
(

CHi(S)← CHi(C)← CHi(C [2])← CHi(C [3])← · · ·
)
,

where the transition maps are ε∗n : CHi(C [n])→ CHi(C [n−1]).

(ii) The Chow homology of C [∞] of relative dimension i is the direct limit

CHi(C
[∞]) := lim−→

(
CHi(S)→ CHi(C)→ CHi(C

[2])→ CHi(C
[3])→ · · ·

)
,

where the transition maps are εn,∗ : CHi(C
[n−1])→ CHi(C

[n]).

By definition, an element in CHi(C [∞]) is a sequence α = (αn)n>0 with αn ∈ CHi(C [n]) such
that ε∗n(αn) = αn−1. An element in CHi(C

[∞]) is represented by α ∈ CHi(C
[n]) for some n. We

write CH•(C [∞]) := ⊕i CHi(C [∞]) and CH•(C
[∞]) := ⊕i CHi(C

[∞]). The Chow cohomology and
homology of C [∞] ×S C [∞] are defined similarly.

Remark 5.4. For n > 1, the transition map ε∗n (respectively, εn,∗) is surjective (respectively,
injective). To see this, one constructs a correspondence δn : C [n] ` C [n−1] satisfying δn ◦ εn = id,
so that ε∗n ◦ δ∗n = id and δn,∗ ◦ εn,∗ = id. Let pri : C

n → C be the ith projection. Consider the
correspondence (see [KV96, Definition 1.8])

n−1∑
j=0

∑
16i1<···<ij6n

(−1)n−1−j(pri1 , . . . ,prij , x0, . . . , x0) : Cn ` Cn−1 , (5.2)
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which is Sn-invariant and descends to δn : C [n] ` C [n−1]. One verifies that δn has the desired
property. In particular, the map CH•(C [∞])→ CH(C [n]) (respectively, CH(C [n])→ CH•(C

[∞]))
is surjective (respectively, injective).

5.5. Both CH•(C [∞]) and CH•(C
[∞]) are equipped with a ring structure: there is the intersec-

tion product · on CH•(C [∞]) and the Pontryagin product ∗ on CH•(C
[∞]), the latter defined in

the same way as (3.2).

Note that unlike the case of CH(J), one cannot define both ring structures on the same object
CH•(C [∞]) or CH•(C

[∞]). We do, however, have a cap product

CH•
(
C [∞]

)
× CH•

(
C [∞]

) ∩−→ CH•
(
C [∞]

)
,

which sends α = (αn)n>0 ∈ CHi(C [∞]) and β ∈ CHj(C
[m]) ⊂ CHj(C

[∞]) to α ∩ β := αm · β ∈
CHj−i(C

[m]) ⊂ CHj−i(C
[∞]). One verifies that ∩ is well defined.

For N > 0, the multiplication [N ] : C [∞] → C [∞] induces

[N ]∗ : CH•(C [∞])→ CH•
(
C [∞]

)
and [N ]∗ : CH•(C

[∞])→ CH•
(
C [∞]

)
.

Further, the map ϕ : C [∞] → J induces morphisms of Q-algebras

ϕ∗ : CH•(J)→ CH•
(
C [∞]

)
and ϕ∗ : CH•

(
C [∞]

)
→ CH•(J) ,

which allow us to relate the Chow theories of C [∞] and J . We begin with CH•(C [∞]).

5.6. Chow cohomology. Recall the class ψ ∈ CH1(S). Again we keep the same notation ψ for
its pull-backs to schemes over S. For n > 1, define

OC[n](1) := OC[n]

(
εn
(
C [n−1]

)
+ nψ

)
, (5.3)

and denote by ξn ∈ CH1(C [n]) the first Chern class of OC[n](1). We set ξ0 = 0. Then we have
ε∗n(ξn) = ξn−1, which yields a class

ξ := (ξn)n>0 ∈ CH1
(
C [∞]

)
.

There is an alternative description of OC[n](1) (essentially due to Schwarzenberger [Sch63]).
Let L be the pull-back of the Poincaré line bundle P via ι×S idJ : C×S J → J×S J . For n > 0,
define the sheaf

En := pr2,∗
(

pr∗1(OC(nx0))⊗L
)
,

where pr1 : C ×S J → C and pr2 : C ×S J → J are the two projections. There is a canonical
isomorphism C [n] ' P(En), under which OC[n](1) corresponds to the line bundle OP(En)(1).

When n > 2g− 1, the sheaf En is locally free over J (that is, a vector bundle). Then we have
isomorphisms of Q-algebras

CH
(
C [n]

)
' CH(P(En)) ' CH(J)[ξn]

/
〈P (ξn)〉 , (5.4)

where P (ξn) :=
∑n−g+1

i=0 cn−g+1−i(En)ξin is a polynomial in ξn of degree n−g+1 with coefficients
in CH(J).

5.7. The following results are merely reinterpretations of (5.4) [MP10, Theorem 1.4]:

(i) When n > max{2g, i + g + 1}, the transition map ε∗n : CHi(C [n]) → CHi(C [n−1]) becomes
an isomorphism.
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(ii) The map ϕ∗ : CH•(J)→ CH•(C [∞]) induces an isomorphism of Q-algebras

Φ: CH•(J)[t]
∼−→ CH•

(
C [∞]

)
, (5.5)

which sends α ∈ CH•(J) to ϕ∗(α) and t to the class ξ.

5.8. Chow homology. We switch to CH•(C
[∞]). First, we choose an integer n > 2g+ d (recall

that d = dim(S)), and we identify C [n] with P(En). Consider the short exact sequence

0→ OC[n](−1)→ ϕ∗n(En)→ Q→ 0 ,

where Q is the universal quotient bundle of ϕ∗n(En) and is of rank n− g. Define

Γ := cn−g(Q) ∈ CHg(C
[n]) ⊂ CHg

(
C [∞]

)
.

Next, choose n > 2g + d+ 1. Define

L := ϕ∗n
(
[o]
)
· cn−g−1(Q) ∈ CH1(C [n]) ⊂ CH1

(
C [∞]

)
,

where [o] :=
[
o(S)

]
∈ CH0(J) is the class of the zero section. One can show that both classes

Γ ∈ CHg(C
[∞]) and L ∈ CH1(C [∞]) are independent of n.

5.9. Here are the corresponding results for CH•(C
[∞]) [MP10, Theorem 1.11]:

(i) The map s : CH•(J)→ CH•(C
[∞]) given by

s(α) := ϕ∗(α) ∩ Γ

is a section of ϕ∗ : CH•(C
[∞])→ CH•(J). It respects the Pontryagin products on both sides.

(ii) The section s induces an isomorphism of Q-algebras

Ψ: CH•(J)[t]
∼−→ CH•

(
C [∞]

)
, (5.6)

which sends α ∈ CH•(J) to s(α) and t to the class L.

(iii) Under the isomorphism Ψ, the push-forward ϕ∗ is the evaluation at zero and the action of
ξ∩ is the derivation d/dt.

Remark 5.10. There are explicit expressions for Γ and L (see [MP10, Corollary 1.13]):

Γ =
1

g!(N − 1)g

(
log
(
1 + ψ · [N ]∗([C])

)
−N log(1 + ψ · [C])

Nψ

)g
, (5.7)

with N > 2, and

L =
log(1 + ψ · [C])− log

(
1 + ψ · s

(
[ι(C)]

))
ψ

. (5.8)

Here we distinguish [C] ∈ CH1(C) ⊂ CH1(C [∞]) from
[
ι(C)

]
∈ CH1(J).

5.11. Fourier transform. By [KV96, Theorems 3.13 and 3.18], the Fourier transform on J
can be lifted to C [∞]. Recall the class ` ∈ CH1(J ×S J). Define

`∞,∞ := (ϕ×S ϕ)∗(`) ∈ CH1
(
C [∞] ×S C [∞]

)
,

ξ ×S ξ := pr∗1(ξ) · pr∗2(ξ) ∈ CH2
(
C [∞] ×S C [∞]

)
,

where pr1, pr2 : C [∞] ×S C [∞] → C [∞] are the two projections. Then the expression

exp(`∞,∞ + ξ ×S ξ) (5.9)
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is an upper correspondence in the sense of [KV96, Definition 3.2]. It induces an isomorphism of
Q-algebras

F : CH•
(
C [∞]

) ∼−→ CH•
(
C [∞]

)
.

We have F (L) = ξ, and the following commutative diagram:

CH•(J) CH•(J)

CH•(C
[∞]) CH•(C [∞])

F
∼

s ϕ∗

∼
F

Further, the inverse F−1 : CH•(C [∞])
∼−→ CH•(C

[∞]) is given by the lower correspondence in the
sense of [KV96, Definition 3.17]:

(−1)g exp(−`∞,∞) ∩
(

exp∗((L×S L) ∗ (Γ×S Γ))
)
, (5.10)

where exp∗ means the exponential power series with respect to ∗.

Remark 5.12. The class `∞,∞ can be described somewhat explicitly. For n,m > 0, define

`n,m := (ϕn ×S ϕm)∗(`) ∈ CH1
(
C [n] ×S C [m]

)
.

We have `n,0 = `0,m = 0, and we have seen in (4.3) that

`1,1 = [∆]− pr∗1([x0])− pr∗2([x0])− ψ in CH1(C ×S C) .

For 1 6 i 6 n, let pri : C
n → C be the ith projection. Then for n,m > 1, there is an identity

(see [KV96, Proposition-Definition 3.10])

(φn ×S φm)∗(`) = (σn ×S σm)∗(`n,m) =

n∑
i=1

m∑
j=1

(pri×S prj)
∗(`1,1) , (5.11)

which holds in CH1(Cn ×S Cm)Sn×Sm .

6. The tautological rings of the relative infinite symmetric power

We define the tautological cohomology R•(C [∞]) and homology R•(C [∞]) of the relative infinite
symmetric power. We prove a tautological analog of the isomorphisms Φ and Ψ in the previous
section, that both R•(C [∞]) and R•(C [∞]) are polynomial algebras over T (J). The connections
between the two notions of tautological ring are thus established. Throughout this section we
work in the setting of (3.1) and (5.1).

6.1. First, observe that the rings R(C [n]) are stable under pull-backs and push-forwards via
the maps εn : C [n−1] ↪→ C [n]. In fact, the maps εn can be lifted to idCn−1 ×Sx0 : Cn−1 → Cn.
Then for α ∈ R(Cn) and β ∈ R(Cn−1), we have

(idCn−1 ×Sx0)∗(α) = pr1,...,n−1,∗(α · pr∗n
(
[x0])

)
∈ R

(
Cn−1

)
,

(idCn−1 ×Sx0)∗(β) = pr∗1,...,n−1(β) · pr∗n([x0]) ∈ R
(
Cn
)
.

Here pr1,...,n−1 (respectively, prn) is the projection of Cn to the first n− 1 factors (respectively,
nth factor), and is tautological in the sense of Remark 2.4.

The stability of R(C [n]) under ε∗n and εn,∗ allows us to pass to C [∞].
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Definition 6.2. (i) The tautological cohomology of C [∞] is the inverse limit

R•
(
C [∞]

)
:= lim←−

(
R(S)← R(C)← R

(
C [2]

)
← R

(
C [3]

)
← · · ·

)
,

where the transition maps are ε∗n : R(C [n])→ R(C [n−1]).

(ii) The tautological homology of C [∞] is the direct limit

R•
(
C [∞]

)
:= lim−→

(
R(S)→ R(C)→ R

(
C [2]

)
→ R

(
C [3]

)
→ · · ·

)
,

where the transition maps are εn,∗ : R(C [n−1])→ R(C [n]).

Note that R•(C [∞]) (respectively, R•(C [∞])) inherits a grading from CH•(C [∞]) (respectively,
CH•(C

[∞])). It is immediate that R•(C [∞]) is stable under the intersection product · . Since
the addition map µn,m : C [n] ×S C [m] → C [n+m] lifts to the identity (tautological) map Cn ×S
Cm → Cn+m, we also know that R•(C [∞]) is stable under the Pontryagin product ∗ . It follows
that R•(C [∞]) (respectively, R•(C [∞])) is a graded Q-subalgebra of CH•(C [∞]) (respectively,
CH•(C

[∞])).

We list a few properties of R•(C [∞]) and R•(C [∞]), which partly reveal their links with the
ring T (J).

Proposition 6.3. (i) We have ξ ∈ R1(C [∞]), Γ ∈ Rg(C
[∞]) and L ∈ R1(C [∞]).

(ii) The ring R•(C [∞]) (respectively, R•(C [∞])) is stable under [N ]∗ (respectively, [N ]∗) for
all N > 0.

(iii) The Fourier transform F induces an isomorphism

F : R•
(
C [∞]

) ∼−→ R•
(
C [∞]

)
.

(iv) The cap product restricts to a map

R•
(
C [∞]

)
×R•

(
C [∞]

) ∩−→ R•
(
C [∞]

)
.

Proof. Statement (ii) follows from the fact that the diagonal map ∆N : C [n] → C [Nn] lifts to
Cn → CNn, which is tautological. Statement (iv) is straightforward.

For statement (i), by (5.3) and (5.7) we have ξ ∈ R1(C [∞]) and Γ ∈ Rg(C
[∞]). Moreover,

by (5.8), to prove that L ∈ R1(C [∞]) it suffices to show that s
(
[ι(C)]

)
∈ R1(C [∞]). This is further

reduced to proving that ϕ∗
(
[ι(C)]

)
∈ Rg−1(C [∞]) by the definition of the section s.

In fact, we can prove for any α ∈ T (J) that ϕ∗(α) ∈ R•(C [∞]). First, by Theorem 4.5, we
know that

(
T (J), ·

)
is generated by the classes {pi,j} and ψ. Since ϕ∗(ψ) ∈ R1(C [∞]), it remains

to prove that ϕ∗(pi,j) ∈ R•(C [∞]) for all possible i and j. Here we can actually calculate the
pull-back of pi,j via φn = ϕn ◦ σn : Cn → J , for all n > 0. The procedure is similar to that of
Lemma 4.6: we chase through the following cartesian squares:

C ×S Cn J ×S Cn Cn

C ×S J J ×S J J

C J

ι×S idCn

idC ×Sφn

pr2

idJ ×Sφn φn

ι×S idJ

pr1

pr2

pr1

ι
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Then we find

φ∗n
(
F
(
θ(j−i+2)/2 · [ι(C)]

))
= pr2,∗

(
pr∗1
(
ι∗(θ)(j−i+2)/2

)
· exp((ι×S φn)∗(`))

)
, (6.1)

where pr1 : C×S Cn → C and pr2 : C×S Cn → Cn are the two projections. By definition φ∗n(pi,j)
is just the codimension (i + j)/2 component of the right-hand side of (6.1). Further, by (4.2)
and (5.11), we have explicit expressions for ι∗(θ) and (ι×Sφn)∗(`) in terms of tautological classes.
It follows that φ∗n(pi,j) ∈ R(Cn), and hence ϕ∗(pi,j) ∈ R•(C [∞]).

Finally, to prove statement (iii), we observe that the correspondences in (5.9) and (5.10) that
define F and F−1 involve only tautological classes.

Now, we state and prove the main result of this section. To be coherent, we write T •(J) :=
(⊕iT i(J), ·) and T•(J) := (⊕iTi(J), ∗).

Theorem 6.4. The isomorphisms Φ and Ψ in (5.5) and (5.6) restrict to isomorphisms of Q-
algebras

Φ|T •(J)[t] : T •(J)[t]
∼−→ R•

(
C [∞]

)
, (6.2)

Ψ|T•(J)[t] : T•(J)[t]
∼−→ R•

(
C [∞]

)
. (6.3)

The plan is to prove (6.3) first, and then deduce (6.2) by Fourier duality. We begin with an
elementary lemma.

Lemma 6.5. Let A be a commutative Q-algebra, and let B be a Q-subalgebra of the polynomial
algebra A[t]. Assume t ∈ B and that B is stable under the derivation d/dt. Then we have

B = ev(B)[t] ,

where ev : A[t]→ A is the evaluation at zero.

Proof. Take an element P (t) = b0 + b1t + · · · + bnt
n in B. Since B is stable under derivation,

we have (d/dt)n(P (t)) = n!bn ∈ B, so that bn ∈ B. Then, since t ∈ B, we have bnt
n ∈ B and

P (t)−bntn ∈ B. By induction, we find that all coefficients bi are in B. It follows that ev(B)[t] ⊂ B.
On the other hand, we know that bi = ev

(
(d/dt)i(P (t)/i!)

)
with (d/dt)i(P (t)/i!) ∈ B. Hence

bi ∈ ev(B), which proves the other inclusion B ⊂ ev(B)[t].

Consider the push-forward map ϕ∗ : CH•(C
[∞]) → CH•(J) which, under Ψ, corresponds to

the evaluation at zero. The proof of the following proposition is a bit involved and relies essentially
on Theorem 4.5 and Corollary 4.7.

Proposition 6.6. We have ϕ∗
(
R•(C [∞])

)
= T•(J).

Proof. By Theorem 4.5, we know that T•(J) is generated by
{
θ(j−i+2)/2 · [ι(C)](j)

}
and o∗(ψ)

(recall that o = ϕ0 is the zero section). Consider the class η = K/2 + [x0] + ψ/2 ∈ R(C), which
by (4.2) is equal to ι∗(θ). We have

ι∗
(
η(j−i+2)/2

)
= θ(j−i+2)/2 · [ι(C)] ,

so that θ(j−i+2)/2 · [ι(C)] is in the image ϕ∗
(
R•(C [∞])

)
(recall that ι = ϕ1). Moreover, we have

shown in Proposition 6.3(ii) that R•(C [∞]) is stable under [N ]∗ for all N > 0. This implies that
the components θ(j−i+2)/2 · [ι(C)](j) are also in the image ϕ∗

(
R•(C [∞])

)
. Since all generators

of T•(J) are in ϕ∗(R•(C [∞])), we obtain the inclusion T•(J) ⊂ ϕ∗(R•(C [∞])).
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To prove the other inclusion, observe that ϕ∗
(
R•(C [∞])

)
, being the union of the ϕn,∗

(
R(C [n])

)
for n > 0, is also the union of the φn,∗

(
R(Cn)

)
for n > 0. Then it is enough to prove that

φn,∗
(
R(Cn)

)
⊂ T (J) for all n > 0. This is done by an explicit calculation in terms of the

generators of R(Cn).

As φn,∗ factors through φn+1,∗, we may assume n > 2. The ring R(Cn) is then generated by
{κi}, ψ, {Kj} and

{
[x0,j ]

}
, and

{
[∆k,l]

}
. We make a change of variables

ηj := 1
2Kj + [x0,j ] + 1

2ψ ,

so that R(Cn) is also generated by {κi}, ψ, {ηj} and {[x0,j ]}, and {[∆k,l]}. Let α ∈ R(Cn) be a
monomial in those generators. We would like to show that φn,∗(α) ∈ T (J).

A first step is to separate the variables {κi} and ψ from the rest. Write α = β · γ, with β
collecting all factors of {κi} and ψ. Then β is the pull-back of a class β0 ∈ R(S) via pn : Cn → S.
Since pn = π ◦ φn (recall that π is the map from J to S), we find

φn,∗(α) = φn,∗
(
pn,∗(β0) · γ

)
= φn,∗

(
φ∗nπ

∗(β0) · γ
)

= π∗(β0) · φn,∗(γ) .

Thanks to the isomorphisms (4.8), we have π∗(β0) ∈ T (J). So it remains to prove that φn,∗(γ) ∈
T (J), or in other words, we may assume that α is a monomial in {ηj}, {[x0,j ]} and {[∆k,l]} only.

A second step is to eliminate multiplicities in the variables {[∆k,l]}. Consider for example
[∆] = [∆1,2] ∈ R(C2). Denote by ∆: C → C2 the diagonal map and by pr2 : C2 → C the second
projection. Then we have

[∆]2 = ∆∗
(
∆∗([∆]

)
) = −∆∗(K) = −∆∗

(
∆∗ pr∗2(K)

)
= −[∆] ·K2 .

By pulling back to Cn, we obtain, for 1 6 k < l 6 n,

[∆k,l]
2 = −[∆k,l] ·Kl = −[∆k,l] ·

(
2ηl − 2[x0,l]− ψ

)
.

Together with the first step, this allows us to reduce to the case where α is a monomial in {ηj},{
[x0,j ]

}
and {[∆k,l]}, with multiplicity at most 1 for each [∆k,l].

Further, we may permute the indices of the {[∆k,l]}-factors by applying the identity

[∆k,l] · [∆l,m] = [∆k,m] · [∆l,m] . (6.4)

More precisely, if I = {i1, i2, . . . , iq} is a subset of {1, . . . , n}, we define the symbol

[∆I ] := [∆i1,i2 ] · [∆i1,i3 ] · · · [∆i1,iq ] .

It follows from (6.4) that [∆I ] is well defined. Also, we have identities [∆I ] · ηi1 = [∆I ] · ηi2 =
· · · = [∆I ] · ηiq and [∆I ] · [x0,i1 ] = [∆I ] · [x0,i2 ] = · · · = [∆I ] · [x0,iq ]. So for r, s > 0, we can write(

ηr[x0]s
)

∆I
:= [∆I ] · ηri1 · [x0,i1 ]s .

Combining with the first two steps, we may assume that the
{

[∆k,l]
}

-factors of α take the form

[∆I1 ] · [∆I2 ] · · · [∆Im ] ,

where the Ik are subsets of {1, 2, . . . , n} satisfying Ik ∩ Il = ∅ for k 6= l. This means that we are
reduced to the case where α is of the form

α =
∏

k∈{1,...,m}

(
ηrk [x0]sk

)
∆Ik

·
∏

j∈{1,...,n}
j /∈∪kIk

(
η
uj
j [x0,j ]

vj
)
,
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with I1, . . . , Im and {j} pairwise disjoint. In this case, the calculation of φn,∗(α) is rather straight-
forward: it follows almost from the definitions of [N ] and ∗ that

φn,∗(α) =
∏∗

k∈{1,...,m}

[#Ik]∗ι∗
(
ηrk [x0]sk

)
∗

∏∗

j∈{1,...,n}
j /∈∪kIk

ι∗
(
ηuj [x0]vj

)
,

where
∏∗ stands for product with respect to ∗ , and #Ik the cardinality of Ik.

Now, since T (J) is stable under [N ]∗ and ∗ , the last step is to prove that ι∗
(
ηr[x0]s

)
∈ T (J)

for all r, s > 0. By the identity η = ι∗(θ), we have ι∗
(
ηr[x0]s

)
= θr · ι∗

(
[x0]s

)
, which further

reduces the proof to showing that ι∗
(
[x0]s

)
∈ T (J). Note that ι∗

(
[x0]0

)
=
[
ι(C)

]
∈ T (J) and

ι∗
(
[x0]
)

= [o] ∈ T (J) (recall that [o] is the class of the zero section). For s > 2, we have

ι∗
(
[x0]s

)
= ι∗x0,∗x

∗
0

(
[x0]s−1

)
= o∗

(
(−ψ)s−1

)
∈ T (J) .

The proof of the inclusion ϕ∗
(
R•(C [∞])

)
⊂ T•(J) is thus completed.

Proof of Theorem 6.4. By Proposition 6.3(i) and (iv), we know that L ∈ R•(C [∞]) and that
R•(C [∞]) is stable under ξ∩−. Then the isomorphism (6.3) follows immediately from Lemma 6.5
and Proposition 6.6. By applying the Fourier transform F and Proposition 6.3(iii), we also
obtain (6.2).

Remark 6.7. Previously, Moonen and Polishchuk considered much bigger tautological rings
of C [∞] and J , for which they obtained results similar to Theorem 6.4 [MP10, Corollary 8.6].
The advantage of our minimalist version is that one can use the sl2-machinery on T (J) to study
enumerative problems on R(C [n]).

7. Tautological relations and Gorenstein properties

The sl2-action on the Jacobian side provides relations between tautological classes. Using these
relations, we study the Gorenstein property for R(Mg,1) (respectively, R(Mg)). We also formu-
late the corresponding Gorenstein property for the tautological ring T (Jg,1) of the universal

Jacobian. Then, we prove that T (Jg,1) being Gorenstein is equivalent to R
(
C

[n]
g,1

)
being Goren-

stein for all n > 0. A computation confirms the Gorenstein properties for small g, and suggests
when these properties may not hold.

7.1. Relations via sl2. We explain how the sl2-action gives relations in T (J). Following the
isomorphisms (4.8), we identify R(S) with ⊕di=0T(0,2i)(J) via the map π∗. Then we obtain rela-
tions in R(S) by restriction.

The idea is due to Polishchuk [Pol05]. By Theorem 4.5, the space of polynomial relations
between {pi,j} and ψ is stable under the action of D . In other words, if P is a polynomial in
{pi,j} and ψ, then P ({pi,j}, ψ) = 0 implies D

(
P ({pi,j}, ψ)

)
= 0. Now, consider monomials

α = ψspr1i1,j1p
r2
i2,j2
· · · prmim,jm with I := r1i1 + r2i2 + · · ·+ rmim > 2g .

By definition α ∈ ⊕j CH(I,j)(J). But since I > 2g, we know from the decomposition (3.7) that
α = 0. In terms of the Dutch house, the class α is simply outside the house. It follows that we
have relations

α = 0 , D(α) = 0 , D2(α) = 0, . . .
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7.2. This argument leads to the following formal definition. Let i, j run through all integers
such that i 6 j + 2 and that i+ j is even. Define

A := Q[{xi,j}, y]
/〈
x0,0 − g, {xi,j}i<0, {xi,j}j<0, {xi,j}j>2g−2

〉
.

In other words, the ring A is a polynomial ring in variables {xi,j} and y, with the convention
that x0,0 = g and xi,j = 0 when i < 0 or j < 0 or j > 2g − 2 (same as the classes {pi,j}). We
introduce a bigrading A = ⊕i,jA(i,j) by the requirement that xi,j ∈ A(i,j) and y ∈ A(0,2). Define
operators E, F and H on A by

E : A(i,j) → A(i+2,j) , α 7→ x2,0 · α ,
F : A(i,j) → A(i−2,j) , α 7→ F (α) ,

H : A(i,j) → A(i,j) , α 7→ (i− g)α ,

where

F :=
1

2

∑
i,j,k,l

(
yxi−1,j−1xk−1,l−1 −

(
i+ k − 2

i− 1

)
xi+k−2,j+l

)
∂xi,j∂xk,l +

∑
i,j

xi−2,j∂xi,j .

It is not difficult to verify that these operators generate a Q-linear representation sl2 → EndQ(A ).
Theorem 4.5 can then be reformulated as the existence of a surjective morphism of sl2-represen-
tations A → T (J), which maps xi,j to pi,j and y to ψ.

7.3. Denote by Mon(i,j) the set of non-zero monomials in A(i,j) (also without x0,0 as a factor).
For convenience we set Mon(0,0) := {1}. Consider the quotient

T̃ := A
/〈{

F ν(Mon(i,j))
}
i>2g,ν>0

〉
. (7.1)

The ring T̃ inherits a bigrading T̃ = ⊕i,jT̃(i,j) from A . The operators E, F and H induce

operators on T̃ , which we denote by e, f and h, respectively. Again, we obtain a representation
sl2 → EndQ(T̃ ). Further, since eg+1 = fg+1 = 0, we formally define the Fourier transform
on T̃ by

F := exp(e) exp(−f) exp(e) .

We also define the subring R̃ = ⊕iT̃(0,2i), graded by R̃ = ⊕iR̃i with R̃i := T̃(0,2i). We have

R̃i = A(0,2i)

/〈{
F I(Mon(2I,2i))

}
I>g

〉
= A(0,2i)

/〈
F g+1(Mon(2g+2,2i))

〉
.

Figure 3 illustrates the construction of R̃: take monomials on the (2g+2)th column of the Dutch
house (white blocks), and then apply the operator F a total of (g + 1) times to obtain relations
between the generators (black blocks).

To summarize this formal approach, we have the following proposition.

Proposition 7.4. There are surjective maps

Θ: T̃ −� T (J) and Θ|R̃ : R̃ −� R(S) , (7.2)

which map xi,j to pi,j and y to ψ, respectively.

We look at R̃ in more detail. The following lemma shows that one can eliminate certain
monomials that produce trivial relations.

Lemma 7.5. For all α ∈ Mon(2g+2,2i) of the form α = x2,0 · β, we have F g+1(α) = 0.
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Fourier transform F

2g − 2

2g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 = 2g + 2column:

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 10 = g + 2weight H:

0

2

4

6

8

10

12

14

= 2g − 2

row:

Figure 3. Producing relations (g = 8)

Proof. We know that F g+1(α) = F g+1(x2,0 · β) = F g+1E(β). Using a combinatorial identity for
sl2-representations (see for example [Moo09, Lemma 2.4]), we find

F g+1E(β) = EF g+1(β)− (g + 1)(g + 1− g − 1 + 1− 1)F g(β) = EF g+1(β) .

On the other hand F g+1(β) ∈ A(−2,2i) = 0, which implies F g+1(α) = 0.

As a result, if we write mon(2g+2,2i) ⊂ Mon(2g+2,2i) for the subset of monomials without x2,0

as a factor, then we have

R̃i = A(0,2i)

/〈
F g+1(mon(2g+2,2i))

〉
. (7.3)

The bold blocks in Figure 3 describe the lower bound of i such that mon(2g+2,2i) is non-empty.
In numerical terms, we have x2i

3,1 ∈ A(6i,2i) and 6i > 2g means i > g/3. Hence mon(2g+2,2i) = ∅
for all i 6 bg/3c.

Proposition 7.6. The elements x0,2, . . . , x0,2bg/3c and y generate R̃, with no relations in R̃i

for i 6 bg/3c.

Together with (4.7), this gives a new proof of Ionel’s result [Ion05, Theorem 1.5] that R(S)
is generated by κ1, . . . , κbg/3c and ψ.

Proof. The second part is immediate from (7.3) and the fact that mon(2g+2,2i) = ∅ for all i 6
bg/3c. For the first part, the goal is to relate all x0,2i with i > g/3 to the elements x0,2, . . . , x0,2bg/3c

203



Q. Yin

and y, and the idea is to use specific monomials to get these relations.

We proceed by induction. Suppose all {x0,2j}g/3<j<i can be expressed in terms of the elements
x0,2, . . . , x0,2bg/3c and y. Then consider the monomial x2i

3,1 ∈ A(6i,2i). Applying the operator F a

total of 3i times, we get F 3i(x2i
3,1), which is an element of A(0,2i) and vanishes in R̃. On the other

hand, by going through the definition of F we find

F 3i
(
x2i

3,1

)
= cx0,2i + α ,

where α is a polynomial in {x0,2j}j<i and y. It remains to show that c is non-zero.

The observation is the following: when we apply the operator F , the minus sign occurs every
time two factors (xi,j , xk,l) are merged into xi+k−2,j+l. If we start from x2i

3,1 and arrive at x0,2i, no
matter how we proceed we have to do the merging (2i− 1) times. This means that all non-zero
summands of c are of the form (−1)2g−1 times a positive number, hence negative. Then the sum
c is also negative.

7.7. Computing R(Mg,1). Our colleague Li Ma made a C++ program that computes R̃ for
a given genus g. It calculates relations and outputs the dimension of each component R̃i.

Meanwhile, based on an algorithm developed by Liu and Xu [LX12], Bergvall computed the
intersection numbers in R(Mg,1) for many values of g (see [Ber11, Section 4.2]). His computation
then gives the dimensions of the Gorenstein quotient G (Mg,1), which is the quotient of R(Mg,1)
by those classes that pair zero with all opposite degree classes. Note that this computation is
formal and does not involve actual relations in R(Mg,1).

There are surjective maps R̃ −� R(Mg,1) −� G (Mg,1). Our computation shows that for
g 6 19, the dimensions of R̃ and G (Mg,1) are equal, which means that we have R̃ ' R(Mg,1) '
G (Mg,1). In particular, we can confirm the following (for g 6 9 this has been obtained indepen-
dently by Bergvall; see [Ber11, Section 4.4]).

Corollary 7.8. The ring R(Mg,1) is Gorenstein for g 6 19.

However, the computer output is negative for g = 20 and some greater values of g. There, the
dimensions of R̃ are simply not symmetric. Again by comparing with the dimensions of G (Mg,1),
we know exactly how many relations are missing. The numbers are listed in Table 1. Note that
for g > 25, we only calculated a range near the middle degree, presuming that R(Mg,1) behaves
well near the top.

7.9. We include a brief discussion about R(Mg). Recall that R(Mg) is the Q-subalgebra of
CH(Mg) generated by {κi}. Faber’s original conjecture predicts that R(Mg) is Gorenstein with
socle in degree g − 2 [Fab99, Conjecture 1].

Denote by q : Mg,1 →Mg the forgetful map. It is not difficult to verify that q∗
(
R(Mg,1)

)
=

R(Mg). More precisely, for ψsκr1i1 · · ·κ
rm
im
∈ R(Mg,1), we have

q∗
(
ψsκr1i1 · · ·κ

rm
im

)
= κs−1κ

r1
i1
· · ·κrmim ,

with the convention that κ−1 = 0.

Together with (4.7), the identity above allows us to push relations in R(Mg,1) forward
to R(Mg). We used another computer program to do the work. Then we recover the well-known
result of Faber and Zagier that R(Mg) is Gorenstein for g 6 23. Note that when 20 6 g 6 23,
the missing relations in R(Mg,1) do not affect the Gorenstein property for R(Mg).
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Table 1. Computer output for g 6 28

g Mg,1 Mg

6 19 OK OK

20 codim 10: 1 missing OK

21 codim 11: 1 missing OK

22 codim 11: 1 missing OK

23 codim 12: 3 missing OK

24 codim 13: 2 missing codim 12: 1 missing

codim 12: 4 missing

25 codim 13: 5 missing codim 12: 1 missing

codim 12: 1 missing

26 codim 14: 6 missing codim 13: 1 missing

codim 13: 6 missing

27 codim 15: 3 missing codim 14: 1 missing

codim 14: 11 missing codim 13: 1 missing

codim 13: 1 missing

28 codim 15: 10 missing codim 14: 2 missing

codim 14: 10 missing

From g = 24 on, the computer output is again negative; see Table 1. Our computation for
g 6 28 suggests that we obtain exactly the same set of relations as the Faber–Zagier relations
(see [PP13, Section 0.2]). Notably in the crucial case of g = 24, we have not found the missing
relation in codimension 12. It is not known whether in theory we obtain the same relations.

7.10. We continue to study the Gorenstein properties for R
(
C

[n]
g,1

)
. A key step is to establish

a similar property for the Jacobian side. Denote by Jg,1 the universal Jacobian over Mg,1. The
tautological ring T (Jg,1) is thus defined.

The following lemma locates the expected socle for T (Jg,1).

Lemma 7.11. We have T i(Jg,1) = 0 for i > 2g − 1 and

T 2g−1(Jg,1) = T 2g−1
(2g−2)(Jg,1) ' Q .

Proof. The surjective map φg : C g
g,1 −�Jg,1 induces φ∗g : CH(Jg,1) ↪→ CH(C g

g,1) which, by (6.2),

restricts to an injective map φ∗g : T (Jg,1) ↪→ R(C g
g,1). Then it follows from (2.1) that T i(Jg,1) =

0 for i > 2g − 1, and that T 2g−1(Jg,1) is at most 1-dimensional.

Recall from (4.8) that T g−1
(2g−2)(Jg,1) ' Rg−1(Mg,1) ' Q. Applying the Fourier transform,

we obtain

T 2g−1
(2g−2)(Jg,1) = F

(
T g−1

(2g−2)(Jg,1)
)
' Q .

So T 2g−1(Jg,1) is indeed 1-dimensional, and is concentrated in T 2g−1
(2g−2)(Jg,1).

With the socle condition verified, we consider, for 0 6 i 6 2g − 1, the pairing

T i(Jg,1)×T 2g−1−i(Jg,1)
·−→ T 2g−1(Jg,1) ' Q . (7.4)

There is the following analog of Speculation 2.8.

205



Q. Yin

Fourier transform F
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Figure 4. Pairings in T (Jg,1) (g = 8)

Speculation 7.12. For 0 6 i 6 2g − 1, the pairing (7.4) is perfect. In other words, the ring
T (Jg,1) is Gorenstein with socle in degree 2g − 1.

The Dutch house gives an nice interpretation. In Figure 4, the socle component is located
precisely in the upper right corner. Assuming the Gorenstein property, one would expect a rota-
tional symmetry about the center of the picture. Together with the reflection symmetry about
the middle vertical line (given by the Fourier transform), it would then imply a mysterious reflec-
tion symmetry about the middle horizontal line. In particular, one should have T(j)(Jg,1) = 0
for j > 2g− 2, and using the grading in (3.7), a one-to-one correspondence between T(i,j)(Jg,1)
and T(i,2g−2−j)(Jg,1).

7.13. Computing T (Jg,1). Once again with the help of Li Ma, we computed the ring T̃
defined in (7.1) and its pairings. The computer output shows that for g 6 7, we do have T̃ 2g−1 '
Q and perfect pairings between T̃ i and T̃ 2g−1−i. Then, since the surjective map T̃ −� T (Jg,1)
is an isomorphism at the socle level, it is in fact an isomorphism. In particular, we can confirm
the following.

Corollary 7.14. The ring T (Jg,1) is Gorenstein for g 6 7.

For g = 8 and some greater values of g, however, the relations we find are not sufficient to
deduce the Gorenstein property for T (Jg,1).
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Further, one of the main results of this section is an equivalence of Gorenstein properties.

Theorem 7.15. Fix g > 0. The following three statements are equivalent:

(i) The ring T (Jg,1) is Gorenstein.

(ii) The ring R
(
C

[n]
g,1

)
is Gorenstein for some n > 2g − 1.

(iii) The ring R
(
C

[n]
g,1

)
is Gorenstein for all n > 0.

Proof. First assume n > 2g − 1. Recall that C
[n]
g,1 is a Pn−g-bundle over Jg,1. Then we obtain

from (5.4) and (6.2) an isomorphism of Q-algebras

R
(
C

[n]
g,1

)
' T (Jg,1)[ξn]

/〈
P (ξn)

〉
,

where P (ξn) is a polynomial in ξn of degree n − g + 1 with coefficients in T (Jg,1) (one shows

by induction that the coefficients of P (ξn) are in ϕn,∗
(
R
(
C

[n]
g,1

))
, which by Proposition 6.6 equals

T (Jg,1)). In particular, we have for the socle components

Rg−1+n
(
C

[n]
g,1

)
' T 2g−1(Jg,1) · ξn−gn ' Q .

For 0 6 i 6 g− 1 +n, we write Ri
(
C

[n]
g,1

)
' ⊕jT i−j(Jg,1) · ξjn with max{0, i− 2g+ 1} 6 j 6

min{i, n− g}. Then the pairing (2.3) corresponds to(⊕
j

T i−j(Jg,1) · ξjn
)
×
(⊕

k

T g−1+n−i−k(Jg,1) · ξkn
)
·−→ T 2g−1(Jg,1) · ξn−gn ' Q .

On the other hand, observe that(
T i−j(Jg,1) · ξjn

)
·
(
T g−1+n−i−k(Jg,1) · ξkn

)
= 0 if j + k < n− g .

In other words, if we choose a suitable basis for each Ri
(
C

[n]
g,1

)
, then the pairing matrix of (2.3) is

block triangular. Moreover, the blocks on the diagonal correspond exactly to the case j+k = n−g,
that is, to the pairing(

T i−j(Jg,1) · ξjn
)
×
(
T 2g−1−i+j(Jg,1) · ξn−g−jn

) ·−→ T 2g−1(Jg,1) · ξn−gn ' Q ,

which in turn corresponds to the pairing

T i−j(Jg,1)×T 2g−1−i+j(Jg,1)
·−→ T 2g−1(Jg,1) ' Q .

In summary, saying that (2.3) is perfect for all 0 6 i 6 g−1+n is equivalent to saying that (7.4)
is perfect for all 0 6 i 6 2g − 1. This settles the proof for (some or all) n > 2g − 1.

For the remaining n, the observation is that R
(
C

[n]
g,1

)
being Gorenstein implies R

(
C

[n−1]
g,1

)
being Gorenstein. To see this, take a class α ∈ Ri

(
C

[n−1]
g,1

)
that pairs zero with all classes in

Rg+n−2−i(C [n−1]
g,1

)
. Recall the correspondence δn : C

[n]
g,1 ` C

[n−1]
g,1 defined in (5.2), and consider

the pairing of δ∗n(α) with all γ ∈ Rg+n−1−i(C [n]
g,1

)
. It then follows from the projection formula

that each summand of δ∗n(α) · γ is zero, and hence δ∗n(α) · γ = 0. Assuming that R
(
C

[n]
g,1

)
is

Gorenstein, we get δ∗n(α) = 0. Since δ∗n is injective, we have α = 0 and R
(
C

[n−1]
g,1

)
is Gorenstein.

The proof is thus completed.

By Corollary 7.14 and the discussion in Section 2, we obtain an immediate consequence.

Corollary 7.16. The rings R
(
C

[n]
g,1

)
and R

(
C

[n]
g

)
are Gorenstein for g 6 7 and for all n > 0.
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Finally, we conclude by proposing an alternative description of the tautological rings. As
is explained in the introduction, this new description is coherent with Polishchuk’s philosophy
in [Pol05], and appears more geometric than the Gorenstein expectation.

Conjecture 7.17. The map Θ: T̃ → T (Jg,1) in (7.2) is an isomorphism.
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