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TAUTOLOGICAL CLASSES
WITH TWISTED COEFFICIENTS

 D PETERSEN, M TAVAKOL  Q YIN

A. – LetMg be the moduli space of smooth genus g curves. We define a notion of Chow
groups ofMg with coefficients in a representation of Sp.2g/, and we define a subgroup of tautological
classes in these Chow groups with twisted coefficients. Studying the tautological groups of Mg with
twisted coefficients is equivalent to studying the tautological rings of all fibered powers Cng of the
universal curveCg !Mg simultaneously. By taking the direct sum over all irreducible representations
of the symplectic group in fixed genus, one obtains the structure of a twisted commutative algebra on
the tautological classes. We obtain some structural results for this twisted commutative algebra, and
we are able to calculate it explicitly when g � 4. Thus we completely determine the tautological rings
of all fibered powers of the universal curve overMg in these genera. We also give some applications to
the Faber conjecture.

R. – Notons parMg l’espace de modules des courbes lisses de genre g. Nous définissons une
notion de groupes de Chow deMg à coefficients dans une représentation de Sp.2g/, et nous définissons
en outre un sous-groupe de classes tautologiques dans ces groupes de Chow à coefficients tordus.
L’étude des groupes tautologiques de Mg à coefficients tordus est équivalente à l’étude simultanée
des anneaux tautologiques de toutes les puissances fibrées Cng de la courbe universelle Cg ! Mg .
En prenant la somme directe de toutes les représentations irréductibles du groupe symplectique en
genre fixe, on obtient sur les classes tautologiques la structure d’une algèbre tordue commutative.
Nous obtenons des résultats structurels pour cette algèbre tordue commutative, et nous la calculons
explicitement lorsque g � 4. Ainsi, nous déterminons complètement les anneaux tautologiques de
toutes les puissances fibrées de la courbe universelle sur Mg pour g � 4. Quelques applications à la
conjecture de Faber sont données.

1. Introduction

Say that g � 2, and let C ng be the moduli space of smooth genus g curves with n ordered
not necessarily distinct marked points. Equivalently, C ng is the n-fold fibered power of the
universal curve over Mg with itself. Suppose that we want to study the cohomology of the
spacesC ng . A natural approach is to apply the Leray-Serre spectral sequence for the fibration
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1180 D. PETERSEN, M. TAVAKOL AND Q. YIN

f WC ng ! Mg that forgets the n markings. Since f is smooth and proper, the spectral
sequence degenerates by Deligne’s decomposition theorem [8], and

H k.C ng ;Q/ Š
M

pCqDk

Hp.Mg ; R
qf�Q/:

To each dominant weight � of Sp.2g/ there is associated a local system Vh�i on Ag , the
moduli space of principally polarized abelian varieties of dimension g. The sheaves Rqf�Q
decompose into direct sums of local systems Vh�i, where we use the notation Vh�i also for
their pullback along the Torelli map. The local systems Vh�i occuring as summands ofRf�Q
are precisely those with j�j � n.

It follows that the two collections of cohomology groups

H �.C ng ;Q/ for n � N and H �.Mg ;Vh�i/ for j�j � N

contain more or less the same information. However, this information is “packaged” in a
much more efficient way in the local systems. The cohomology groups of C ng are generally
very large, but when expressed in terms of local systems we see that most of the cohomology
just encodes how the complex Rf�Q decomposes into summands—that is, it encodes the
Künneth formula for the n-fold self-product of a genus g curve, and some representation
theory of Sp.2g/. By studying the local systems we may focus our attention on the “inter-
esting” part of the cohomology in a systematic way.

Our first goal of this paper is to do the same thing for the tautological rings of C ng . We
remind the reader that the tautological ringR�.C ng / is the subalgebra of CH�.C ng / generated
by the classes of the diagonal loci �ij where two markings coincide, the classes  1; : : : ;  n
which are the Chern classes of the n cotangent line bundles at the marked points, and the
Morita-Mumford-Miller classes �d . The image of R�.C ng / in cohomology under the cycle
class map is denoted RH �.C ng /.

We will be able to define tautological cohomology groups RH �.Mg ;Vh�i/ � H �.Mg ;Vh�i/,
with the property that the collections of tautological groups

RH �.C ng / for n � N and RH �.Mg ;Vh�i/ for j�j � N

bear exactly the same relation to each other as the collections of cohomology groups
H �.C ng ;Q/ and H �.Mg ;Vh�i/. Thus we are able to decompose the tautological groups
of C ng into pieces indexed by local systems; the tautological groups of the local systems
package all the information about the tautological groups of C ng in a much more efficient
way, and working with twisted coefficients allows us to “zoom in” on particularly interesting
parts of the tautological groups. Moreover, the groups RH �.Mg ;Vh�i/ turn out to be more
computable than the groups RH �.C ng /.

In fact, we will actually not only do this on the level of cohomology groups, but for Chow
groups. (The results are new already on the level of cohomology, though.) For this we should
not work with local systems onMg , but with relative Chow motives over the baseMg . Instead
of decomposing the complex Rf�Q into local systems Vh�i, we will decompose the Chow
motive h.C ng =Mg/ into Chow motives Vh�i which are motivic lifts of the local systems Vh�i.
Once the correct framework is in place, working with motives rather than local systems
provides no extra difficulties.
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TAUTOLOGICAL CLASSES WITH TWISTED COEFFICIENTS 1181

The utility of working with the local systems is illustrated by our Theorem 10.1, in which
we completely determine all tautological groups with twisted coefficients when g D 2; 3; 4.
It is an easy matter to compute from Theorem 10.1 the ranks of all the groupsRk.C ng / when
g � 4, the decompositions of these tautological groups into Sn-representations, and the
socle pairing. Thus a lot of useful information about the tautological rings is encoded in a
few lines of information about the local systems.

Since the tautological rings are defined in terms of explicit generators, understanding
the tautological rings is equivalent to finding the complete list of relations between these
generators. A conjectural complete description of the tautological rings was formulated by
Faber [12]. Namely, a theorem of Looijenga [43] asserts thatRg�2Cn.C ng / Š Q, and that the
tautological ring vanishes above this degree. Thus any two monomials of degree g � 2 C n
in the generators of the tautological ring are proportional to each other, and the proof of
the �g�g�1-conjecture [19, 21] gives explicit proportionalities. (In fact, both Looijenga’s
theorem and the proportionalities were part of Faber’s original conjecture.) What Faber then
conjectured was that any possible relation which is consistent with the pairing into the top
degree is a true relation; that is, the ringR�.C ng / should satisfy Poincaré duality. The general
belief now is that this conjecture should fail. One reason is that the original conjecture was
later extended to a “trinity” of conjectures for the spacesM rt

g;n,M ct
g;n andM g;n [56, 13], and

the conjectures for M 2;n and M ct
2;n are known to fail when n � 20 and n � 8, respectively

[62, 60]. The Faber conjecture for the spacesM rt
g;n is equivalent to the Faber conjecture forC ng

[59], and is still open. It has more recently been conjectured that Pixton’s extension of the
FZ relations (see Section 9) gives rise to all relations between tautological classes, and this
conjecture is known to contradict the Faber conjecture [63].

An interesting aspect of our work is that even though the decomposition of the tauto-
logical groups R�.C ng / into pieces indexed by representations of Sp.2g/ is not compatible
with the ring structure, the multiplication into the top degree behaves very well: the matrix
describing the top degree pairing is block diagonal with respect to our decomposition of
the tautological groups. This has the consequence that the Faber conjecture can be fruit-
fully studied from the perspective of the motives Vh�i—Poincaré duality can be checked for
each Vh�i separately. Using this we show that the Faber conjecture is true for the moduli
space C ng (hence also the space M rt

g;n) when g � 4 and n is arbitrary, and we make some
progress in trying to understand likely failures of the Faber conjectures in higher genera.

A completely different perspective on our results is provided by work of Kawazumi-
Morita and Hain. For a fixed genus g � 2, one can define a structure of commutative ring
on the direct sum

Tg D
M
�

H �.Mg ;Vh�i/˝ V�
h�i;

where the direct sum is taken over all dominant weights � of Sp.2g/. Let Ag D
V

V�
h1;1;1i

=.V�
h2;2i

/

denote the exterior algebra on the representation V�
h1;1;1i

, modulo the ideal generated by the

subrepresentation V�
h2;2i
�
V2V�

h1;1;1i
. If V�

h1;1;1i
is placed in degree 1, then one can define

a natural Sp.2g/-equivariant homomorphism of graded commutative rings 'WAg ! Tg . In
particular, we get a morphism between the subalgebras of symplectic invariants,

'Sp.2g/
WASp.2g/
g ! TSp.2g/

g D H �.Mg ;Q/:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1182 D. PETERSEN, M. TAVAKOL AND Q. YIN

According to a theorem of Kawazumi-Morita [38] the image of 'Sp.2g/ coincides with the
tautological cohomology ring of Mg . For this reason it is natural, following Hain [25],
to define the image of ' as the “tautological subalgebra” Rg � Tg . By considering the
individual summands of Rg one obtains an a priori completely different definition of the
tautological subgroup of H �.Mg ;Vh�i/. We prove in Theorem 12.8 that the two definitions
coincide, which in particular re-proves the theorem of Kawazumi-Morita. Our low genus
results can be seen as calculations of the ring Rg for g � 4; these are the first nontrivial
cases where this ring is completely known. A consequence of our general results is that the
morphism 'WAg ! Tg can be lifted to take values in Chow groups rather than cohomology
groups, answering a question of Hain. A final remark is that Morita has conjectured [51] that
the morphism 'Sp.2g/ is injective, so that A

Sp.2g/
g is isomorphic to the tautological ring ofMg

for any g. By extension it is natural to ask also whether ' is injective. Our results in genus
four show that this is not the case, however: A4 ! R4 is not an isomorphism.

Let us now state in some more detail what we do in this paper:

1. For any partition �1 � �2 � � � � � �g � 0, we construct a relative Chow motive Vh�i
over the moduli space Mg , which is a motivic version of the local system over Mg

associated to a representation of Sp.2g/ of highest weight �.

2. For any n � 0, we let h.C ng =Mg/ be the relative Chow motive over Mg given by the
n-fold fibered power of the universal curve. We prove that there exists a direct sum
decomposition

(1) h.C ng =Mg/ Š
M
i

Vh�i i
˝ Lmi ;

where L denotes the Lefschetz motive, and in particular we get upon taking Chow
groups

(2) CHk.C ng / Š
M
i

CHk�mi .Mg ;Vh�i i
/:

3. We construct an algebra of correspondences defined by tautological classes, which
acts on the motives h.C ng =Mg/, and hence on the Chow groups CHk.C ng /. Using
this algebra we obtain a canonical choice of decomposition (1), and a method for
computing the projection of any class in CHk.C ng / into any particular summand on
the right hand side of (2).

4. We define subgroups Rk.Mg ;Vh�i/ � CHk.Mg ;Vh�i/ with the property that for any
decomposition of h.C ng =Mg/ as in Eq. (1), we have

Rk.C ng / Š
M
i

Rk�mi .Mg ;Vh�i i
/:

We call the groupsRk.Mg ;Vh�i/ the tautological groups ofMg with twisted coefficients.
Informally, all information about the tautological rings R�.C ng / is contained in the
groups Rk.Mg ;Vh�i/.

5. The motives Vh�i come with a duality pairing Vh�i˝Vh�i ! Lj�j, which is the motivic
avatar of the fact that all representations of the symplectic group are self-dual. We
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TAUTOLOGICAL CLASSES WITH TWISTED COEFFICIENTS 1183

prove that the socle pairing

(3) Rk.C ng /˝R
g�2Cn�k.C ng /! Rg�2Cn.C ng / Š Q

is a direct sum of pairings of the form

(4) Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Rg�2Cj�j.Mg ;Lj�j/ D Rg�2.Mg/ Š Q

for j�j � n. In particular, R�.C ng / is a Gorenstein algebra—that is, (3) is a perfect
pairing for all k—if and only if (4) is a perfect pairing for all k and all j�j � n.

6. If we fix a genus and consider the direct sum over all partitions,M
�

R�.Mg ;Vh�i/˝ ��T ;

where ��T denotes the representation of the symmetric group corresponding to the
partition conjugate to �, we obtain the structure of a twisted commutative algebra. The
� D 0 component of this twisted commutative algebra is just the tautological ring
ofMg . We prove using the FZ relations that this twisted commutative algebra is finitely
generated with an explicit bound for the degrees of the generators, which for � D 0

specializes to the theorem of Ionel-Morita [31, 50].

7. For g D 2; 3; 4we completely determine the groupsRk.Mg ;Vh�i/ for all k and �. A key
input is that the twisted commutative algebra described in point (vi) above will in these
low genera have only 0, 2 and 3 generators, respectively, by our generalization of the
theorem of Ionel-Morita. As a consequence we can compute the ranks Rk.C ng / for all
k and n in these genera, and how these tautological groups decompose into irreducible
representations of Sn. It also follows that R�.C ng / is always a Gorenstein algebra in
these genera.

The algebra of projectors described in point (iii) above seems like a particularly powerful
tool for “zooming in” on a specific part of the tautological ring. As explained in Section 10.4
we expect that the Faber conjecture fails when g D 5 and n D 8 for the motives Vh2;2;2;2i
and Vh3;2;2;1i. Using our algebra of projectors we can project specific tautological classes
onto these summands, which gives explicit classes which pair to zero with everything in
complementary degree but which are conjecturally nonzero.

It would be interesting to try to extend our results from Mg to the Deligne-Mumford
compactification M g . On the level of cohomology this would correspond to studying the
forgetful maps f WM g;n !M g rather than C ng !Mg . Then f is no longer smooth, but still
proper, so by the decomposition theorem [3] the complex Rf�Q is a direct sum of perverse
sheaves. In fact, each of these perverse sheaves will be the pushforward along some gluing
map � Y

v2Vert.�/

M g.v/;n.v/

�
=Aut.�/!M g;n

of the intermediate extension of a product of local systems associated to representations
of the smaller symplectic groups Sp.2g.v//. This suggests that one should try to define a
subspace of tautological classes inside the intersection cohomology groups IH �.M g ;Vh�i/
for each genus g and dominant weight �, and that these tautological groups should “govern”
all of the tautological groups R�.M g;n/ much in the same way as the tautological groups

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1184 D. PETERSEN, M. TAVAKOL AND Q. YIN

of V� onMg govern all the tautological groups R�.C ng /. Similarly there should be tautolog-
ical classes inside IH �.M ct

g ;Vh�i/ D H �.M ct
g ;Vh�i/ which govern all the tautological rings

R�.M ct
g;n/. The result [60, Theorem 3.4] can be seen as calculating the tautological subspace

of H �.M ct
2 ;Vh�i/ for all �. Moreover, it should be possible to carry out the suggestions in

this paragraph also on the level of Chow groups, using the intersection chow motives of
Corti-Hanamura [7].

1.1. How to read this paper

As mentioned already, this paper is written in the language of Chow motives. Readers who
would prefer not to know what a motive is should still be able to follow the arguments by
translating the arguments to cohomology using the following table:

Chow motive h.X=S/ of a family f WX ! S Complex Rf�Q in the derived category of S

Decomposition h.X=S/ Š
M
i

hi .X=S/ Decomposition Rf�Q Š
M
i

Rif�QŒ�i �

Chow group CHk.S; hi .X=S// Cohomology group H2k�i .S;Rif�Q/

Lefschetz motive L Constant sheaf Q, considered as a complex
concentrated in degree 2

Chow motive Vh�i over Mg
Local system Vh�i on Mg , considered as a complex
concentrated in degree j�j

Thus the only real complication is the indexing: the kth Chow group of the motive Vh�i˝Li

corresponds to the .2k � j�j � 2i/th cohomology group of the local system Vh�i.

Sections 2–4 of this paper explain necessary preliminary material from the representation
theory of the symplectic group and about Chow motives. In particular, Section 4 explains
a result of Ancona which is used to lift our methods from cohomology to Chow groups. It
could be a good idea for the reader to start from Section 5 and refer back to the previous
sections only as needed. Section 5 provides the theoretical backbone to the article, and
Section 6 provides some simple (hopefully instructive) example calculations. In Sections 7–
10 the theory is applied and our main results are proven. The concluding Sections 11 and 12
explain the relationship between what we do and previous work of Looijenga, Hain, Morita,
and Kawazumi.

1.2. Conventions

Representations of groups will be considered as left representations unless specified other-
wise. However, if V is a left representation, then we consider its dual V � as a right represen-
tation. (Recall that the dual of a left module over a noncommutative ring is a right module,
and vice versa.)

Chow groups are always taken with rational coefficients.

We occasionally consider cohomology groups as well as Chow groups. Although we write
cohomology with rational coefficients throughout, it will be clear that all results could have
been carried out equally well in the étale setting, with coefficients in Q`.
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2. Chow motives

The results of this paper will be formulated in the language of Chow motives. The first
parts of this section briefly recall standard definitions for the reader’s convenience and to fix
conventions. For a more detailed and motivated introduction see e.g., [66].

2.1. The category of Chow motives

Let S be a smooth connected scheme or Deligne-Mumford stack over a field k that we
assume algebraically closed for simplicity. LetX and Y be smooth proper schemes over S . (1)

We define a graded vector space of correspondences over S as follows: if X is connected and
X ! S is of relative dimension d then CorrS .X; Y / D CHdC�.X �S Y /; in the general case
we define CorrS .

`
˛ X˛; Y / D

Q
˛ CorrS .X˛; Y /. We write

f WX ` Y

to denote that f is a correspondence from X to Y . The composition of f WX ` Y and
gWY ` Z is defined by

g ı f D .p13/�.p
�
12.f / � p

�
23.g//;

(note the reversed ordering!) where pij denotes the projection from X �S Y �S Z onto the
i th and j th factor of the fibered product. One checks that composition of correspondences is
associative and that the diagonal, considered as a correspondenceX ` X , acts as the identity
idX , so that CorrS is a category.

We say that a correspondence pWX ` X of degree 0 is idempotent if p ı p D p. We also
say that p is a projector.

We define the category MotS of Chow motives over S . The objects of MotS are triples
.X; p; n/ where X is smooth and proper over S , pWX ` X is a projector, and n 2 Z.
Morphisms are defined by

MotS ..X; p; n/; .Y; q;m// D q ı Corrm�nS .X; Y / ı p � CorrS .X; Y /;

where CorrrS .X; Y / denotes the degree r part of CorrS .X; Y /, and q ı Corrm�nS .X; Y / ı p

denotes the joint image of the projectors p and q acting on CorrS .X; Y / on the right and
on the left, respectively.

The Lefschetz motive over S is defined as .S; id;�1/ and will be denoted by LS . If S is
clear from context we will omit the subscript and write L.

We define a tensor product on motives as follows. If M D .X; p; n/ and N D .Y; q;m/

then M ˝ N D .X �S Y; p � q; nCm/. This makes MotS a symmetric monoidal category
with monoidal unit 1 D .S; id; 0/. The category is in fact rigid symmetric monoidal, i.e.,
every object has a dual: ifX is of pure dimension d over S , then the dual ofM D .X; p; n/ is

(1) If S is a Deligne-Mumford stack we do not impose the condition thatX and Y are schemes, only that the maps
to S are representable in schemes.
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1186 D. PETERSEN, M. TAVAKOL AND Q. YIN

M � D .X; pt ; d �n/, where pt denotes the transpose correspondence. The category also has
direct sums. The sum .X; p; n/˚ .Y; q;m/ is the easiest to define when n D m, in which case
it is given by .X t Y; p ˚ q; n/.

LetVS be the category of smooth proper schemes over S . There is a contravariant functor
VS ! MotS which is given on objects by X 7! .X; id; 0/ and which maps an S -morphism
f WY ! X to the class of the transpose of its graph in CHdimS .X/.X �S Y /. For X ! S

smooth and proper we denote by h.X=S/ the corresponding Chow motive over S . Note
that h.X=S/� Š h.X=S/˝ L�dimS X (Poincaré duality).

2.2. Chow groups and cohomology groups of a Chow motive

Let M be a Chow motive over S . We define its Chow groups by CHk.S;M/ D

MotS .LkS ;M/. We can make this definition more explicit as follows. Note that for X a
smooth proper scheme over S we have CH�.X/ D CorrS .S;X/. As such, the algebra
CorrS .X;X/ acts on the Chow groups ofX on the left. LetM D .X; p; n/ be a Chow motive
over S . Then its Chow groups are given by

CHk.S;M/ D p ı CHkCn.X/:

R 2.1. – It is also true that CH�.X/ D CorrS .X; S/ (up to a degree shift),
so that CorrS .X;X/ acts on the Chow groups of X on the right. One could also define
CHk.S;M/ D CHkCn.X/ ı pt , where pt denotes the transpose correspondence of p.

Let us suppose that S is a complex algebraic variety. There is a Betti realization functor
real W MotS ! Db.S/ into the bounded derived category of sheaves of Q-vector spaces on S .
For �WX ! S a smooth proper scheme over S we have

real h.X=S/ D R��Q:

The algebra CorrS .X;X/ acts on the complexR��Q, and for pWX ` X idempotent we define
real .X; p; n/ D Im.p�WR��Q ! R��Q/Œ2n�, where Œ2n� denotes the suspension functor
in Db.S/. There is a cycle class map

CHk.S;M/! H2k.S; realM/

(where H denotes hypercohomology) which on motives of the form h.X=S/ agrees with the
usual cycle class map:

CHk.X/ D CHk.S; h.X=S//! H2k.S; realM/ D H2k.S;R��Q/ D H 2k.X;Q/:

Over an arbitrary field there is an analogous realization functor from MotS to the derived
category of étale Q`-sheaves on S .
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2.3. Künneth decomposition, the summands h0 and h2d

Let�WX ! S be smooth, proper and purely of relative dimension d . By Deligne’s theorem
[8] there is an isomorphism in Db.S/:

R��Q Š
2dM
iD0

Ri��QŒ�i �:

In particular, this decomposition implies that the Leray spectral sequence for � degenerates,
and H k.X;Q/ Š

L
pCqDkH

p.S;Rq��Q/: It is expected that this decomposition always
lifts to the category of Chow motives. Thus there should be an isomorphism

h.X=S/ Š

2dM
iD0

hi .X=S/

for which real hi .X=S/ Š Ri��QŒ�i �. In particular one would have

CHk.X/ Š

2dM
iD0

CHk.S; hi .X=S//:

The summands h0 and h2d can easily be constructed unconditionally. Let us suppose
thatX is connected, and let z 2 CHd .X/ be a cycle of degree 1 on each fiber ofX ! S , e.g.,
a section. One checks that the two correspondences X ` X given by

�0 D Œz �X� and �2d D ŒX � z�

are idempotent. If we define h0.X=S/ D .X; �0; 0/ and h>0.X=S/ D .X; idX � �0; 0/ then

h.X=S/ Š h0.X=S/˚ h>0.X=S/

which on realizations gives the decomposition

R��Q Š R0��Q˚ ��1R��Q;

where � denotes a truncation functor in the derived category Db.S/. Similarly we get
decompositions h.X=S/ Š h<2d .X=S/ ˚ h2d .X=S/ with realization ��2d�1R��Q ˚
R2d��QŒ�2d�.

L 2.2. – Let X and z be as above. Then h0.X=S/ Š 1 and h2d .X=S/ Š Ld .

Proof. – We prove only the second isomorphism. By definition we have

MotS .Ld ; h2d .X=S// D �2d ı CHd .X/

MotS .h
2d .X=S/;Ld / D CH0.X/ ı �2d :

It is clear that �2d ı z D z and 1 ı �2d D �0 ı 1 D 1 (cf. Remark 2.1). As such the
cycle z and the fundamental class 1 define morphisms Ld ! h2d .X=S/ ! Ld . Moreover,
their composition in MotS .Ld ;Ld / D CH0.S/ is given by ��.z/ D 1, the identity. Their
composition in MotS .h

2d .X=S/; h2d .X=S// D �2d ı CHd .X �S X/ ı �2d is given by the
correspondence �2d , which is also the identity.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1188 D. PETERSEN, M. TAVAKOL AND Q. YIN

One might want to define a motive h?.X=S/ D .X; id��0��2d / to get a decomposition
h.X=S/ Š h0.X=S/˚ h?.X=S/˚ h2d .X=S/, where the Betti realization of h?.X=S/ is the
complex ��1��2d�1R��Q. Unfortunately the correspondence id��0��2d is not in general
idempotent, since �0 and �2d are not in general orthogonal when the base scheme S is
nontrivial; this will be clear from the proof of the following lemma. To make the projectors
orthogonal one needs to slightly modify the cycle z.

L 2.3. – Let �WX ! S be as above. Let z 2 CHd .X/ be a cycle of degree 1 on each
fiber over S . Define z0 D z� 1

2
����.z

2/. Then z0 also has degree 1 on each fiber, the projectors
�0 D Œz

0 �X�, �2d D ŒX � z0� are orthogonal, and there is a decomposition

h.X=S/ Š h0.X=S/˚ h?.X=S/˚ h2d .X=S/

with h0.X=S/ D .X; �0; 0/, h?.X=S/ D .X; idX ��0��2d ; 0/ and h2d .X=S/ D .X; �2d ; 0/.

Proof. – We check that �0 and �2d are orthogonal. We have

�0 ı �2d D .p13/�.p
�
12.�2d / � p

�
23.�0// D .p13/�.p

�
1 .z
0/ � p�3 .z

0// D 0

and

�2d ı �0 D .p13/�.p
�
12.�0/ � p

�
23.�2d // D .p13/�.p

�
2 .z
0/2/:

From the cartesian diagram

X �S X �S X X �S X

X S

p13

p2 ���

�

we get .p13/�.p�2 .z
0/2// D .� � �/�.��.z

0/2/: But now

��.z
0/2 D ��.z

2
� z � ����z

2
C
1

4
.����z

2/2/ D ��.z
2/ � ��.z

2/C 0 D 0:

R 2.4. – The decomposition h.X=S/ Š h0.X=S/˚ h?.X=S/˚ h2d .X=S/ is not
unique: it depends very much on the choice of a cycle z. Nevertheless each of the summands
on the right hand side is determined up to a canonical isomorphism, independently of z.
Indeed after Lemma 2.2 we only need to verify this for h1, and a small verification shows
that the diagonal in X �S X composed with the respective projectors gives the required
isomorphism.

2.4. Künneth decomposition for abelian schemes

The decomposition of Lemma 2.3 provides a Künneth decomposition for families of
curves (or surfaces with no odd cohomology). The other case we will use in this paper is the
existence of a motivic Künneth decomposition for abelian schemes:

T 2.5 (Shermenev, Deninger-Murre, Künnemann). – Let A ! S be an abelian
scheme of relative dimension g. There exists a Künneth decomposition

h.A=S/ Š

2gM
iD0

hi .A=S/
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in which we have hi .A=S/ Š Symih1.A=S/ for all i , and Symih1.A=S/ D 0 for i > 2g.

Shermenev’s proof of this fact starts by choosing a curve C such that its jacobian maps
surjectively onto A. This makes the decomposition highly noncanonical, and limits the
construction to the absolute case—there is no reason for a general abelian scheme to be a
quotient of the jacobian of a family of curves. By contrast, the constructions of Deninger-
Murre [10] and Künnemann [39] use Fourier theory and are canonical and functorial.

The Deninger-Murre decomposition can be described using Manin’s identity principle (see
e.g., [66, 2.3]), which says that although a Chow motive M over S is not determined by its
Chow groups, it is determined by its Chow groups after any base change; more precisely, the
functor that takes a smooth proper morphism f WT ! S to the Chow groups of the relative
Chow motive f �M over T , determines M completely. For an abelian scheme A ! S we
have the morphism ŒN �WA! A of multiplication byN > 1, and the Chow groups of A (and
any base change ofA) can be decomposed canonically into eigenspaces forN , for allN . The
summand hi .A=S/ in the Deninger-Murre decomposition corresponds to theN i -eigenspace
of the Chow groups of A.

P 2.6. – Let C ! S be a family of smooth curves, and J ! S the jacobian.
Then there exists an isomorphism of Chow motives h1.C=S/ Š h1.J=S/, where h1.C=S/ is the
summand of h.C=S/ described in Lemma 2.3 and h1.J=S/ is the summand of h.J=S/ provided
by the decomposition of Deninger-Murre.

Sketch of proof. – After replacing S with a finite étale Galois cover we may assume
that C ! S has a section. It is enough to prove the isomorphism under this assump-
tion; since we work with Q-coefficients we may then take Galois invariants to obtain the
conclusion over our original base scheme. The section defines an Abel-Jacobi map C ! J

and puts us in the situation considered by Shermenev [67]. Shermenev’s construction
provides a motivic Künneth decomposition h.J=S/ D

L
i h
i .J=S/ for which it is clear from

construction that h1.C=S/ D h1.J=S/. Unfortunately the resulting motivic decomposition
of h.J=S/ is in general different from that of Deninger-Murre.

The claim is now that even though the two direct sum decompositions of the Chow groups
of J are different, they give rise to the same descending filtration of the Chow groups, so that
the two associated graded objects are isomorphic. Since S is arbitrary it will then hold also
after base change to an arbitrary smooth properS 0 ! S , and from Manin’s identity principle
it will then follow that the motives hi .J=S/ obtained from Shermenev’s decomposition are
isomorphic to those of Deninger-Murre. The fact that the two descending filtrations of Chow
groups coincide is part of a theorem of Moonen-Polishchuk [47, Theorem 4].

3. Preliminaries from representation theory

We define a partition to be a non-increasing sequence of natural numbers which eventually
reaches zero: � D .�1 � �2 � �3 � � � � � 0 � 0 � � � � /. The weight of a partition is defined
as j�j D

P
i �i . The length of a partition is defined as `.�/ D maxfi W �i ¤ 0g. Partitions

are often identified with Young diagrams. Our convention for Young diagrams is that the
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numbers �i are the lengths of the rows in the diagram. We denote the conjugate partition
of �, obtained by reflecting the Young diagram across the diagonal, by �T .

3.1. Schur-Weyl duality

Let V be a vector space over Q. (Everything that follows is true more generally over any
field of characteristic zero.) Partitions with `.�/ � dim.V / are in a natural bijection with
irreducible finite dimensional representations of GL.V / via the theory of highest weight
vectors. We write V� for the representation of GL.V / corresponding to �. For example, if
� D .n � 0 � 0 � � � � /, then V� D Symn.V / and V�T D

Vn
V . If `.�/ > dim.V /

then we define V� to be zero. The representations of the symmetric group are also indexed
by partitions: the partitions with j�j D n are in natural bijection with the representations of
the symmetric group Sn, which we denote by ��. If � D .n � 0 � 0 � � � � / then �� is the
trivial representation and ��T is the sign representation.

The vector space V ˝n carries commuting left and right actions by GL.V / andSn, respec-
tively. Schur-Weyl duality in its most basic form is an expression of how to decompose V ˝n

into irreducible representations under this action of GL.V / �Sn:

V ˝n D
M
j�jDn

V� ˝ �
�
� :

Although �� Š ��� , we dualize to emphasize that we are considering a right action.
Schur-Weyl duality can be formulated more abstractly in terms of mutual centralizers.

Namely, V ˝n admits commuting actions of GL.V / and the group algebra QŒSn�, and
Schur-Weyl duality is equivalent to the claim that the centralizer of GL.V / in EndQ.V

˝n/

equals the image of QŒSn� in EndQ.V
˝n/, and vice versa. A useful consequence of this

more abstract viewpoint is that it produces for all � an explicit idempotent endomorphism
of V ˝n whose image is exactly the summand V� ˝ ��

�
. Namely, the group algebra QŒSn�

contains a family of orthogonal idempotents called Young symmetrizers. If c� denotes a
Young symmetrizer corresponding to the partition �, then the image of c� is the summand
V� ˝ �

�
�

of V ˝n.

3.2. Symplectic groups and Weyl’s construction

Suppose that the vector space V is equipped with a symplectic form. Then partitions of
length `.�/ � 1

2
dim.V / are in a bijection with irreducible finite dimensional representations

of Sp.V /, and we write Vh�i for the representation of Sp.V / corresponding to �. Similarly we
set Vh�i D 0 if `.�/ > 1

2
dim.V /. The decomposition of V ˝n into irreducible representations

of Sp.V /�Sn is more complicated than that for GL.V /. The first nontrivial example is the
case n D 2:

V ˝2 D Vh2i ˝ �
�
2 ˚ Vh1;1i ˝ �

�
1;1 ˚ Vh0i ˝ �

�
1;1:

The first two terms are exactly what one expects from Schur-Weyl duality. The third term
arises because

V2
V is not irreducible: it contains the trivial representation spanned by the

class of the symplectic form as a subrepresentation.
The example n D 2 generalizes to larger values of n as follows. We define

V hni � V ˝n
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to be the subspace of traceless tensors, i.e., the intersection of the kernels of all
�
n
2

�
maps

V ˝n ! V ˝.n�2/

given by contracting with the symplectic form. Alternatively, we can think of V hni as a
quotient of V ˝n, where we divide by the images of all

�
n
2

�
maps V ˝.n�2/ ! V ˝n given by

inserting the class of the symplectic form. The subspace V hni is clearly Sp.V /-invariant, and
Weyl proved that there is an isomorphism

V hni D
M
j�jDn

Vh�i ˝ �
�
�

for all n. Thus we know how to decompose the subspace V hni into irreducible representations
of Sp.V / �Sn. Moreover, we may write V ˝n as the direct sum of V hni and the image of all
the maps V ˝.n�2/ ! V ˝n; we may write V ˝.n�2/ as the direct sum of V hn�2i and the image
of all maps V ˝.n�4/ ! V ˝.n�2/, etc. This leads inductively to a decomposition of V ˝n

into irreducible Sp.V / � Sn-representations. All Vh�i with j�j � n and j�j � n .mod 2/
will occur in this decomposition. We refer to this as Weyl’s construction of the irreducible
representations of Sp.V /.

3.3. Brauer algebra

We now wish to give a version of Schur-Weyl duality for the symplectic group in terms of
mutual centralizer algebras for the action of Sp.V / on V ˝n. The centralizer of Sp.V / acting
on V ˝n is larger than QŒSn�. It can be described as the algebra of endomorphisms of V ˝n

generated by QŒSn� and the maps given by compositions

V ˝n ! V ˝.n�2/ ! V ˝n;

where the first map contracts two tensor factors using the symplectic form, and the second
map inserts the form. Brauer [5] introduced a diagrammatic calculus which is useful for
describing endomorphisms in this centralizer algebra. We give here a category-theoretic
treatment of the Brauer algebra. Somewhat similar presentations can be found in [40, 65].

Let n andm be nonnegative integers. We define an .n;m/-Brauer diagram to be a diagram
of two rows containing n and m dots, respectively, and .nC m/=2 strands connecting these
dots pairwise. The set of .n;m/-Brauer diagrams is empty unless n � m .mod 2/. Here is a
(4,6)-Brauer diagram:

For any parameter ı 2 Q, letBr.ı/.n;m/ be the Q-vector space spanned by all .n;m/-Brauer
diagrams. We define a composition map

Br.ı/.n;m/˝Br.ı/.m; k/! Br.ı/.n; k/

which is defined on basis elements as follows: to compose an .n;m/-Brauer diagram and an
.m; k/-Brauer diagram, connect the strands on the bottom of the first diagram with those on
the top of the second diagram, erase any loops that are formed in the process, and multiply
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the result by ı to the power of the number of erased loops. The following example illustrates
a compositionBr.ı/.5; 7/˝Br.ı/.7; 3/! Br.ı/.5; 3/:

D ı �

0B@
1CA

This composition defines in particular the structure of an associative algebra onBr.ı/.n; n/.
This algebra is classically called the Brauer algebra.

D 3.1. – Let V be an object of a symmetric monoidal category. A dual of V is
an object V � equipped with unit and counit maps 1! V ˝ V � and V � ˝ V ! 1 such that
both the following compositions are identities:

V Š 1˝ V ! V ˝ V � ˝ V ! V ˝ 1 Š V

and
V � Š V � ˝ 1! V � ˝ V ˝ V � ! 1˝ V � Š V �:

An object V is self-dual if it is equipped with a pair of maps 1 ! V ˝ V and V ˝ V ! 1
making V into its own dual. It is symmetrically self-dual if, in addition, the unit and counit
are invariant under the flip map V ˝ V ! V ˝ V . If V is dualizable, then we define the
quantum dimension of V to be the element of End.1/ given by the composition

1! V ˝ V � Š V � ˝ V ! 1:

The following proposition can be seen as part of the diagrammatic calculus of “string
diagrams,” describing morphisms in tensor categories (see e.g., [37, Chapter XIV]). In this
calculus the precise form of the diagrams depend on the properties of the tensor category. For
example, in a symmetric monoidal category strings are allowed to cross each other freely, but
in a braided monoidal category the strings must be considered as braids. If we did not insist
that V was symmetrically self-dual in the following proposition, we would need to equip the
strands in the Brauer algebra with orientations or framings.

P 3.2. – Let V be a symmetrically self-dual object of quantum dimen-
sion ı in a Q-linear symmetric monoidal category C. There is a natural map Br.ı/.n;m/ !
HomC.V ˝n; V ˝m/ which makes the following diagram commute:

Br.ı/.n;m/˝Br.ı/.m; k/ Br.ı/.n; k/

HomC.V ˝n; V ˝m/˝HomC.V ˝m; V ˝k/ HomC.V ˝n; V ˝k/:

The collection of mapsBr.ı/.n;m/! HomC.V ˝n; V ˝m/ are completely determined by
the images of the three diagrams
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which generate the Brauer algebras in an appropriate sense; these diagrams are mapped to
the flip map V ˝ V ! V ˝ V , the counit V ˝ V ! 1 and the unit 1! V ˝ V , respectively.

R 3.3. – The proposition can be formulated using the language of PROPs: the
collection fBr.ı/.n;m/gn;m�0 is a PROP, and V is an algebra over this PROP in the cate-
gory C.

Let sV denote the symplectic vector space V considered as a Z=2-graded vector space
concentrated in odd degree. Let 1 be the monoidal unit in this category, i.e., the vector
space Q placed in even degree. The symplectic form defines “contraction” and “insertion”
maps

sV ˝ sV ! 1 and 1! sV ˝ sV:

Taking into account the Koszul sign rule for Z=2-graded vector spaces, both these maps are
now S2-invariant; that is, by shifting V into odd degree, we have converted the symplectic
form to a symmetric bilinear form. Equivalently, sV is symmetrically self-dual in the category
of Z=2-graded vector spaces. The quantum dimension of sV is �2g.

C 3.4. – Let V be a symplectic vector space of dimension 2g. The map which
sends an .n;m/-Brauer diagram to a morphism .sV /˝n ! .sV /˝m makes the following
diagram commute:

Br.�2g/.n;m/˝Br.�2g/.m; k/ Br.�2g/.n; k/

HomSp.V /..sV /
˝n; .sV /˝m/˝HomSp.V /..sV /

˝m; .sV /˝k/ HomSp.V /..sV /
˝n; .sV /˝k/;

and the vertical maps are surjective.

Proof. – After the previous proposition, we only need to explain surjectivity. Surjectivity
is equivalent to the statement that the space of symplectic invariant tensors inside .sV /˝2n is
spanned by the classes obtained by inserting the symplectic form n times, which follows from
Weyl’s decomposition of V ˝2n into irreducible representations described in the previous
section. Alternatively, surjectivity is part of the first fundamental theorem of invariant theory
for the symplectic group.

In particular, the Brauer algebraBr.�2g/.n; n/ surjects onto the centralizer EndSp.V /..sV /
˝n/.

Moreover, there is an isomorphism EndSp.V /..sV /
˝n/ Š EndSp.V /.V

˝n/ given by desus-
pending and carefully inserting signs. This isomorphism is described explicitly by Hanlon
and Wales [28, Theorem 2.10]. Let us explain why their result gives such an isomorphism.
Hanlon and Wales define two versions of Brauer algebra, A.x/

f
and B.x/

f
, for any natural

number f and any parameter x in the ground field. These algebras act naturally on the f th
tensor power of a vector space of dimension x equipped with a symmetric or antisymmetric
bilinear form, respectively. They show by a direct calculation that there is an isomorphism
A
.x/

f
Š B

.�x/

f
for all f , x: in our terms, this isomorphism arises from the fact that the

functor V 7! sV maps a vector space of dimension x to a space of dimension �x, and
converts a symmetric bilinear form to an antisymmetric one and vice versa. Our algebra
Br.�2g/.n; n/ is identical with their A.�2g/n .
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The Brauer algebra contains the group algebra QŒSn�—as it should, since the central-
izer of Sp.V / acting on V ˝n should contain the centralizer of GL.V /—as the subalgebra
consisting of .n; n/-Brauer diagrams in which all strands are vertical, i.e., go from the top
row to the bottom row. The inclusion QŒSn� ! Br.�2g/.n; n/ has a left inverse, given by
mapping any diagram containing a horizontal strand to zero; one checks that the subspace
spanned by all diagrams containing a horizontal strand is an ideal.

T 3.5 (Symplectic Schur-Weyl duality). – Let V be a symplectic vector space of
dimension 2g.

1. The image of the Brauer algebraBr.�2g/.n; n/ in EndQ.V
˝n/ is the centralizer of Sp.V /,

and vice versa.

2. There is an isomorphism

V ˝n Š
M
j�j�n

j�j�2 .mod n/

Vh�i ˝ ˇ
�
�;n;

where ˇ�;n denotes the simple module over the Brauer algebra Br.�2g/.n; n/ corre-
sponding to �.

3. For j�j D n, the representation ˇ�;n coincides with the representation ��T of Sn,
considered as a module over the Brauer algebra via the map Br.�2g/.n; n/ ! QŒSn�
which sends any diagram containing a horizontal strand to zero.

Part (2) follows from (1), given a description of how the split semisimple algebra
EndSp.V /.V

˝n/ decomposes into simple algebras [75, Corollary 3.5].

R 3.6. – It may seem strange that the representation ��T , rather than ��, appears
in part (3) of Theorem 3.5. Indeed, we have seen from Weyl’s construction that V ˝n, when
decomposed into irreducible representations of Sp.V / �Sn, should contain the summands
Vh�i ˝ �

�
�

for j�j D n. But Theorem 3.5 says that V ˝n contains the summands Vh�i ˝ ˇ��;n,
and that ˇ�;n Š ��T when j�j D n. So why isn’t this a contradiction? The reason is that when
Sn acts on V ˝n via the composition

QŒSn� ,! Br.�2g/.n; n/! EndQ..sV /
˝n/ Š EndQ.V

˝n/;

then this action is not equal to the standard action of Sn on V ˝n by permuting the factors;
instead, one obtains the standard action twisted by the sign representation. So the isomor-
phism ˇ�;n Š ��T does hold when ˇ�;n is considered as a QŒSn�-module by restriction of
scalars, but this is not the same as theQŒSn�-module structure obtained by the natural action
of Sn on V ˝n.

The conventions are more natural when V is placed in odd degree: the composition
QŒSn� ! Br.�2g/.n; n/ ! EndQ..sV /

˝n/ does give the standard action of Sn on .sV /˝n,
which now takes the Koszul sign rule into account. Thus .sV /˝n will contain Vh�i ˝ ���T as
a summand, placed in odd/even degree according to whether n is odd/even. We caution the
reader that the calculations of this paper will require some care to be taken to tensor with
the sign representation when appropriate, in particular when passing between Chow groups
and cohomology groups.
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R 3.7. – If we want to decompose V ˝n into irreducible representations of
Sp.V / �Sn, then we may start from the usual Schur-Weyl duality (which gives a decom-
position into irreducible representations of GL.V / � Sn), and apply a branching formula
for Sp.V / � GL.V /. Equivalently we could start with the symplectic Schur-Weyl duality
(which gives a decomposition into Sp.V / �Br.�2g/.n; n/-representations) and try to deter-
mine how the modules ˇ�;n over Br.�2g/.n; n/ decompose into sums of Specht modules
under restriction of scalars to QŒSn�: note that if

ResGL.V /
Sp.V / V� Š

M
�

a�� Vh�i

for some integers a��, then ˇ�;n Š
L
j�jDn a

�
� ��T as QŒSn�-modules. Then the decomposi-

tion of V ˝n reads

V ˝n Š
M
j�jDn

M
�

a�� Vh�i ˝ �
�
� :

The discussion in the preceding paragraphs says that a�� ¤ 0 only for j�j � j�j .mod 2/ and
j�j < j�j, with the sole exception of a�

�
D 1. The problem of calculating the coefficients a��

was first solved by Littlewood [42] and Newell [53], and many subsequent authors have given
methods for computing them.

3.4. Projectors

Given the above, it is natural to ask for an analogue of Young symmetrizers in the Brauer
algebra. That is, one would like idempotents ��;n 2 Br

.�2g/.n; n/ such that the image
of ��;n acting on V ˝n is the irreducible summand Vh�i ˝ ˇ�

�;n
. The question of how to

find such idempotents �� was posed already by Weyl. Nevertheless, no explicit construction
was known until Nazarov [52] gave a simple formula describing ��;n in the most interesting
case j�j D n. Although the statement of the result is elementary and involves only very
classical representation theory, the proof proceeds through the theory of quantum groups.

The results of Section 10, and some of the examples in Section 6, rely on computer
calculations which require us to have explicit formulas for the idempotents ��;n for j�j D n.
However, the reader does not need to know the precise expression for ��;n to follow the
arguments, only that such a formula exists. Nevertheless we state Nazarov’s theorem here
for completeness. For a partition �, we define the row tableau associated to � to be the Young
tableau given by filling in the numbers 1; 2; : : : ; n in the Ferrers diagram so that the first row
gets the numbers 1; 2; : : : ; �1, the second row gets the numbers�1C1; �1C2; : : : ; �1C�2, and
so on. We define the content of a box in the i th row and j th column of the Ferrers diagram to
be j � i . For k 2 f1; : : : ; ng, we define the number ck.�/ to be the content of the box labeled
“k” in the row tableau corresponding to �.

For any 1 � i; j � n, letBij be the element ofBr.�2g/.n; n/ corresponding to contracting
and inserting the i th and j th tensor factors with the symplectic form. That is, it has n � 2
vertical strands, and two horizontal ones: one connecting the i th and j th “inputs,” and one
connecting the i th and j th “outputs”.
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T 3.8 (Nazarov). – For any partition � of n, define

��;n D
Y
k;l

�
1C

Bkl

2g C 1C ck.�/C cl .�/

�
� c�T 2 Br.�2g/.n; n/:

Here the product ranges over all pairs 1 � k < l � n such that the boxes labeled k and l are in
distinct rows of the row tableau associated to �. Since the operators Bkl do not commute, this
must be interpreted as an ordered product: we order the terms in the product lexicographically
by .k; l/. Finally, c�T is a Young symmetrizer. The image of ��;n acting on .sV /˝n is the
summand Vh�i ˝ ���T , which is placed in odd degree if n is odd and even degree if n is even.

R 3.9. – For our purposes it would be enough to have formulas for such idempo-
tents in the smaller algebra EndSp.V /..sV /

˝n/, which a priori do not have to lift to an idem-
potent ofBr.�2g/.n; n/. This means that in principle we could have used results of Ram and
Wenzl [64] instead of Nazarov’s theorem.

4. A result of Ancona

4.1. Schur functors

Let C be a Q-linear symmetric monoidal category, and let M 2 obC. Then M˝n has an
action of the group algebra QŒSn�, in the sense that there is a homomorphism of Q-algebras
QŒSn�! HomC.M˝n;M˝n/.

Let us suppose moreover that C is pseudo-abelian, i.e., that every idempotent endomor-
phism in C has an image. For j�j D n, let�� 2 QŒSn� be a Young symmetrizer corresponding
to �, and define S�.M/ to be the image of the idempotent �� acting onM˝n. We call S� the
Schur functor corresponding to �. Then there is a decomposition [9]

M˝n D
M
j�jDn

S�.M/˝ ��� ;

where �� denotes the representation of the symmetric group corresponding to �. When C is
the category of finite dimensional Q-vector spaces, this is the decomposition of M˝n given
by Schur-Weyl duality, described in Section 3.

The key fact used in proving this result is that QŒSn� is a semisimple algebra and in fact
a product of matrix algebras over Q: there is an isomorphism QŒSn� Š

Q
j�jDn EndQ.��/.

4.2. Brauer algebra action

We will need to generalize Proposition 3.2 to a weaker notion of symmetrically self-dual
object. An objectL of C is called invertible if the functor�˝L is an equivalence of categories.
If this is the case thenL is dualizable, the quasi-inverse is given by tensoring withL�, and the
maps 1! L˝L� andL˝L� ! 1 are isomorphisms. We say thatL is even or odd ifSn acts
on HomC.L˝n; L˝n/ Š HomC.1; 1/ by the trivial representation or the sign representation,
respectively.

We say thatM 2 obC is weakly self-dual if there is an even invertible object L 2 obC, and
unit and counit maps

L!M ˝M M ˝M ! L
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such that the compositions

M ˝ L!M ˝M ˝M ! L˝M

and
L˝M !M ˝M ˝M !M ˝ L

both equal the swap map. This implies that M � Š M ˝ L�. We call M weakly symmet-
rically self-dual if moreover the unit and counit maps are invariant under the swap map
M ˝M !M ˝M . We omit the proof of the following result, which generalizes Propo-
sition 3.2 and is an exercise in the diagrammatic calculus for rigid symmetric monoidal
categories.

P 4.1. – Let M be a weakly symmetrically self-dual object of C of quantum
dimension ı. There is an action ofBr.ı/.n; n/ onM˝n, under which the subalgebra QŒSn� acts
on M˝n in the usual way, and a Brauer diagram of the form acts as the composition

M ˝M ! L!M ˝M:

A more general statement is that any element ofBr.ı/.m; n/ gives a well defined morphism
in HomC.M˝m ˝ Ln�m;M˝n/ D HomC.M˝m;M˝n ˝ Lm�n/, in a way compatible with
composition.

R 4.2. – Proposition 4.1 does not in general lead to a decomposition of M˝n

into summands indexed by irreducible representations of the Brauer algebra, even over Q.
The reason is that the algebraBr.ı/.n; n/ is not in general semisimple, which was the crucial
property of QŒSn� used for defining the decomposition of M˝n in terms of Schur functors.
In the case of Br.�2g/.n; n/, which acts naturally on V ˝n for V a symplectic vector space
of dimension 2g, what does hold is that EndSp.2g/.V

˝n/, i.e., the image of Br.�2g/.n; n/
in EndQ.V

˝n/, is a product of matrix algebras over Q.

4.3. Self-products of abelian schemes

Let f WA! S be an abelian scheme of relative dimension g, where we assume S smooth
and connected. Let V be the local system R1f�Q on S of rank 2g. Then V is defined by
a homomorphism �1.S; x0/ ! Sp.2g;Q/. The Brauer algebra Br.�2g/.n; n/ acts on the
n-fold tensor power of the defining representation V of Sp.2g/, and hence also on V˝n. As
explained in Theorem 3.5 the Brauer algebra action gives rise to a decomposition

V ˝n Š
M
j�j�n

j�j�n .mod 2/

Vh�i ˝ ˇ
�
�;n;

which then gives us also a decomposition of V˝n, i.e., V˝n Š
L

j�j�n
j�j�n .mod 2/

Vh�i ˝ ˇ��;n:

The next result is a special case of the main theorem of [2]. See also [46].

T 4.3. – The above decomposition of V˝n lifts to the category of Chow motives
over S :

h1.A=S/˝n Š
M
j�j�n

j�j�n .mod 2/

h1.A=S/h�i ˝ L.n�j�j/=2 ˝ ˇ��;n:
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We note that the action of Br.�2g/.n; n/ lifts to an action on h1.A=S/˝n. This follows
from Proposition 4.1 given that the cup product h1.A=S/ ˝ h1.A=S/ ! L makes
h1.A=S/ weakly symmetrically self-dual, and that dim h1.A=S/ D �2g. To see that
dim h1.A=S/ D �2g, observe that the quantum dimension of an object is preserved by any
strict symmetric monoidal functor. We apply this to !WMotS ! grVectQ given by !.M/ DL
i H

i .realM/x0
, where x0 2 S is an arbitrary point. Since MotS .1; 1/ D grVectQ.1; 1/ D Q

we have dim h1.A=S/ D dim!.h1.A=S//. But !.h1.A=S// is the 2g-dimensional vector
space H 1.Ax0

;Q/ placed in degree 1, so its dimension in the sense of graded vector spaces
is �2g.

As explained in Remark 4.2, the obstruction to obtaining a result like Theorem 4.3 in a
general rigid symmetric monoidal category is that the algebraBr.�2g/.n; n/ does not split as
a product of matrix algebras; only its quotient EndSp.2g/.V

˝n/ does. The key point is then
that the action ofBr.�2g/.n; n/ on h1.A=S/˝n factors through EndSp.2g/.V

˝n/. In Ancona’s
paper [2] this is proven using O’Sullivan’s results on symmetrically distinguished cycles on
abelian varieties [55]. An alternative proof (cf. [1], [40, Theorem 4.8]) proceeds by using
invariant theory to show that the kernel of the homomorphism of PROPs of Proposition 3.4
is the PROP-ideal generated by a single element ofBr.�2g/.gC 1; gC 1/ whose vanishing is
equivalent to

V2gC2
.V / D 0. Then the fact that this single relation holds also on the level of

Chow groups is equivalent to the fact that h1.A=S/ is a finite dimensional motive in the sense
of Kimura. Either way it is clear that the result is at present quite special to abelian varieties.

5. The Künneth decomposition of the tautological ring

Let pWCg ! Mg be the universal genus g curve, and C ng the n-fold fibered power of Cg
over Mg . There are n natural line bundles Li on C ng ; the fiber of Li over a moduli point
is given by the cotangent space of the curve at the i th marking. We denote the first Chern
class of Li by  i . Thus  i is pulled back from Cg along the map C ng ! Cg that forgets all
markings except the i th.

We make the definition �d D p� 
dC1
1 2 CHd .Mg/. In particular, ��1 D 0 and

�0 D .2g � 2/. We denote by the same symbol �d also the pullback of this class to C ng .
For any distinct elements i; j 2 f1; : : : ; ng we denote by �ij 2 CH1.C ng / the class of the

diagonal locus where the i th and j th marked points coincide with each other.

D 5.1. – The tautological ringR�.C ng / is the subring of CH�.C ng / generated by
all  -classes, �-classes and diagonal classes. The tautological cohomology ring RH �.C ng / is
the image of the tautological ring insideH �.C ng ;Q/ under the cycle class map. (The grading
of RH �.C ng / is twice that of R�.C ng /, so that RH k.C ng / � H

k.C ng ;Q/.)

The generators for the tautological rings satisfy the following relations for all i , j and k:

�ij�ik D �ij�jk ;

�ij i D �ij j ;

�2ij D ��ij i :

(5)

The first two are geometrically obvious, and the third one is a consequence of the excess
intersection formula.
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D 5.2. – LetS�n be the commutative gradedQ-algebra generated by classes�ij
and  i of degree 1 (where i and j range from 1 to n and are distinct) and �d of degree d for
all d � 1, modulo the above three relations.

R 5.3. – By a “commutative graded” algebra (as opposed to a “graded commu-
tative” algebra) we mean an algebra in which x � y D y � x for all x; y, regardless of their
degree; we do not impose the Koszul sign rule x � y D .�1/jxj�jyjy � x.

For each g � 2, there is a natural surjection

S�n ! R�.C ng /;

and describing the tautological ring R�.C ng / is equivalent to describing the kernel of this
surjection. The algebra S�n plays the same role for the study of R�.C ng / as the strata algebra
does for the study of R�.M g;n/, cf. e.g., [58, 0.3].

R 5.4. – As mentioned in the introduction, tautological classes are usually
considered on the Deligne-Mumford spaces. In that case the tautological rings R�.M g;n/

can be defined, following Faber and Pandharipande [15], as the smallest collection of unital
subrings of CH�.M g;n/ closed under pushforward along the gluing maps

M g;nC2 !M gC1;n and M g;nC1 �M g0;n0C1 !M gCg0;nCn0

and the forgetful maps

M g;nC1 !M g;n:

Although it is not imposed in the definition, it turns out that the tautological rings are
also closed under pullback along the same maps. A similar characterization can be given of
the tautological rings R�.C ng /. For any function �W f1; : : : ; ng ! f1; : : : ; mg there is a map
Cmg ! C ng ,

.C; x1; x2; : : : ; xm/ 7! .C; x�.1/; : : : ; x�.n//:

We call all maps of this form tautological. Then it is not hard to see that the system of
tautological rings R�.C ng / can be defined to be the smallest collection of unital subrings
closed under pushforward along all tautological maps, and it turns out a posteriori that the
tautological rings are also closed under pullback along the same maps.

5.1. The Künneth decomposition of the universal curve

As explained in Section 2.3, any choice of a cycle z 2 CH1.Cg/ of degree 1 on each fiber
of pWCg !Mg gives rise to a decomposition of the relative Chow motive:

h.Cg=Mg/ D h
0.Cg=Mg/˚ h

1.Cg=Mg/˚ h
2.Cg=Mg/:

Since CH1.Cg/ D Qf�1;  1g, and �1 vanishes on the fibers of p, the only possibilities we
have are z D 1

2g�2
 1 C .const:/ � �1. Regardless of the constant we get z0 D z � 1

2
p�p�z

2 D

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1200 D. PETERSEN, M. TAVAKOL AND Q. YIN

1
2g�2

 1 �
1

2.2g�2/2
�1. Hence without making any choices we get projectors �0, �1 and �2

acting on h.Cg=Mg/, defined by

�0 D
1

2g � 2
 1 �

1

2.2g � 2/2
�1;

�1 D �12 �
1

2g � 2
. 1 C  2/C

1

.2g � 2/2
�1;

�2 D
1

2g � 2
 2 �

1

2.2g � 2/2
�1:

We have isomorphisms 1 Š h0.Cg=Mg/ and L Š h2.Cg=Mg/, where 1 and L denote the
unit object and the Lefschetz motive in the category of Chow motives over Mg . Thus the
interesting motive is h1.Cg=Mg/.

We may form the Chow groups of these relative motives: there is an isomorphism

CHk.Cg/ D CHk.Mg ; h.Cg=Mg// D

2M
iD0

CHk.Mg ; h
i .Cg=Mg//;

where

CHk.Mg ; h
0.Cg=Mg// D Im.�0WCHk.Cg/! CHk.Cg// Š CHk.Mg/

CHk.Mg ; h
1.Cg=Mg// D Im.�1WCHk.Cg/! CHk.Cg//

CHk.Mg ; h
2.Cg=Mg// D Im.�2WCHk.Cg/! CHk.Cg// Š CHk�1.Mg/:

The isomorphism CHk.Mg ; h
0.Cg=Mg// Š CHk.Mg/ is induced by the pullback p�, and

the isomorphism CHk.Mg ; h
2.Cg=Mg// Š CHk�1.Mg/ by the proper pushforward p�.

Informally, the Chow groups of h1.Cg=Mg/ capture the parts of the Chow groups ofCg that
do not come from the base Mg .

Now let us consider the n-fold fibered power C ng !Mg . Then h.C ng =Mg/ D h.Cg=Mg/
˝n,

so our decomposition yields an equally canonical isomorphism

h.C ng =Mg/ D
M

i1;:::;in2f0;1;2g

nO
jD1

hij .Cg=Mg/:

We call this the relative Künneth decomposition of h.C ng =Mg/. By extension, we will also refer

to CHk.C ng =Mg/ D
L
i1;:::;in2f0;1;2g

CHk.Mg ;
Nn
jD1 h

ij .Cg=Mg// as the relative Künneth
decomposition of the Chow groups of C ng .

For any i1; : : : ; in 2 f0; 1; 2g we get a projector �i1 � � � � � �in acting on h.C ng =Mg/ with

image
Nn
jD1 h

ij .Cg=Mg/. In particular this projector acts by correspondences on CHk.C ng /

with image CHk.Mg ;
Nn
jD1 h

ij .Cg=Mg//. We write ��n1 for the projector �1��1�� � ���1.

5.2. Tautological maps

Let us consider how the decomposition just defined behaves under the tautological maps
between the moduli spaces C ng .
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5.2.1. Cross product. – The isomorphism h.C ng =Mg/˝ h.C
m
g =Mg/ Š h.C

nCm
g =Mg/ yields

cross product maps
CHk.C ng /˝ CHl .Cmg /! CHkCl .C nCmg /I

explicitly, ˛�ˇ D pr�1.˛/ �pr�2.ˇ/, where pr1 and pr2 denote projections onto the first n and
last m factors, respectively.

Since the relative Künneth decomposition of C nCmg is the tensor product of the relative
Künneth decompositions of C ng and Cmg , it follows that the cross product maps are compat-
ible with the projectors �i in a strong sense: for i1; : : : ; in 2 f0; 1; 2g and j1; : : : ; jm 2 f0; 1; 2g
we have

.�i1 � � � � � �in/ ı ˛ � .�j1
� � � � � �jm

/ ı ˇ D .�i1 � � � � � �in � �j1
� � � � � �jm

/ ı .˛ � ˇ/:

5.2.2. Forgetful maps. – Let pWC nCmg ! C ng be the map that forgets the last m markings.
Considering p as a correspondence gives maps of Chow motives

h.C ng =Mg/! h.C nCmg =Mg/ and h.C nCmg =Mg/! h.C ng =Mg/˝ Lm;

which upon taking Chow groups gives the maps

p�WCHk.C ng /! CHk.C nCmg / and p�WCHk.C nCmg /! CHk�m.C ng /:

Now the map h.C ng =Mg/ ! h.C nCmg =Mg/ coincides with the composition h.C ng =Mg/ Š

h.C ng =Mg/˝ h
0.Cg=Mg/

˝m � h.C nCmg =Mg/, and h.C nCmg =Mg/! h.C ng =Mg/˝ Lm

coincides with the composition h.C nCmg =Mg/� h.C ng =Mg/˝ h
2.Cg=Mg/

˝m Š h.C ng =Mg/˝ Lm.
It follows that the maps p� and p� are also compatible with the relative Künneth decompo-
sition of Chow groups:

— The map p� is given by mapping each summand .�i1 � � � � � �in/ ı CHk.C ng / isomor-

phically onto the summand .�i1 �� � ���in ��0�� � ���0/ıCHk.C nCmg /. This can also
be seen from the fact that p� is given by cross product with the class 1 2 CH0.Cmg /.

— The map p� maps each summand .�i1 � � � � � �in � �2 � � � � � �2/ ı CHk.C nCmg /

isomorphically onto the summand .�i1 � � � � ��in/ ıCHk�m.C ng /, and p� vanishes on
all summands not of this form.

5.2.3. Diagonals. – The diagonal Cg ! C 2g , considered as a correspondence, defines a map
of Chow motives h.Cg=Mg/˝h.Cg=Mg/! h.Cg=Mg/. This is the cup product on the level
of Chow motives. Forming the relative Künneth decomposition on both sides, we see that the
cup product is the sum of maps hi .Cg=Mg/˝ h

j .Cg=Mg/! hk.Cg=Mg/.
We caution the reader that this is not in general a multiplicative decomposition, in the

sense of [72]: that is, the maps hi .Cg=Mg/˝h
j .Cg=Mg/! hk.Cg=Mg/ are not only nonzero

for i C j D k. To see this, note that if ı � C 3g denotes the small diagonal, considered as a
correspondence C 2g ` Cg , then the decomposition is multiplicative if and only if

�k ı ı ı .�i � �j / D 0

for i C j ¤ k. Now we have

�k ı ı ı .�i � �j / D .p126/�.p
�
13.�i / � p

�
24.�j / ��345 � p

�
56.�k//

D .p456/�.�123 � p
�
14.�

t
i / � p

�
25.�

t
j / � p

�
46.�k//

D .�2�i � �2�j � �k/ ı�123:
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Thus we get a more symmetric condition for the decomposition to be multiplicative: we must
have .�a � �b � �c/ ı �123 D 0 for a C b C c ¤ 4. In particular, e.g., the nonvanishing of
the Gross-Schoen cycle (Example 6.4) implies that the decomposition is not multiplicative.

However, let us also remark that when g D 2, we do have that .�a � �b � �c/ ı�123 D 0
for aCbCc ¤ 4, and the decomposition is multiplicative. More generally, it follows from the
results of [71] that the decomposition is multiplicative over the moduli space of hyperelliptic
curves of arbitrary genus.

In any case, failure of decomposition to be multiplicative implies that the cup product
in the algebra CH�.C ng / will look somewhat strange with respect to the relative Künneth
decomposition of the Chow groups of CH�.C ng /. The situation is analogous to what happens
in topology, when one has a multiplicative spectral sequence Epqr H) H �, and the cup
product on the E1 page of the spectral sequence is different from the cup product in the
algebraH �. On the level of Betti realizations, this is more than an analogy. The cohomology
groups H �.C ng ;Q/ carry a Leray filtration, and the associated graded grLH

�.C ng ;Q/ is
isomorphic to the E1 page of the Leray spectral sequence for C ng !Mg . Our canon-
ical decomposition of the Chow motive h.C ng =Mg/ gives, on the level of cohomology,
an isomorphism of Q-vector spaces H �.C ng ;Q/ Š grLH

�.C ng ;Q/. But this is not an
isomorphism of algebras: the multiplication in grLH

�.C ng ;Q/ is defined by using only the
maps hi .Cg=Mg/ ˝ h

j .Cg=Mg/ ! hk.Cg=Mg/ for i C j D k, and discarding all other
parts of the cup product h.Cg=Mg/

˝2 ! h.Cg=Mg/.

5.3. Decomposition into representations of the symplectic group

Let Jg ! Mg be the universal jacobian. By Proposition 2.6 there is an isomorphism of
Chow motives over Mg :

h1.Cg=Mg/ Š h
1.Jg=Mg/:

It follows that Theorem 4.3 gives us a decomposition

h1.Cg=Mg/
˝n
Š

M
j�j�n

j�j�n .mod 2/

h1.Cg=Mg/h�i ˝ Ln�j�j ˝ ˇ��;n:

We denote the motive h1.Cg=Mg/h�i by Vh�i. We often write V for the motive Vh1i.
We also denote by Vhni the summand of V˝n given by

L
j�jDn Vh�i ˝ ���T , and we refer

to this as the primitive part of V˝n.
One can make the action of the Brauer algebra Br.�2g/.n; n/ on V˝n more explicit. Let

B be an .n; n/-Brauer diagram. Label the nodes in the Brauer diagram along the top row
as 1; : : : ; n and along the bottom row as nC 1; : : : ; 2n. Write .ij / 2 B to denote that the i th
and j th row are connected by a strand. ThenY

.ij /2B

p�ij .�1/ 2 CHn.C 2ng /

is a well defined correspondence C ng ` C ng , where we consider �1 as a cycle in CH1.C 2g /

and pij denotes the projection onto the i th and j th factor. This correspondence gives a
map h.C ng =Mg/ ! h.C ng =Mg/ that preserves the summand h1.Cg=Mg/

˝n, and we obtain

a well defined action of Br.�2g/.n; n/ on h1.Cg=Mg/
˝n. This action agrees with the one

defined in Proposition 4.1.
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On the level of Chow groups, we can also describe the action of a Brauer diagram as
follows. An .n; n�2/-Brauer diagram in which the i th and j dot on the top row are connected
by a strand, and all others are vertical, gives rise to the following morphism of Chow groups:

CH�.Mg ;V˝n/ ,! CH�.C ng /
��

ij

�! CH�.C n�1g /
p�
�! CH��1.C n�2g /;

where p denotes the projection that forgets the marked point corresponding to the diag-
onal �ij . The image of the composition of these morphisms actually lands inside the
summand CH��1.Mg ;V˝n�2/ � CH��1.C n�2g /. Similarly, an .n � 2; n/-Brauer diagram in
which the i th and j th dots on the bottom row are connected by a strand gives rise to the
following morphism of Chow groups:

CH�.Mg ;V˝.n�2// ,! CH�.C n�2g /
p�

�! CH�.C n�1g /
.�ij /�
�! CH�C1.C ng /

��n
1
�! CH�C1.Mg ;V˝n/:

5.4. Decomposing the tautological ring

We have explained that h.C ng =Mg/ is a direct sum of terms of the form h0.Cg=Mg/
˝n0 ˝

h1.Cg=Mg/
˝n1˝h2.Cg=Mg/

˝n2 , with n0Cn1Cn2 D n. Since we also have h0.Cg=Mg/ Š 1
and h2.Cg=Mg/ Š L, and h1.Cg=Mg/

˝n1 is a direct sum of terms of the form Vh�i˝Ln1�j�j,
we conclude that h.C ng =Mg/ is a direct sum of motives of the form Vh�i and their Tate twists.

T 5.5. – Let n be arbitrary, and consider C ng !Mg . Choose any decomposition

h.C ng =Mg/ Š
M
i

Vh�i i
˝ Lmi

in MotMg
. Then under the equality CHk.C ng / Š CHk.Mg ; h.C

n
g =Mg// we have the following

compatibility:

CHk.C ng /
L
i CHk�mi .Mg ;Vh�i i

/

Rk.C ng /
L
i R

k�mi .Mg ;Vh�i i
/;

Š

�

Š

�

where both horizontal arrows are induced by our choice of decomposition of h.C ng =Mg/.

Proof. – Consider a summand Vh�i ˝ Lm1 of h.C n1
g =Mg/ and a summand Vh�i ˝ Lm2

of h.C n2
g =Mg/. Then there exists a correspondence � 2 CH.C n1Cn2

g /—not a correspon-
dence of degree 0, in general—which maps the first summand isomorphically onto the
second, considered as a correspondence C n1

g ` C
n2
g . Moreover, � can be built out of the

projectors onto the Künneth components of h.C ng =Mg/ and the correspondences given by
Brauer diagrams. As such, � is actually a tautological class.

Now CH�.Mg ;Vh�i˝Lm1/ is a summand of CH�.C n1
g / and as such there is a well defined

subspace of tautological classes inside it, which we denote R�.Mg ;Vh�i ˝ Lm1/. Similarly
for the other summand. Now the correspondence � which gives the isomorphism between
the two summands is a tautological class, and in particular it maps tautological classes to
tautological classes and gives an isomorphism (not preserving the grading unlessm1 D m2),
R�.Mg ;Vh�i ˝ Lm1/ Š R�.Mg ;Vh�i ˝ Lm2/.
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Finally since the projectors onto each summand Vh�i i
˝ Lmi of h.C ng =Mg/ are all given

by tautological classes, the tautological ring R�.C ng / is the direct sum of its projections onto
each of the summands in the decomposition of CH�.C ng /.

5.5. Curves with rational tails

LetX be a smooth projective variety, andXŒn� the Fulton-MacPherson compactification
of the configuration space of n distinct ordered points onX [17]. A result of Li [41] expresses
the Chow motive h.XŒn�/ as a direct sum of Chow motives of the form h.X/˝i ˝ Lj

for 0 � i � n; this can be seen by an inductive argument from the blow-up formula and
the construction of XŒn� as an iterated blow-up of the cartesian product Xn.

The analogous statement remains true (with the same proof) for a family X ! S of
smooth projective varieties, and the relative Chow motive of the relative Fulton-MacPherson
compactification. In particular we may consider the universal family Cg ! Mg over the
moduli space of curves. In this case the relative configuration space of n distinct ordered
points is the space Mg;n, and the relative Fulton-MacPherson compactification of Mg;n is
the moduli space M rt

g;n of curves with rational tails, which is an iterated blow-up of C ng . By
“relative compactification” we mean that the map M rt

g;n !Mg is proper.
It follows from the above considerations that the results of this section remain valid when

C ng is replaced with M rt
g;n. There will in particular exist a decomposition of Chow motives

h.M rt
g;n=Mg/ Š

M
i

Vh�i i
˝ Lmi ;

and moreover, there is a canonical choice of such decomposition in which each correspon-
dence projecting onto a summand is a tautological class (cf. [41, Theorem 3.2]). It follows in
particular that

R�.M rt
g;n/ Š

M
i

R��mi .Mg ;Vh�i i
/:

The results of [41] give explicit formulas expressing the motive h.M rt
g;n=Mg/ in terms of

motives V˝i ˝Lj and hence in terms of Tate twists of motives Vh�i. For anSn-equivariant
version (formulated in that paper only in terms of cohomology) see [18].

5.6. Tautological cohomology groups

For a partition � we let Vh�i be the Q-local system on Mg defined by the representa-
tion of Sp.2g/ of highest weight �. Then the Chow motive Vh�i has as its Betti realization
Vh�iŒ�j�j�, i.e., the local system V�, considered as a complex concentrated in cohomological
degree j�j, and there is a cycle class map

CHk.Mg ;Vh�i/! H 2k�j�j.Mg ;Vh�i/:

We denote by RH �.Mg ;Vh�i/ the image of R�.Mg ;Vh�i/ under the cycle class map. For
� D 0 we get the usual tautological cohomology groups of Mg . A folklore conjecture says
that any homological equivalence between tautological classes is a rational equivalence,
which would imply that

Rk.Mg ;Vh�i/! RH 2k�j�j.Mg ;Vh�i/

is always an isomorphism.
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We caution the reader that since the Betti realization of V is not the local system V,
but VŒ�1�, there are many opportunities to get confused about the Koszul sign rule when
comparing results in cohomology and in Chow.

All the results of this section are valid mutatis mutandis also on the level of cohomology.
One can either see this formally by applying the Betti realization functor or by repeating the
proofs in the cohomological setting. For example, let us state the cohomological version of
Theorem 5.5:

T 5.6. – Let n be arbitrary, and consider f WC ng !Mg . Choose a decomposition

Rf�Q Š
M
i

Vh�i i
Œ�mi �

in Db
c .Mg/. Under the equality H k.C ng ;Q/ Š Hk.Mg ; Rf�Q/ we have the following compat-

ibility:

H k.C ng ;Q/
L
i H

k�mi .Mg ;Vh�i i
/

RH k.C ng /
L
i RH

k�mi .Mg ;Vh�i i
/;

Š

�

Š

�
where both horizontal arrows are induced by the choice of decomposition of Rf�Q.

6. Examples

6.1. Example:  n1
Let us consider the class  n1 2 CHn.C 1g /. Its image under the projectors �0, �1 and �2 is

given by

�0 ı  
n
1 D .p2/�.

1

2g � 2
 nC11 �

1

2.2g � 2/2
�1 

n
1 / D

1

2g � 2
�n �

1

2.2g � 2/2
�1�n�1;

�1 ı  
n
1 D .p2/�.�12 

n
1 �

1

2g � 2
 n1 2 �

1

2g � 2
 nC11 C

1

.2g � 2/2
�1 

n
1 /

D  n1 �
1

2g � 2
�n�1 1 �

1

2g � 2
�n C

1

.2g � 2/2
�1�n�1;

�2 ı  
n
1 D .p2/�.

1

2g � 2
 n1 2 �

1

2.2g � 2/2
�1 

n
1 / D

1

2g � 2
�n�1 1 �

1

2.2g � 2/2
�1�n�1:

Here p2WC 2g ! C 1g forgets the first marked point. These are thus the projections of the
class  n1 2 CHn.Cg/ into the three summands CHn.Mg ; h

0.Cg=Mg//, CHn.Mg ; h
1.Cg=Mg//

and CHn.Mg ; h
2.Cg=Mg//, respectively. We can make some simple observations/sanity

checks:

— The three classes sum to  n1 .

— The class in CHn.Mg ; h
0.Cg=Mg// is pulled back from CHn.Mg/.

— When n D 1, the class in CH1.Mg ; h
2.Cg=Mg// restricts to a cycle of degree 1 in CH1

of a fiber of �WCg !Mg .

— The classes �0 ı  n1 and �1 ı  n1 push forward to zero under �WCg ! Mg . The
class �2 ı  n1 has the same pushforward as  n1 .
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We note that �1 ı n1 vanishes for n D 0 and n D 1, using that �0 D 2g � 2. This could also
have been seen from the fact that

CHk.Cg/ Š CHk.Mg ; 1/˚ CHk.Mg ;Vh1i/˚ CHk.Mg ;L/

D CHk.Mg/˚ CHk.Mg ;V/˚ CHk�1.Mg/

which (using Harer’s calculation of the Picard groups of Mg and Cg [29]) implies that
CH0.Mg ;V/ D CH1.Mg ;V/ D 0. The first of these classes which can be nontrivial is thus
�1 ı  

2
1 2 CH2.Mg ;V/. This class vanishes for g � 4, but is nonzero if g � 5.

To prove that the class is nonzero for g � 5 it is easier to work in cohomology. For large g,
nontriviality is a consequence of Harer stability and the Mumford conjecture [45]: as g!1,
H �.C 1g / stabilizes to a polynomial ring in the �-classes and  1 [44, Proposition 2.1]. More
precisely, H 4.C 1g / is in the stable range when g � 7, so there are no relations between the
generators in this degree and �1 ı  21 must be nonzero. Nontriviality for g D 5; 6 can be
checked e.g., by multiplying the class with  21 and pushing it down to Mg . One computes
that

��. 
2
1 � .�1 ı  

2
1 // D �3 �

2

2g � 2
�2�1 C

1

.2g � 2/2
�31 :

This class can then be multiplied with �g�51 to get a class in the socle of the tautological
ring, which can be verified to be nonzero by integrating it against �g�g�1. (We discuss the
�g�g�1-pairing more in Section 7.)

The vanishing for g � 4 can be proven by standard methods for computing tautological
rings and a dimension count. Let us consider the case g D 4: in this case one only needs
to know that R1.M4/ Š R2.M4/ Š Q and that R2.C 14 / Š Q2. Now we have the relative
Künneth decomposition

R2.C4/ D R
2.M4/˚R

2.M4;V/˚R1.M4/;

where the first and last terms are one-dimensional since R1.M4/ Š R2.M4/ Š Q; conse-
quently, the middle term has to vanish since R2.C4/ is two-dimensional. But �1 ı  21 is an
element of R2.M4;V/, so it must vanish.

6.2. Example: the diagonal

Let us decompose the class �12 2 CH1.C 2g / into summands. One finds exactly three
nonzero terms:

.�2 � �0/ ı�12 D
1

2g � 2
 1 �

1

2.2g � 2/2
�1 2 CH1.Mg ;L˝ 1/;

.�1 � �1/ ı�12 D �12 �
1

2g � 2
. 1 C  2/C

1

.2g � 2/2
�1 2 CH1.Mg ;V˝ V/;

.�0 � �2/ ı�12 D
1

2g � 2
 2 �

1

2.2g � 2/2
�1 2 CH1.Mg ; 1˝ L/;

where h0.Cg=Mg/ D 1, h1.Cg=Mg/ D V, h2.Cg=Mg/ D L. Thus the terms in the
decomposition of�12 are given exactly by the projectors �i themselves, considered as classes
on C 2g .

Note that V˝ V Š Vh2i ˚ Vh1;1i ˚ L. In fact we have CH1.Mg ;Vh2i/ D CH1.Mg ;Vh1;1i/ D 0,
and the class �1 is a generator for the summand CH1.Mg ;L/ Š CH0.Mg/ Š Q.
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The fact that CH1.Mg ;Vh2i/ D CH1.Mg ;Vh1;1i/ D 0 can be proven by a dimen-
sion count argument much like the one from the previous example, using CH1.C 2g / D

Qf�1; �12;  1;  2g, which follows from Harer’s calculation of the Picard group of Mg;n

[29]. Now in the relative Künneth decomposition of CH1.C 2g / we find the summands
CH1.Mg ; 1 ˝ 1/ Š Qf�1g, CH1.Mg ; 1 ˝ L/, CH1.Mg ;L ˝ 1/ and CH1.Mg ;L/ �
CH1.Mg ;V˝V/. All these last three terms are nonzero since CH1.Mg ;L/ Š CH0.Mg/ Š Q.

6.3. Example: the Faber-Pandharipande cycle

We consider the class �12 1 2 CH2.C 2g /. Applying the operator ��21 gives the class

��21 ı�12 1 D �12 1 �
1

2g � 2
 1 2 �

1

2g � 2
. 21 C  

2
2 /C

1

.2g � 2/2
�1. 1 C  2/

C
1

.2g � 2/2
�2 �

1

.2g � 2/3
�21

(6)

which now defines an element of CH2.Mg ;V˝2/. Since the class (6) is S2-invariant, it is in
fact a class in CH2.Mg ; Sym2V/. We call this class the unrefined Faber-Pandharipande cycle.

Now we have a decomposition Sym2V D Vh1;1i ˚ L. So (6) can be written as the sum
of a class in CH2.Mg ;Vh1;1i/ and a class in CH2.Mg ;L/ Š CH1.Mg/. As explained in
Subsection 3.3, Nazarov’s theorem gives a general method to write down a projector acting
on CH�.Mg ;V˝n/ whose image is a particular summand CH�.Mg ;Vh�i/˝ ���T , where � is
a partition of n. Although Nazarov’s theorem is overkill in this case, where one could quite
easily figure out the right projector by hand, the result is that the correspondence

� D
1

2
.b13b24 C b14b23/C

1

2g
b12b34 2 CH2.C 4g /

acts on CH�.Mg ;V˝2/ with image CH�.Mg ;Vh1;1i/ ˝ ��2 Š CH�.Mg ;Vh1;1i/. Here bij
denotes the class�ij � 1

2g�2
. i C j /C

1
.2g�2/2

�1, i.e., the pullback of the correspondence
defining the projector �1.

Applying � gives the class

�12 1 �
1

2g � 2
 1 2 �

1

2g � 2
. 21 C  

2
2 /C

1

.2g � 2/2
�1. 1 C  2/C

1

.2g � 2/2
�2

�
1

.2g � 2/3
�21 �

2g � 1

2g.2g � 2/
�1.�12 �

1

2g � 2
. 1 C  2/C

1

.2g � 2/2
�1/

(7)

which now defines an element of CH2.Mg ;Vh1;1i/. We call (7) the refined Faber-Pandharipande
cycle. This is the projection of �12 1 onto the summand CH2.Mg ;Vh1;1i/. Comparing the
expressions for the refined and unrefined Faber-Pandharipande cycles, we see that we have
subtracted the term

2g � 1

2g.2g � 2/
�1b12:

This term is thus the projection of �12 1 onto the summand CH2.Mg ;L/ � CH2.Mg ; Sym2V/.
We remark that since we know from the previous example that b12 lies in the summand
CH1.Mg ;L/ � CH1.Mg ;V˝2/, it follows that �1b12 indeed gives a class in CH2.Mg ;L/ �
CH2.Mg ;V˝2/.
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Let X be a curve of genus g. It is interesting to consider the image of the Faber-
Pandharipande cycle in CH2.X2/. In this case, removing terms which obviously vanish
leaves

�12 1 �
1

2g � 2
 1 2 2 CH2.X2/:

This simplified expression is what is more commonly referred to as the Faber-Pandharipande
cycle. Green and Griffiths [22] proved that the Faber-Pandharipande cycle is nonzero
in CH2.X2/ for a very general curve X of genus � 4 over the complex numbers. The third
author gave a different proof of this result [76] valid also in positive characteristic. Such a
result is rather subtle since the Faber-Pandharipande cycle is not only homologically trivial
but Abel-Jacobi trivial.

Reasoning as in Example 6.1, one can show that the refined Faber-Pandharipande cycle is
zero for g D 2; 3 but that it is nonzero for all g � 4. Thus the refined Faber-Pandharipande
cycle is nonzero precisely in those genera where it is nonzero in CH2.X2/ for a generic
curve X . By contrast the unrefined Faber-Pandharipande cycle is nonzero also for g D 3,
even though R2.M3;Vh1;1i/ D 0. This illustrates the utility of Nazarov’s refined projectors
when trying to determine precisely which of these local systems have nonzero tautological
groups.

6.4. Example: the Gross-Schoen cycle

Let us consider the class �123 2 CH2.C 3g /. We can apply ��31 to this class to get

��31 ı�123 D �123 �
1

2g � 2
..�12 C�23/ 1 C .�13 C�23/ 2 C .�12 C�13/ 3/

C
1

.2g � 2/2
. 21 C  

2
2 C  

2
3 /C

2

.2g � 2/2
. 1 2 C  1 3 C  2 3/

C
1

.2g � 2/2
�1.�12 C�13 C�23/ �

3

.2g � 2/3
�1. 1 C  2 C  3/

�
1

.2g � 2/3
�2 C

3

.2g � 2/4
�21 :

We call this the Gross-Schoen cycle. Being S3-invariant, it defines a class in the summand
CH2.Mg ; Sym3V/ � CH2.Mg ;V˝3/. There is now a decomposition

Sym3V Š Vh1;1;1i ˚ Vh1i ˝ L;

and one could try to define a “refined” Gross-Schoen cycle by projecting onto the summand
CH2.Mg ;Vh1;1;1i/, just as we did for the Faber-Pandharipande cycle in the previous example.
However, the difference between the refined and unrefined Gross-Schoen cycles would
then be an element of CH2.Mg ;Vh1i ˝ L/ D CH1.Mg ;V/, which always vanishes. By
using Nazarov’s theorem one can construct a “refined projector” onto CH�.Mg ;Vh1;1;1i/;
the image of �123 under this refined projector agrees with the image under the naive
projector ��31 , which is a nontrivial consistency check.

The cycle originally considered by Gross and Schoen in [23] is related to ours as follows.
Let X be a smooth curve and z a degree 1 zero-cycle on X . Then they studied the cycle

�123 � z1�23 � z2�13 � z3�12 C z2z3 C z1z3 C z1z2 2 CH2.X3/;
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where zi denotes the pullback of z from the projection map onto the i th factor. Considering
our cycle in CH2.X3/ and removing terms which obviously vanish gives

�123 �
1

2g � 2
..�12 C�23/ 1 C .�13 C�23/ 2 C .�12 C�13/ 3/

C
2

.2g � 2/2
. 1 2 C  1 3 C  2 3/;

which does not coincide with the usual Gross-Schoen cycle for z D 1
2g�2

 . However,
the difference between the two cycles is given by a sum of Faber-Pandharipande cycles. In
particular, our Gross-Schoen cycle and the usual one will have the same image under the
Abel-Jacobi map, since the Faber-Pandharipande cycle is Abel-Jacobi trivial.

The Gross-Schoen cycle defines a nontrivial class in CH2.Mg ;Vh1;1;1i/ for all g � 3.
Nonvanishing of the Gross-Schoen cycle is equivalent to nonvanishing of the Ceresa cycle
[6], which is known to be nonzero in CH2.X3/ if X is a very general curve of genus g � 3.
See [16] for this result in positive characteristic.

7. Consequences for Gorenstein conjectures

By a theorem of Looijenga [43], it is known that

Rg�2Cn.C ng / Š Q

and that the tautological ring vanishes above this degree. More precisely, Looijenga proved
the vanishing and that this group is at most 1-dimensional, and Faber [14] found an example
of a nonzero tautological class in this degree. The top nonzero degree of the tautological ring
is called the socle.

This isomorphism can be made explicit in the following way. We define a map

Rg�2.Mg/! Q

by

˛ 7!

Z
Mg

˛ � �g�g�1;

where ˛ denotes the closure of an algebraic cycle representing the class ˛, and �i denotes the
i th Chern class of the Hodge bundle. We recall that the Hodge bundle is the locally free sheaf
of rank g whose fiber at a moduli point ŒC � is the space of holomorphic differentials on C .
A priori the integral would seem to not be well defined, since it depends on the choice of
an algebraic cycle representing ˛, but the integral is in fact well defined since multiplication
by �g�g�1 kills everything supported on the Deligne-Mumford boundary. For n > 0, one
has an isomorphism

Rg�2Cn.C ng /! Rg�2.Mg/

given by pushforward (with inverse given by pullback and multiplication by 1
.2g�2/n

 1 2 � � � n).
All in all, this means that we have a pairing, which we denote by brackets:

Rk.C ng /˝R
g�2Cn�k.C ng / Q

˛ ˝ ˇ h˛; ˇi
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given by cup product, pushing down to Mg , and integrating against �g�g�1. Arbitrary
integrals of tautological classes onM g;n can be calculated algorithmically and efficiently [11,
35], in particular integrals over M g of top degree classes in Rg�2.Mg/ paired with �g�g�1.

L 7.1. – Let ˛ 2 Rk.C ng / and ˇ 2 Rg�2Cn�k.C ng /, and let i1; : : : ; in 2 f0; 1; 2g.
There is an equality˝

.�i1 � � � � � �in/ ı ˛; ˇ
˛
D
˝
˛; .�2�i1 � � � � � �2�in/ ı ˇ

˛
:

Proof. – Consider ˛ as a morphism 1 ! h.C ng =Mg/ ˝ L�k , and ˇ as a morphism
h.C ng =Mg// ˝ L�k ! L2�g . The composition ˇ ı ˛ 2 MotMg

.1;L2�g/ D CHg�2.Mg/ is
the product ˛ � ˇ pushed forward to Mg . Now if � is any correspondence C ng ` C

n
g then

ˇ ı .� ı ˛/ D .ˇ ı �/ ı ˛:

But ˇ ı � D � t ı ˇ by Remark 2.1. Since .�i1 � � � � � �in/
t D .�2�i1 � � � � � �2�in/ we are

done.

As explained in Subsection 5.2.3, the cup product in CH�.C ng / (and then also in R�.C ng /)
is in general not so easily described in terms of the relative Künneth decomposition of these
algebras. The next proposition shows, however, that the socle pairing onR�.C ng / takes a very
simple form with respect to the Künneth decomposition.

P 7.2. – The Gram matrix describing the socle pairing in the algebraR�.C ng / is
block-diagonal with respect to the relative Künneth decomposition of R�.C ng /. More precisely,
the summand

Rk.Mg ; h
i1.Cg=Mg/˝ � � � ˝ h

in.Cg=Mg// � R
k.C ng /

pairs to zero with all summands in complementary degree except for

Rg�2Cn�k.Mg ; h
2�i1.Cg=Mg/˝ � � � ˝ h

2�in.Cg=Mg// � R
g�2Cn�k.C ng /:

Proof. – Take ˛ 2 Rk.C ng /. Suppose it lies in the summand

Rk.Mg ; h
i1.Cg=Mg/˝ � � � ˝ h

in.Cg=Mg//I

equivalently, .�i1 � � � � � �in/ ı ˛ D ˛. For ˇ in complementary degree we have

h˛; ˇi D
˝
.�i1 � � � � � �in/ ı ˛; ˇ

˛
D
˝
˛; .�2�i1 � � � � � �2�in/ ı ˇ

˛
by the previous lemma. But if ˇ lies in any summand except for

Rg�2Cn�k.Mg ; h
2�i1.Cg=Mg/˝ � � � ˝ h

2�in.Cg=Mg//;

then .�2�i1 � � � � � �2�in/ ı ˇ D 0, hence h˛; ˇi D 0, as claimed.

R 7.3. – The previous proposition shows that the socle pairing in R�.C ng /

depends only on the cup product maps hi .Cg=Mg/ ˝ h
2�i .Cg=Mg/ ! h2.Cg=Mg/ Š L.

Since for i D 0 or i D 2 these maps are given by the canonical isomorphisms 1 ˝ L ! L
and L˝ 1! L, the socle pairing in fact only depends nontrivially on the maps

Rk.Mg ; h
1.Cg=Mg/

˝m/˝Rg�2Cm�k.Mg ; h
1.Cg=Mg/

˝m/! Rg�2Cm.Mg ;L˝m/ Š Rg�2.Mg/:
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R 7.4. – On the level of Betti realizations, Proposition 7.2 says that even
though the algebras H �.C ng ;Q/ and grLH

�.C ng ;Q/ (and then also RH �.C ng ;Q/ and
grLRH

�.C ng ;Q/) have very different cup product, both algebras RH �.C ng ;Q/ and
grLRH

�.C ng ;Q/ will have identical socle pairings.
In particular, the algebra RH �.C ng / is Gorenstein (i.e., satisfies Poincaré duality) if and

only if the same holds for the algebra grLRH
�.C ng /. That said, Proposition 7.2 is not actually

needed to prove this last fact. Since the Leray filtration is compatible with cup product, we
know a priori that the Gram matrix describing the socle pairing for the algebra RH �.C ng / is
block-triangular, and that the diagonal blocks coincide with the Gram matrix for the socle
pairing in the algebra grLRH

�.C ng /. In particular both matrices have the same rank. In these
terms, Proposition 7.2 says that even though the intersection pairing forRH �.C ng / is a priori
only block-triangular, it turns out to actually be block-diagonal.

T 7.5. – Fix a genus g. The following are equivalent:

1. All algebras R�.C ng / for n � 0 are Gorenstein.

2. For each partition �, the pairing

Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Rg�2Cj�j.Mg ;Lj�j/ Š Rg�2.Mg/ Š Q

is perfect.

The pairing in (2) comes from the map of motives Vh�i ˝ Vh�i ! Lj�j given by the fact
that Vh�i is self-dual.

Proof. – If we decompose h.C ng =Mg/ as a direct sum of motives Vh�i˝Lm, then the socle
pairing in R�.C ng / is the direct sum of the various pairings

Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Rg�2.Mg/ Š Q:

Thus the socle pairing in the tautological ring of C ng is perfect if and only if the same holds
for the pairing for each of the motives Vh�i.

A variant of the preceding theorem, with the same proof, is as follows:

T 7.6. – Fix a genus g. The following are equivalent:

1. All algebras R�.C ng / for 0 � n � N are Gorenstein.

2. For each partition � with j�j � N , the pairing

Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Rg�2.Mg/ Š Q

is perfect.

We also wish to mention the following result, which was proven by somewhat different
arguments in [59, 70].

T 7.7. – The following statements are equivalent:

1. All algebras R�.C ng / for 0 � n � N are Gorenstein.

2. The algebra R�.M rt
g;N / is Gorenstein.
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This shows that the Faber conjecture for the spacesM rt
g;n can also be equivalently reformu-

lated in terms of the motives Vh�i. We saw in Section 5.5 that the tautological groups ofM rt
g;n

can be expressed in terms of the tautological groups of the motives Vh�i; however, there does
not appear to be an analogue of Theorem 7.2 for the spacesM rt

g;n: the socle pairing forM rt
g;n is

block upper triangular with respect to the natural decomposition, but not in general block
diagonal.

7.1. Symmetric powers

We may also consider the symmetric powers of the universal curve.

D 7.8. – We define C .n/g to be the nth symmetric power of the universal curve
over Mg ; that is, C .n/g D C ng =Sn. We define its tautological ring by R�.C .n/g / D R�.C ng /

Sn .

L 7.9. – Suppose that the Chow groups CH�.C ng / are decomposed as a direct sum

of summands CH�.Mg ;Vh�i/. The only local systems occuring in the subspace CH�.C .n/g / �

CH�.C ng / are those of the form � D .1; 1; 1; : : :/, i.e., those that occur as summands of the
symmetric powers of V.

Proof. – Consider first the summand CHk.Mg ;V˝n/. TheSn-invariants in this subspace
are CHk.Mg ; SymnV/, which proves the lemma in this case. In general for n D n0Cn1Cn2,
the summand

CHk.Mg ; h
0.Cg=Mg/

˝n0 ˝ h1.Cg=Mg/
˝n1 ˝ h2.Cg=Mg/

˝n2/;

together with its conjugates under the action ofSn, can be written as the induced represen-
tation

IndSn

Sn0
�Sn1

�Sn2
CHk.Mg ;V˝n1 ˝ Ln2/:

In particular, the Sn-invariants in this induced representation are isomorphic to

CHk�n2.Mg ;V˝n1/Sn1 D CHk�n2.Mg ; Symn1V/

by Frobenius reciprocity.

T 7.10. – Fix a genus g. The following are equivalent:

1. For all n � 0, R�.C .n/g / is a Gorenstein ring.

2. For some n � g, R�.C .n/g / is a Gorenstein ring.

Proof. – The ring R�.C .n/g / is Gorenstein if and only if all motives Vh�i occuring in the
decomposition of h.C .n/g =Mg/ have the property that the pairing

Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Q

is perfect. But the motivesVh�i occuring in the decomposition of the nth symmetric power are
exactly those with � D .1; 1; : : :/, where j�j � n, by the previous lemma. The result follows
from the fact that the motive Vh1;1;1;:::i is zero if the number of 1’s is greater than g.
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More generally, we can consider the “partial symmetric powers,” i.e., the tautological
rings of C nCkg =Sn, the n-fold symmetric power of the universal curve over C kg . For k D 1

these rings were considered in [77], where they were proven to be intimately related to the
tautological ring of the universal jacobian variety over Cg D Mg;1. The previous theorem
admits a variant for the partial symmetric powers as well.

T 7.11. – Fix a genus g. The following are equivalent:

1. For all n � 0, R�.C nCkg =Sn/ is a Gorenstein ring.

2. For some n � g C k, R�.C nCkg =Sn/ is a Gorenstein ring.

Proof. – The relative Chow motive of C nCkg =Sn over Mg is the tensor product

h.C
.n/
g =Mg/ ˝ h.C kg =Mg/. Since h.C kg =Mg/ only contains motives V� with j�j � k,

and h.C .n/g =Mg/ only contains motives V� with j�j � g (by the argument of the preceding
proof), the result follows.

R 7.12. – In [77, Theorem 7.15] it is proven that if R�.C nC1g =Sn/ is Gorenstein
for some n � 2g� 1 then R�.C nC1g =Sn/ is Gorenstein for all n � 0. The proof uses the rela-
tionship with the tautological ring of the universal jacobian Jg overCg , and thatC nC1g =Sn is
a projective bundle over Jg for n � 2g�1. Thus the arguments here re-prove this result with
a slightly better lower bound.

8. Twisted commutative algebras and tautological rings

In the next sections we will analyze the structure of the collection of tautological
rings R�.C ng / for fixed g but varying n. When we consider the direct sum

L
nR
�.C ng /

we obtain the structure of a twisted commutative algebra.

D 8.1. – A twisted associative algebra is anN-graded unital associative algebra
(say over Q)

A D
M
n�0

A.n/

together with an action of the symmetric group Sn on the summand A.n/, such that the
multiplication

A.n/˝ A.m/! A.nCm/

is equivariant for the action of Sn � Sm on both sides. We say that A.n/ is the arity n
component of A.

D 8.2. – LetA D
L
n�0A.n/ be a twisted associative algebra. We say thatA is

a twisted commutative algebra if the diagram

A.n/˝ A.m/ A.nCm/

A.m/˝ A.n/ A.mC n/
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commutes for all n;m � 0, where the horizontal maps are given by multiplication, the
left vertical map swaps the two factors, and the right map is given by acting via the “box
permutation” swapping the first n and the last m elements.

R 8.3. – Let us make three remarks concerning the definition.

1. In all our examples, we will have what should more properly be called a “twisted
commutative graded algebra”—each summand A.n/ is itself Z-graded, and the multi-
plication respects the Z-grading.

2. The notion of a twisted commutative graded algebra is potentially ambiguous: in
the commutativity condition, should the Koszul sign rule be applied to the map
A.n/˝A.m/! A.m/˝A.n/ that swaps the two factors? In fact we will require both
possible conventions in this paper: when working with Chow groups we do not impose
the Koszul sign rule, but when working with cohomology groups we do impose it.
This is because the Chow ring CH�.X/ of an algebraic variety X is commutative in
the strict sense, whereas the cohomology ring H �.X/ is commutative in the graded
sense. We will pass over this ambiguity in silence for the rest of the paper; this should
not cause any confusion.

3. There are many equivalent ways to axiomatize the notion of a twisted commutative
algebra. Here is an alternative one: let B be the symmetric monoidal category of
finite sets and bijections, with monoidal structure given by disjoint union. A twisted
commutative algebra is a lax symmetric monoidal functor B ! VectQ (or to the
category of graded Q-vector spaces, with or without the Koszul sign rule).

For more on twisted commutative algebras see e.g., [20] or [36, Chapitre 4].

Our main example will be the following. Fix a genus g � 2. The direct sum
L
n�0 CH�.C ng /

is an example of a twisted commutative algebra. The multiplication

CHk.C ng /˝ CHl .Cmg /! CHkCl .C nCmg /

is given by the cross product, as defined in 5.2.1. More generally, for any partition
f1; : : : ; ng D T t T 0 we have maps CHk.C Tg / ˝ CHl .C T

0

g / ! CHkCl .C ng /. We will
refer to maps of this form, too, as cross product maps; this should not cause any confusion.

We now have the following proposition, which in a sense explains why we will find the
notion of a twisted commutative algebra useful. We have defined maps
R�.C ng / ! R�.Mg ;V˝n/ ! R�.Mg ;Vhni/; recall that Vhni denotes the “primitive part”
of V˝n and was defined in Subsection 5.3. These maps are not in any sense ring homomor-
phisms (in fact there is no ring structure on the latter two spaces). Nevertheless these will
define homomorphisms of twisted commutative algebras, when we consider all n simultane-
ously:
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P 8.4. – Fix g � 2, and consider the following commutative diagram:L
n�0 CH�.C ng /

L
n�0 CH�.Mg ;V˝n/

L
n�0 CH�.Mg ;Vhni/L

n�0 S
�
n L

n�0R
�.C ng /

L
n�0R

�.Mg ;V˝n/
L
n�0R

�.Mg ;Vhni/.

Each entry in this diagram is a twisted commutative algebra, and the arrows in this diagram are
morphisms of twisted commutative algebras.

Let us remind the reader of the definitions needed to make sense of Proposition 8.4.S�n was
defined in Definition 5.2; it is the graded polynomial algebra on classes  i , �ij and �i ,
modulo the geometrically obvious relations of Eq. (5).

The maps CH�.C ng /! CH�.Mg ;V˝n/ are given by the projectors ��n1 . The same is true
for the maps R�.C ng /! R�.Mg ;V˝n/.

The maps CH�.Mg ;V˝n/ ! CH�.Mg ;Vhni/ and the twisted commutative algebra
structure on

L
n�0 CH�.Mg ;Vhni/ are both defined by the fact that Vhni is in a canonical

way a direct summand of V˝n. As such, the natural projection V˝n ! Vhni defines the
map CH�.Mg ;V˝n/ ! CH�.Mg ;Vhni/. The multiplication in the twisted commutative
algebra

L
n�0 CH�.Mg ;Vhni/ is defined by using the composition

Vhni ˝ Vhmi V˝n ˝ V˝m D V˝.nCm/ VhnCmi

to define a product CH�.Mg ;Vhni/˝CH�.Mg ;Vhmi/! CH�.Mg ;VhnCmi/. This is associa-
tive: the diagram

Vhni ˝ Vhmi ˝ Vhki VhnCmi ˝ Vhki

Vhni ˝ VhmCki VhnCmCki

commutes, since both compositions coincide with the map given by

Vhni ˝ Vhmi ˝ Vhki V˝.nCmCk/ VhnCmCki:

Proof. – (of Proposition 8.4.) That the map
L
n�0 S

�
n !

L
n�0 CH�.C ng / is a homo-

morphism of twisted commutative algebras is obvious. That the maps ��n1 WCH�.C ng / !
CH�.Mg ;V˝n/ are homomorphisms with respect to the cross product is explained in 5.2.1.
That the maps CH�.Mg ;V˝n/ ! CH�.Mg ;Vhni/ are homomorphisms with respect to
the cross product is also clear, since the multiplication in the twisted commutative algebra
CH�.Mg ;Vhni/ was defined by lifting elements to CH�.Mg ;V˝n/, and using the multiplica-
tion in the twisted commutative algebra “upstairs” to multiply.

D 8.5. – Let S ! Rg ! R0g ! R00g be the four twisted commutative algebras
linked by the chain of surjectionsM

n�0

S�n !
M
n�0

R�.C ng /!
M
n�0

R�.Mg ;V˝n/!
M
n�0

R�.Mg ;Vhni/:
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P 8.6. – The twisted commutative algebra S is the free twisted commu-
tative algebra generated by the elements �d 2 Sd0 for d � 1,  m1 2 S

m
1 for m � 0, and

�12���n 
m
1 2 S

n�1Cm
n for m � 0.

Proof. – It is straightforward that every monomial inS�n can be uniquely reduced modulo
the relations of Eq. (5) to a product

mY
iD1

�di
�

kY
jD1

�Pj
 
ej
Pj

where .d1; : : : ; dm/ 2 Zm>0, .e1; : : : ; ek/ 2 Zk�0, P1; : : : ; Pk is some partition of the
set f1; : : : ; ng into nonempty blocks, and  Pj

denotes  a for any a 2 Pj (this is also
observed in [34, Lemma 5]). For example, the monomial �21�13�14 

2
3 2 S

�
4 would corre-

spond to .d1; d2/ D .1; 1/, P1 D f2g, e1 D 0, P2 D f1; 3; 4g, e2 D 2. But such a
product is exactly the same as a cross product of the generators for the twisted commutative
algebra S .

D 8.7. – For n � 0 and r � n � 1 we put

Dn;r D

(
�r n D 0

�12���n 
1�nCr
1 n � 1:

Note thatD1;r D  r1 ,D0;�1 D ��1 D 0, andD0;0 D �0 D 2g� 2. The previous proposition
can be stated in a more compact form in terms of this notation: specifically, that the twisted
commutative algebra S is freely generated bySn-invariant classesDn;r placed in arity n and
degree r , where n D 0 and r � 1 or n � 1 and r � n � 1.

The fact that the classes Dn;r generate S implies that their images generate the twisted
commutative algebras Rg , R0g and R00g , since the map from S to these algebras is surjective.

P 8.8. – Fix g � 2 and consider the surjectionsRg ! R0g ! R00g . The kernels
of these maps are ideals in the respective twisted commutative algebras.

1. The kernel of Rg ! R0g is the ideal generated by 1 2 CH0.C 1g / and  1 2 CH1.C 1g /.

2. The kernel of Rg ! R00g is the ideal generated by 1 2 CH0.C 1g /,  1 2 CH1.C 1g /

and �12 2 CH1.C 2g /. Equivalently, the kernel of R0g ! R00g is the ideal generated
by ��21 �12 D �12 �

1
2g�2

. 1 C  2/C
1

.2g�2/2
�1.

Proof. – (1) The kernel of CHk.C ng / ! CHk.Mg ;V˝n/ equals the image of the projec-
tors�i1�� � ���in where .i1; i2; : : : ; in/ ¤ .1; 1; : : : ; 1/; equivalently, the image of all projectors

id � id � � � � � �i � � � � � id

(i.e., all factors except one are given by the identity correspondence, the diagonal), where
i D 0; 2. By Sn-symmetry, let’s assume that all factors except the first are given by the
identity. Let ˛ 2 CH�.C ng /. One checks that

.�0 � id � � � � � id/ ı ˛ D 1 � ˛0 �
1

2.2g � 2/2
�1 � 1 � ˛

00
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and

.�2 � id � � � � � id/ ı ˛ D  1 � ˛00 �
1

2.2g � 2/2
�1 � 1 � ˛

00;

where ˛0 D .p23���n/�. 1 � ˛/ and ˛00 D .p23���n/�.˛/. Hence both projectors map all cycles ˛
into the ideal generated by  1 2 CH1.C 1g / and 1 2 CH1.C 1g /. Conversely, one checks that
�1 annihilates both 1 and  1.

(2) The map CHk.Mg ;V˝n/! CHk.Mg ;Vhni/ is defined by the projection V˝n ! Vhni,
and the kernel of V˝n ! Vhni is spanned by the image of all

�
n
2

�
maps V˝.n�2/ ˝ L! V˝n

given by .n�2; n/-Brauer diagrams of the form considered in the second half of Section 5.3.
But it is clear from the description in Section 5.3 that an element of CHk.Mg ;V˝n/ is in
the image of one of the maps CHk�1.Mg ;V˝.n�2//! CHk.Mg ;V˝n/ precisely if it can be
written in a nontrivial way as a cross product with ��21 �12.

R 8.9. – Let us emphasize that the word “ideal” in the preceding proposition
should be understood in the sense of twisted commutative algebras; that is, the smallest
twisted commutative submodule containing the given elements. In particular, the ring
structures of (say) the individual tautological rings R�.C ng / are not what is important.

C 8.10. – The twisted commutative algebraR00g is generated by the images of the
elements Dn;r such that n D 0 and r � 1, or n � 1 and r � max.n � 1; 2/.

Proof. – We have seen that S is generated by the classes Dn;r for n D 0 and r � 1

or n � 1 and r � n � 1. Since the generators D1;0, D1;1 and D2;1 go to zero under
S ! R00g by Proposition 8.8, we deduce that R00g is generated by the images of the remaining
generators.

C 8.11. – The arity n component R00g.n/ vanishes in degrees below 2n
3

.

Proof. – Every generatorDn;r fulfills this bound, since max.n�1; 2/ � 2n
3

for all natural
numbers n (with equality only for n D 3). Since the bound is linear, and degrees and arities
are both additive under cross product, the result follows.

R 8.12. – The cohomology groups of the spaces C ng also form twisted commuta-
tive algebras, and so do the cohomology groups of the local systemsVhni onMg . In particular
we have a chain of surjections of twisted commutative algebras in graded vector spaces:M

n�0

H �.C ng ;Q/!
M
n�0

H ��n.Mg ;V˝n/!
M
�

H ��n.Mg ;Vh�i/˝ ���T :

If we consider
L
n�0 CH�.C ng /,

L
n�0 CH�.Mg ;V˝n/ and

L
� CH�.Mg ;Vh�i/˝���T also as

twisted commutative algebras in graded vector spaces, but with doubled degrees, then they
map compatibly to the cohomological versions of these twisted commutative algebras under
the cycle class map. We also get twisted commutative algebras of tautological classesM

n�0

RH �.C ng ;Q/!
M
n�0

RH ��n.Mg ;V˝n/!
M
�

RH ��n.Mg ;Vh�i/˝ ���T :

There is a natural “suspension” operation on twisted graded commutative algebras [61, 4.1]
which has the effect of shifting the grading on the arity n component by n and tensoring with
the sign representation of Sn. In this way one can get rid of both the annoying degree shift
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which appears in cohomology and the conjugate of the partition �: one finds that there is a
natural structure of twisted commutative algebra onM

�

H �.Mg ;V�/˝ ���

with a subalgebra
L
�RH

�.Mg ;V�/˝ ��� of tautological classes.

9. A consequence of the FZ relations

In this section we will recall the FZ relations between tautological classes in R�.C ng /, and
draw some simple consequences from them. In particular, we will prove an analogue of the
following theorem, which was conjectured by Faber [12] and proved independently by Ionel
[31] and Morita [50]. (Morita’s proof was only valid in cohomology, but Ionel’s proof worked
in Chow, too.)

T 9.1 (Ionel, Morita). – The tautological ring R�.Mg/ is generated by the
classes �r for which 3r < g C 1.

This theorem is a direct consequence of the FZ relations. We will see that the FZ relations
can be used to prove the following stronger result:

T 9.2. – Fix a genusg � 2. The twisted commutative algebraRg D
L
n�0R

�.C ng /

is generated by the classes Dn;r for which 3r � n < g C 1.

This implies in particular the result of Ionel-Morita, since the arity 0 component of Rg is
the tautological ring R�.Mg/, and D0;r is the kappa class �r .

9.1. The FZ relations

In the early 2000s, Faber and Zagier (in unpublished work) formulated a conjectural
infinite family of relations in the tautological ringR�.Mg/. These relations were proven using
the geometry of stable quotients by Pandharipande and Pixton [57]. Around the same time,
Pixton found a generalization of this conjecture to incorporate also marked points and an
extension of these relations to the Deligne-Mumford boundary. These extended FZ relations
onM g;n were subsequently proven in cohomology by Pandharipande-Pixton-Zvonkine [58]
and on the level of Chow rings by Janda [34, 33].

The FZ relations on C ng take a simpler form than on M g;n. Let us state the result in this
case, following [34, Section 4].

Let

A.z/ D
X
i�0

.6i/Š

.2i/Š.3i/Š
zi B.z/ D

X
i�0

.6i/Š

.2i/Š.3i/Š

.6i C 1/

.6i � 1/
zi :

We introduce a sequence of further power series Cn by

(8) C1 D
B

A
I CnC1 D .12z

2 d

dz
� 4nz/Cn:

We note that Cn is a multiple of zn�1. We will also define

C0 D log.A/;
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which is a multiple of z1. Then we have

(9) C1 D �1C 144z C 2
533z2

d

dz
C0;

so that the coefficients C1 (and hence also the higher Cn) are in fact recursively expressed in
terms of those of C0, except for low order terms.

For any power series F.z/ D
P
i�0 aiz

i in QŒŒz��, we define bracket operators

fF g� D
X
i�0

�iaiz
i

and
fF g�S

D

X
i�0

.�1/jS j�1�S 
i�jS jC1
S aiz

i

for any S � f1; : : : ; ng; here  S denotes  j for any j 2 S .
We use ŒF �zr to denote the coefficient of zr in a power series.

T 9.3 (Janda, Pixton-Pandharipande, Pixton-Pandharipande-Zvonkine).
For any r such that 3r � g � 1 � n is a nonnegative even integer, the expression�

exp.�flog.A/g�/
X

P partition of n

Y
S2P

fCjS jg�S

�
zr

vanishes in CHr .C ng /.

D 9.4. – We denote the above expression Œexp.�flog.A/g�/
P
P

Q
S2P fCjS jg�S

�zr

by FZg;n;r .

L 9.5 (Ionel). – All coefficients ŒCn�zr , for n D 0 and r � 1 or n � 1 and r � n� 1,
are strictly positive rational numbers, except the constant term of C1 which is negative.

Proof. – The case n D 0 is [31, Lemma 3.6], since the coefficients of C0 are (up to
rescaling) the numbers she denotes ck;k . The case n D 1 follows from this by the differential
Equation (9); in fact, it is even stated in Ionel’s lemma, since the coefficients of C1 are (up to
rescaling) the numbers she calls ck;k�1. The differential Equation (8) says that

ŒCnC1�zrC1 D .12r � 4n/ŒCn�zr

for n � 1, and one checks that 12r�4n is strictly positive in all cases of interest except n D 1,
r D 0, where it is negative: consequently, all coefficients of Cn for n � 2, r � n�1 are strictly
positive, too.

We may now prove Theorem 9.2.

Proof. – (of Theorem 9.2) We know that the twisted commutative algebra Rg is gener-
ated by the images of the classes Dn;r 2 Sg . Consider some generator Dn;r for which
3r � g � 1 � n � 0. If 3r � g � 1 � n is even then one of the terms in the relation FZg;n;r
equals

.�1/n�1ŒCn�zr �Dn;r ;

and all other terms are products of generators with smaller r . By Lemma 9.5, ŒCn�zr is
nonzero, and this relation can be used to express the class Dn;r in terms of “simpler”
generators.
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If 3r � g � 1 � n is odd, we may instead consider the FZ relation  nC1 � FZg;nC1;r , and
push forward along the map forgetting the last marked point to get a codimension r relation
on C ng . When we push down a monomial in the kappa, diagonal and psi-classes from C nC1g

to C ng , we get a multiple of Dn;r exactly when we push down DnC1;rC1 D �12���nC1 
r�nC1
1

(which pushes forward toDn;r ) and when we push downDn;r �D1;1 D �12���n r�nC11  nC1,
which pushes forward to .2g � 2/Dn;r . Thus the resulting relation on C ng will have as one of
its terms

.�1/n
�
ŒCnC1�zr � .2g � 2/ŒCn�zr ŒC1�z0

�
�Dn;r ;

and all other terms are products of generators with smaller values of r . By Lemma 9.5 the
coefficients ŒCnC1�zr and ŒCn�zr are positive and the coefficient ŒC1�z0 is negative, so the coef-
ficient behind Dn;r is nonzero and we may use this relation to eliminate the generator Dn;r .

10. Low genus calculations

In this section of the paper we will completely calculate the groupsRk.Mg ;Vh�i/ for all k
and � when g � 4.

T 10.1. – Recall the twisted commutative algebraR00g D
L
�R
�.Mg ;Vh�i/˝���T ,

defined for any g � 2.

1. The twisted commutative algebra R002 is trivial. Equivalently, Rk.M2;Vh�i/ D 0 unless
k D 0, � D 0, for which R0.M2;Vh0i/ D R0.M2/ Š Q.

2. The twisted commutative algebra R003 is generated by �1 and the Gross-Schoen cycle. We
have

R0.M3;Vh0i/ Š R1.M3;Vh0i/ Š R2.M3;Vh111i/ Š Q;
and all other tautological groups of all other motives Vh�i on M3 vanish. The group
R1.M3;Vh0i/ is spanned by �1 and the group R2.M3;Vh111i/ is spanned by the Gross-
Schoen cycle.

3. The twisted commutative algebra R004 is generated by �1, the Gross-Schoen cycle, and
the Faber-Pandharipande cycle. The complete list of motives Vh�i on M4 with nontrivial
tautological groups are

R0.M4;Vh0i/ Š R1.M4;Vh0i/ Š R2.M4;Vh0i/ Š Q;

R2.M4;Vh111i/ Š R3.M4;Vh111i/ Š Q;

R2.M4;Vh11i/ Š Q;

R4.M4;Vh2211i/ Š Q:

The group Rk.M4;Vh0i/ is spanned by �k1 . The group R2.M4;Vh111i/ is spanned by
the Gross-Schoen cycle, and R3.M4;Vh111i/ by the product of �1 and the Gross-Schoen
cycle. The group R2.M4;Vh11i/ is spanned by the Faber-Pandharipande cycle. Finally,
R4.M4;Vh2211i/ is spanned by the cross product of two Gross-Schoen cycles; that is, the
projection of �123�456 into the summand CH4.M4;Vh2;2;1;1i/˝ �4;2 gives a generator.
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In all cases, Poincaré duality holds, in the sense that

Rk.Mg ;Vh�i/˝Rg�2Cj�j�k.Mg ;Vh�i/! Rg�2.Mg ;Vh0i/ Š Q

is a perfect pairing.

The proof of this theorem occupies the rest of this section. In all genera, the strategy of
the proof will be the same:

— Using Corollary 8.10 and Theorem 9.2 we get a finite list of generators for the twisted
commutative algebra R00g . Thus we have reduced the problem to finding the complete
set of relations between these generators.

— We use the FZ relations to obtain relations between the generators. Since we are
working in the twisted commutative algebra R00g , it is enough to consider the FZ
relations modulo the equivalence relation �, which often dramatically simplifies the
relations. In this way we find that all but a finite list of twisted tautological classes are
zero, and we are done if we can prove nonvanishing of each of these.

— Using Nazarov’s Theorem 3.8 and our Theorem 5.5, we can represent each of
the remaining potentially nonzero twisted tautological classes by an explicit class
in R�.C ng /, so that we reduce the problem to proving that a finite number of tauto-
logical classes (without twisted coefficients) in C ng are nonzero. This is now done by
a standard argument: we multiply with some other class in complementary degree
to land in the top degree part of the tautological ring, and then push down to get
an element in the top degree of the tautological ring of Mg , whose structure we
understand completely.

To formulate the calculations, it will be convenient to introduce the following notation:
for x; y 2 CHk.C ng /, we write x � y to denote that x and y have the same image

in CHk.Mg ;Vhni/. Equivalently by Theorem 8.8, x � y if x and y are equivalent modulo
the twisted commutative algebra-ideal generated by 1 2 CH0.C 1g /,  1 2 CH1.C 1g / and
�12 2 CH1.C 2g /.

R 10.2. – We caution the reader that the relation � does not respect the multi-
plication in the rings R�.C ng /, and is not preserved when pushing forward a relation along a
diagonal inclusion. That is, if we are given an element R 2 Skn such that R � 0 in Rk.C ng /,
then it does not follow e.g., that  1 � R � 0 in RkC1.C ng /, nor that the pushforward of R

toRkC1.C nC1g / along a diagonal inclusion vanishes modulo�. One must therefore be careful
to first multiply or push forward and only afterward reduce modulo�.

10.1. Genus two

By Corollary 8.10 and Proposition 9.2, all of the generatorsDn;r go to zero inR002. SoR002 is
the free twisted commutative algebra on no generators, i.e., it contains only the unit element
in arity 0. This proves the genus 2 case of Theorem 10.1.

This result was previously obtained (in a different form) in [69].
The analogous statement is also true in genus one: Rk.M1;1;Vhai/ Š Q for k D a D 0,

and vanishes otherwise; this reformulates a result from [68]. This statement is not hard to
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prove in our framework, but we have chosen to simplify the exposition by only talking about
tautological groups R�.Mg ;Vh�i/ on moduli spaces of unpointed curves.

10.2. Genus three

By Corollary 8.10 and Proposition 9.2, the twisted commutative algebra R003 is generated
by the images of D0;1 and D3;0, i.e., �1 and the Gross-Schoen cycle. Thus R003 is completely
determined if we can find the complete set of relations between these generators. We claim
that the product of any two generators vanishes. We have three products we need to check
are zero:

1. The relation �21 D 0 in R2.M3;Vh0i/ is well known and is a very special case of
Looijenga’s theorem (see Section 7).

2. Modulo the equivalence relation�, the relation FZ3;3;3 simplifies to

18432�123 1 � 960�123�1 � 0:

That is, this is the expression obtained from FZ3;3;3 by removing all terms which are
divisible (in the twisted commutative algebra R3) by 1 2 R0.C 1g /,  1 2 R

1.C 1g / and
�12 2 R

1.C 2g /. Note that this is the relation we used to show that the generator�123 1
can be expressed in terms of simpler generators in the proof of Theorem 9.2.

Now consider instead the pushforward of FZ3;2;2 along a diagonal inclusion
C 2g ,! C 3g . Modulo�, that relation simplifies to

�1152�123 1 C 240�123�1 � 0:

It is now clear that we obtain �123�1 � 0, so that the product of the Gross-Schoen
cycle and �1 vanishes in R00g .

3. Observe first of all that modulo the relation�, the only nonzero monomials in S46 (see
Definition 5.2) are �123�456 and its S6-conjugates.

For distinct elements i; j 2 f1; :::; 6g, consider the pushforward of the rela-
tion FZ3;5;3 along the corresponding diagonal inclusion. The observation just made,
and the fact that FZ3;5;3 is S5-invariant, implies that the resulting relation takes the
form X

StTDf1;:::;6g
jS jDjT jD3
i;j2S

�S�T � 0

(up to a nonzero constant), as all other terms in the pushforward of FZ3;5;3 vanish
modulo �. We think of these relations as

�
6
2

�
D 15 equations in 1

2

�
6
3

�
D 10 unknowns

�S�T . It is a simple matter of linear algebra to check that the matrix of equations has
full rank, so that �S�T � 0 for all S , T .

We should also verify that �1 and the Gross-Schoen cycle are both nonzero in genus
three, and that Poincaré duality holds. Nonvanishing of �1 is well known. The square of the
Gross-Schoen cycle, pushed down toM3, equals 7

4
�1 (as one can verify on a computer). This

proves both nonvanishing of the Gross-Schoen cycle and Poincaré duality, since the pairing
R2.M3;Vh1;1;1i/˝R2.M3;Vh1;1;1i/! R1.M3;Vh0i/ Š Q is exactly given by multiplying the
two cycles and pushing the result down toM3. This proves the genus 3 case of Theorem 10.1.
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10.3. Genus four

By Corollary 8.10 and Proposition 9.2 we now have three generators for the twisted
commutative algebra R004: �1, the Gross-Schoen cycle, and the Faber-Pandharipande cycle.

We claim that �21 and the product of �1 and the Gross-Schoen cycle are both nonzero
in R004. Moreover, let us consider the product of two Gross-Schoen cycles. If we consider
the subspace of the twisted commutative algebra S spanned by all possible products of two
classesD3;0, then this decomposes as a representation ofS6 as �4;2˚�6 D IndS6

.S3/2oS2
1. We

claim that the representation �6 goes to zero in R004, but that the representation �4;2 survives
to R004.6/.

Finally, we also claim that all other products of generators for the twisted commutative
algebra R004 vanish. More precisely, we need to check the following relations:

1. �31 � 0,

2. �21�123 � 0,

3. �1�12 1 � 0,

4.
P
StTDf1;:::;6g
jS jDjT jD3

�S�T � 0,

5. �123�456�789 � 0,

6. �123�45 4 � 0,

7. �123�456�1 � 0,

8. �12 1�34 3 � 0.

(1) It’s well known that �31 D 0.
(2) Modulo � the only nonzero monomials in S43 are �123 21 , �123 1�1, �123�21 , and

the S3-conjugates of  21�23 2. The relation FZ4;1;2 reduces to  21 � 0, which also implies
 21�23 2 � 0. This leaves us with three potentially nonzero monomials. But FZ4;3;4, the
pushforward along a diagonal of FZ4;2;3, and the pushforward of FZ4;1;2, give us three
linearly independent linear relations between these monomials modulo�.

(3) The only nonzero monomials in S32 modulo � are �12 21 and �12�1 1. The rela-
tions FZ4;2;3 and the pushforward of the relation FZ4;1;2 along the diagonal give two distinct
linear relations between these monomials modulo�, so both are zero modulo�.

(4) The relation  7 � FZ4;7;4, pushed down along the forgetful map that forgets the 7th
marked point, reduces to this expression modulo �. Alternatively, since the expression is
S6-invariant, its image in R004 lands in the summand R�.M4;Vh1;1;1;1;1;1i/ ˝ ��6 . But the
motive Vh1;1;1;1;1;1i is zero.

(5) Modulo�, the only nonzero monomials inS69 are theS9-conjugates of�123�456�789.
For any four indices i; j; k; l we may consider the pushforward of FZ4;7;4 along the i; j -th
and k; l-th diagonal, to get a relation which up to a scalar must equalX

StTtUDf1;:::;9g
jS jDjT jDjU jD3
i;j2S k;l2T

�S�T�U � 0:

This gives 1
2

�
9

2;2;5

�
D 378 relations between 1

3Š

�
9

3;3;3

�
D 280 unknowns, and one can check

using a computer that the resulting matrix has full rank; in particular, �123�456�789 � 0.
(6) Modulo�, there are exactly 11 nonzero monomials in S45 :�12345, and theS5-conju-

gates of �123�45 4. The relation FZ4;5;4, and the 10 different pushforwards of the rela-
tion FZ4;4;3 along a diagonal inclusion, give 11 linear relations between these monomials
modulo�. The resulting 11� 11 matrix is invertible and we conclude that �123�45 4 � 0.
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(7) The nonzero monomials in S56 are �123456, �123�456 1, �123�456�1, �12�3456 1,
and their S6-conjugates. This implies that the relation FZ4;5;4, pushed forward along the
i; j -th diagonal and multiplied with �1, must be equal toX

StTDf1;:::;6g
jS jDjT jD3
i;j2S

�S�T �1 � 0

up to a nonzero scalar, since all the monomials involved in this relation must involve �1
and have i; j in the same diagonal block. But this implies �123�456�1 � 0 by the same
calculation as for relation (3) in genus 3.

(8) The nonzero monomials in S44 are�12 1�34 3, 21�234,�1234 1,�1234�1 and their
S4-conjugates. Since  21 � 0, as observed in (2) above, we will also have  21�234 � 0.
Moreover, the relation FZ4;4;3 simplifies to �1234 � 0, so that also �1234�1 � 0. This
leaves only four potentially nonzero monomials. The relations given by  1 � FZ4;4;3, �12 �
FZ4;4;3,�13 �FZ4;4;3 and�1;4 �FZ4;4;3 give four linearly independent relations between these
monomials, and we conclude that they all vanish modulo�.

We should also prove that all these cycles are nonzero and that Poincaré duality holds.
We use that the relation 3�21 D �32�2 holds in R2.M4/ D Qf�21g. The Gross-Schoen
cycle squared, pushed down to M4, equals 3

2
�1. This shows both that the Gross-Schoen

cycle is nonzero and that its product with �1 is nonzero. The Faber-Pandharipande cycle
squared, pushed down to M4, equals 19

96
�21 �

4
3
�2, which is then also nonzero. The projec-

tion of �123�456 onto R4.M4;Vh2;2;1;1i/ ˝ �4;2, squared and pushed down to M4, equals
19877
29160

�21 �
25
729
�2, which is then also nonzero.

This settles the genus 4 case, and hence concludes the proof of Theorem 10.1.

10.4. Genus five

Let us briefly comment on the situation in genus 5. The generators for the twisted commu-
tative algebra R005 are �1,  21 , �12 1, �123, and �1234. For n � 7 we find that the algebra
R�.C n5 / is Gorenstein, and we can compute the groupsR�.M5;Vh�i/ for j�j � 7 by methods
like those used in lower genera. One finds the following table of results, in which the classes
in the right hand column project onto generators for the tautological groups listed in the left
hand column.

R0.M5/ Š R
1.M5/ Š R

2.M5/ Š R
3.M5/ Š Q

R2.M5;Vh1i/ Š Q  21

R2.M5;Vh1;1i/ Š R3.M5;Vh1;1i/ Š Q �12 1; �12 1�1

R2.M5;Vh1;1;1i/ Š R3.M5;Vh1;1;1i/ Š R4.M5;Vh1;1;1i/ Š Q �123; �123�1; �123�
2
1

R3.M5;Vh1;1;1;1i/ Š R4.M5;Vh1;1;1;1i/ Š Q �1234; �1234�1

R4.M5;Vh1;1;1;1;1i/ Š Q �123�45 4

R4.M5;Vh2;1;1;1i/ Š Q �123�45 4

R4.M5;Vh2;2;1i/ Š Q �123�45 4

R4.M5;Vh2;2;1;1i/ Š Q �123�456
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R5.M5;Vh2;2;1;1i/ Š Q �123�456�1

R5.M5;Vh2;2;1;1;1i/ Š Q �123�4567

R5.M5;Vh2;2;2;1i/ Š Q �123�4567

For n D 8 the Faber conjecture predicts the vanishing results

�1234�5678 � �123�456�78 7 � 0:

Assuming that the FZ relations are all relations between tautological classes, one finds
that �1234�5678 and �123�456�78 7 should both have nonzero image in R005.8/, and we
expect that

R6.M5;Vh2;2;2;2i/ Š R6.M5;Vh3;2;2;1i/ Š Q:
Either of these nonvanishings would imply that R�.C 85 / is not Gorenstein. Proving them
seems like a hard problem; nevertheless, we consider this to be progress in trying to find a
counterexample to the Faber conjecture. Trying to prove that a specific cohomology group
(or cohomology class) does not vanish is a far more appealing problem than, say, trying to
prove that the rank of R6.C 85 / is greater than 35166. Moreover, our approach relates the
Faber conjecture to actively studied questions about modified diagonals, see e.g., [54, 73, 48].

11. Relation to work of Looijenga

11.1. The theorems of Harer and Madsen-Weiss

Let M
g;E1

denote the moduli space parametrizing smooth genus g curves equipped with
a marked point and a nonzero tangent vector at the marking. The (analytifications of the)
spacesMg andM

g;E1
are bothK.�; 1/ spaces in the orbifold sense, meaning in particular that

their cohomology is given by the group cohomology of their fundamental groups. Whereas
the (orbifold) fundamental group of Mg is the mapping class group of a closed genus g
surface, the fundamental group ofM

g;E1
is the mapping class group of a genus g surface with

a parametrized boundary component. As such, there is a “stabilization” map

Hk.Mg;E1
;Z/! Hk.MgC1;E1

;Z/

which on the level of fundamental groups is given by gluing a torus with two boundary
components onto the boundary of the genus g surface. See also [26, Section 4] for how to
define these stabilization maps algebro-geometrically.

The celebrated stability theorem of Harer [30] asserts that the stabilization map is an
isomorphism for g � k.

T 11.1 (Harer). – Hk.Mg;E1
;Z/ ! Hk.MgC1;E1

;Z/ is an isomorphism for
k � 2

3
.g � 1/.

If we are interested primarily in closed surfaces, we also have a stabilization result for the
forgetful map M

g;E1
!Mg that forgets the marking and the tangent vector:

T 11.2 (Harer). – The map Hk.Mg;E1
;Z/ ! Hk.Mg ;Z/ is an isomorphism

for k � 2
3
g.
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The original bounds for the stable range of Harer have successively been improved by
multiple people to obtain these results, see [4, 74]. We note that to obtain stability with integer
coefficients in Theorem 11.2 it is crucial that Mg is considered as a stack—if we work with
its coarse moduli space, the result is only valid with Q-coefficients.

It is a formidable problem to actually compute the stable homology ofMg . With Q-coef-
ficients, an answer was conjectured by Mumford and proven by Madsen-Weiss [45]:

T 11.3 (Madsen-Weiss). – The map QŒ�1; �2; �3; : : :� ! H �.Mg ;Q/ is an
isomorphism in the stable range, i.e., in degrees up to 2

3
.g � 1/.

R 11.4. – If we formally denote the value of the stable cohomology by H �.M1;Q/,
then the statement is that H �.M1;Q/ is a polynomial algebra in the � classes. Since the
tautological ring ofMg is defined as the algebra generated by the � classes, it therefore makes
sense to say that the tautological cohomology of Mg is the image of the stable cohomology in
the unstable cohomology.

11.2. Twisted coefficients

One can also ask whether homological stability holds with coefficients in a local system
Vh�i. In this case, stabilization should be interpreted as appending an integer �gC1 D 0 to
the weight vector �1 � � � � � �g � 0. The analogue of Harer stability holds in this case, too,
by a theorem of Ivanov [32]:

T 11.5 (Ivanov). – The map H k.Mg ;Vh�i/ ! H k.MgC1;Vh�i/ is an isomor-
phism for g � k; j�j.

We should remark that Ivanov’s statement was not specifically about the local systemsVh�i;
his theorem is valid for a more general notion of coefficient system of finite degree which
makes sense over an arbitrary base ring, and the local systems Vh�i are an example of such.

Ivanov’s theorem did not actually calculate the stable cohomology with twisted coeffi-
cients. Rationally, the stable cohomology with coefficients in Vh�i was calculated by Looi-
jenga [44], in a paper that strongly influenced our way of thinking on these subjects.

The first step in Looijenga’s calculation of H �.M1;Vh�i/ is to compute the stable coho-
mology of the spaces C ng . His result can be reformulated in a rather appealing way in terms
of twisted commutative algebras:

T 11.6 (Looijenga). – The twisted commutative algebra
L
n�0H

�.C n1;Q/ is free
on Sn-invariant generators Dn;r in arity n and cohomological degree 2r for n D 0, r � 1 and
n � 1; r � n � 1. In other words, the map S�n ! H 2�.C ng / is an isomorphism in the stable
range.

We note that this theorem contains in particular the Madsen-Weiss theorem, by restricting
to the case n D 0 (in which case the generators D0;r are kappa classes), even though Looi-
jenga’s paper predates the Madsen-Weiss theorem. Thus Looijenga’s theorem was rather that
the stable cohomology ofMg with twisted coefficients is a free module over the stable coho-
mology with constant coefficients with explicitly given generators; plugging in the Madsen-
Weiss theorem gives the above result.
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To compute H �.M1;Vh�i/ from Theorem 11.6, one notes that there is a surjection of
twisted commutative algebras

L
n�0H

�.C n1;Q/ !
L
n�0

L
j�jDnH

��n.Mg ;Vh�i/˝ ��T ,
whose kernel is the ideal generated by the classes D1;0, D1;1 and D2;1. Thus one finds:

T 11.7 (Looijenga). – The twisted comm. algebra
L
�H

��j�j.M1;Vh�i/˝ ��T

is the free twisted commutative algebra on Sn-invariant generators Dn;r in arity n and coho-
mological degree 2r for n D 0, r � 1 and n � 1; r � max.2; n � 1/.

By decomposing this free twisted commutative algebra into irreducible representations
ofSn, one finds a calculation of the stable cohomologyH �.M1;Vh�i/ for any �. Looijenga
does not state his result in these terms: he defines a certain algebra B�n which he decomposes
into irreducible representations of Sn, and this algebra (tensored with the polynomial ring
in the kappa classes) is the arity n component of the free twisted commutative algebra in the
previous result.

The conclusion is in any case the following. For constant coefficents, the stable coho-
mology of Mg is a free polynomial algebra on the �-classes. The image of the stable coho-
mology inside the unstable cohomology can be defined to be the tautological cohomology
of Mg . If we consider instead the stable cohomology with all possible twisted coefficients,
i.e., the direct sum

L
�H

��j�j.Mg ;Vh�i/ ˝ ��T , then this is a free twisted commutative
algebra, and the image of the stable cohomology inside the unstable cohomology is now
exactly what we defined to be the tautological cohomology of Mg with twisted coefficients.

12. The “primary approximation” to the cohomology of the moduli space

Prior to this paper, Hain [25] proposed a definition of tautological cohomology groups
RH �.Mg ;Vh�i/ of Mg with coefficients in a symplectic representation, which is a priori
different from ours. In this section we will show that the two definitions coincide. In case
� D 0, this gives a new proof of a theorem of Kawazumi and Morita [38]. We note that Hain
asked in loc. cit. whether his construction could be lifted to the level of Chow groups; our
constructions provide such a lifting.

Let O.Sp.2g// be the algebraic coordinate ring of the symplectic group over Q. By the
Peter-Weyl theorem, there is an isomorphism of Sp.2g/ � Sp.2g/-bimodules

O.Sp.2g// Š
M
�

Vh�i ˝ V
�
h�i;

where the sum runs over all irreducible representations of the symplectic group. We consider
Vh�i to have a left action and V �

h�i
with a right action. Using the left action of Sp.2g/

on O.Sp.2g//, we may consider it as defining a local system of algebras O.Sp.2g// on Mg .
Taking its cohomology, we get that

Tg
def
D H �.Mg ;O.Sp.2g/// D

M
�

H �.Mg ;Vh�i/˝ V �h�i

is in a natural way a commutative Q-algebra. See [26, Section 9.5] or [25].
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R 12.1. – A perhaps more down to earth way to understand this multiplication
is as follows. Suppose that we have Vh�i ˝ Vh�i � Vh�i. Then we get a multiplication map

H �.Mg ;Vh�i/˝H �.Mg ;Vh�i/! H �.Mg ;Vh�i/

which however depends nontrivially on the choice of an intertwiner Vh�i˝Vh�i ! Vh�i. What
is instead completely well defined is the map

HomSp.2g/.Vh�i ˝ Vh�i; Vh�i/˝H
�.Mg ;Vh�i/˝H �.Mg ;Vh�i/! H �.Mg ;Vh�i/;

which (using the canonical identification Hom.M;N / D N ˝ M �) can be thought of
equivalently as an Sp.2g/-equivariant map

H �.Mg ;Vh�i/˝ V �h�i ˝H
�.Mg ;Vh�i/˝ V �h�i ! H �.Mg ;Vh�i/˝ V �h�i:

Let us now consider the Gross-Schoen cycle as a class ˛ 2 H 1.Mg ;Vh1;1;1i/. We have a
vector subspace ˛ ˝ V �

h1;1;1i
� Tg , and therefore by the universal property of a polynomial

algebra a morphism of graded commutative rings
�^
V �
h1;1;1i ! Tg :

There is an inclusion V �
h2;2i

�
V2

V �
h1;1;1i

. Since ˛ is tautological, every class in the
image of this homomorphism is tautological; it follows from this that the summand
V �
h2;2i
�
V2

V �
h1;1;1i

lies in the kernel, since one can compute from our results (or rather the

work of Looijenga) that RH 2.Mg ;Vh2;2i/ D 0. We denote the algebra
V�

V �
h1;1;1i

=.V �
h2;2i

/

by Ag . It follows that there exists an Sp.2g/-equivariant ring homomorphism

'WAg ! Tg :

D 12.2. – The H-tautological ring is the subring Rg � Tg given as the image
of '. By decomposing the H -tautological ring into irreducible summands for its natural
action of Sp.2g/ we get a subspace of H -tautological classes inside H �.Mg ;Vh�i/ for any
partition �.

R 12.3. – When g D 2 the local system Vh1;1;1i vanishes (and so does the Gross-
Schoen cycle), and theH -tautological ring consists only of the unit element inH 0.M2;Vh0i/.

R 12.4. – The definition above may seem very ad hoc—why should the Gross-
Schoen cycle play a more distinguished role than any other tautological class? A more
“invariant” definition is that the H -tautological ring is the subring of H �.Mg ;O.Sp.2g///
generated by all normal functions over Mg [27].

R 12.5. – It is a striking fact that unlike the usual tautological ring ofMg or C ng ,
the H -tautological ring is generated by a single algebraic cycle class.

Restricting to symplectic invariants, we get a map

'Sp.2g/
WASp.2g/
g ! TSp.2g/

g D H �.Mg ;Q/:

This morphism is exactly what Morita calls the primary approximation to the cohomology
ring ofMg . Morita originally described it in rather different terms [49]; this re-interpretation
is due to Hain. A theorem of Kawazumi and Morita [38] asserts that the image of 'Sp.2g/ is
the tautological cohomology ring of Mg . We will prove a more general result below.
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R 12.6. – The above map can also be understood in terms of relative Malcev
completion [24]. Hain constructs a Lie algebra ug of mixed Hodge structures with
Sp.2g/-action (the Lie algebra of the pro-unipotent radical of the relative completion of
the mapping class group) and an Sp.2g/-equivariant map H �.ug/ ! H �.Mg ;O.Sp.2g///.
The results of [24] (and subsequent improvements) show that the weights of ug are negative
and that GrW�1ug Š V

�
h1;1;1i

, GrW�2ug Š V
�
h2;2i

. It follows that the algebra Ag is the pure partL
k WkH

k.ug/ of the Chevalley-Eilenberg cohomology of ug , so the H -tautological ring
can also be defined as the image of the lowest weight part of the cohomology of ug .

L 12.7. – Let n;m be integers with n � 0, m � 0 and nC 2m � 2 > 0. Construct a
.3 � .nC 2m� 2/; n/-Brauer diagram as follows: for i D 1; : : : ; nC 2m� 3, draw a horizontal
strand connecting the .3i/th node on the top row to the .3iC1/st. Of the remaining nC2m nodes
on the top row, pick n of them arbitrarily and connect them to the nodes along the bottom row,
and connect the remaining 2m nodes arbitrarily to each other bym horizontal strands. Consider
the resulting map

HnC2m�2.Mg ;V˝3.nC2m�2//! HnC2m�2.Mg ;V˝n/:

The image of ��31 .�123/
�.nC2m�2/ under this map is the class ��n1 .�12���n 

m
1 / if n > 0, and

�m�1 if n D 0.

Proof. – This is an easy consequence of the discussion in Section 5.3. Namely, to compute
the image of ��31 .�123/

�.n�2C2m/ we start with the cycle �123�456�789 � � � , restrict to a
suitable diagonal locus—specifically, the diagonals are specified by the horizontal strands
in the Brauer diagram—and then project away from the markings corresponding to these
diagonals. This gives �12���n m1 if n > 0, and �m�1 if n D 0, after which we should apply
��n1 , which gives the result.

T 12.8. – The space of H -tautological classes inside H �.Mg ;O.Sp.2g/// coin-
cides with the spaceRH �.Mg ;O.Sp.2g/// D

L
�RH

�.Mg ;Vh�i/˝V �� of tautological classes
in our sense.

Proof. – We note first that RH �.Mg ;O.Sp.2g/// is a subalgebra ofH �.Mg ;O.Sp.2g//.
Indeed, consider the multiplication map

HomSp.2g/.Vh�i ˝ Vh�i; Vh�i/˝H
�.Mg ;Vh�i/˝H �.Mg ;Vh�i/! H �.Mg ;Vh�i/:

Every element of HomSp.2g/.Vh�i ˝ Vh�i; Vh�i/ is given by Brauer diagrams. It follows that
if we realize the cohomologies of the different local systems as summands of the coho-
mologies of fibered powers C ng , then the multiplication H �.Mg ;Vh�i/ ˝ H �.Mg ;Vh�i/ !
H �.Mg ;Vh�i/ is induced by an algebraic correspondence given by tautological cycles, for
any choice of intertwiner Vh�i ˝ Vh�i ! Vh�i. This means in particular that the cup product
maps tautological classes to tautological classes.

In particular, this means that everyH -tautological class is a tautological class in our sense:
since theH -tautological ring is generated by the Gross-Schoen cycle, it must be contained in
the subalgebra of all tautological classes.

Conversely we need to prove that every tautological class in our sense can be written as a
product of Gross-Schoen cycles. It is enough to prove this for the generators of the twisted
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commutative algebra R00g , i.e., the images of the classes �12���n m1 and the �-classes. If we
consider the Brauer diagram of Lemma 12.7 as an element of HomSp.2g/..Vh1;1;1i/˝.n�2C2m/;Vhni/;
then the image of this Brauer diagram and n � 2 C 2m copies of the Gross-Schoen cycle
under the cup product map

HomSp.2g/..Vh1;1;1i/˝.n�2C2m/;Vhni/˝H 1.Mg ; .Vh1;1;1i/˝.n�2C2m/ ! Hn�2C2m.Mg ;Vhni/

equal the image of �12���n m1 under the projection H 2.n�1Cm/.C ng ;Q/! Hn�2C2m.Mg ;Vhni/,
as Lemma 12.7 shows. The result follows.

C 12.9 (Kawazumi-Morita). – The image of .
V�

Vh1;1;1i=Vh2;2i/
Sp.2g/ !

H �.Mg ;Q/ is the tautological cohomology ring of Mg .

Proof. – This is the case � D 0 of the preceding theorem.

Morita [51] has conjectured that the map 'Sp.2g/ is injective: that is, it defines an isomor-
phism between A

Sp.2g/
g and the tautological ring R�.Mg/. Compared to other conjectural

descriptions of the tautological ring, e.g., the conjecture that all relations are consequences
of the FZ relations, this gives a remarkably quick and direct description of the tautolog-
ical ring (even though it is not so easy to determine the structure of the algebra A

Sp.2g/
g ).

A natural generalization of Morita’s conjecture is to ask whether 'WAg ! Rg is an isomor-
phism. A consequence of our results is that this is not the case, however:

P 12.10. – The map ' is not injective when g D 4.

Proof. – Using a computer algebra system, one can verify that the third exterior powerV3
V �
h1;1;1i

contains the irreducible representation V �
h3;2;2;2i

as a summand. On the other
hand the degree 3 part of the ideal .V �

h2;2i
/ is a quotient ofV �

h2;2i
˝V �
h1;1;1i

, which contains only
representations of weight at most 7. It follows that A4 has a nontrivial summand V �

h3;2;2;2i
in

degree 3. But our calculations of the tautological groups with twisted coefficients in genus
four show that RH 3.M4;Vh3;2;2;2i/ D 0, so this summand must be in the kernel of '.

As pointed out in the introduction of this section, Hain asked whether the construction of
a tautological algebra insideH �.Mg ;O.Sp.2g/// could be lifted to the level of Chow groups,
and our construction in this paper gives an affirmative answer to this question. However,
there does not seem to be any sensible way to get the grading on the level of Chow groups,
at least not without introducing fractional Tate twists. The source of the problem is that an
intertwiner in HomSp.2g/.Vh�i˝Vh�i; Vh�i/ does not give rise to a morphism of Chow motives
Vh�i ˝ Vh�i ! Vh�i unless j�j C j�j D j�j; in general one only gets a morphism to a Tate
twist of Vh�i. One option is to work instead with Chow motives with respect to ungraded
correspondences—one can make sense of O.Sp.2g// as a relative Chow motive over Mg

with respect to ungraded correspondences—but the Chow groups of a motive with respect
to ungraded correspondences only form a vector space, not a graded vector space, and so
the grading needs to be put in “by hand”. Alternatively, if we allow half-integer Tate twists,
then we can replace Vh�i with Vh�i ˝ L�j�j=2 throughout, which will allow us to recover the
cohomological grading (halved).
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12.1. The twisted commutative algebra and the Peter-Weyl theorem

We have now seen two a priori completely different ways to build an algebra by considering
all local systems Vh�i simultaneously: the commutative ring Tg D

L
�H

�.Mg ;Vh�i/˝ V �h�i
and the twisted commutative algebra

L
�H

�.Mg ;Vh�i/ ˝ ��� (see Remark 8.12). We now
want to explain a connection between the two constructions.

Suppose that A is a ring in the category of graded Sp.2g/-representations. We associate
to A two twisted commutative algebras LA and LıA given by

n 7! LA.n/ D .A˝ V
˝n/Sp.2g/

and
n 7! LıA.n/ D .A˝ V

hni/Sp.2g/:

(Recall that V hni D
L
�`n Vh�i ˝ �

�
�

.) The multiplication in LA is given by

LA.n/˝ LA.m/ D .A˝ V
˝n/Sp.2g/

˝ .A˝ V ˝m/Sp.2g/
� .A˝ V ˝n ˝ A˝ V ˝m/Sp.2g/

mult:
�! .A˝ V ˝n ˝ V ˝m/Sp.2g/

D LA.nCm/;

and similarly forLıA. We obtain two functors from the category of rings with action of Sp.2g/
to the category of twisted commutative algebras.

We will apply our functors to the rings Ag , Rg and Tg defined above. (2) We find for
example that

LıTg
.n/ D HomSp.2g/.H

�.Mg ;O.Sp.2g//; V hni/

Š

M
�

M
�`n

H �.Mg ;V�/˝HomSp.2g/.V�; V�/˝ �
�
�

Š

M
�`n

H �.Mg ;Vh�i/˝ ��� D H
�.Mg ;Vhni/:

In particular, LRg
and LıRg

are the cohomological analogues of the twisted commutative
algebras denotedR0g andR00g in Section 8. So our twisted commutative algebras can be recov-
ered functorially from Hain’s tautological ring Rg , which explains how the two constructions
are related.

A slightly more refined version of the above construction is possible. Recall that a twisted
commutative algebra can be defined as a lax symmetric monoidal functor from

`
n�0Sn

to graded vector spaces. We define instead a twisted Brauer algebra as a lax symmetric
monoidal functor from Br.�2g/ to graded vector spaces. Recall that the category Br.�2g/

was defined in Section 3.3; it is the category whose objects are the natural numbers and
morphisms n ! m are .n;m/-Brauer diagrams, with symmetric monoidal structure given
on objects by addition and on morphisms by disjoint union. There is an evident inclusion`
n�0Sn ! Br.�2g/, by interpreting a bijection Œn� ! Œn� as an .n; n/-Brauer diagram

with only vertical strands, which defines a forgetful functor from twisted Brauer algebras to
twisted commutative algebras.

(2) Strictly speaking these are rings in the category of representations of Sp.2g/op, rather than Sp.2g/: if we want to
work with usual representations we should have

V�
Vh1;1;1i=.Vh2;2i/ rather than

V�
V �
h1;1;1i

=.V �
h2;2i

/. We will
ignore this detail.
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It is not hard to see that ifA is a ring with Sp.2g/-action, thenLA may in fact be considered
as a twisted Brauer algebra. (3) This has some advantages. For example, we noted that the
ring Rg is generated by a single algebraic cycle class (more precisely, by a single copy of the
representation V �

h1;1;1i
), whereas the twisted commutative tautological algebras Rg , R0g and

R00g had large numbers of generators. If we consider LRg
as a twisted Brauer algebra rather

than a twisted commutative algebra, it is in fact generated by a single element in arity 3
corresponding to the Gross-Schoen cycle. This shows that by considering twisted Brauer
algebras one retains slightly more information.
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