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1

Overview of the thesis

Here we discuss the main themes of the thesis, explain key concepts and ideas, summarize
results, and set up notation and conventions.

Algebraic cycles

The study of algebraic cycles is one of the most fascinating subjects in algebraic geometry. It illustrates
a nice mixture of topology, geometry and algebra, with many deep questions and conjectures.

The construction goes roughly as follows: consider an algebraic variety X , which is defined by
some polynomial equations. Then a (closed) subvariety of X is defined by some more polynomial
equations. The group of algebraic cycles on X is nothing but the formal abelian group generated by
all subvarieties of X . With this definition, however, one does not have enough operations to study
those cycles. The solution is to introduce some kind of equivalence between cycles: to allow them to
move a bit, so that every pair of cycles can intersect. The least one can do is to work modulo rational
equivalence, i.e. to allow cycles to move along a projective line. The resulting group is called the
Chow group, and it carries a ring structure given by the intersection, hence the Chow ring. One may
also work modulo other coarser equivalences (e.g. algebraic, homological and numerical equivalences)
to allow more flexibility.

The Chow ring can sometimes be viewed as the algebraic counterpart of the cohomology ring,
the latter being a more geometric notion. Their interactions are particularly interesting: on one
hand, the Hodge conjecture predicts that cohomology should in some sense be controlled by Chow.
On the other hand, the Bloch-Beilinson-Murre conjecture predicts the converse. The formal aspect
of these conjectures can be explained via the language of (Chow) motives. Roughly speaking, the
category of motives captures all information about Chow, and has a functor towards cohomology,
called realization.
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1. Overview of the thesis

Tautological (cycle) classes

It is a well-known phenomenon that the Chow ring of a variety can be enormous as soon as its
cohomology becomes complicated. So in that case, it seems hopeless to study the Chow ring in
integrity. Nevertheless, for particular types of varieties there exist many interesting, geometrically
constructed cycle classes. People often call them tautological classes — as if one gets them for free.
With a bit of luck, one can find a certain degree of finiteness in those classes, as well as other nice
enumerative properties. Moreover, if the definition of tautological classes is good, one also expects
most classes found in nature to be tautological.

In this thesis we shall encounter two such notions of tautological classes. The first is for the
moduli space of curves and dates back to Mumford in 1983. The second concerns the Jacobian of a
curve and was first introduced by Beauville in 2004.

Tautological ring: curve side

A smooth curve C carries a canonical divisor class K , which is the first Chern class of its cotangent
bundle. Consider a family of such curves p : C → S , and glue the K ’s together. Then by self
intersecting K and pushing forward to S , we obtain the so-called kappa classes ci = p∗(K i+1) on S .
The tautological ring R(S ) is just the ring generated by these kappa classes, and all classes in R(S )
are called tautological.

The universal model of all such S ’s is the moduli spaceM g , which is some kind of a parameter
space for smooth curves of genus g . In this case, the study of the tautological ring R(M g ) has
two major motivations. The first is the Mumford conjecture, now proven by Madsen and Weiss.
It roughly says that when the genus g goes to infinity, the limit of the cohomology ring H (M g )
coincides withR(M g ), i.e. it consists only of tautological classes.

The second motivation comes from the Faber conjectures, which predict that R(M g ) behaves
like the (algebraic) cohomology of a smooth complete variety. In other words, it should be a Goren-
stein ring and have Poincaré duality. The di�culty is to construct su�ciently many relations between
tautological classes. Due to many failed attempts for g ≥ 24, as well as counterexamples in other con-
texts, nowadays people tend not to believe the conjectures. But the evidence remains unconvincing.

One may consider similar Gorenstein properties for the tautological rings of the universal curve
overM g and its powers. There is also a pointed version, i.e. over the moduli of pointed curvesM g ,1.

Tautological ring: Jacobian side

The Jacobian J of a smooth curve C is the group of isomorphism classes of line bundles on C with
trivial first Chern class. With J being an abelian variety, its Chow ring carries a second ring structure
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brought by the addition map, and also the action of the multiplication by N ∈ Z.

By choosing a point x0 ∈ C , one can embed the curve C into J and the former becomes a 1-
dimensional cycle on J . We first declare the class of this cycle to be tautological, and then apply
both ring structures as well as the multiplication by N . The eventual output is called the tautological
ring T ( J ), and its elements tautological classes. One can prove that T ( J ) is in fact finitely generated
(with respect to only the intersection product) by writing down an explicit set of generators. Also as
is shown in this thesis, the story generalizes to a family of pointed curves, or equivalently, to over the
moduli spaceM g ,1.

Polishchuk made a great contribution to the study of this notion. He applied powerful tools that
are developed for the Chow ring of abelian varieties, such as the Beauville decomposition, the Fourier
transform, and the Lefschetz decomposition. He then used the last tool to construct relations between
tautological classes. For the generic curve (and modulo algebraic equivalence), he conjectures that
they provide all the relations.

Polishchuk’s approach also brings a motivic touch to the subject. The hidden background is the
so-called motivic Lefschetz decomposition, and the relations he obtained are simply determined by
the motive of the Jacobian J .

Connecting the two sides

The first half of the thesis (Chapters 33 and 44) builds connections between the two tautological rings,
showing that not only do they share the same name, but they are essentially the same thing. More
precisely, consider a family of pointed curves C → S and the corresponding family of Jacobians
J → S . First by applying Polishchuk’s machinery, we prove that the restriction of the tautological
ring T ( J ) to S is exactly the (pointed) tautological ring R(S ). The picture becomes even clearer
when we consider the symmetric powers C [n]→ S for all n ≥ 0, and their tautological ringsR(C [n]).
Using techniques developed by Moonen and Polishchuk, we show that when n goes to infinity, the
limit ofR(C [n]) is actually a polynomial ring over T ( J ).

This revelation has some significant consequences. As is mentioned above, the motivic Lefschetz
decomposition produces many relations between tautological classes (in T ( J ),R(S ),R(C [n]), etc.).
Using these relations, we can confirm the conjectural Gorenstein property for various tautological
rings over S =M g ,1 with some low values of g . But more importantly, we may ask the following:
are all relations of motivic nature? This question has a fairly strong flavor of geometry, and a positive
answer to it would in general conflict with the Gorenstein property (forR(M24),R(M20,1), etc.). It
is probably the first time one can think of a geometric reason (rather than just numerical evidence)
why the Faber conjectures may not hold.

3



1. Overview of the thesis

Detecting non-trivial tautological classes

The second half of the thesis (Chapters 55 and 66) addresses the following question: given a tautological
class, can one determine if it is zero or not in the Chow groups? Conventional methods of detecting
non-trivial cycles (in Chow) consist of two steps. First one applies the cycle class map to see if the
cohomology class of the cycle is non-zero. If it is zero, then a second chance is to apply the Abel-
Jacobi map, which goes from homologically trivial cycles to the intermediate Jacobian. But if this
still returns zero, then the problem becomes very di�cult. Modern Hodge theory has developed
infinitesimal invariants to detect those Abel-Jacobi trivial cycles on a very general fiber of a family of
varieties. However, most of the invariants are extremely di�cult to compute.

In our specific case, we found a very simple way of detecting non-trivial tautological classes on
the generic (or a very general) Jacobian. The idea is to exploit the fact that the Jacobians of certain
singular curves (called of compact type) are still abelian varieties. Using a degeneration argument
due to Fakhruddin, we are reduced to compute a certain invariant for those singular curves, and the
complexity of the computation is almost nothing.

Further, to illustrate the simplicity and e�ectiveness of our method, we also carry out detections
in the context of S. Saito’s higher Gri�ths groups.

Main results

(i) Let C → S be a relative pointed curve and J → S be the relative Jacobian. We define the
tautological ring T ( J ) (Definition 3.43.4), describe its generators (Theorem 3.63.6), and show that
its restriction to S is the tautological ringR(S ) (Corollary 3.83.8). We produce relations in T ( J )
(Construction 3.123.12), which lead to a new proof of the generation statement in the Faber conjec-
tures (Theorem 3.153.15), as well as confirm the conjectures forM g ,1 with g ≤ 19 (Theorem 3.173.17).
Further we raise the question whether all relations should be motivic (Conjecture 3.193.19).

(ii) We define the tautological ring(s) R(C [∞]) of the infinite symmetric power of C (Defini-
tion 4.124.12), and show that R(C [∞]) is a polynomial ring over T ( J ) (Theorem 4.144.14). For the
universal curve (resp. Jacobian) C g ,1 (resp. J g ,1) over M g ,1, an analogue of the Gorenstein
property for T (J g ,1) is stated (Speculation 4.244.24), and its connections with the Gorenstein
property for R(C [n]g ,1) established (Theorem 4.274.27). We confirm these properties for g ≤ 7
(Theorem 4.264.26), leaving g = 8 as the critical case.

(iii) Using Fakhruddin’s degeneration argument (Lemma 5.75.7), we detect non-trivial codimension 2
tautological classes on the generic Jacobian (Theorem 5.45.4). As a consequence we obtain a sim-
ple and characteristic free proof of the generic non-vanishing of the Faber-Pandharipande cycle

4



(Corollary 5.115.11; due to Green and Gri�ths over C). We also explore some higher codimen-
sional cases (Proposition 5.125.12). Further, as an independent application of the tautological ring,
we document a simple proof of Sebastian’s result on the Voevodsky conjecture for 1-cycles on
abelian varieties (Theorem 5.215.21).

(iv) On a very general Jacobian, we develop an invariant for detecting non-trivial classes in Saito’s
higher Gri�ths groups (Proposition 6.106.10). We compute the invariant for the Beauville compo-
nents of the curve class, proving the generic non-vanishing of those components with a sharp
bound on the genus (Theorem 6.136.13). This improves a previous result of Ikeda.

Notation and conventions

(i) Let k be a field. When there is no ambiguity, we simply write k for Spec(k ). By a variety we
mean a separated, reduced scheme of finite type over k . If S is a smooth connected variety
over k , we denote by VS the category of smooth projective schemes over S . If an object X /S
in VS has connected fibers, we write dim(X /S ) for the relative dimension of X over S .

(ii) For a smooth variety X over k , we denote by CHi (X ) the Chow group of codimension i cycles
on X with Q-coe�cients, and by CH(X ) := ⊕i CHi (X ) the Chow ring of X equipped with
the intersection product (·). We also write CHalg(X ) (resp. CHhom(X ) and CHnum(X )) for the
ideal of cycles that are algebraically (resp. homologically and numerically) equivalent to zero.
Throughout, all cycles groups are with Q-coe�cients.

(iii) The word generic is taken in the schematic sense. Over an uncountable field k (e.g. k = C),
the term very general is often used, which means outside a countable union of Zariski-closed
proper subsets of the base variety.

(iv) We write sl2 :=Q · e +Q · f +Q · h , with [e , f ] = h , [h , e ] = 2e and [h , f ] = −2 f .
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2

Preliminaries

This chapter provides the basics for the rest of the thesis. We briefly review the classical
theory of algebraic cycles on an abelian scheme, combining three aspects: Chow theory,
motives and cohomology. Then we specialize to the case of a relative Jacobian, where
certain structures can be reconstructed geometrically.

2.1. The Chow ring of an abelian scheme

In this section we focus on the Chow theory side of the story, while the motivic and cohomological
aspects will be discussed in the next section. References will be given and proofs will be omitted.

We work over a base variety S that is a smooth and connected over a field k . Let A/S be an
abelian scheme, i.e. a smooth proper group scheme over S with (geometrically) connected fibers.
Write d := dim(S/k ) and g := dim(A/S ), and we assume g > 0. The (abelian) group structure on A
gives the following maps

µ : A×S A→ A,

[N ] : A→ A for N ∈ Z,

called the addition and the multiplication by N respectively. We write pr1, pr2 : A×S A→ A for the
two projections.

We also recall the notion of a polarization. To every abelian scheme A/S we may associate a dual
abelian scheme At := Pic0

A/S , such that (At )t ' A. Then a homomorphism f : A→ A′ induces a dual
homomorphism f t : (A′)t → At . A homomorphism λ : A→ At is called symmetric if λt = λ. On
A×S At we have the Poincaré line bundle trivialized along the zero sections, and we denote it by P .

7



2. Preliminaries

Definition 2.1. A polarizationnote 11note 11 of A/S is a symmetric isogeny λ : A→ At such that the dual of
the pull-back ofP via (idA,λ) : A→ A×S At is relatively ample over S . If λ is an isomorphism, then
it is called a principal polarization.

The polarization λ induces an element

(2.1) Lλ :=
�

(idA,λ)∗(P )
�−1/2 ∈ Pic(A)⊗

Z
Q,

which is relatively ample over S , symmetric (i.e. [−1]∗(Lλ) = Lλ) and trivialized along the zero section
(i.e. [0]∗(Lλ) = OA). Moreover, the map idA×Sλ : A×S A→ A×S At gives the identity

(2.2) (idA×Sλ)
∗(P ) = pr∗1(Lλ)⊗ pr∗2(Lλ)⊗µ

∗(Lλ)
−1 in Pic(A×S A)⊗

Z
Q.

The central object of our interest is the Chow ring CH(A) = ⊕ g+d
i=0 CHi (A). It possesses two

di�erent ring structures: one given by the usual intersection product (·), the other given by the
Pontryagin product (∗). The latter is defined by

CHi (A)×CHi ′(A) ∗−→ CHi+i ′− g (A)

(α,β) 7−→ µ∗
�

pr∗1(α) · pr∗2(β)
�

.

The unit of
�

CH(A),∗
�

is the class of the zero section o : S → A, denoted by [o] :=
�

o(S )
�

∈ CH g (A).
In general the two products do not commute with each other, i.e. we have (α ·β) ∗ γ 6= α · (β ∗ γ ).

We introduce three important tools for studying the structure of CH(A), namely the Beauville
decomposition, the Fourier transform, and the Lefschetz decomposition. They play a central role in the
entire thesis. For simplicity’s sake, we shall from now on restrict to the case of principally polarized
abelian schemes (A/S ,λ), where we identify A with At using the principal polarization λ : A ∼−→ At .
We write

ℓ := c1(P ) ∈ CH1(A×S A),

θ := c1(Lλ) ∈ CH1(A)
(2.3)

for the first Chern classes of P (viewed as a line bundle on A×S A) and Lλ. The identity (2.22.2) then
becomes

(2.4) ℓ = pr∗1(θ) + pr∗2(θ)−µ
∗(θ) in CH1(A×S A).

Sometimes we even use the notation (A/S ,θ) for the principally polarized abelian scheme, but one
should always keep in mind what a polarization means.

8



2.1. The Chow ring of an abelian scheme

Beauville decomposition

The Chow ring CH(A) can be decomposed into eigenspaces according to the action of [N ] : A→ A,
for all N ∈ Z. In other words, the operators [N ]∗ (or [N ]∗) for all integer N are simultaneously
diagonalizable on CH(A). The precise statement is the following.

Theorem 2.2. For j ∈ Z, denote

CHi
( j )(A) :=

�

α ∈ CHi (A) : [N ]∗(α) =N 2i− jα for all N ∈ Z
	

=
�

α ∈ CHi (A) : [N ]∗(α) =N 2 g−2i+ jα for all N ∈ Z
	

.

Then we have a decomposition

(2.5) CHi (A) =
min{i+d ,2i}
⊕

j=max{i− g ,2i−2 g }
CHi

( j )(A).

This result was first proven by Beauville in the case S = k ([Bea86Bea86], Théorème), and later gen-
eralized by Deninger and Murre to the relative setting ([DM91DM91], Theorem 2.19). By comparing the
actions of [N ], we have the compatibility with the products (·) and (∗):

CHi
( j )(A)×CHk

(l )(A)
·−→ CHi+k

( j+l )(A),

CHi
( j )(A)×CHk

(l )(A)
∗−→ CHi+k− g

( j+l ) (A).

Example 2.3. In (2.12.1), the fact that [−1]∗(Lλ) = Lλ and [0]∗(Lλ) = OA is equivalent to saying that
θ = c1(Lλ) ∈ CH1

(0)(A). To see this, write θ = θ(0) + θ(1) + θ(2) with θ( j ) ∈ CH1
( j )(A). Then we have

[0]∗(θ) = θ(2) = 0 and [−1]∗(θ) = θ(0) −θ(1) = θ = θ(0) +θ(1), so that θ(1) = θ(2) = 0.

Fourier transform

The Beauville decomposition is obtained via a technique called the Fourier (or Fourier-Mukai) trans-
form. It was first introduced by Mukai in the context of derived categories, and later adapted to
Chow theory by Beauville ([Bea83Bea83] and [Bea86Bea86]). Again, the form used here is due to Deninger and
Murre [DM91DM91].

Definition 2.4. The Fourier transform is the Q-linear endomorphism (in fact automorphism) of
CH(A) defined by

F : CH(A)→ CH(A)

α 7→ pr2,∗

�

pr∗1(α) · exp(ℓ)
�

.

9



2. Preliminaries

Proposition 2.5. We have the following properties forF :

(i) F : CHi
( j )(A)

∼−→ CH g−i+ j
( j ) (A);

(ii) F ◦ [N ]∗ = [N ]∗ ◦F andF ◦ [N ]∗ = [N ]∗ ◦F , for all N ∈ Z;

(iii) F (α ∗β) =F (α) · F (β);

(iv) F (α ·β) = (−1) gF (α) ∗F (β);

(v) F ◦F = (−1) g [−1]∗, so thatF −1 = (−1) g [−1]∗ ◦F .

We refer to [DM91DM91], Section 2 for a proof of the statements. Property (i) shows how one can
obtain the Beauville decomposition usingF : just take elements in CHi (A), applyF , collect compo-
nents of di�erent codimensions, and apply F −1 back. Property (ii) gives the compatibility between
F and [N ] that leads to the proof of (i), and Properties (iii) - (v) justify the name Fourier trans-
form. One may regard (∗) as a convolution product, andF maps the convolution to the usual inner
product.

Example 2.6. Since [o] is the unit of
�

CH(A),∗
�

and since F interchanges the two ring structures,
we haveF ([o]) = [A]. It follows thatF ([A]) = (−1) g [o].

Lefschetz decomposition

The classical Lefschetz decomposition for a smooth projective variety X /k says that given an ample
line bundle, there exist two operators L and Λ that generate an sl2-action on the cohomology of X .
In the case of an abelian variety, Künnemann [Kün93Kün93] showed that one can obtain this sl2-action at
the Chow theory level. Also it can easily be generalized to the relative setting.

On CH(A), define operators

e : CHi
( j )(A)→ CHi+1

( j ) (A) α 7→ −θ ·α,

f : CHi
( j )(A)→ CHi−1

( j ) (A) α 7→ − θ g−1

( g − 1)!
∗α,(2.6)

h : CHi
( j )(A)→ CHi

( j )(A) α 7→ (2i − j − g )α.

Note that we followed the convention of [Pol07Pol07], Section 1, where the operators e and f di�er by
a sign from the ones in [Kün93Kün93]. This avoids sign complications in the identity (2.72.7) below, and is
more suitable for studying the case of Jacobians (see Section 2.42.4). We have the following Lefschetz
decomposition theorem ([Kün93Kün93], Theorems 5.1 and 5.2; see also [Bea10Bea10], Theorem 4.2).

10



2.1. The Chow ring of an abelian scheme

Theorem 2.7.

(i) The operators e , f and h generate a Q-linear representation of the Lie algebra sl2 on CH(A).

(ii) For i and j in the range of (2.52.5), we have a decompositon

CHi
( j )(A) =

min{i ,b(2i− j )/2c,i− j+d }
⊕

k=max{0,2i− j− g }
e k �CHi−k

( j ),prim(A)
�

,

where CHi
( j ),prim(A) is the kernel of e g−2i+ j+1 : CHi

( j )(A)→ CH g−i+ j+1
( j ) (A).

(iii) (hard Lefschetz) For 0 ≤ 2i − j ≤ g , there are isomorphisms

e g−2i+ j : CHi
( j )(A)

∼−→ CH g−i+ j
( j ) (A).

Remark 2.8. The messy indices in (ii) and (iii) are largely due to the fact that the i for codimension
is a bad choice of grading. Things will clear up after a suitable change of gradings in Section 2.22.2, and
become even more transparent using the picture in Section 2.32.3.

From now on, we shall refer to the sl2-action on CH(A) defined above as the sl2-action. The
Fourier transformF intertwines the sl2-action by

F −1 ◦ e ◦F = − f , F −1 ◦ f ◦F = −e , and F −1 ◦ h ◦F = −h .

In fact, one can even reconstruct F from sl2. It means if we understand the sl2-action on CH(A),
then we know both the Fourier transform and the Beauville decomposition.

Proposition 2.9. We have

(2.7) F = exp(e ) ◦ exp(− f ) ◦ exp(e ) on CH(A).

So if we represent the operators e , f by the matrices
�

0 1
0 0

�

,
�

0 0
1 0

�

∈ sl2(Q), then F corresponds
to the matrix

�

0 1
−1 0

�

∈ SL2(Q). The proof of Proposition 2.92.9 is essentially the same as in [Bea04Bea04],
Section 2.3 (iv) (see also [Pol08Pol08], Lemma 1.4). Further, Beauville showed that indeed the sl2-action
lifts to a Lie group SL2-action on CH(A) ([Bea10Bea10], Theorem 4.2).

We finish this section by looking at the case of an abelian variety (i.e. when S = k ). Since d =
dim(S/k ) = 0, the Beauville decomposition becomes

(2.8) CHi (A) =
i
⊕

j=i− g
CHi

( j )(A).

11



2. Preliminaries

Now assume a Weil cohomology theory H • for Vk (see [Kle94Kle94], Section 3), a cycle class map
cl: CHi → H 2i , and a well-defined Abel-Jacobi map aj: CHi

hom→ (certain object related to H 2i−1)
(e.g. singular cohomology with the classical cycle class and Abel-Jacobi maps when k = C, or the ℓ-
adic version in general; see [Cha10Cha10], Section 2). There are the following predictionsnote 22note 22 for CH(A).

Conjecture 2.10.

(i) We have CHi
( j )(A) = 0 for all j < 0.

(ii) Let α ∈ CHi
(0)(A). If α ∈ CHi

num(A), i.e. α is numerically equivalent to zero (or weaker: if
α ∈ CHi

hom(A), i.e. α is homologically equivalent to zero), then α = 0.

(iii) Let α ∈ CHi
(1)(A) (in particular α ∈ CHi

hom(A)). If aj(α) = 0, then α = 0.

Part (i) is known as the Beauville conjecture (see [Bea83Bea83], Section 5 and [Bea86Bea86], Section 2).
We refer to [Kün93Kün93], Conjecture 8.1, [KV96KV96], Conjecture 2.13 and [Fu10Fu10], Conjecture 1 for some
equivalent forms of this conjecture. All three conjectures are only known in very special cases. They
are trivially true for CH0(A), and are also true for CH1(A), the latter being a consequence of the
theorem of the square. In fact, the theorem of the square says CH1

(0)(A) 'NS(A)⊗
Z
Q and CH1

(1)(A) '
Pic0(A)⊗

Z
Q. By the Fourier transformF , we also obtain Part (i) for i = g , g −1 and g −2, Part (ii)

for i = g and g − 1, and Part (iii) for i = g . So the first remaining cases are

(i) CH2
(−1)(A) for g = 5;

(ii) CH2
(0)(A) for g = 4;

(iii) CH2
(1)(A) for g = 3.

The Beauville conjecture is also known for abelian varieties defined over Fp . This was proven by Soulé
using the action of Frobenius and consequences of the Weil conjectures ([Sou84Sou84], Corollaire 2). In
fact, he proved that for A/Fp , we have CHi (A) = CHi

(0)(A).
Recently in [Moo11Moo11], Moonen studied the Chow ring of abelian schemes with non-trivial endo-

morphisms. In that situation he generalized the sl2-action to the action of a much larger Lie algebra,
including all sl2-tuples coming from relatively ample line bundles. In particular, he proved the fol-
lowing special case of Conjecture 2.102.10 (loc. cit., Corollary 8.4 and Theorem 8.6).

Theorem 2.11. Conjecture 2.102.10 is true for theQ-subalgebraD(A) ⊂CH(A) generated by divisor classes,
i.e. classes in CH1(A). (Here Part (iii) is obtained for the classical and ℓ-adic Abel-Jacobi maps, under
the assumption that End0(A) is simple.)

12



2.2. Motivic interpretation and cohomological realization

2.2. Motivic interpretation and cohomological realization

The spirit of this section is to show that everything in Section 2.12.1 is of motivic nature. We shall
rewrite all previous results in a motivic language. Since later we would like to apply cohomological
methods in Chapters 55 and 66, we also list the results in cohomology in parallel.

Let (A/S ,θ) be a principally polarized abelian scheme. We denote by π : A→ S the structural
map, and by o : S → A the zero section of π. Again we write d = dim(S/k ) and g = dim(A/S ).

Relative Chow motives

We briefly recall the definition of Chow motives, and we follow [DM91DM91], Section 1 in the relative
setting. The rough idea of a motive is to enlarge the set of maps between varieties by including all
correspondences.

More precisely, given objects X /S and Y /S in VS , define the group of relative correspondences
between X and Y over S as CorrS (X , Y ) :=CH(X ×S Y ). An element γ ∈ CorrS (X , Y ) induces

γ∗ : CH(X )→ CH(Y )

α 7→ pr2,∗

�

pr∗1(α) · γ
�

,

where pr1 : X ×S Y → X and pr2 : X ×S Y → Y are the two projections. If Z /S ∈ VS , γ ∈
CorrS (X , Y ) and γ ′ ∈ CorrS (Y , Z ), we also define the composition of correspondences

γ ′ ◦ γ := pr13,∗

�

pr∗12(γ ) · pr∗23(γ
′)
�

∈ CorrS (X , Z ),

where pr13, pr12 and pr23 are the projections of X ×S Y ×S Z to X ×S Z , X ×S Y and Y ×S Z
respectively. We have (γ ′ ◦ γ )∗ = γ ′∗ ◦ γ∗.

The group CorrS (X , Y ) is graded: if X = ti Xi such that each Xi has connected fibers, then we
write Corrr

S (X , Y ) := ⊕i CHdim(Xi /S )+r (Xi ×S Y ). It follows that

Corrr
S (X , Y )×Corrs

S (Y , Z )
◦−→ Corrr+s

S (X , Z ).

Finally, a projector of X /S is a correspondence p ∈ Corr0
S (X , X ) such that p ◦ p = p.

Definition 2.12. We define the category of relative Chow motives over S , denoted byMS .

(i) The objects ofMS are triples (X , p, m) with X /S ∈ VS , p a projector of X /S and m ∈ Z.

(ii) The morphisms between M = (X , p, m) and N = (Y , q , n) are defined by

HomMS
(M , N ) := q ◦Corrn−m

S (X , Y ) ◦ p

=
�

γ ∈ Corrn−m
S (X , Y ) : q ◦ γ ◦ p = γ

	

.
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2. Preliminaries

The identity morphism of M = (X , p, m) is idM := p ◦ [∆X /S ] ◦ p = p, where ∆X /S is the
diagonal X ⊂ X ×S X .

The abstract theory says thatMS is a rigid, pseudo-abelian tensor category. We refer to [And04And04],
Chapitre 2 for the terminology. Moreover, there is a functor

R : V op
S →MS

that maps objects X /S to
�

X , [∆X /S ], 0
�

, and morphisms f : X → Y over S to [Γ t
f ] ∈ Corr0

S (Y , X ),
where Γ t

f ⊂ Y ×S X is the transpose of the graph of f . Further, we define the Chow groups of
M = (X , p, m) to be

CHi (M ) := p∗
�

CHi+m(X )
�

.

Examples 2.13.

(i) The motive 1S := R(S/S ) =
�

S , [∆S/S ], 0
�

is the unit ofMS with respect to the tensor product.
For i ∈ Z, define 1S (i ) :=

�

S , [∆S/S ], i
�

. The motive 1S (1) (resp. 1S (−1)) is called the relative
Tate motive (resp. Lefschetz motive) over S . For M ∈MS , write M (i ) :=M ⊗ 1S (i ). Then we
have

CHi (M ) =HomMS

�

1S (−i ), M
�

=HomMS

�

1S , M (i )
�

.

(ii) If X /S ∈ VS admits a section σ : S → X , then σ defines a projector π0 :=
�

σ (S ) ×S X
�

and a motive R0(X /S ) := (X ,π0, 0). Further assume that X /S has connected fibers with
dim(X /S ) = g . Then we have a projector π2 g :=

�

X ×S σ (S )
�

and a motive R2 g (X /S ) :=
(X ,π2 g , 0). The correspondence [S ×S X ] (resp. [X ×S S ]) induces an isomorphism 1S '
R0(X /S ) (resp. R2 g (X /S ) ' 1S (− g )).

(iii) For n ≥ 1, there is an Sn-action on the projector of the motive M ⊗n . One can symmetrize
(resp. alternate) the projector to obtain the n-th symmetric (resp. wedge) product of M , denoted
by S n(M ) (resp. ∧n(M )). Both can be viewed as direct summands of M ⊗n (see [Kim05Kim05],
Section 3).

Back to the abelian scheme A/S . We now state the motivic version of the results in Section 2.12.1.
Proofs can be found in [DM91DM91], Theorem 3.1 and Corollary 3.2, and [Kün93Kün93], Theorems 5.1
and 5.2.
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2.2. Motivic interpretation and cohomological realization

Theorem 2.14.

(i) There is a unique decomposition [∆A/S ] =
∑2 g

i=0πi in Corr0
S (A, A) such that

�

idA×S [N ]
�∗(πi ) =N iπi for all N ∈ Z.

We have πi ◦π j = 0 for i 6= j and πi ◦πi = πi . Write R i (A/S ) := (A,πi , 0) and we obtain a
motivic decomposition

(2.9) R(A/S ) =
2 g
⊕

i=0
R i (A/S ).

Moreover, there are isomorphisms R i (A/S ) ' S i
�

R1(A/S )
�

for 0 ≤ i ≤ 2 g .

(ii) For 0 ≤ i ≤ 2 g , the Fourier transform F (viewed as the correspondence exp(ℓ) ∈ CorrS (A, A))
induces isomorphisms

F : R i (A/S ) ∼−→ R2 g−i (A/S )( g − i ).

Remark 2.15. Some people, thinking on the cohomological side, write R i (A/S ) ' ∧i
�

R1(A/S )
�

.
However, motivically one should take the symmetric product, since there is a sign change when
applying cohomological realizations (see [And05And05], Section 2.2).

Then we describe the motivic Lefschetz decomposition. Define correspondences

L :=∆∗(−θ) ∈ Corr1
S (A, A),

Λ := −F −1 ◦ L ◦F ∈ Corr−1
S (A, A),

where ∆ : A→ A×S A is the diagonal map, andF is viewed as a correspondence. One shows that

L : R i (A/S )→ R i+2(A/S )(1), and Λ : R i (A/S )→ R i−2(A/S )(−1).

Theorem 2.16.

(i) We have [L,Λ] =
∑2 g

i=0(i − g )πi in Corr0
S (A, A).

(ii) For 0 ≤ i ≤ 2 g , the motive R i (A/S ) has a decomposition

R i (A/S ) =
bi/2c
⊕

k=max{0,i− g }
Lk �R i−2k

prim (A/S )(−k )
�

,

where R i
prim(A/S ) is a direct summand of R i (A/S ) on which L g−i+1 induces zero morphism.

(iii) (hard Lefschetz) For 0 ≤ i ≤ g , there are isomorphisms

L g−i : R i (A/S ) ∼−→ R2 g−i (A/S )( g − i ).
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2. Preliminaries

ℓ-adic realization

We shall use ℓ-adic cohomology withQℓ-coe�cients in the general setting (here ℓ is a prime number
di�erent from the characteristic of k , not to be confused with ℓ = c1(P )). If the base field k = C,
one may instead use singular cohomology with Q-coe�cients. For simplicity, we assume k to be
algebraically closed (or at least separably closed) when working with cohomology.

Denote by D b (S ,Qℓ ) the bounded derived category of Qℓ-sheaves on S . The functor VS →
D b (S ,Qℓ ) sending φ : X → S to Rφ∗Qℓ extends to a Q-linear tensor functor

MS → D b (S ,Qℓ ),

called the ℓ-adic realization (see [DM91DM91], Section 1.8).
Deligne’s E2-degeneration of the Leray spectral sequence ([Del68Del68], Théorème 1.5) says that for

φ : X → S in VS , there is a (in general non-canonical) decomposition

(2.10) Rφ∗Qℓ =
∑

i
R iφ∗Qℓ[−i ] in D b (S ,Qℓ ).

What is special in the case of an abelian scheme π : A → S , is that one can make this decompo-
sition canonical using the multiplication by N . More precisely, we have the following analogue of
Theorems 2.142.14 and 2.162.16 (see [Del68Del68], Remarque 2.19 and [Voi12Voi12], Corollary 2.2).

Corollary 2.17.

(i) In D b (S ,Qℓ ), there is a canonical multiplicative decomposition

Rπ∗Qℓ =
2 g
∑

i=0
R iπ∗Qℓ[−i ],

such that [N ]∗ acts on R iπ∗Qℓ by multiplication by N i , for all N ∈ Z. Here by multiplicative we
mean that the decomposition is compatible with the cup products on both sides. Moreover, there are
isomorphisms R iπ∗Qℓ ' ∧i

�

R1π∗Qℓ

�

for 0 ≤ i ≤ 2 g .

(ii) For 0 ≤ i ≤ 2 g , the Fourier transformF gives isomorphisms

F : R iπ∗Qℓ
∼−→ R2 g−iπ∗Qℓ ( g − i ),

where (−) stands for Tate twists.

(iii) The ℓ-adic cycle class u := cl(−θ) ∈ H 2
�

A,Qℓ (1)
�

induces a map

Rπ∗(u) : R iπ∗Qℓ → R i+2π∗Qℓ (1).
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2.2. Motivic interpretation and cohomological realization

For 0 ≤ i ≤ 2 g , we have a sheaf decomposition

R iπ∗Qℓ =
bi/2c
⊕

k=max{0,i− g }

�

Rπ∗(u)
�k �R i−2k

prim π∗Qℓ (−k )
�

,

where R i
primπ∗Qℓ is the kernel of

�

Rπ∗(u)
� g−i+1 : R iπ∗Qℓ → R2 g−i+2π∗Qℓ ( g − i + 1).

(hard Lefschetz) For 0 ≤ i ≤ g , there are isomorphisms
�

Rπ∗(u)
� g−i : R iπ∗Qℓ

∼−→ R2 g−iπ∗Qℓ ( g − i ).

Remark 2.18. Unlike the case of abelian schemes, in general one does not have a multiplicative
decomposition (2.102.10) (not even after shrinking the base variety S ). See [Voi12Voi12], Section 1.2 for a
counterexample.

Compatibility with the Chow ring

Finally we build connections between the Chow theory side and the motivic and cohomological sides.
This is done simply by comparing the actions of the multiplication by N , for all N ∈ Z.

By definition [N ]∗ acts on CHi
( j )(A) by multiplication by N 2i− j . On the other hand, Theo-

rem 2.142.14 (i) and Corollary 2.172.17 (i) tell that [N ]∗ acts on CH
�

R i (A/S )
�

and R iπ∗Qℓ by multiplica-
tion by N i . It follows immediately that

CHi
( j )(A) ⊂CH

�

R2i− j (A/S )
�

.

Similarly, we see that the ℓ-adic cycle class map cl: CHi (A)→ H 2i
�

A,Qℓ (i )
�

factors through

(2.11) cl: CHi
( j )(A)→ H j �S , R2i− jπ∗Qℓ (i )

�

,

which is compatible with the multiplicative structures on both sides.
Very often we find it convenient to replace the grading i (for codimension) in CHi

( j )(A) by a new,
motivic grading. We write

(2.12) CH(i , j )(A) :=CH(i+ j )/2
( j ) (A), or equivalently CH(2i− j , j )(A) :=CHi

( j )(A),

so that [N ]∗ acts on CH(i , j )(A) also by multiplication by N i . In other words, we set

CH(i , j )(A) = CH
�

R i (A/S )
�

∩CH( j )(A).

The Beauville decomposition (2.52.5) then takes the form

(2.13) CH(A) =
⊕

i , j
CH(i , j )(A),
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with 0 ≤ i ≤ 2 g and max{−i , i −2 g } ≤ j ≤min{i , 2 g − i}+2d . Expressions of algebraic operations
are simple (if not simpler):

CH(i , j )(A)×CH(k ,l )(A)
·−→ CH(i+k , j+l )(A),

CH(i , j )(A)×CH(k ,l )(A)
∗−→ CH(i+k−2 g , j+l )(A),

F : CH(i , j )(A)
∼−→ CH(2 g−i , j )(A).

We have θ ∈ CH(2,0)(A), so that the sl2-action in (2.62.6) becomes e : CH(i , j )(A) → CH(i+2, j )(A),
f : CH(i , j )(A)→ CH(i−2, j )(A), and h = (i − g ) id on CH(i , j )(A).

To conclude, the actions of [N ] group together ⊕ j CH(i , j )(A), R i (A/S ) and R iπ∗Qℓ . The same
goes for the primitive parts ⊕ j CH(i , j ),prim(A), R i

prim(A/S ) and R i
primπ∗Qℓ .

2.3. An illustration: the Dutch house

Here we present a useful picture that describes the Chow ring CH(A) (see [Moo09Moo09], Figure 1). The
picture illustrates all structures discussed in Section 2.12.1 while combining the motivic aspect of Sec-
tion 2.22.2. Further, it enables us to make clear statements without complicated indices. We decide to
call it the Dutch house, due to its resemblance to a traditional Dutch trapgevel.

In figure 11, the (i , j )-th block represents the component CH(i , j )(A) in the Beauville decomposi-
tion. Then the columns read the motivic decomposition R(A/S ) = ⊕i R i (A/S ), and the rows read
Beauville’s grading j . As a result, components with the same codimension lie on a dashed line from
upper left to lower right.

It is not di�cult to verify that the house shape results from the precise index range of (2.132.13).
The width of the house depends on g = dim(A/S ), while the height (without roof ) depends on
d = dim(S/k ). In particular when S = k (i.e. d = 0), the house reduces to the roof only. Here
Figure 11 is drawn based on the universal Jacobian over S =M4,1, i.e. the moduli space of pointed
curves of genus 4 (see Sections 2.42.4 and 3.13.1). In this case we have g = 4 and d = dim(M4,1/k ) =
3 g − 3+ 1 = 10.

Remark 2.19. Note that we have not drawn the components CH(i , j )(A) with negative j . On one
hand, when S = k the Beauville conjecture (Conjecture 2.102.10 (i)) predicts the vanishing of those
components. On the other hand, the classes we shall study are all in CH(i , j )(A) with j ≥ 0, i.e. inside
the house.

As is shown in the picture, the Fourier transformF acts as the reflection over the middle vertical
line. Regarding the sl2-action, we find that e shifts classes to the right by 2 blocks, while f shifts
classes to the left by 2 blocks. Finally the middle column of the house has weight 0 with respect to h .
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Fourier transform F

2d

g

2 g

0,0 2,0 4,0 6,0 8,0

1,1 3,1 5,1 7,1

0,2 2,2 4,2 6,2 8,2

1,3 3,3 5,3 7,3

0,4 2,4 4,4 6,4 8,4

1,5 3,5 5,5 7,5

0,6 2,6 4,6 6,6 8,6

1,7 3,7 5,7 7,7

0,8 2,8 4,8 6,8 8,8

1,9 3,9 5,9 7,9

0,10 2,10 4,10 6,10 8,10

1,11 3,11 5,11 7,11

0,12 2,12 4,12 6,12 8,12

1,13 3,13 5,13 7,13

0,14 2,14 4,14 6,14 8,14

1,15 3,15 5,15 7,15

0,16 2,16 4,16 6,16 8,16

1,17 3,17 5,17 7,17

0,18 2,18 4,18 6,18 8,18

1,19 3,19 5,19 7,19

0,20 2,20 4,20 6,20 8,20

1,21 3,21 5,21 7,21

2,22 4,22 6,22

3,23 5,23

4,24

R0 R1 R2 R3 R4 R5 R6 R7 R8 = R2 gmotive:
−4 −3 −2 −1 0 1 2 3 4= gweight h:

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

CH9

CH10

CH11

CH12

CH13

CH14

=CH g+d

Figure 1. Mon dessin no 1: the outside of the Dutch house ( g = 4 and d = 10).
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Example 2.20. The isomorphisms of motives (see Examples 2.132.13 (ii) and Theorem 2.142.14 (ii))

R0(A/S ) R2 g (A/S )( g )

R(S/S )

→F
∼

→

π∗
∼→

π∗
∼

induce isomorphisms of Q-algebras

(2.14)

�
⊕d

i=0 CH(0,2i )(A), ·
� �

⊕d
i=0 CH(2 g ,2i )(A),∗

�

.

�

CH(S ), ·
�

→ F
∼

→

π∗
∼→

π∗
∼

The gradings are preserved as π∗ : CHi (S ) ∼−→ CH(0,2i )(A) and π∗ : CH(2 g ,2i )(A)
∼−→ CHi (S ).

In particular, the Chow ring CH(S ) may be regarded as a Q-subalgebra of
�

CH(A), ·
�

via π∗, or
as a Q-subalgebra of

�

CH(A),∗
�

via π∗. In terms of the Dutch house, we may identify CH(S ) with
the 0-th column or with the 2 g -th column of the house.

2.4. Case of a relative Jacobian

We consider the special case where A/S is the Jacobian of a relative curve. The main result is that the
sl2-action on CH(A) can be reconstructed by the geometry of the curve.

As before S is a smooth connected variety of dimension d over k . Let p : C → S be a relative
curve of genus g , i.e. a smooth projective scheme over S with geometrically connected fibers of
relative dimension 1 and of genus g . We assume g > 0. Denote by π : J → S the associated relative
Jacobian, where J := Pic0(C /S ) is an abelian scheme with dim( J /S ) = g . It has a canonical principal
polarization, and we write θ ∈ CH1

(0)( J ) = CH(2,0)( J ) for the corresponding divisor class as defined
in (2.32.3).

Now further assume that C /S admits a section x0 : S → C . It induces a closed embedding
ι : C ,→ J , which sends locally a section x of C /S to the class ι(x ) := OC (x − x0). The composition
ι ◦ x0 is then the zero section o : S → J . To summarize, we have the following diagram.

(2.15)
C J

S

,→ →ι

→

p →π→

x0

→

o
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2.4. Case of a relative Jacobian

We denote [x0] :=
�

x0(S )
�

∈ CH1(C ) and [o] :=
�

o(S )
�

∈ CH g ( J ), and also [C ] :=
�

ι(C )
�

∈
CH g−1( J ) when there is no ambiguity. For j ∈ Z, write

(2.16) [C ]( j ) ∈ CH g−1
( j ) ( J ) =CH(2 g−2− j , j )( J )

for the components of [C ] in the Beauville decomposition. We have [C ]( j ) = 0 for j < 0 or j >
min{2 g − 2, g − 1+ d }.

We would like to reconstruct the sl2-action using the curve class [C ]. The idea goes back to
Riemann, who proved that when S = k , the class [C ]∗( g−1)/( g − 1)! ∈ CH1( J ) is a translate of θ
(see [Mum75Mum75], Lecture III). More generally, there is the following result due to Polishchuk ([Pol07bPol07b],
Theorem 2.6).

Theorem 2.21. We have θ = −F
�

[C ](0)
�

in CH(2,0)( J ), and the sl2-action in (2.62.6) takes the form

e : CH(i , j )( J )→ CH(i+2, j )( J ) α 7→ F
�

[C ](0)
�

·α,

f : CH(i , j )( J )→ CH(i−2, j )( J ) α 7→ −[C ](0) ∗α,(2.17)

h : CH(i , j )( J )→ CH(i , j )( J ) α 7→ (i − g )α.

Let Ω1
C /S be the relative cotangent bundle of C /S . Define classes

(2.18) K := c1(Ω
1
C /S ) ∈ CH1(C ), and ψ := x ∗0 (K ) ∈ CH1(S ).

Note that we have x ∗0
�

[x0]
�

= −ψ by adjunction. For simplicity, we keep the same notation ψ for
the pull-back of the class ψ to C . The following lemma is probably known to experts, and is shown
implicitly in [Pol07bPol07b], Theorem 2.6. As it will be applied many times in this thesis, we present the
statement and the proof here.

Lemma 2.22. We have the identity

(2.19) ι∗(θ) =
1
2

K + [x0] +
1
2
ψ in CH1(C ).

Proof. The goal is to calculate ι∗(θ) = −ι∗
�

F
�

[C ](0)
�

�

and we start from ι∗
�

F
�

[C ]
�

�

. Consider the
following three Cartesian squares

C ×S C J ×S C C

C ×S J J ×S J J

C J

→ι×S idC

→idC ×S ι

→pr2

→ id J ×S ι → ι

→
ι×S id J

→pr1

→pr2

→ pr1

→ι
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where pr1 and pr2 stand for the two projections in all cases. Then we have

ι∗
�

F
�

[C ]
�

�

= ι∗ pr2,∗

�

pr∗1 ι∗
�

[C ]
�

· exp(ℓ)
�

= pr2,∗(id J ×S ι)
∗
�

(ι×S id J )∗ pr∗1
�

[C ]
�

· exp(ℓ)
�

= pr2,∗(id J ×S ι)
∗
�

(ι×S id J )∗
�

[C ×S J ]
�

· exp(ℓ)
�

= pr2,∗(id J ×S ι)
∗(ι×S id J )∗(ι×S id J )

∗� exp(ℓ)
�

= pr2,∗(ι×S idC )∗(idC ×S ι)
∗(ι×S id J )

∗� exp(ℓ)
�

= pr2,∗(ι×S ι)
∗� exp(ℓ)

�

= pr2,∗

�

exp
�

(ι×S ι)
∗(ℓ)

�

�

.

The identity (2.42.4) and the theorem of the square imply (see [Pol07bPol07b], Formula (2.1))

(2.20) (ι×S ι)
∗(ℓ) = [∆]− pr∗1

�

[x0]
�

− pr∗2
�

[x0]
�

−ψ,

where ∆ :=∆C /S ⊂ C ×S C . It follows that

ι∗
�

F
�

[C ]
�

�

= pr2,∗

�

exp
�

[∆]− pr∗1
�

[x0]
�

− pr∗2
�

[x0]
�

−ψ
�

�

= pr2,∗

�

exp
�

[∆]− pr∗1
�

[x0]
�

�

�

· exp
�

−[x0]−ψ
�

.
(2.21)

Observe that on the left-hand side of (2.212.21), we have

ι∗
�

F
�

[C ]
�

�

=
2 g−2
∑

j=0
ι∗
�

F
�

[C ]( j )
�

�

,

with ι∗
�

F
�

[C ]( j )
�

�

∈ CH j+1(C ). Hence ι∗
�

F
�

[C ](0)
�

�

is just the codimension 1 component of

ι∗
�

F
�

[C ]
�

�

. Expanding the exponentials in (2.212.21) while keeping track of the codimension, we get

ι∗
�

F
�

[C ](0)
�

�

= pr2,∗

�

1
2

�

[∆]− pr∗1
�

[x0]
�

�2
�

− pr2,∗

�

[∆]− pr∗1
�

[x0]
�

�

·
�

[x0] +ψ
�

= pr2,∗

�

1
2

�

[∆]− pr∗1
�

[x0]
�

�2
�

=
1
2

pr2,∗

�

[∆] · [∆]
�

− pr2,∗

�

[∆] · pr∗1
�

[x0]
�

�

+
1
2

pr2,∗ pr∗1
�

[x0] · [x0]
�

.

The first two terms in the previous expression are easily calculated:

pr2,∗

�

[∆] · [∆]
�

= −K , and pr2,∗

�

[∆] · pr∗1
�

[x0]
�

�

= [x0].
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2.4. Case of a relative Jacobian

For the term pr2,∗ pr∗1
�

[x0] · [x0]
�

, consider the following Cartesian square.

C ×S C C

C S

→pr2

→pr1 → p

→p

We have

pr2,∗ pr∗1
�

[x0] · [x0]
�

= p∗ p∗
�

[x0] · [x0]
�

= p∗ p∗x0,∗x
∗
0

�

[x0]
�

= p∗x ∗0
�

[x0]
�

= −ψ.

In total we find ι∗
�

F
�

[C ](0)
�

�

= −K /2− [x0]−ψ/2.

Remark 2.23. Lemma 2.222.22 shows that θ is the class of a relative theta divisor in the classical sense:
that it comes from a family of theta characteristics (which in general only exists with Q-coe�cients).
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3

A tale of two tautological rings (I)

For a relative pointed curve, we prove that the tautological ring of the base variety (in
the sense of Mumford, Faber, etc.) is a subring of the tautological ring of the relative
Jacobian (in the sense of Beauville, Polishchuk, etc.). The sl2-action on the Jacobian
side produces relations between tautological classes, leading to various theoretical results
and numerical evidence towards the Faber conjectures (on the tautological ring of the
moduli space of smooth pointed curves).

3.1. Moduli side: tautological ring and the Faber conjectures

Let S be a smooth connected variety of dimension d over k . Consider a relative curve p : C → S of
genus g > 0, together with a section (marked point) x0 : S → C . In this section we recall the notion
of the tautological ring of S . The prototype of all such varieties S is the moduli space of smooth
pointed curves of genus g , for which there is a version of the Faber conjectures.

Recall the class K = c1(Ω
1
C /S ) ∈ CH1(C ) defined in (2.182.18). For i ≥ 0, define

(3.1) ci := p∗(K
i+1) ∈ CHi (S ).

We have c0 = (2 g − 2)[S ], and it is often convenient to write c−1 = 0. Also recall the class ψ =
x ∗0 (K ) ∈ CH1(S ). Intuitively, the classes {ci} reflect the geometry of the fibers of C /S , while ψ
reflects the variation of the marked point.

Definition 3.1. The tautological ring of S , denoted byR(S ), is the (graded)Q-subalgebra of CH(S )
generated by the geometrically constructed classes {ci} and ψ. Elements inR(S ) are called tautolog-
ical classes.
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3. A tale of two tautological rings (I)

The study of tautological classes was initiated by Mumford [Mum83Mum83], and later carried on exten-
sively by Faber, Pandharipande, etc., in the context of various moduli spaces. See [Fab99Fab99], [FP00FP00],
[Pan02Pan02], [Fab13Fab13] and [FP13FP13] for an overview of the major questions.

In our situation, denote byM g ,1 the moduli stack of smooth pointed curves of genus g over k
( g > 0 as before). It is isomorphic to the universal curveC g over the moduli stack of smooth genus g
curvesM g . We have dim(M g ,1/k ) = dim(M g /k )+1 = 3 g −3+1. We also write p : C g ,1→M g ,1

for the universal curve overM g ,1.
The stackM g ,1 admits a finite cover by a smooth connected variety over k (see [Mum83Mum83], Part I,

Section 2). Since we work with Q-coe�cients, the Chow ring CH(M g ,1) can be easily defined via
the cover. Similarly, one can define the classes {ci} and ψ in CH(M g ,1), as well as the tautological
ringR(M g ,1). In principle, one may regardM g ,1 as a smooth connected variety when talking about
Chow groups with Q-coe�cients.

We now state the Faber conjecturesnote 33note 33 in the context ofM g ,1. Roughly speaking, they predict
that R(M g ,1) behaves like the algebraic cohomology ring of a smooth projective variety of dimen-
sion g − 1 over k .

Conjecture 3.2.

(i) The tautological ringR(M g ,1) is Gorenstein with socle in codimension g − 1. In other words, we
haveR i (M g ,1) = 0 for i > g − 1 andR g−1(M g ,1) 'Q, and the paring

(3.2) R i (M g ,1)×R
g−1−i (M g ,1)

·−→R g−1(M g ,1) 'Q

is perfect for all 0 ≤ i ≤ g − 1.

(ii) The classes c1, . . . ,cb g /3c and ψ generateR(M g ,1), with no relations in codimension i ≤ b g /3c.

We refer to [Fab99Fab99], Conjecture 1 for the original Faber conjectures on the tautological ring
R(M g ). The ring R(M g ) is defined to be generated by {ci} (without ψ), and the socle lies in
codimension g − 2 instead of g − 1.

Remarks 3.3.

(i) Looijenga proved that R i (M g ,1) vanishes for i > g − 1, and that R g−1(M g ,1) is at most
1-dimensional ([Loo95Loo95], Theorem). Later Faber [Fab97Fab97] showed that R g−1(M g ,1) is indeed
1-dimensional. So regarding Part (i) of Conjecture 3.23.2, the di�cult question is whether the
pairing is perfect.

(ii) The generation statement in Part (ii) of Conjecture 3.23.2 was first proven by Ionel ([Ion05Ion05],
Theorem 1.5), and we shall give another proof of this fact (see Theorem 3.153.15). Moreover,
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3.2. Jacobian side: tautological ring and its generators

the results of Boldsen ([Bol12Bol12], Theorem 1) and Looijenga ([Loo96Loo96], Theorem 2.3) imply
that there are no relations in codimension i < b g /3c. So we are one degree o� when g ≡ 0
(mod 3).

(iii) There should be a third conjecture that predicts the intersection numbers in (3.23.2), similar to
the one forM g (see [Fab99Fab99], Conjecture 1 (c); several proofs known). However, the numbers
could be obtained in an ad hoc manner by pushing forward toM g .

3.2. Jacobian side: tautological ring and its generators

Throughout this section, we work in the setting of (2.152.15). We define the tautological ring T ( J )
of the relative Jacobian J /S and describe its generators. The main result is that by pulling back via
π∗ : CH(S )→ CH( J ), one can identify R(S ) with the Q-subalgebra of T ( J ) located on the 0-th
column of the Dutch house.

Definition 3.4. The tautological ring of J , denoted by T ( J ), is the smallest (graded) Q-subalgebra
of
�

CH( J ), ·
�

such that

(i) we have [C ] ∈ T ( J );

(ii) the ring T ( J ) is stable under [N ]∗ (or [N ]∗), for all N ∈ Z;

(iii) the ring T ( J ) is stable under the Fourier transformF .

Again, elements in T ( J ) are called tautological classes.

The notion of a tautological ring on the Jacobian side was introduced by Beauville [Bea04Bea04], in
the context of a Jacobian variety (i.e. S = k ) and modulo algebraic equivalence. Since then there
have been various versions of the tautological ring. We refer to [Pol05Pol05], [Pol07Pol07], [Her07Her07], [GK07GK07],
[FH07FH07] and [Moo09Moo09] for the study of these rings. In the relative setting, Polishchuk considered a
much bigger tautological ring, including all classes in π∗

�

CH(S )
�

(see [Pol07bPol07b], Section 4). Here
our minimalist definition is more suitable for studying the tautological ring of S .

Remarks 3.5.

(i) Condition (ii) in Definition 3.43.4 is equivalent to saying that T ( J ) is stable under the Beauville
decomposition (2.132.13). In particular, the ring is bigraded: write T(i , j )( J ) := T ( J )∩CH(i , j )( J ),
and we have T ( J ) = ⊕i , jT(i , j )( J ).

(ii) Since T ( J ) is stable under F , it is also stable under the Pontryagin product (∗). Our choice
of working primarily with the intersection product is due to historical reasons.
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3. A tale of two tautological rings (I)

(iii) It is immediate that [C ](0) ∈ T(2 g−2,0)( J ), and by Theorem 2.212.21 we have θ = −F
�

[C ](0)
�

∈
T(2,0)( J ). This shows that T ( J ) is also stable under the sl2-action (2.172.17). So T ( J ) is stable
under all structures described in Section 2.12.1. Alternatively, one can define T ( J ) to be the
smallest (graded) Q-subalgebra of

�

CH( J ), ·
�

that contains [C ], and that is stable under the
sl2-action. The equivalence of the definitions is implied by (2.72.7).

Since the two products (·) and (∗) do not commute with each other, it is a priori not clear whether
T ( J ) is finitely generated. Now we give an a�rmative answer to this question by writing down an
explicit set of generators.

Recall from (2.162.16) that [C ]( j ) ∈ T(2 g−2− j , j )( J ) for j ∈ Z. Then for i ≤ j + 2 and i + j even,
consider the class

θ( j−i+2)/2 · [C ]( j ) ∈ T(2 g−i , j )( J ).

Denote its Fourier dual by

pi , j :=F
�

θ( j−i+2)/2 · [C ]( j )
�

∈ T(i , j )( J ).

As examples we have p2,0 = F
�

[C ](0)
�

= −θ and p0,0 = F
�

θ · [C ](0)
�

= g [ J ]. Since [C ]( j ) = 0 for
j < 0 or j > 2 g − 2, we also know that pi , j = 0 for i < 0 or j < 0 or j > 2 g − 2.

Figure 22 depicts the classes {pi , j } inside the Dutch house with g = 8. Also shown in the picture
is the pull-back of the class ψ via π∗, again denoted by ψ, which lies in CH(0,2)( J ). Note that when
d = dim(S/k ) is small, classes that are above the roof also vanish.

By (2.172.17), the action of e ∈ sl2 is the intersection with p2,0. Also it is not di�cult to see that

f (pi , j ) = pi−2, j .

Then one of the questions is to calculate the class f (pi , j pk ,l ). This turns out to be the key to the
following theorem.

Theorem 3.6.

(i) The tautological ring T ( J ) coincides with the Q-subalgebra of
�

CH( J ), ·
�

generated by the classes
{pi , j } and ψ. In particular, the ring is finitely generated.

(ii) The operator f ∈ sl2 acts on polynomials in {pi , j } and ψ via the following di�erential operator of
degree 2:

D :=
1
2
∑

i , j ,k ,l

�

ψpi−1, j−1 pk−1,l −1 −
�

i + k − 2
i − 1

�

pi+k−2, j+l

�

∂ pi , j ∂ pk ,l

+
∑

i , j
pi−2, j ∂ pi , j .

(3.3)
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3.2. Jacobian side: tautological ring and its generators

Fourier transform F

2 g −2

2 g

p0,0

ψ, p0,2

p0,4

p0,6

p0,8

p0,10

p0,12

p0,14

p1,1

p1,3

p1,5
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p2,8
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p2,14

p3,1

p3,3

p3,5

p3,7
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p6,14

p7,5

p7,7

p7,9

p7,11

p7,13

p8,6

p8,8

p8,10

p8,12

p8,14

p9,7

p9,9

p9,11

p9,13

p10,8

p10,10

p10,12

p10,14

p11,9

p11,11

p11,13

p12,10
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p13,11
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CH6

CH7 =CH g−1

Figure 2. Mon dessin no 2: the inside of the Dutch house ( g = 8).

Remark 3.7. We may track the di�erential operatorD in the Dutch house. For the degree 2 part ofD,
whenever there is a product of two classes pi , j pk ,l , first find the generators to the lower-left of pi , j

and pk ,l by 1 block, and multiply by ψ, which yields ψpi−1, j−1 pk−1,l −1. Then look for the generator
to the left of pi , j pk ,l by 2 blocks, which is pi+k−2, j+l . For the linear part of D, the generator pi , j is
simply replaced by the one to the left of it by 2 blocks, i.e. pi−2, j . All these operations shift classes to
the left by 2 blocks.

Proof of Theorem 3.63.6. Suppose we have proven (ii) and thatψ ∈ T ( J ). Consider theQ-subalgebra of
�

CH( J ), ·
�

generated by the classes {pi , j } andψ. We denote it by T ′( J ) and we have T ′( J ) ⊂ T ( J ).
By definition T ′( J ) is stable under the action of [N ]∗, for all N ∈ Z. It is stable under the action
of e ∈ sl2, which is the intersection with p2,0. Moreover, it follows from (ii) that T ′( J ) is also stable
under the action of f ∈ sl2. The identity (2.72.7) then shows that T ′( J ) is stable under the Fourier
transform F . In particular, the classes

�

[C ]( j )
	

are contained in T ′( J ). Since T ( J ) is defined as
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3. A tale of two tautological rings (I)

the smallest Q-algebra that satisfies these properties, there is necessarily an equality T ′( J ) = T ( J ),
which proves (i).

Statement (ii) follows essentially from [Pol07bPol07b], Formula (2.9). We only need to translate the
notation carefully. Following Polishchuk, we write η := K /2+ [x0] +ψ/2, which by (2.192.19) is equal
to ι∗(θ). We also have f = −eX2,0(C )/2 in his notation. Define operators epi , j on CH( J ) by epi , j (α) :=
pi , j ·α. Then the fact that

pi , j =F
�

θ( j−i+2)/2 · [C ]( j )
�

=F
�

ι∗(η
( j−i+2)/2)( j )

�

is translated into
epi , j =

1
i !
eX0,i (η

( j−i+2)/2).

We apply Formula (2.9) in loc. cit. and find

[ f ,epi , j ] = −
1

2 · i !
�

eX2,0(C ), eX0,i (η
( j−i+2)/2)

�

=
1

(i − 1)!
eX1,i−1(η

( j−i+2)/2)− 1
(i − 2)!

eX0,i−2(η
( j−i+4)/2).

(3.4)

Note that the second equality of (3.43.4) also involves the fact that eXi ,0(C ) = 0 for i ≤ 1 (see loc. cit.,
Lemma 2.8), and that x ∗0 (η) = x ∗0 ι

∗(θ) = o∗(θ) = 0. We continue to calculate

�

[ f ,epi , j ],epk ,l

�

=
1

(i − 1)!k !
�

eX1,i−1(η
( j−i+2)/2), eX0,k (η

(l −k+2)/2)
�

− 1
(i − 2)!k !

�

eX0,i−2(η
( j−i+4)/2), eX0,k (η

(l −k+2)/2)
�

.

By applying the same formula, we have
�

eX0,i−2(η
( j−i+4)/2), eX0,k (η

(l−k+2)/2)
�

= 0, and

�

eX1,i−1(η
( j−i+2)/2), eX0,k (η

(l −k+2)/2)
�

= kψeX0,k−1(η
(l −k+2)/2)eX0,i−1(η

( j−i+2)/2)

− k eX0,i+k−2(η
( j−i+l −k+4)/2).

In total, we obtain

�

[ f ,epi , j ],epk ,l

�

=
1

(i − 1)!(k − 1)!

�

ψeX0,k−1(η
(l −k+2)/2)eX0,i−1(η

( j−i+2)/2)

− eX0,i+k−2(η
( j−i+l −k+4)/2)

�

=ψepk−1,l −1epi−1, j−1 −
�

i + k − 2
i − 1

�

epi+k−2, j+l

=ψepi−1, j−1epk−1,l −1 −
�

i + k − 2
i − 1

�

epi+k−2, j+l .

(3.5)
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3.2. Jacobian side: tautological ring and its generators

On the other hand, since f
�

[ J ]
�

= 0, we have

(3.6) [ f ,epi , j ]
�

[ J ]
�

= f (pi , j ) = pi−2, j .

The relations (3.53.5) and (3.63.6) imply that for any polynomial P in {pi , j } and ψ, we have

f
�

P
�

{pi , j },ψ
�

�

=D
�

P
�

{pi , j },ψ
�

�

,

where D is the di�erential operator defined in (3.33.3) (see [Pol07Pol07], Section 3).
It remains to prove that ψ ∈ T ( J ). To see this, we apply D to the class p2

1,1 ∈ T ( J ), which gives

D(p2
1,1) =ψp2

0,0 −
�

0
0

�

p0,2 = g 2ψ− p0,2.

Hence ψ =
�

D(p2
1,1) + p0,2

�

/ g 2 ∈ T ( J ).

Corollary 3.8. For i ≥ 0, there is the identity

(3.7) p0,2i = π
∗
�

1
2i+1

∑

0≤ j≤i

�

i + 1
j + 1

�

ψi− j
c j +ψ

i
�

.

Moreover, we have the following isomorphisms of Q-algebras (similar to those of (2.142.14)).

(3.8)

�
⊕d

i=0T(0,2i )( J ), ·
� �

⊕d
i=0T(2 g ,2i )( J ),∗

�

�

R(S ), ·
�

→ F
∼

→

π∗
∼→

π∗
∼

In particular, the tautological ringR(S ) may be regarded as a Q-subalgebra of
�

T ( J ), ·
�

via π∗.

Proof. By (2.142.14) we have p0,2i =F
�

θi+1 · [C ](2i )

�

= π∗π∗
�

θi+1 · [C ](2i )

�

= π∗π∗
�

θi+1 · [C ]
�

, hence
it su�ces to calculate π∗

�

θi+1 · [C ]
�

. Then (2.192.19) and the projection formula imply that

π∗
�

θi+1 · [C ]
�

= p∗

�

�

1
2

K + [x0] +
1
2
ψ

�i+1�

=
∑

j+k+l =i+1
j ,k ,l ≥0

(i + 1)!
j !k !l !

1
2 j+l

p∗
�

K j · [x0]
k ·ψl �.

Again by applying the projection formula to p : C → S and x0 : S → C , we find

p∗
�

K j · [x0]
k ·ψl � =ψl · p∗

�

K j · [x0]
k � =







ψl · c j−1 if k = 0,

ψl · x ∗0
�

K j · [x0]
k−1
�

= (−1)k−1ψi if k ≥ 1,
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3. A tale of two tautological rings (I)

with the convention c−1 = 0. It follows that

π∗
�

θi+1 · [C ]
�

=
∑

j+l=i+1
j ,l≥0

(i + 1)!
j !l !

1
2i+1

ψl
c j−1 +

∑

j+k+l =i+1
j ,k ,l ≥0

(i + 1)!
j !k !l !

1
2 j+l
(−1)k−1ψi

−
∑

j+l =i+1
j ,l ≥0

(i + 1)!
j !l !

1
2i+1
(−1)ψi

=
1

2i+1

∑

0≤ j≤i

�

i + 1
j + 1

�

ψi− j
c j +

�

1
2
− 1+

1
2

�i+1

ψi +
�

1
2
+

1
2

�i+1

ψi

=
1

2i+1

∑

0≤ j≤i

�

i + 1
j + 1

�

ψi− j
c j +ψ

i ,

which proves the identity (3.73.7).
Now since ⊕d

i=0T(0,2i )( J ) is generated by {p0,2i} and ψ, we have one inclusion ⊕d
i=0T(0,2i )( J ) ⊂

π∗
�

R(S )
�

. For the other inclusion, it follows from (3.73.7) and induction on j that one can also express
π∗(c j ) as linear combinations of {p0,2i} and ψ. So we have ⊕d

i=0T(0,2i )( J ) = π∗
�

R(S )
�

, and the rest
follows from (2.142.14).

3.3. Application: an identity of Morita

As an application we prove an identity of Morita. The proof has the advantage of being purely
algebraic, which holds over fields of arbitrary characteristic. But as everything else in this thesis, it
only works with Q-coe�cients.

The identity reveals some connection between T g+1( J ) and R1(S ). Consider the class [C ](1) ∈
T(2 g−3,1)( J ) and its Fourier dualF

�

[C ](1)
�

∈ T(3,1)( J ). Then we have [C ](1) · F
�

[C ](1)
�

∈ T(2 g ,2)( J ),
and Morita answered what the image under π∗ of this class is. We refer to [HR01HR01], Theorem 1 for
the original statement, which (with Q-coe�cients) is equivalent to the following.

Theorem 3.9. We have the identity

π∗
�

[C ](1) · F
�

[C ](1)
�

�

=
1
6
c1 + gψ in R1(S ).

Remark 3.10. The class c1/12 is equal to λ1, which stands for the first Chern class of the Hodge
bundle p∗(Ω1

C /S ). Hence the right-hand side is also equal to 2λ1 + gψ.

Proof of Theorem 3.93.9. The identity is trivial for g = 1 since both sides are then zero. So we assume
g ≥ 2. Recall thatF

�

[C ](1)
�

= p3,1. By (3.83.8) we have

(3.9) π∗π∗
�

[C ](1) · p3,1

�

=F
�

[C ](1) · p3,1

�

= −p3,1 ∗ [C ](1).
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3.3. Application: an identity of Morita

Therefore it su�ces to express −p3,1 ∗ [C ](1) in terms of p0,2 and ψ, and then apply (3.73.7).
The first step is to express [C ](1) in terms of the classes {pi , j }. By definition we have

f (p3,1) = p1,1, and f e (p1,1) = e f (p1,1)− h(p1,1) = ( g − 1)p1,1.

So f
�

p3,1 − e (p1,1)/( g − 1)
�

= 0, which implies

e g−2
�

p3,1 −
1

g − 1
e (p1,1)

�

= e g−2(p3,1)−
1

g − 1
e g−1(p1,1) = 0.

ApplyF −1 to the previous equation, and we find

(−1) g−2 f g−2�[C ](1)
�

−
(−1) g−1

g − 1
f g−1(−e )

�

[C ](1)
�

= 0,

so that
f g−2�[C ](1)

�

− 1
g − 1

f g−1e
�

[C ](1)
�

= 0.

On the other hand, by (2.72.7) we have

p3,1 =F
�

[C ](1)
�

= exp(e ) exp(− f ) exp(e )
�

[C ](1)
�

= exp(e ) exp(− f )
�

[C ](1) + e
�

[C ](1)
�

�

= exp(e )
�

(−1) g−3

( g − 3)!
f g−3�[C ](1)

�

+
(−1) g−2

( g − 2)!
f g−2�[C ](1)

�

+
(−1) g−2

( g − 2)!
f g−2e

�

[C ](1)
�

+
(−1) g−1

( g − 1)!
f g−1e

�

[C ](1)
�

�

= exp(e )
�

(−1) g−3

( g − 3)!
f g−3�[C ](1)

�

+
(−1) g−2

( g − 2)!
f g−2e

�

[C ](1)
�

�

=
(−1) g−3

( g − 3)!
f g−3�[C ](1)

�

+
(−1) g−2

( g − 2)!
f g−2e

�

[C ](1)
�

.

Note that for g = 2, we ignore the f g−3 term and the rest of the argument still works. Then applyF
to both sides, which gives

(−1) g+1[C ](1) =
1

( g − 3)!
e g−3(p3,1)−

1
( g − 2)!

e g−2(p1,1)

=
1

( g − 3)!
p g−3

2,0 p3,1 −
1

( g − 2)!
p g−2

2,0 p1,1.

Now that [C ](1) is expressed in terms of {pi , j }, we have

[C ](1) · p3,1 =
(−1) g+1

( g − 3)!
p g−3

2,0 p2
3,1 −

(−1) g+1

( g − 2)!
p g−2

2,0 p1,1 p3,1.
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3. A tale of two tautological rings (I)

ApplyF one more time to get the class we want:

−p3,1 ∗ [C ](1) =F
�

(−1) g+1

( g − 3)!
p g−3

2,0 p2
3,1 −

(−1) g+1

( g − 2)!
p g−2

2,0 p1,1 p3,1

�

= exp(e ) exp(− f ) exp(e )
�

(−1) g+1

( g − 3)!
e g−3(p2

3,1)−
(−1) g+1

( g − 2)!
e g−2(p1,1 p3,1)

�

=
(−1) g

g !
f g
�

(−1) g+1

( g − 3)!
e g−3(p2

3,1)−
(−1) g+1

( g − 2)!
e g−2(p1,1 p3,1)

�

= − 1
g !( g − 3)!

f g e g−3(p2
3,1) +

1
g !( g − 2)!

f g e g−2(p1,1 p3,1).

Expressions such as f g e g−3(p2
3,1) and f g e g−2(p1,1 p3,1) can be computed via a combinatorial formula

for sl2-representations. Here we state this formula as a lemma, since we shall use it again later.

Lemma 3.11. Consider a Q-linear representation sl2→ End
Q
(V ). Let α ∈ V such that h(α) = λ · α.

Then for all r , s ≥ 0 we have

(3.10) f s e r (α) =
min(r ,s )
∑

t=0
(−1)t

s !
(s − t )!

r !
(r − t )!

�

λ+ r − s + t − 1
t

�

e r−t f s−t (α).

Note that the binomial coe�cients should be taken in the generalized sense. We refer to [Moo09Moo09],
Lemma 2.4 for the proof (where the operator D in loc. cit. is − f ).

Proof of Theorem 3.93.9 (continued). It follows from (3.103.10) that

f g e g−3(p2
3,1) =

g !( g − 3)!
3!

f 3(p2
3,1), and f g e g−2(p1,1 p3,1) =

g !( g − 2)!
2!

f 2(p1,1 p3,1),

so that
−p3,1 ∗ [C ](1) = −

1
6

f 3(p2
3,1) +

1
2

f 2(p1,1 p3,1).

By Theorem 3.63.6 we know that f =D on polynomials in {pi , j } and ψ, so it remains to calculate

D3(p2
3,1) =D

2(ψp2
0,2 − 6p4,2 + 2p1,1 p3,1)

=D
�

(2 g − 2)ψp0,2 − 6p2,2 + 2( gψp0,2 − p2,2 + p2
1,1)
�

=D
�

2(2 g − 1)ψp0,2 − 8p2,2 + 2p2
1,1

�

= 2 g (2 g − 1)ψ− 8p0,2 + 2( g 2ψ− p0,2)

= 2 g (3 g − 1)ψ− 10p0,2,

and

D2(p1,1 p3,1) =D( gψp2,0 − p2,2 + p2
1,1)

= g 2ψ− p0,2 + ( g
2ψ− p0,2)

= 2 g 2ψ− 2p0,2.
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Altogether we have

−p3,1 ∗ [C ](1) =
g
3
ψ+

2
3

p0,2 =
g
3
ψ+

2
3
π∗
�

1
4
c1 + gψ

�

= π∗
�

1
6
c1 + gψ

�

,

where the middle equality follows from (3.73.7). Combining with the starting point (3.93.9), we find

π∗π∗
�

[C ](1) · p3,1

�

= π∗
�

1
6
c1 + gψ

�

.

Therefore π∗
�

[C ](1) · p3,1

�

= c1/6+ gψ by the isomorphisms (3.83.8).

3.4. Relations in the tautological rings

After describing the generators of T ( J ), we construct relations between them. The crucial tool is the
sl2-action on CH( J ), together with its explicit form on T ( J ) (Theorem 3.63.6). The idea goes back to
Polishchuk (see [Pol05Pol05], Theorem 0.1).

Thanks to the isomorphisms (3.83.8), we identify R(S ) with ⊕d
i=0T(0,2i )( J ) via the map π∗. Then

by restricting everything toR(S ), we obtain relations between the generators ofR(S ). This suggest
a new approach to studying the structure of R(M g ,1) and the Faber conjectures (Conjecture 3.23.2).
Various theoretical aspects and numerical evidence will be discussed.

Further, by pushing relations forward toM g , we obtain some new evidence regarding the original
Faber conjectures on the tautological ring ofM g .

Producing relations

We explain how the sl2-action produces relations between classes in T ( J ) (resp.R(S )). As a conse-
quence, we give a new proof of the generation statement in Conjecture 3.23.2 (ii), i.e. thatR(M g ,1) is
generated by the classes c1, . . . ,cb g /3c and ψ.

Construction 3.12. Theorem 3.63.6 shows that the space of polynomial relations between the classes
{pi , j } and ψ is stable under the action of D. In other words, if P is a polynomial in {pi , j } and ψ,

then P
�

{pi , j },ψ
�

= 0 implies D
�

P
�

{pi , j },ψ
�

�

= 0. Now consider monomials

α =ψs p r1
i1, j1

p r2
i2, j2
· · · p rm

im , jm
with I := r1i1 + r2i2 + · · ·+ rm im > 2 g .

By definition α ∈ CH
�

R I ( J /S )
�

. But since I > 2 g , we know from the motivic decomposition (2.92.9)
that R I ( J /S ) = 0. In terms of the Dutch house, the class α is simply outside the house. It follows
that we have relations

α = 0, D(α) = 0, D2(α) = 0, . . .
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3. A tale of two tautological rings (I)

This argument leads to the following formal definition. Let i , j run through all integers such that
i ≤ j + 2 and that i + j is even. Consider the ring

A :=Q
�

{xi , j }, y
� �


x0,0 − g ,{xi , j }i<0,{xi , j } j<0,{xi , j } j>2 g−2

�

.

In other words, the ringA is a polynomial ring in variables {xi , j } and y , with the convention that
x0,0 = g and xi , j = 0 for i < 0 or j < 0 or j > 2 g − 2 (same as the classes {pi , j }). We introduce
a bigrading A = ⊕i , jA(i , j ) by the requirements that xi , j ∈ A(i , j ) and y ∈ A(0,2). Define operators
E , F and H onA by

E :A(i , j )→A(i+2, j ) α 7→ x2,0 ·α,

F :A(i , j )→A(i−2, j ) α 7→ F (α),

H :A(i , j )→A(i , j ) α 7→ (i − g )α,

where

F :=
1
2
∑

i , j ,k ,l

�

y xi−1, j−1xk−1,l −1 −
�

i + k − 2
i − 1

�

xi+k−2, j+l

�

∂ xi , j ∂ xk ,l

+
∑

i , j
xi−2, j ∂ xi , j .

(3.11)

It is not di�cult to verify that the operators above generate aQ-linear representation sl2→ End
Q
(A ).

Theorem 3.63.6 can then be reformulated as the existence of a surjective morphism of sl2-representations
A →T ( J ), which maps xi , j to pi , j and y to ψ.

Denote by Mon(i , j ) the set of monomials in {xi , j } (excluding x0,0 and all xi , j that vanish inA )
and y that belong to Ai , j . Note that we set Mon(0,0) = {1} as an exception. Then consider the
quotient ring

(3.12) eT :=A
À¬

�

F ν (Mon(i , j ))
	

i>2 g ,ν≥0

¶

.

The ring eT inherits fromA a bigrading eT = ⊕i , j
eT(i , j ). The operators E , F and H induce operators

on eT , which we denote by e , f and h . Again we obtain a representation sl2→ End
Q
( eT ). Moreover,

since e g+1 = f g+1 = 0, we can formally define the Fourier transformF on eT by

F := exp(e ) ◦ exp(− f ) ◦ exp(e ).

We also define the subring eR = ⊕i
eT(0,2i ), with the grading eR = ⊕i

eR i such that eR i := eT(0,2i ).
Then we have

eR i =A(0,2i )

À¬

�

F I (Mon(2I ,2i ))
	

I> g

¶

=A(0,2i )

�


F g+1(Mon(2 g+2,2i ))
�

.
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Fourier transform F

2 g −2

2 g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18= 2 g +2column:
−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 10= g +2weight H :

0

2

4

6

8

10

12

14
= 2 g −2

row:

Figure 3. Producing relations ( g = 8).

Figure 33 illustrates the construction of eR : take monomials on the (2 g + 2)-th column of the Dutch
house (white blocks), and then apply g + 1 times the operator F to obtain relations between the
generators (black blocks).

To summarize this formal approach, we have the following proposition.

Proposition 3.13. For all S as in (2.152.15) (including S =M g ,1), we have surjective maps

(3.13) Φ : eT −� T ( J ), and Φ|
eR : eR −�R(S ),

which map xi , j to pi , j and y to ψ.

From now on, we will concentrate on the structure of eR . We start with a lemma, which shows
one can already eliminate certain monomials that produce trivial relations.

Lemma 3.14. For all α ∈Mon(2 g+2,2i ) of the form α = x2,0 ·β, we have F g+1(α) = 0.
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3. A tale of two tautological rings (I)

Proof. This follows directly from (3.103.10). In fact, we have F g+1(α) = F g+1(x2,0 ·β) = F g+1E (β).
Then by applying (3.103.10) with λ = g , r = 1 and s = g + 1, we find

F g+1E (β) = E F g+1(β)− ( g + 1)( g + 1− g − 1+ 1− 1)F g (β) = E F g+1(β).

On the other hand F g+1(β) ∈A(−2,2i ) = 0, which implies F g+1(α) = 0.

As a result, if we write mon(2 g+2,2i ) ⊂Mon(2 g+2,2i ) for the subset of monomials without x2,0 as a
factor, then we have

(3.14) eR i =A(0,2i )

�


F g+1(mon(2 g+2,2i ))
�

.

The bold blocks in Figure 33 describe the lower bound of i such that mon(2 g+2,2i ) is non-empty. In
numerical terms, we have x 2i

3,1 ∈ A(6i ,2i ) and that 6i > 2 g implies i > g /3. So mon(2 g+2,2i ) = ; for
all i ≤ b g /3c.

Theorem 3.15. The elements x0,2, . . . , x0,2b g /3c and y generate eR , with no relations in eR i for i ≤ b g /3c.

Remark 3.16. Combining with (3.73.7), Theorem 3.153.15 implies the generation statement in Conjec-
ture 3.23.2 (ii). Further, it would solve Conjecture 3.23.2 (ii) completely if the map Φ|

eR : eR −�R(M g ,1)
in (3.133.13) is also injective, i.e. an isomorphism.

Proof of Theorem 3.153.15. The second part is immediate after (3.143.14) and the fact that mon(2 g+2,2i ) = ;
for all i ≤ b g /3c. For the first part, our goal is to relate all x0,2i with i > g /3 to the elements
x0,2, . . . , x0,2b g /3c and y , and the idea is to use specific monomials to get these relations.

We proceed by induction. Suppose all {x0,2 j } g /3< j<i can be expressed in terms of the elements
x0,2, . . . , x0,2b g /3c and y . Then consider the monomial x 2i

3,1 ∈A(6i ,2i ). Apply 3i -times the operator F
and we get F 3i (x 2i

3,1) ∈A(0,2i ), which vanishes in eR . On the other hand, the explicit expression (3.113.11)
implies

F 3i (x 2i
3,1) = c x0,2i +α,

where α is a polynomial in {x0,2 j } j<i and y . It only remains to prove that the coe�cient c is non-zero.
The observation is the following: when we apply the operator F , the minus sign occurs every

time two factors (xi , j , xk ,l ) are merged into one (xi+k−2, j+l ). Then if we start from x 2i
3,1 and arrive

at x0,2i , no matter how we proceed we have to do the merging (2i − 1)-times. This means that all
non-zero summands of c are of the form (−1)2 g−1 times a positive number, hence negative. Therefore
the sum c is negative as well.

We have also tried to see if we could recover Looijenga’s result using our relations, i.e. to prove that
eR i = 0 for i > g − 1 and eR g−1 'Q. However, there seems to be some combinatorial di�cultynote 44note 44

that we do not yet know how to resolve.
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Numerical evidence

My colleague Li Ma made a C++ program that computes the ring eR for a given genus g . The
program calculates relations obtained in Construction 3.123.12 and outputs the dimension of each com-
ponent eR i .

Meanwhile, based on an algorithm developed by Liu and Xu (see [LX12LX12], Section 3), Bergvall
computed all intersection numbers in the pairing (3.23.2) for many values of g (see [Ber11Ber11], Section 4.2).
As a result, it gives the dimensions of the Gorenstein quotient G (M g ,1) ofR(M g ,1). Here the ring
G (M g ,1) is the quotient of R(M g ,1) by the homogeneous ideal generated by all classes of pure
codimension that have zero pairing with all classes of the opposite codimension. Note that this
procedure of obtaining the dimensions of G (M g ,1) is formal and does not involve computation of
actual relations inR(M g ,1).

There are surjective maps eR −�R(M g ,1) −� G (M g ,1). Our computation shows that for g ≤ 19,
the dimensions of eR and G (M g ,1) are the same, which implies isomorphisms eR ' R(M g ,1) '
G (M g ,1). In particular, we can confirm the following (for g ≤ 9 this has been obtained independently
by Bergvall; see [Ber11Ber11], Section 4.4).

Theorem 3.17. Conjecture 3.23.2 is true for g ≤ 19.

However, the computer result is negative for g = 20 and some greater values of g . There the
dimensions of eR are simply not symmetric. Again by comparing with the dimensions of G (M g ,1),
we know exactly how many relations are missing. The numbers are listed in Table 11 below.

The computation also involves an observation similar to Faber and Zagier’s approach. Consider
the dimension of eR i for g /3 < i ≤

�

( g − 1)/2
�

, which we denote by d ( g , i ). Note that i ≤
�

( g − 1)/2
�

corresponds to the lower half of the conjectural Gorenstein ring. We know that eR i is
spanned by the image of Mon(0,2i ), and the cardinal # Mon(0,2i ) is p(0) + · · · + p(i ) =: φ(i ), where
p(−) is the partition function. Then consider the di�erenceφ(i )−d ( g , i ), which reflects the minimal
number of relations needed to obtain eR i fromA(0,2i ). We have observed an interesting phenomenon:
that φ(i )− d ( g , i ) seems to be a function of 3i − g − 1. More precisely, if we set

b (3i − g − 1) :=φ(i )− d ( g , i ),

then based on our data for g ≤ 28, we obtain the following values of the function b .

n 0 1 2 3 4 5 6 7 8 9 10 11
b (n) 1 2 3 6 10 14 22 33 45 64 90 119

Bergvall did the same calculation with the dimensions of the Gorenstein quotient G (M g ,1) (see
[Ber11Ber11], Table 4.3). There he obtained the same values as the function b (n) for n ≤ 9. For n = 10,
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3. A tale of two tautological rings (I)

however, he observed some unexpected fact: the componentG 12(M25,1) yields the number 91 instead
of 90, while further components G 13(M28,1) and G 14(M31,1) give the number 90. Similar things
happen to n = 11, where the component G 13(M27,1) yields the number 120 instead of 119, while
further components seem to give the number 119. Note that the defect occurs only in the middle
codimension, i.e. ( g − 1)/2 for g odd.

Another aspect is to guess what this function b (n) could be. Recall Faber and Zagier’s function
a(n) forM g (see [Fab99Fab99], Section 4 and [LX12LX12], Section 2).

n 0 1 2 3 4 5 6 7 8 9 10 11
a(n) 1 1 2 3 5 6 10 13 18 24 33 41

It has been suggested by Bergvall and Faber that the first values of b (n) satisfy

(3.15) b (n) =
n
∑

i=0
i 6≡2 (mod 3)

a(n − i ) = a(n) + a(n − 1) + a(n − 3) + a(n − 4) + · · · .

Here we observe that (3.153.15) is compatible with the dimensions of eR , but conflicts with the Goren-
stein property.

Pushing forward toM g

Recall that the tautological ring R(M g ) is defined to be the Q-subalgebra of CH(M g ) generated
by the classes {ci}. The original Faber conjectures predict that R(M g ) is Gorenstein with socle
in codimension g − 2, and that it is generated by c1, . . . ,cb g /3c with no relations in codimension
i ≤ b g /3c (see [Fab99Fab99], Conjecture 1).

Let q :M g ,1 →M g be the map that forgets the marked point. Then we have q∗
�

R(M g ,1)
�

=
R(M g ). In fact, consider the diagram

C g ,1 C g

M g ,1 M g

→
eq

→p → p0

→q

→

x0

where C g (resp. C g ,1) is the universal curve overM g (resp.M g ,1), and x0 is the section of p that
gives the marked point. The classes {ci} (resp. K ) are defined onM g (resp. C g ), and we keep the
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3.4. Relations in the tautological rings

g M g ,1 M g

≤ 19 OK OK
20 codim 10: 1 missing OK
21 codim 11: 1 missing OK
22 codim 11: 1 missing OK
23 codim 12: 3 missing OK
24 codim 13: 2 missing codim 12: 1 missing

codim 12: 4 missing
25 codim 13: 5 missing codim 12: 1 missing

codim 12: 1 missing
26 codim 14: 6 missing codim 13: 1 missing

codim 13: 6 missing
27 codim 15: 3 missing codim 14: 1 missing

codim 14: 11 missing codim 13: 1 missing
codim 13: 1 missing

28 codim 15: 10 missing codim 14: 2 missing
codim 14: 10 missing

Table 1. Computer output for g ≤ 28.

same notation for their pull-back toM g ,1 (resp. C g ,1). Then for ψs
c

r1
i1
· · ·crm

im
∈R(M g ,1), we have

q∗(ψ
s
c

r1
i1
· · ·crm

im
) = q∗

�

ψs · q∗(cr1
i1
· · ·crm

im
)
�

= q∗(ψ
s ) · cr1

i1
· · ·crm

im

= q∗x
∗
0 (K

s ) · cr1
i1
· · ·crm

im

= q∗x
∗
0eq
∗(K s ) · cr1

i1
· · ·crm

im

= p0,∗(eq ◦ x0)∗(eq ◦ x0)
∗(K s ) · cr1

i1
· · ·crm

im

= p0,∗(K
s ) · cr1

i1
· · ·crm

im

= cs−1c
r1
i1
· · ·crm

im
,

(3.16)

with the convention that c−1 = 0. Hence q∗(ψs
c

r1
i1
· · ·crm

im
) ∈R(M g ).

The identities (3.73.7) and (3.163.16) allow us to push relations in R(M g ,1) forward to R(M g ). We
used another computer program to do the work. Then for g ≤ 23, we obtain a new proof of the well-
known result of Faber-Zagier, Faber and Pandharipande-Pixton (see [Fab13Fab13], Lecture 1 and [PP13PP13],
Section 0.4).
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3. A tale of two tautological rings (I)

Theorem 3.18. For g ≤ 23, the ringR(M g ) is Gorenstein with socle in codimension g − 2.

In this situation, the rest of the Faber conjectures are also true by explicit calculation. Note that
when 20 ≤ g ≤ 23, the missing relations in R(M g ,1) do not a�ect the Gorenstein property of
R(M g ). From g = 24 on, however, the computer result is again negative. Our computation for
g ≤ 28 suggests that we obtain exactly the same set of relations as the Faber-Zagier relations (see
[Fab13Fab13], Lecture 1 and [PP13PP13], Section 0.2). Notably in the crucial case of g = 24, we have not
found the missing relation in codimension 12. It is not yet known whether in theory we obtain the
same relations.

We summarize in Table 11 the computer result for bothM g ,1 andM g . Note that all codimensions
have been calculated for g ≤ 24. For g ≥ 25, we only calculated a range near the middle codimension,
presuming that the tautological rings behave well near the top.

We finish this chapter by some speculations. Since the ring eR is in general not Gorenstein, there are
two main possibilities.

(i) The ring R(M g ,1) is still Gorenstein. In this case we need to find other ways that produce
the missing relations. Earlier works (see [Moo09Moo09], Section 2.13) suggest that our approach is
closely related to Brill-Noether theory, while the relation is not yet clear. However, it seems
that a new kind of geometry will be needed to prove the Gorenstein property.

(ii) The ringR(M g ,1) is isomorphic to eR . As seen in Theorem 2.162.16, the sl2 approach of producing
relations is of motivic nature. We find it somewhat reasonable to expect all relations to be
motivic, rather than believing the existence of non-motivic relations. Also, it is conjectured
that on the generic Jacobian variety, the sl2-action is the only source of relations between
tautological classes (see [Pol05Pol05], Introduction). The idea goes back to Beauville (see [Bea04Bea04],
Section 5.5), and there have been various results on the non-triviality of certain tautological
classes. We refer to [Cer83Cer83], [Fak96Fak96], [Ike03Ike03] and [Voi13Voi13] for more details. See also Chapters 55
and 66 for some discussions.

For the moment, it might be worthwhile to re-state the second case as a conjecture, although it
contradicts the Faber conjectures for bothM g ,1 andM g .

Conjecture 3.19. We have an isomorphism Φ|
eR : eR ∼−→R(M g ,1).
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4

A tale of two tautological rings (II)

We study symmetric powers of a relative pointed curve, and we prove that the tautolog-
ical ring of the infinite symmetric power is a polynomial ring over the tautological ring
of the relative Jacobian. As a result, the Gorenstein property for the universal Jacobian
implies the same property for symmetric powers of the universal curve. We give positive
results in low genus cases.

4.1. Symmetric powers of a relative curve

We turn our attention to symmetric powers of a relative curve, which are closely related to the
relative Jacobian. Again we work in the setting of (2.152.15). For n ≥ 1, denote by pn : C n → S
(resp. p [n] : C [n]→ S ) the n-th power (resp. symmetric power) of C relative to S . The quotient map
σn : C n→ C [n] induces a canonical isomorphism of Q-algebras

(4.1) σ∗n : CH(C [n]) ∼−→ CH(C n)Sn .

Also σn,∗ ◦ σ
∗
n : CH(C [n])→ CH(C [n]) is the multiplication by n!.

Define maps ϕn : C [n]→ J and φn := ϕn ◦σn : C n→ J , which send locally n sections x1, . . . , xn

of C /S to the class OC (x1 + · · ·+ xn − nx0) (in particular ϕ1 = φ1 = ι : C ,→ J ). To summarize, we
have the following diagram.

(4.2)
C n C [n] J

S

→σn

→
φn

→pn

→ϕn

→
p [n] → π
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4. A tale of two tautological rings (II)

For convenience we set C 0 = C [0] = S and ϕ0 =φ0 = o : S → J .
It is not di�cult to see that the fibers of ϕn are projective spaces (if non-empty), and it follows

from Riemann-Roch that C [n] is a Pn− g -bundle over J when n ≥ 2 g −1. In this case the Chow ring
CH(C [n]) can be described in terms of CH( J ), following [Ful98Ful98], Section 3.3.

A nice way to interpret this fact and to treat all symmetric powers at once is to consider the infinite
symmetric power C [∞], which is defined as the ind-scheme

C [∞] := lim−→(S = C [0] ,→ C ,→ C [2] ,→ C [3] ,→ ·· · ).

Here the transition maps εn : C [n−1] ,→ C [n] are given by adding a copy of x0 (in particular ε1 =
x0 : S → C ). We write p [∞] : C [∞]→ S for the structural map.

The collection of ϕn : C [n]→ J induces a map ϕ : C [∞]→ J . Moreover, both structures µ and
[N ] on J can be lifted to C [∞]: the addition maps µm,n : C [m] ×S C [n]→ C [m+n] give rise to

µ : C [∞] ×S C [∞]→ C [∞],

while the diagonal maps ∆N : C [n]→ C [N n] give rise to

[N ] : C [∞]→ C [∞], for N ≥ 0.

Again µ and [N ] are called the addition and the multiplication by N respectively.
In this section we review the Chow theories of C [∞]. They were first introduced by Kimura

and Vistoli [KV96KV96] in the case S = k , and then generalized to the relative setting by Moonen and
Polishchuk [MP10MP10].

Chow homology and Chow cohomology

Unlike the case of J , there are (at least) two di�erent notions of Chow groups for the ind-scheme
C [∞]. One is graded by relative dimension and the other by codimension.

If X /S is an object in VS , we write CHi (X /S ) for the Chow group of cycles on X that are of
relative dimension i over S (i.e. of dimension i + d over k , where d = dim(S/k )). When there is no
ambiguity (since we always work relatively over S ), we drop the S and abbreviate to CHi (X ). We
also distinguish the two gradings on CH( J ): we write CH•( J ) :=

�

⊕i CHi ( J ), ·
�

and CH•( J ) :=
�

⊕i CHi ( J ),∗
�

.

Definition 4.1.

(i) The Chow homology of C [∞] of relative dimension i over S is the direct limit

CHi (C
[∞]) := lim−→

�

CHi (S )→ CHi (C )→ CHi (C
[2])→ CHi (C

[3])→ ·· ·
�

,
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4.1. Symmetric powers of a relative curve

where the transition maps are εn,∗ : CHi (C [n−1])→ CHi (C [n]). We write

CH•(C
[∞]) :=

⊕

i
CHi (C

[∞]).

(ii) The Chow cohomology of C [∞] of codimension i is the inverse limit

CHi (C [∞]) := lim←−
�

CHi (S )← CHi (C )← CHi (C [2])← CHi (C [3])← ·· ·
�

,

where the transition maps are ε∗n : CHi (C [n])→ CHi (C [n−1]). We write

CH•(C [∞]) :=
⊕

i
CHi (C [∞]).

(iii) The Chow homology (resp. cohomology) of C [∞] ×S C [∞] is defined similarly.

Remark 4.2. For all n ≥ 1, the transition maps εn,∗ (resp. ε∗n) are injective (resp. surjective). In fact,
one can construct a correspondence Γn ∈ CorrS (C [n], C [n−1]) satisfying Γn,∗ ◦εn,∗ = id and ε∗n ◦ Γ

∗
n = id

(see [KV96KV96], Remark 1.9).

By definition, an element in CHi (C [∞]) is represented by some α ∈ CHi (C [n]) for some n. An
element in CHi (C [∞]) is a sequence α = (αn)n≥0 with αn ∈ CHi (C [n]), such that ε∗n(αn) = αn−1.

Both CH•(C [∞]) and CH•(C [∞]) are equipped with a ring structure: on CH•(C [∞]) there is the
intersection product (·), while on CH•(C [∞]) there is the Pontryagin product (∗), defined by

CHi (C
[∞])×CHi ′(C

[∞]) ∗−→ CHi+i ′(C
[∞])

(α,β) 7−→ µ∗(α×S β).

Here if α ∈ CHi (C [m]) ⊂CHi (C [∞]) and β ∈ CHi ′(C [n]) ⊂CHi ′(C [∞]), we set

α×S β := pr∗1(α) · pr∗2(β) ∈ CHi+i ′(C
[m] ×S C [n]) ⊂CHi+i ′(C

[∞] ×S C [∞]),

where pr1 : C [m] ×S C [n]→ C [m] and pr2 : C [m] ×S C [n]→ C [n] are the two projections. One verifies
easily that (∗) is well-defined. The unit of CH•(C [∞]) is [S ] ∈ CH0(S ) ⊂CH0(C [∞]).

Note that unlike the case of CH( J ), one cannot define both ring structures on the same object
CH•(C [∞]) or CH•(C [∞]). We do, however, have a cap product

(4.3) CH•(C [∞])×CH•(C
[∞]) ∩−→ CH•(C

[∞]),

which sends α = (αm)m≥0 ∈ CHi (C [∞]) and β ∈ CHi ′(C [n]) ⊂ CHi ′(C [∞]) to α ∩β := αn ·β ∈
CHi ′−i (C [n]) ⊂CHi ′−i (C [∞]). Again one verifies that (∩) is well-defined.

For N ≥ 0, the multiplication by N induces

[N ]∗ : CH•(C
[∞])→ CH•(C

[∞]), and [N ]∗ : CH•(C [∞])→ CH•(C [∞]).

Further, the map ϕ : C [∞]→ J induces morphisms of Q-algebras

ϕ∗ : CH•(C
[∞])→ CH•( J ), and ϕ∗ : CH•( J )→ CH•(C [∞]).
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4. A tale of two tautological rings (II)

Connections with the Jacobian

We build connections between the Chow theories of the infinite symmetric power and the Jacobian.
The easier part is the Chow cohomology CH•(C [∞]).

Recall the classψ = x ∗0 (K ) ∈ CH1(S ) defined in (2.182.18). Again we simply writeψ for the pull-back
of ψ to the schemes on which we work. For n ≥ 1, define

(4.4) OC [n](1) := OC [n]
�

εn(C
[n−1]) + nψ

�

, and ξn := c1

�

OC [n](1)
�

∈ CH1(C [n]).

We set ξ0 = 0. Then for n ≥ 1 we have ε∗n(ξn) = ξn−1, so we obtain a class

ξ := (ξn)n≥0 ∈ CH1(C [∞]).

There is an alternative description of OC [n](1) (essentially due to Schwarzenberger [Schw63Schw63]; see
also [MP10MP10], Section 1). LetL be the pull-back of the Poincaré line bundleP via ι×S id J : C ×S J →
J ×S J . For n ≥ 0, define the sheaf

En := pr2,∗

�

pr∗1
�

OC (nx0)
�

⊗L
�

,

where pr1 : C ×S J → C and pr2 : C ×S J → J are the two projections. There is a canonical isomor-
phism C [n] ' P(En), under which OC [n](1) corresponds to the line bundle O

P(En )
(1).

When n ≥ 2 g − 1, the sheaf En is locally free over J (i.e. a vector bundle). Then we have an
isomorphism of Q-algebras

(4.5) CH(C [n]) =CH
�

P(En)
�

'CH( J )[ξn]
�


P (ξn)
�

,

where P (ξn) is a polynomial in ξn of degree n − g + 1 with coe�cients in CH( J ). The following
result is merely a reinterpretation of this fact ([MP10MP10], Theorem 1.4).

Theorem 4.3.

(i) When n ≥ max{2 g , i + g + 1}, the transition map ε∗n : CHi (C [n])→ CHi (C [n−1]) becomes an
isomorphism.

(ii) The map ϕ∗ : CH•( J )→ CH•(C [∞]) induces an isomorphism of Q-algebras

(4.6) Φ : CH•( J )[t ] ∼−→ CH•(C [∞]),

which sends α ∈ CH•( J ) to ϕ∗(α) and t to the class ξ .
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4.1. Symmetric powers of a relative curve

Now we switch to the Chow homology CH•(C [∞]). We begin by introducing two classes Γ ∈
CH g (C [∞]) and L ∈ CH1(C [∞]).

Choose an integer n ≥ 2 g + d (Recall that d = dim(S/k )), and we identify C [n] with P(En).
Consider the short exact sequence

0→OC [n](−1)→ ϕ∗n(En)→Q → 0,

where Q is a vector bundle of rank n − g on C [n], called the universal quotient bundle of ϕ∗n(En).
Define

Γ := cn− g (Q ) ∈ CH g (C
[n]) ⊂CH g (C

[∞]).

One can show that Γ is independent of the choice of n.
This time take n ≥ 2 g + d + 1. Define

L := ϕ∗n
�

[o]
�

· cn− g−1(Q ) ∈ CH1(C
[n]) ⊂CH1(C

[∞]),

where [o] ∈ CH g ( J ) = CH0( J ) is the class of the zero section. Again one can show that L is inde-
pendent of n. The two classes Γ and L are crucial in relating CH•(C [∞]) with CH•( J ).

Theorem 4.4.

(i) The map

s : CH•( J )→ CH•(C
[∞])

α 7→ ϕ∗(α)∩ Γ
(4.7)

is a section of ϕ∗ : CH•(C [∞])→ CH•( J ). It respects the Pontryagin products on both sides and
satisfies s ◦ [N ]∗ = [N ]∗ ◦ s for all N ≥ 0.

(ii) The section s induces an isomorphism of Q-algebras

(4.8) Ψ : CH•( J )[t ]
∼−→ CH•(C

[∞]),

which sends α ∈ CH•( J ) to s (α) and t to the class L.

(iii) Under the isomorphism Ψ, the push-forward ϕ∗ is the evaluation at zero, and the action of ξ ∩ is
the derivation d/dt .

The proof of the theorem is a delicate intersection theory calculation. See [MP10MP10], Proposi-
tion 1.6 and Theorem 1.11.
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4. A tale of two tautological rings (II)

Remark 4.5. For all N ≥ 0, we have (see [MP10MP10], Lemma 1.3)

[N ]∗(ξ ) =N ξ , [N ]∗(L) =N L and [N ]∗(Γ ) =N 2 g Γ .

Moreover, there are explicit expressions for the classes L and Γ (see loc. cit., Corollary 1.13):

(4.9) L =
log

�

1+ψ · [C ]
�

− log
�

1+ψ · s
�

�

ι(C )
�

�

�

ψ
,

and for any N ≥ 2

(4.10) Γ =
1

g !(N − 1) g

� log
�

1+ψ · [N ]∗
�

[C ]
�

�

−N log
�

1+ψ · [C ]
�

Nψ

� g

.

Here we distinguish [C ] ∈ CH1(C ) ⊂CH1(C [∞]) from
�

ι(C )
�

∈ CH1( J ).

Fourier transform

Further, the Fourier transform F can be lifted to C [∞]. Recall that ℓ = c1(P ) ∈ CH1( J ×S J ). We
refer to [KV96KV96], Theorems 3.13 and 3.18 for the proof of the following result.

Definition-Theorem 4.6.

(i) Define classes

ℓ∞,∞ := (ϕ ×S ϕ)
∗(ℓ) ∈ CH1(C [∞] ×S C [∞]),

ξ ×S ξ := pr∗1(ξ ) · pr∗2(ξ ) ∈ CH2(C [∞] ×S C [∞]),

where pr1, pr2 : C [∞] ×S C [∞]→ C [∞] are the two projections. Then the expression

(4.11) exp(ℓ∞,∞ + ξ ×S ξ )

is an upper correspondence (see [KV96KV96], Definition 3.2). It induces an isomorphism of Q-algebras

F : CH•(C
[∞]) ∼−→ CH•(C [∞]),

again called the Fourier transform.

(ii) We haveF (L) = ξ , and a commutative diagram

CH•( J ) CH•( J )

CH•(C [∞]) CH•(C [∞]).

→F
∼

→s → ϕ∗

→∼F

AlsoF satisfiesF ◦ [N ]∗ = [N ]∗ ◦F , for all N ≥ 0.
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4.2. Tautological rings of the infinite symmetric power

(iii) The inverse F −1 : CH•(C [∞]) ∼−→ CH•(C [∞]) is given by the lower correspondence (see loc. cit.,
Definition 3.17)

(4.12) (−1) g exp(−ℓ∞,∞)∩
�

exp∗
�

(L×S L) ∗ (Γ ×S Γ )
�

�

,

where exp∗ means taking the exponential power series with the product (∗).

So in terms of the isomorphisms Φ and Ψ in (4.64.6) and (4.84.8), the Fourier transform between
CH•( J ) and CH•( J ) extends constantly to an isomorphism between the two polynomial algebras
CH•( J )[t ] and CH•( J )[t ].

Remark 4.7. There is a (somewhat) explicit description of the class ℓ∞,∞ ∈ CH1(C [∞]×S C [∞]). For
m, n ≥ 0, define

ℓm,n := (ϕm ×S ϕn)
∗(ℓ) ∈ CH1(C [m] ×S C [n]).

We have ℓm,0 = ℓ0,n = 0. Also we have seen in (2.202.20) that

ℓ1,1 = [∆]− pr∗1
�

[x0]
�

− pr∗2
�

[x0]
�

−ψ in CH1(C ×S C ),

where∆ =∆C /S ⊂ C ×S C , and pr1, pr2 : C ×S C → C are the two projections. Let pri : C n→ C be
the i -th projection, for 1 ≤ i ≤ n. Then for all m, n ≥ 1, we have identities (see [KV96KV96], Proposition-
Definition 3.10)

(4.13) (φm ×S φn)
∗(ℓ) = (σm ×S σn)

∗(ℓm,n) =
m
∑

i=1

n
∑

j=1
(pri ×S pr j )

∗(ℓ1,1),

which hold in CH1(C m ×S C n)Sm×Sn .

4.2. Tautological rings of the infinite symmetric power

We define the tautological rings R(C n) and R(C [n]) in the style of Faber and Pandharipande (see
[FP05FP05], Section 0.1). The collection

�

R(C [n])
	

then leads to the definition of the tautological rings
R•(C [∞]) andR•(C [∞]). The main result is a tautological analogue of Theorems 4.34.3 and 4.44.4, saying
that bothR•(C [∞]) andR•(C [∞]) are polynomial algebras over the tautological ring T ( J ).

Let m, n ∈ Z, m ≥ 1 and n ≥ 0. Consider maps

T = (T1, . . . , Tn) : C m→ C n ,

such that each Ti : C m → C is a projection of C m onto one of its factors. When n = 0, we set
T : C m→ C 0 = S to be the structural map. These maps T are called tautological maps. There is a one-
to-one correspondence between the set of tautological maps and the set of maps between {1, . . . , n}
and {1, . . . , m} (which still makes sense when n = 0, where the map becomes ;→ {1, . . . , m}).
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4. A tale of two tautological rings (II)

Definition 4.8. For n ≥ 0, the system of tautological ringsnote 55note 55 of C n is the collection of smallest
(graded) Q-subalgebras

�

R(C n) ⊂CH(C n)
	

, such that

(i) we have [x0] ∈R(C );

(ii) the system is stable under pull-backs and push-forwards via all tautological maps T .

Elements inR(C n) are called tautological classes.

Example 4.9. Recall the classes K ∈ CH1(C ) and ψ ∈ CH1(S ) defined in (2.182.18), and also the classes
ci ∈ CHi (S ) in (3.13.1). Since the diagonal map ∆ : C → C 2 is tautological, we have by adjunction

(4.14) K = −∆∗
�

∆∗
�

[C ]
�

�

∈R1(C ),

which implies ci = p∗(K i+1) ∈R i (C 0) for all i ≥ 0. Moreover, we have

(4.15) p∗
�

[x0]
2� = p∗x0,∗x

∗
0

�

[x0]
�

= x ∗0
�

[x0]
�

= −ψ ∈R1(C 0),

so that ψ ∈R1(C0).

We now describe a set of generators for each of the tautological ringsR(C n). For 1 ≤ j ≤ n, let
pr j : C n → C be the projection to the j -th factor, and for 1 ≤ k < l ≤ n, let prk ,l : C n → C 2 be the
projection to the k -th and l -th factors. Define classes

K j := pr∗j (K ) ∈R
1(C n),

[x0, j ] :=
�

pr−1
j

�

x0(S )
�

�

= pr∗j
�

[x0]
�

∈R1(C n),

[∆k ,l ] :=
�

pr−1
k ,l (∆)

�

= pr∗k ,l

�

[∆]
�

∈R1(C n),

(4.16)

where ∆ = ∆C /S ⊂ C 2. Further, we keep the same notation {ci} and ψ for the pull-backs of the
classes {ci} and ψ to C n , for all n ≥ 1.

Proposition 4.10. For n ≥ 0, the ring R(C n) is generated by the classes {ci}, ψ, {K j } and
�

[x0, j ]
	

(if n ≥ 1), and
�

[∆k ,l ]
	

(if n ≥ 2). In particular, when n = 0 the ring R(C 0) coincides with the
tautological ringR(S ) in Definition 3.13.1.

The proof is a careful calculation using the projection formula, and can be found in [Loo95Loo95],
Proposition 2.1 (see also Remark 4.304.30 below).

We switch to symmetric powers C [n]. For n ≥ 1, we identify CH(C [n]) with the symmet-
ric (i.e. Sn-invariant) part CH(C n)Sn by (4.14.1). Under this identification, the push-forward map
σn,∗ : CH(C n) −� CH(C [n]) is the symmetrization.
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4.2. Tautological rings of the infinite symmetric power

Definition 4.11. For n ≥ 1, the tautological ring of C [n] is the symmetric part

R(C [n]) :=R(C n)Sn .

We also setR(C [0]) =R(C 0) =R(S ). Again, elements inR(C [n]) are called tautological classes.

It follows from Proposition 4.104.10 that for n ≥ 2, the ringR(C [n]) is generated by the classes {ci},
ψ, and the elementary symmetric polynomials in {K j },

�

[x0, j ]
	

and
�

[∆k ,l ]
	

.

Passing to the infinite symmetric power

We first observe that the rings R(C [n]) are stable under pull-backs and push-forwards via the maps
εn : C [n−1] ,→ C [n]. In fact, the maps εn can be lifted to idC n−1 ×S x0 : C n−1 → C n. Then for α ∈
R(C n−1) and β ∈R(C n), we have

(idC n−1 ×S x0)∗(α) = pr∗1,...,n−1(α) · pr∗n
�

[x0]
�

∈R(C n),

(idC n−1 ×S x0)
∗(β) = pr1,...,n−1,∗

�

β · pr∗n
�

[x0]
�

�

∈R(C n−1),

where pr1,...,n−1 (resp. prn) is the projection of C n to the first n − 1 factors (resp. n-th factor). The
stability ofR(C [n]) under ε∗n and εn,∗ allows us to pass to the infinite symmetric power C [∞].

Definition 4.12.

(i) The tautological homology of C [∞], denote byR•(C [∞]), is the direct limit

R•(C
[∞]) := lim−→

�

R(S )→R(C )→R(C [2])→R(C [3])→ ·· ·
�

,

where the transition maps are εn,∗ :R(C [n−1])→R(C [n]).

(ii) The tautological cohomology of C [∞], denote byR•(C [∞]), is the inverse limit

R•(C [∞]) := lim←−
�

R(S )←R(C )←R(C [2])←R(C [3])← ·· ·
�

,

where the transition maps are ε∗n :R(C [n])→R(C [n−1]).

BothR•(C [∞]) andR•(C [∞]) are graded, similar to CH•(C [∞]) and CH•(C [∞]). As before, elements
inR•(C [∞]) andR•(C [∞]) are called tautological classes.

It is immediate that R•(C [∞]) is stable under the intersection product (·). Since the addition
map µm,n : C [m] ×S C [n]→ C [m+n] lifts to the identity map C m ×S C n → C m+n, we also know that
R•(C [∞]) is stable under the Pontryagin product (∗). It follows thatR•(C [∞]) (resp.R•(C [∞])) is a
graded Q-subalgebra of CH•(C [∞]) (resp. CH•(C [∞])).

We list several properties ofR•(C [∞]) andR•(C [∞]), which are crucial in connecting them with
the Jacobian side.
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4. A tale of two tautological rings (II)

Proposition 4.13.

(i) We have ξ ∈R1(C [∞]), Γ ∈R g (C [∞]) and L ∈R1(C [∞]).

(ii) The ringR•(C [∞]) (resp.R•(C [∞])) is stable under [N ]∗ (resp. [N ]∗), for all N ≥ 0.

(iii) The Fourier transformF induces an isomorphism

F :R•(C
[∞]) ∼−→R•(C [∞]).

(iv) The cap product in (4.34.3) restricts to a map

R•(C [∞])×R•(C
[∞]) ∩−→R•(C

[∞]).

Proof. Statement (ii) follows from the fact that the diagonal map ∆N : C [n]→ C [N n] lifts to C n →
C N n, which is tautological. Statement (iv) is straightforward.

For (i), by (4.44.4) and (4.104.10) we have ξ ∈ R1(C [∞]) and Γ ∈ R g (C [∞]). Moreover by (4.94.9), to

show that L ∈ R1(C [∞]) it su�ces to prove that s
�

�

ι(C )
�

�

∈ R1(C [∞]). This is further reduced to

prove that ϕ∗
�

�

ι(C )
�

�

∈R g−1(C [∞]) by the definition of the section s (4.74.7).
In fact, we can prove that for any class α in the tautological ring T ( J ) (see Definition 3.43.4), we

have ϕ∗(α) ∈ R•(C [∞]). First by Theorem 3.63.6, we know that
�

T ( J ), ·
�

is generated by the classes
{pi , j } and ψ. Since ϕ∗(ψ) ∈R1(C [∞]), it remains to prove that ϕ∗(pi , j ) ∈R•(C [∞]) for all possible
i and j . Here we can actually calculate the pull-back of pi , j via φn = ϕn ◦σn : C n→ J , for all n ≥ 0.
The procedure is similar to that of Lemma 2.222.22: we chase through the following cartesian squares

C ×S C n J ×S C n C n

C ×S J J ×S J J

C J

→ι×S idC n

→idC ×Sφn

→pr2

→ id J ×Sφn → φn

→
ι×S id J

→pr1

→pr2

→ pr1

→ι

and we find

(4.17) φ∗n

�

F
�

θ( j−i+2)/2 ·
�

ι(C )
�

�

�

= pr2,∗

�

pr∗1
�

ι∗(θ)( j−i+2)/2� · exp
�

(ι×S φn)
∗(ℓ)

�

�

,

where pr1 : C ×S C n → C and pr2 : C ×S C n → C n are the two projections. By definition φ∗n(pi , j )
is just the codimension (i + j )/2 component of the right-hand side of (4.174.17). Further by (2.192.19)
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4.2. Tautological rings of the infinite symmetric power

and (4.134.13), we have explicit expressions for ι∗(θ) and (ι×S φn)
∗(ℓ) in terms of tautological classes. It

follows that φ∗n(pi , j ) ∈R(C n), and hence ϕ∗(pi , j ) ∈R•(C [∞]).
Finally to prove (iii), we observe that the correspondences in (4.114.11) and (4.124.12) that defineF and

F −1 only involve tautological classes.

Connections with the Jacobian

Consider the tautological ring T ( J ) in Definition 3.43.4. We write T •( J ) :=
�

T ( J ), ·
�

with the grading
by codimension, and T•( J ) :=

�

T ( J ),∗
�

with the grading by relative dimension. Now we state and
prove the main result of this section.

Theorem 4.14. The isomorphisms Φ and Ψ in (4.64.6) and (4.84.8) restrict to isomorphisms of Q-algebras

Φ|T •( J )[t ] : T
•( J )[t ] ∼−→R•(C [∞]),(4.18)

Ψ|T•( J )[t ] : T•( J )[t ]
∼−→R•(C

[∞]).(4.19)

The plan is to prove (4.194.19) first, and then deduce (4.184.18) by Fourier duality. We begin with an
elementary lemma.

Lemma 4.15. Let A be a commutative Q-algebra, and B be a Q-subalgebra of the polynomial algebra
A[t ]. Assume that t ∈ B, and that B is stable under derivation d/dt . Then we have

B = ev(B )[t ],

where ev: A[t ]→ A is the evaluation at zero.

Proof. Let P (t ) = b0 + b1 t + · · ·+ bn t n be an element in B . Since B is stable under derivation, we
have (d/dt )n

�

P (t )
�

= n!bn ∈ B , so that bn ∈ B . Then since t ∈ B , we have bn t n ∈ B , so that
P (t ) − bn t n ∈ B . By induction, we find that all coe�cients bi are in B . It follows that ev(B ) ⊂
B , and hence ev(B )[t ] ⊂ B . On the other hand, we know that bi = ev

�

(d/dt )i
�

P (t )/i !
�

�

, with

(d/dt )i
�

P (t )/i !
�

∈ B . Therefore bi ∈ ev(B ), which proves the other inclusion B ⊂ ev(B )[t ].

Now consider the push-forward map ϕ∗ : CH•(C [∞])→ CH•( J ) which, by Theorem 4.44.4 (iii),
corresponds to the evaluation at zero.

Proposition 4.16. We have ϕ∗
�

R•(C [∞])
�

= T•( J ).

Proof. By Theorem 3.63.6, we know that T•( J ) is generated by the classes
¦

θ( j−i+2)/2 ·
�

ι(C )
�

( j )

©

and
o∗(ψ) (here o = ϕ0 : S → J is the zero section). Now consider the class η = K /2+[x0]+ψ/2 ∈R(C ),
which by (2.192.19) is equal to ι∗(θ). Then we have

ι∗(η
( j−i+2)/2) = θ( j−i+2)/2 ·

�

ι(C )
�

,
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4. A tale of two tautological rings (II)

so that θ( j−i+2)/2 ·
�

ι(C )
�

is in the image ϕ∗
�

R•(C [∞])
�

(recall that ι = ϕ1). Moreover, we have shown
in Proposition 4.134.13 (ii) that R•(C [∞]) is stable under [N ]∗ for all N ≥ 0. This implies that the
components θ( j−i+2)/2 ·

�

ι(C )
�

( j )
are also in the image ϕ∗

�

R•(C [∞])
�

. Since all generators of T•( J )
are in ϕ∗

�

R•(C [∞])
�

, we obtain the inclusion T•( J ) ⊂ ϕ∗
�

R•(C [∞])
�

.
To prove the reverse inclusion, we first observe that the image ϕ∗

�

R•(C [∞])
�

, being the union of
ϕn,∗

�

R(C [n])
�

for n ≥ 0, is also equal to the union of φn,∗

�

R(C n)
�

for n ≥ 0. Then it is enough to
prove that for all n ≥ 0 we have φn,∗

�

R(C n)
�

⊂ T ( J ). This is done by an explicit calculation using
the generators ofR(C n) described in Proposition 4.104.10.

As φn,∗ factors through φn+1,∗, we may assume n ≥ 2. The ringR(C n) is then generated by the
classes {ci}, ψ, {K j } and

�

[x0, j ]
	

, and
�

[∆k ,l ]
	

, as defined in (4.164.16). We make a change of variables

η j :=
1
2

K j + [x0, j ] +
1
2
ψ,

so R(C n) is also generated by {ci}, ψ, {η j } and
�

[x0, j ]
	

, and
�

[∆k ,l ]
	

. Let α ∈ R(C n) be a
monomial in those generators. We would like to show that φn,∗(α) ∈ T ( J ).

A first step is to separate the variables {ci} and ψ from the rest. Write α = β · γ , with β
collecting all factors of {ci} and ψ. Then β is the pull-back of a class β0 ∈ R(S ) via the structural
map pn : C n→ S . Since pn = π ◦φn (recall that π : J → S ), we find

φn,∗(α) =φn,∗

�

pn,∗(β0) · γ
�

=φn,∗

�

φ∗nπ
∗(β0) · γ

�

= π∗(β0) ·φn,∗(γ ).

Thanks to the isomorphisms (3.83.8), we have π∗(β0) ∈ T ( J ). So it remains to prove that φn,∗(γ ) ∈
T ( J ), or in other words, we may assume that α is a monomial in {η j },

�

[x0, j ]
	

and
�

[∆k ,l ]
	

only.
A second step is to eliminate multiplicities in the variables

�

[∆k ,l ]
	

. Consider for example [∆] =
[∆1,2] ∈ R(C 2). Denote by ∆ : C → C 2 the diagonal map, and by pr2 : C 2 → C the second
projection. Then we have by (4.144.14)

[∆]2 =∆∗
�

∆∗
�

[∆]
�

�

= −∆∗(K ) = −∆∗
�

∆∗ pr∗2(K )
�

= −[∆] ·K2.

By pulling back to C n , we obtain for 1 ≤ k < l ≤ n

[∆k ,l ]
2 = −[∆k ,l ] ·Kl = −[∆k ,l ] ·

�

2ηl − 2[x0,l ]−ψ
�

.

Together with the first step, this allows us to reduce to the case where α is a monomial in {η j },
�

[x0, j ]
	

and
�

[∆k ,l ]
	

, with multiplicity at most 1 for each [∆k ,l ].
Further, we may permute the indices of the

�

[∆k ,l ]
	

factors by applying the identity

(4.20) [∆k ,l ] · [∆l ,m] = [∆k ,m] · [∆l ,m].
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4.2. Tautological rings of the infinite symmetric power

More precisely, if I = {i1, i2, . . . , iq} is a subset of {1, . . . , n}, we define the symbol

[∆I ] := [∆i1,i2
] · [∆i1,i3

] · · · [∆i1,iq
].

It follows from (4.204.20) that [∆I ] is well-defined. Also we have identities [∆I ] ·ηi1
= [∆I ] ·ηi2

= · · · =
[∆I ] · ηiq

and [∆I ] · [x0,i1
] = [∆I ] · [x0,i2

] = · · · = [∆I ] · [x0,iq
]. So for r , s ≥ 0, we can write

(ηr [x0]
s )∆I

:= [∆I ] · η
r
i1
· [x0,i1

]s .

Now combining with the first two steps, we may assume that the
�

[∆k ,l ]
	

factors of α take the form

[∆I1
] · [∆I2

] · · · [∆Im
],

where the Ik are subsets of {1, 2, . . . , n} satisfying Ik ∩ Il = ; for k 6= l . This means we are reduced
to the case where α is of the form

α =
∏

k∈{1,...,m}
(ηrk [x0]

sk )∆Ik
·
∏

j∈{1,...,n}
j /∈∪k Ik

(η
u j
j [x0, j ]

v j ),

with I1, . . . , Im and { j } pairwise disjoint. In this case, the calculation of φn,∗(α) is rather straightfor-
ward: it follows almost from the definitions of [N ] and the product (∗) that

φn,∗(α) =
∏∗

k∈{1,...,m}
[#Ik ]∗ι∗(η

rk [x0]
sk ) ∗

∏∗

j∈{1,...,n}
j /∈∪k Ik

ι∗(η
u j [x0]

v j ),

where
∏∗ stands for product using (∗), and #Ik is the cardinal of Ik .

Now since T ( J ) is stable under [N ]∗ and (∗), the last step is to prove that for all r , s ≥ 0,
we have ι∗

�

ηr [x0]
s
�

∈ T ( J ). Then by the identity η = ι∗(θ), we find ι∗
�

ηr [x0]
s
�

= θ r · ι∗
�

[x0]
s
�

,
which further reduces to showing that ι∗

�

[x0]
s
�

∈ T ( J ). We have ι∗
�

[x0]
0
�

=
�

ι(C )
�

∈ T ( J ) and
ι∗
�

[x0]
�

= [o] ∈ T ( J ). When s ≥ 2, the calculation is similar to (4.154.15):

ι∗
�

[x0]
s � = ι∗x0,∗x

∗
0

�

[x0]
s−1� = o∗

�

(−ψ)s−1� ∈ T ( J ).

The proof of the inclusion ϕ∗
�

R•(C [∞])
�

⊂ T•( J ) is thus completed.

Proof of Theorem 4.144.14. By Proposition 4.134.13 (i) and (iv), we know that L ∈ R•(C [∞]), and that
R•(C [∞]) is stable under ξ ∩ −. Then the isomorphism (4.194.19) follows immediately from Theo-
rem 4.44.4, Lemma 4.154.15 and Proposition 4.164.16. By applying the Fourier transform F and by Proposi-
tion 4.134.13 (iii), we also obtain (4.184.18).
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4. A tale of two tautological rings (II)

Remark 4.17. Previously, Moonen and Polishchuk considered much bigger tautological rings of C [∞]

and J , for which they obtained similar results as Theorem 4.144.14 (see [MP10MP10], Corollary 8.6). The
significance of our smaller version, is that one can now apply the machinery on the Jacobian side
to study enumerative problems on the tautological rings R(C [n]). This will be the main topic of
Section 4.34.3.

Here we propose an alternative (and minimalist) definition of the tautological rings R•(C [∞])
andR•(C [∞]). It is based on the properties listed in Proposition 4.134.13.

Definition 4.18. Define R ′•(C [∞]) and R ′•(C [∞]) to be the smallest Q-subalgebras of CH•(C [∞])
and CH•(C [∞]) respectively, such that

(i) we have [C ] ∈R ′•(C [∞]) and ξ ∈R ′•(C [∞]);

(ii) the ringR ′•(C [∞]) (resp.R ′•(C [∞])) is stable under [N ]∗ (resp. [N ]∗), for all N ≥ 0;

(iii) the two rings are stable underF andF −1;

(iv) the ringR ′•(C [∞]) is stable under cap product withR ′•(C [∞]).

Note that Condition (iv) is crucial, otherwiseR ′•(C [∞]) andR ′•(C [∞]) live in two parallel worlds
without interactions. That ξ ∈ R ′•(C [∞]) can possibly be implied by the other conditions, but we
do not yet see a way to prove it.

Corollary 4.19. We haveR ′•(C [∞]) =R•(C [∞]) andR ′•(C [∞]) =R•(C [∞]).

Proof. We prove the first identity, which then implies the second by Fourier duality. Since we assume
ξ ∈ R ′•(C [∞]), by Definition-Theorem 4.64.6 we have L = F −1(ξ ) ∈ R ′•(C [∞]). Also R ′•(C [∞]) is
stable under ξ ∩−. So again by Theorem 4.44.4 and Lemma 4.154.15, we have

R ′•(C
[∞]) ' ϕ∗

�

R ′•(C
[∞])

�

[t ],

and it remains to prove that ϕ∗
�

R ′•(C [∞])
�

= T•( J ). Then one realizes that ϕ∗
�

R ′•(C [∞])
�

is, by
definition, the smallest Q-subalgebra of CH•( J ) that contains

�

ι(C )
�

and that is stable under [N ]∗
(for all N ≥ 0),F and (·), which is exactly the tautological ring T•( J ).
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4.3. Gorenstein properties

4.3. Gorenstein properties

In this section, we focus on the case S =M g ,1. For n ≥ 1, denote by C n
g ,1 (resp. C [n]g ,1) the n-th

power (resp. symmetric power) of the universal curve overM g ,1, and let C 0
g ,1 = C

[0]
g ,1 =M g ,1. We

also write C [∞]g ,1 for the infinite symmetric power of the universal curve, and J g ,1 for the universal
Jacobian, both overM g ,1. We keep the same notation as in (4.24.2) for the various maps.

Our goal is to study an analogue of the conjectural Gorenstein property (see Conjecture 3.23.2 (i)),
this time for the tautological rings of C n

g ,1 and C [n]g ,1. To begin with, we have the results of Looijenga
([Loo95Loo95], Theorem) and Faber [Fab97Fab97], which locate the expected socle (see also Remark 4.304.30 below).

Theorem 4.20. For all n ≥ 0, we have R i (C n
g ,1) = 0 for i > g − 1 + n, and R g−1+n(C n

g ,1) ' Q.
Moreover, the componentR g−1+n(C n

g ,1) is symmetric, i.e. we have

R g−1+n(C n
g ,1) =R

g−1+n(C [n]g ,1) 'Q.

We may now ask whether the rings R(C n
g ,1) and R(C [n]g ,1) satisfy the Gorenstein property. We

start withR(C n
g ,1).

Speculation 4.21. For all n ≥ 0 and 0 ≤ i ≤ g − 1+ n, the pairing

(4.21) R i (C n
g ,1)×R

g−1+n−i (C n
g ,1)

·−→R g−1+n(C n
g ,1) 'Q

is perfect, so thatR(C n
g ,1) is Gorenstein with socle in codimension g − 1+ n.

Since the expected socle is symmetric, we may restrict the paring (4.214.21) to the symmetric part. It
is not di�cult to see that the validity of Speculation 4.214.21 would imply the following.

Speculation 4.22. For all n ≥ 0 and 0 ≤ i ≤ g − 1+ n, the restriction of the pairing (4.214.21)

(4.22) R i (C [n]g ,1)×R
g−1+n−i (C [n]g ,1)

·−→R g−1+n(C [n]g ,1) 'Q

is perfect, so thatR(C [n]g ,1) is Gorenstein with socle in codimension g − 1+ n.

A proof of Speculation 4.214.21 seems di�cult in general: when n grows, the ringR(C n
g ,1) becomes

more and more complicated. We can, however, prove Speculation 4.224.22 for small g and large n (more
precisely for g ≤ 7 and n ≥ 2 g −1). Our main tools are the link betweenR(C [n]g ,1) and T (J g ,1) (see
Section 4.24.2), and the machinery developed on the Jacobian side (see Section 3.43.4).
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Jacobian side

We consider a similar Gorenstein property for the tautological ringT (J g ,1). The first step is to locate
the expected socle.

Lemma 4.23. We have T i (J g ,1) = 0 for i > 2 g − 1, and T 2 g−1(J g ,1) 'Q. Moreover, the component
T 2 g−1(J g ,1) has index j = 2 g − 2 in the Beauville decomposition (2.52.5), i.e. we have

T 2 g−1(J g ,1) = T
2 g−1
(2 g−2)(J g ,1) 'Q.

Proof. The surjective map φ g : C g
g ,1 −� J g ,1 induces an injective morphism φ∗g : CH(J g ,1) ,→

CH(C g
g ,1). By (4.184.18), we also know that φ∗g restricts to an injective map φ∗g : T (J g ,1) ,→R(C

g
g ,1).

Then it follows from Theorem 4.204.20 that T i (J g ,1) = 0 for i > 2 g − 1, and that T 2 g−1(J g ,1) is at
most 1-dimensional.

Recall from (3.83.8) that T g−1
(2 g−2)(J g ,1) ' R g−1(M g ,1) 'Q. By applying the Fourier transform F ,

we obtain
T 2 g−1
(2 g−2)(J g ,1) =F

�

T g−1
(2 g−2)(J g ,1)

�

'Q.

So T 2 g−1(J g ,1) is indeed 1-dimensional, and is concentrated in T 2 g−1
(2 g−2)(J g ,1).

With the socle condition verified, we may formulate an analogue of Speculations 4.214.21 and 4.224.22
for T (J g ,1).

Speculation 4.24. For all 0 ≤ i ≤ 2 g − 1, the pairing

(4.23) T i (J g ,1)×T
2 g−1−i (J g ,1)

·−→T 2 g−1(J g ,1) 'Q

is perfect, so that T (J g ,1) is Gorenstein with socle in codimension 2 g − 1.

Remark 4.25. The Beauville decomposition provides a nice basis for T i (J g ,1) with respect to the
pairing (4.234.23). More precisely, recall thatT i (J g ,1) = ⊕ jT i

( j )(J g ,1). Since the socle is inT g−1
(2 g−2)(J g ,1),

the pairing between T i
( j )(J g ,1) and T 2 g−1−i

( j ′) (J g ,1) is zero unless j + j ′ = 2 g −2. In other words, if we
choose for each T i (J g ,1) a basis from the components T i

( j )(J g ,1), then the pairing matrix of (4.234.23)
becomes block diagonal.

We try to illustrate the pairing using the Dutch house. In figure 44, the socle component is located
exactly on the upper right corner. Assuming Speculation 4.244.24, we would expect a rotational symmetry
about the center of the picture. Together with the reflection symmetry about the middle vertical line
(given by the Fourier transform), it would then yield a mysterious reflection symmetry about the
middle horizontal line. In particular, one should have T( j )(J g ,1) = 0 for j > 2 g − 2, and using the
grading in (2.122.12), a one-to-one correspondence between T(i , j )(J g ,1) and T(i ,2 g−2− j )(J g ,1).
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Fourier transform F
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T 7 T 8 T 9 T 10 T 11 T 12 T 13 T 14 T 15 = T 2 g−1

Figure 4. Pairing on T (J g ,1) ( g = 8).

Once again with the help of Li Ma, we computed the pairing (4.234.23) for the ring eT defined in
(3.123.12), i.e. modulo relations in Construction 3.123.12. The computer output shows that for g ≤ 7, we
have eT 2 g−1 ' Q and perfect pairings between eT i and eT 2 g−1−i , for 0 ≤ i ≤ 2 g − 1. Then since
the surjective map eT −� T (J g ,1) in (3.133.13) is an isomorphism at the socle level, it is in fact an
isomorphism. In particular, we can confirm the following.

Theorem 4.26. Speculation 4.244.24 is true for g ≤ 7.

For g = 8 and several more values of g , however, the relations we find are not su�cient to prove
Speculation 4.244.24.

From the Jacobian to symmetric powers

The main result is a comparison between Speculations 4.224.22 and 4.244.24.
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Theorem 4.27. We fix g > 0. The following three statements are equivalent:

(i) Speculation 4.244.24 is true;

(ii) Speculation 4.224.22 is true for some n ≥ 2 g − 1;

(iii) Speculation 4.224.22 is true for all n ≥ 2 g − 1.

Proof. Recall that for n ≥ 2 g − 1, the symmetric power C [n]g ,1 is a Pn− g -bundle over J g ,1. It then
follows from (4.54.5) and (4.184.18) that we have an isomorphism of Q-algebras

R(C [n]g ,1) ' T (J g ,1)[ξn]
�


P (ξn)
�

,

where P (ξn) is a polynomial in ξn of degree n− g +1 with coe�cients in T (J g ,1). In particular, we
obtain for the socle components

R g−1+n(C [n]g ,1) ' T
2 g−1(J g ,1) · ξ

n− g
n 'Q.

For 0 ≤ i ≤ g − 1 + n, we write R i (C [n]g ,1) ' ⊕ jT i− j (J g ,1) · ξ
j

n with max{0, i − 2 g + 1} ≤ j ≤
min{i , n − g }. Then the pairing (4.224.22) corresponds to

�

⊕

j
T i− j (J g ,1) · ξ

j
n

�

×
�

⊕

k
T g−1+n−i−k (J g ,1) · ξ

k
n

� ·−→T 2 g−1(J g ,1) · ξ
n− g

n 'Q.

On the other hand, observe that
�

T i− j (J g ,1) · ξ
j

n

�

·
�

T g−1+n−i−k (J g ,1) · ξ
k

n

�

= 0 if j + k < n − g .

In other words, if we choose a suitable basis for each R i (C [n]g ,1), then the pairing matrix of (4.224.22) is
block triangular. Moreover, the blocks on the diagonal correspond exactly to the case j + k = n − g ,
i.e. the pairing

�

T i− j (J g ,1) · ξ
j

n

�

×
�

T 2 g−1−i+ j (J g ,1) · ξ
n− g− j

n

� ·−→T 2 g−1(J g ,1) · ξ
n− g

n 'Q.

which in turn corresponds to the pairing

(4.24) T i− j (J g ,1)×T
2 g−1−i+ j (J g ,1)

·−→T 2 g−1(J g ,1) 'Q.

In total, saying that (4.224.22) is perfect for all 0 ≤ i ≤ g − 1+ n (n ≥ 2 g − 1), is equivalent to saying
that (4.244.24) is perfect for all 0 ≤ i − j ≤ 2 g − 1. The proof of the theorem is thus completed.

Remark 4.28. Using the Beauville decomposition (see Remark 4.254.25), we may choose a basis for
the R i (C [n]g ,1) such that the pairing matrix of (4.224.22) is block triangular, and that the blocks on the
diagonal are further block diagonal matrices.
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4.3. Gorenstein properties

Then by Theorem 4.264.26, we obtain an immediate consequence.

Corollary 4.29. Speculation 4.224.22 is true for g ≤ 7 and for all n ≥ 2 g − 1.

This leaves out a finite number of cases for each g ≤ 7, which could eventually be verified by
computer calculations. We also hope to find a theoretical argument for those remaining cases.

We finish this chapter by relating our pointed tautological rings to the classical, unpointed ones.
For n ≥ 1, denote by C n

g (resp. C [n]g ) the n-th power (resp. symmetric power) of the universal curve
overM g , and let C 0

g = C [0]g =M g . The classes {K j } and {∆k ,l } in (4.164.16) live naturally on C n
g .

The tautological ringR(C n
g ) is then defined to be generated by {ci}, {K j } and {∆k ,l } (see [Loo95Loo95],

Section 1), andR(C [n]g ) is the symmetric partR(C n
g )

Sn .
The connections between the tautological rings are given by the isomorphisms

C n
g ,1 'C

n
g ×M g

M g ,1 'C
n+1
g ,(4.25)

C [n]g ,1 'C
[n]
g ×M g

M g ,1 'C
[n]
g ×M g

C g .

We have a dictionary for the tautological classes: under (4.254.25), the class ψ ∈ R(C n
g ,1) corresponds

to Kn+1 ∈R(C n+1
g ), and [x0, j ] ∈R(C n

g ,1) corresponds to [∆ j ,n+1] ∈R(C n+1
g ). The dictionary gives

isomorphisms of Q-algebras

R(C n
g ,1) 'R(C

n+1
g ), and R(C [n]g ,1) 'R(C

n+1
g )Sn ,

where the symmetric group Sn acts on the first n factors of C n+1
g .

Remark 4.30. We have used this dictionary implicitly when referring to [Loo95Loo95] and [Fab97Fab97] for
the proofs of Proposition 4.104.10 and Theorem 4.204.20.

One can also formulate the corresponding Gorenstein property for R(C n
g ) and R(C [n]g ) (note

thatR g−2+n(C n
g ) =R g−2+n(C [n]g ) 'Q). Since Sn+1 ⊃Sn , we have an inclusion

R(C [n+1]
g ) =R(C n+1

g )Sn+1 ⊂R(C n+1
g )Sn 'R(C [n]g ,1).

It is not di�cult to see that Corollary 4.294.29 implies the following.

Corollary 4.31. For g ≤ 7 and n ≥ 2 g , the ring R(C [n]g ) is Gorenstein with socle in codimension
g − 2+ n.

The di�cult task would be to investigate the critical casenote 66note 66 of g = 8, which is beyond the scope
of this thesis.
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5

Tautological classes on a Jacobian variety

This chapter specializes to the case of a Jacobian variety. We determine the generic behav-
ior of the tautological ring in codimension 2, and give examples in higher codimensions.
As applications, we obtain simple proofs of (i) Green and Gri�ths’ result on the generic
non-vanishing of the Faber-Pandharipande cycle; (ii) Sebastian’s result on Voevodsky’s
smash-nilpotence conjecture for 1-cycles on abelian varieties.

5.1. The tautological ring over a field

From now on, we focus on the case where the base variety S is a field k . The tautological ring of a
Jacobian over k (modulo rational equivalence) was studied by Polishchuk [Pol07Pol07]. In this section we
briefly review his results.

Let C be a smooth projective curve of genus g > 0 over k . Denote by ( J ,θ) the Jacobian of C .
By choosing a point x0 ∈ C (k ), we obtain an embedding ι : C ,→ J . Recall from Definition 3.43.4 that
the tautological ring T ( J ) is the smallest Q-subalgebra of

�

CH( J ), ·
�

that contains [C ] =
�

ι(C )
�

,
and that is stable under [N ]∗ andF . Following Polishchuk, we define classes

pi :=F
�

[C ](i−1)

�

∈ CHi
(i−1)( J ),

qi :=F
�

θ · [C ](i )
�

∈ CHi
(i )( J ).

Note that pi (resp. qi ) can be non-zero only if 1 ≤ i ≤ g (resp. 0 ≤ i ≤ g −1). Also we have p1 = −θ
and q0 = g [ J ]. The following result ([Pol07Pol07], Theorem 0.2) is a special case of Theorem 3.63.6.

Theorem 5.1. The ring T ( J ) is generated by the classes {pi} and {qi}. Moreover, the operator f ∈ sl2
in (2.172.17) acts on polynomials in {pi} and {qi} via the following di�erential operator of degree 2 (again
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5. Tautological classes on a Jacobian variety

Fourier transform F

g

2 g

q0

q1

q2

q3

q4

q5

q6

q7

p1

p2

p3

p4

p5

p6

p7

p8

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 = h2 gmotive:

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8 =CH g

Figure 5. Generators of the tautological ring over k ( g = 8).

denoted by D):

(5.1)
D = −1

2
∑

i , j

�

i + j
j

�

pi+ j−1∂ pi ∂ p j −
∑

i , j

�

i + j − 1
j

�

qi+ j−1∂qi ∂ p j

+
∑

i
qi−1∂ pi .

By the Beauville decomposition over k (2.82.8), the Dutch house in Section 2.32.3 reduces to its roof.
Figure 55 illustrates the case g = 8 and locates the classes {pi} and {qi}. Here we write h i ( J ) :=
R i ( J /k ) for the motivic decomposition. Once again, we have not drawn the components CHi

( j )( J )
with j < 0, which are expected to vanish (see Conjecture 2.102.10 (i)).

Similar to Construction 3.123.12, one can obtain relations in the tautological ring T ( J ) via the sl2-
action: take monomials in {pi} and {qi} that become zero for dimension reasons, and then apply
the di�erential operator D in (5.15.1). Using these relations, Polishchuk proved the vanishing of the
component on top of the roof ([Pol07Pol07], Proposition 4.1 (iii)).

Proposition 5.2. We have T g
( g )( J ) = 0.

As is remarked by Polishchuk and Voisin (see [Pol07Pol07], Introduction and [Voi13Voi13], Section 3),
the structure of T ( J ) depends highly on the choice of the marked point x0 ∈ C (k ). One way to
avoid this is to follow Beauville [Bea04Bea04] and work modulo algebraic equivalence. The quotient ring
T ( J )/ ∼alg is then generated by the images of {pi}, and relations between them can be obtained
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5.2. Codimension 2 and a result of Green and Gri�ths

via the sl2-action. However, the disadvantage of using algebraic equivalence is that one misses many
interesting 0-cycles (and more), some of which are also independent of x0 (see Section 5.25.2).

There are other sources of relations in both T ( J )/ ∼alg and T ( J ), for example via the existence
of special linear systems (see [Her07Her07], [GK07GK07], [FH07FH07] and [Moo09Moo09], Section 4). However, for the
generic curve C (i.e. the generic fiber of C g → M g ), Polishchuk conjectured that the sl2-action
provides all relations in T ( J )/ ∼alg (see [Pol05Pol05], Introduction). Following this idea, we may also
raise a similar question.

Question 5.3. For the generic curve C and generic marked point x0 (i.e. the generic fiber of C g ,1 →
M g ,1), does the sl2-action provide all relations in T ( J )?

Section 5.25.2 settles the codimension 2 case. As a consequence, we obtain a simple and characteristic
free proof of a result of Green and Gri�ths ([GG03GG03], Theorem 2). Further, Section 5.35.3 gives examples
in higher codimensions that extend Proposition 5.25.2.

Finally, in Section 5.45.4 we apply results on the tautological ring T ( J ) to the study of 1-cycles on
an abelian variety. We give a simple proof of a recent result of Sebastian ([Seb12Seb12], Theorem 9), which
proves Voevodsky’s smash-nilpotence conjecture for 1-cycles on abelian varieties.

5.2. Codimension 2 and a result of Green and Gri�ths

The goal is to study the structure of the ring T ( J ), especially for the generic pointed curve (C , x0)
overM g ,1. To begin with, for any smooth projective curve C over a field k with x0 ∈ C (k ), we have

T 0( J ) =Q · [ J ], T 1
(0)( J ) =Q · p1, and T 1

(1)( J ) =Q · q1.

We know that p1 = −θ 6= 0 when the genus g > 0. For the class q1, we have q1 = 0 for g = 1, and
in general Polishchuk showed that q1 = 0 if and only if K = (2 g − 2)[x0] (here K is the canonical
divisor class of C ; see [Pol07Pol07], Section 1). So when g ≥ 2, we have q1 6= 0 as long as we avoid those
so-called subcanonical points, i.e. points x0 satisfying K = (2 g − 2)[x0].

In this section we consider the codimension 2 part T 2( J ) for curves of genus g ≥ 2. First we
have the Beauville decomposition

T 2( J ) = T 2
(0)( J )⊕T

2
(1)( J )⊕T

2
(2)( J ).

The easiest component is T 2
(0)( J ): we have T 2

(0)( J ) = Q · p2
1 , and p2

1 6= 0 for g ≥ 2 since θ = −p1 is
ample. For the component T 2

(1)( J ), we know that it is spanned by q1 p1 and p2. When g = 2, we
have p1 p2 ∈ T 3

(1)( J ) = 0 for dimension reasons. Then a relation in T 2
(1)( J ) is given by applying the

di�erential operator D in (5.15.1)
D(p1 p2) = q1 p1 − p2 = 0.
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5. Tautological classes on a Jacobian variety

In this case T 2
(1)( J ) is 1-dimensional if x0 is not a Weierstrass point, and zero otherwise. When g ≥ 3,

a classical theorem of Ceresa shows that p2 is not algebraically equivalent to zero for the generic
curve C overM g ([Cer83Cer83], Theorem 3.1). It then follows that for the generic pointed curve (C , x0)
overM g ,1 with g ≥ 3, the classes q1 p1 and p2 are linearly independent in T 2

(1)( J ).
We now treat the remaining component T 2

(2)( J ), which is spanned by the classes q2
1 and q2. By

Proposition 5.25.2 we have T 2
(2)( J ) = 0 for g = 2 (q2 = 0 and one more relation given by D(q1 p2) = 0).

When g = 3, since p2
2 ∈ T 4

(2)( J ) = 0, we again obtain a relation

(5.2) D2(p2
2 ) =D(−6p3 + 2q1 p2) = 2(q2

1 − 4q2) = 0.

We can show that for the generic pointed curve (C , x0) overM3,1, all relations in T 2
(2)( J ) are given

by (5.25.2), i.e. T 2
(2)( J ) is 1-dimensional (essentially the same proof as that of Theorem 5.45.4).

When g ≥ 4, there are no more relations coming from the sl2-action. The following result
confirms our expectation.

Theorem 5.4. For the generic pointed curve (C , x0) overM g ,1 with g ≥ 4, the classes q2
1 and q2 are

linearly independent in T 2
(2)( J ).

The di�culty of proving Theorem 5.45.4 lies in the fact that classes in CH2
(2)( J ) are Abel-Jacobi

trivial. This means those classes cannot be detected by conventional invariants. When k = C, there
exist more sophisticated Hodge-theoretic invariants (see for example [GG03GG03], Appendix), but they
are in general di�cult to compute.

Our situation is more specific: the Jacobian J is an abelian variety or, in the relative setting, an
abelian scheme. In this case, the cycle class map as described in (2.112.11) provides a simple invariant for
detecting non-trivial cycles on the generic Jacobian. Further, we apply a degeneration argument due
to Fakhruddin [Fak96Fak96], which takes full advantage of the boundary ofM g ,1. The rest of the proof is
just some elementary computation.

Remark 5.5. When the base field k is uncountable, the statement in Theorem 5.45.4 remains true if one
replaces generic by the term very general , which means away from a countable union of Zariski-closed
proper subsets ofM g ,1.

In fact, all data (i.e.M g ,1, J , q2
1 and q2) are defined over the prime field k0 =Q or Fp . Then for

any class α ∈Q · q2
1 +Q · q2, if α is non-zero over the generic point η ∈M g ,1/k0, by base change it

is also non-zero over any point s ∈M g ,1(k ) that maps to η. In other words, we have α 6= 0 over any
point s ∈ M g ,1(k ) that does not lie in a subvariety ofM g ,1 defined over k0. Since k0 is countable,
there are only countably many such varieties.

On the other hand, Theorem 5.45.4 is only expected to hold for a very general curve: according to
the Bloch-Beilinson conjecture (see [Jann94Jann94], Remark 4.12 (c)), both q2

1 and q2 should vanish if the
curve is defined over Q or Fp(t ).
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5.2. Codimension 2 and a result of Green and Gri�ths

Proof of Theorem 5.45.4

Note that Theorem 5.45.4 is of geometric nature: if the statement is true over the base field k , then it is
automatically true over any base field k ′ ⊂ k . Therefore we may assume k to be algebraically closed.

Letπ : A→ S be a principally polarized abelian scheme with S a smooth connected variety over k
(the principal polarization is not important here). Consider a class α ∈ CHi

( j )(A). Recall from (2.112.11)
that the cycle class cl(α) lands in H j

�

S , R2i− jπ∗Qℓ (i )
�

. Denote by Aη the generic fiber of A/S , and
by αη ∈ CHi

( j )(Aη) the restriction of α to Aη. Suppose αη = 0. Then by the spreading out procedure,
there exists a non-empty open subset U ⊂ S such that αU = 0 in CHi

( j )(AU ), where AU := A×S U
and αU := α|AU

. Combining with (2.112.11), we have the following implication.

Proposition 5.6. If αη = 0, then there exists a non-empty open subset U ⊂ S such that

cl(αU ) = 0 in H j �U , R2i− jπ∗Qℓ (i )
�

.

Now consider the diagram (2.152.15) with S =M g ,1. An important feature is that (2.152.15) can be
extended to M ct

g ,1, i.e. the moduli stack of stable pointed curves of genus g and of compact type.
The precise procedure of the extension is documented in [GZ12GZ12], Section 6. Roughly speaking,
when a curve of compact type has several irreducible components, its Jacobian becomes a product of
Jacobians. Then the embedding ι is obtained by taking the product of the embeddings in the factors.
Again the fact thatM ct

g ,1 is a stack plays no role in the discussion: since we work withQ-coe�cients,
for our purpose it is equivalent to pass to a finite cover of the moduli stack that is an honest variety
(see [ACV03ACV03], Theorem 7.6.4 for the existence of such a cover).

The universal Jacobian overM ct
g ,1 is still a principally polarized abelian scheme. The classes q1 and

q2 are defined over the wholeM ct
g ,1 (previously known as p1,1 and p2,2 overM g ,1; see Section 3.23.2).

Let g ≥ 4. In view of Proposition 5.65.6, we would like to show that for all non-zero linear combinations
α = r q2

1 + s q2, and for all non-empty open subsets U ⊂M ct
g ,1, we have

cl(αU ) 6= 0 in H 2�U , R2π∗Qℓ (2)
�

.

Using the following lemma by Fakhruddin ([Fak96Fak96], Lemma 4.1), we can reduce the proof of this to
a calculation on the boundary ofM ct

g ,1.

Lemma 5.7. Let X , S be smooth connected varieties over k and π : X → S be a smooth proper map.
Consider a class h ∈ H m

�

X ,Qℓ (n)
�

. Suppose there exists a non-empty subvariety T ⊂ S such that for all
non-empty open subsets V ⊂ T , we have hV 6= 0, where hV := h |XV

. Then for all non-empty open subsets
U ⊂ S, we have hU 6= 0.

Therefore to prove Theorem 5.45.4, it su�ces to construct families of test curves over the boundary
of M ct

g ,1, and to show that for each α = r q2
1 + s q2 with (r , s ) 6= (0, 0) ∈ Q2, we can find a family

67



5. Tautological classes on a Jacobian variety

such that the class cl(α) does not vanish over any non-empty open subset of the base variety. We shall
construct two families of stable curves over the same base T . For simplicity, we begin with the case
g = 4, while the argument for the general case is almost identical (see the end of the proof ).

Construction 5.8. Take two smooth curves C1 and C2 of genus 2 over k , with Jacobians ( J1,θ1)
and ( J2,θ2). Let x (resp. y ) be a varying point on C1 (resp. C2), and c be a fixed point on C2. We
construct the first family of stable curves by joining x with y and using c as the marked point, and
then the second family by joining x with c and using y as the marked point, as is shown in Figure 66.

C1 C2

x y

c
C1 C2

x c

y

Figure 6. Two families of test curves ( g = 4).

With x and y varying, both families have the same base variety T := C1 ×
�

C2\{c}
�

. We denote
them by C → T and C ′ → T respectively. Observe that C and C ′ have also the same relative
Jacobian J := J1 × J2 ×T , a constant abelian scheme over T via the last projection.

Consider the embeddings C ,→ J with respect to c , and C ′ ,→ J with respect to y . An
important fact is that both embeddings naturally extend over C1 ×C2 ⊃ T . More precisely, we have

ψ1 : C1 ×C1 ×C2 ,→ J1 × J2 ×C1 ×C2 given by (z , x , y ) 7→
�

OC1
(z − x ),OC2

(y − c ), x , y
�

,

ψ2 : C2 ×C1 ×C2 ,→ J1 × J2 ×C1 ×C2 given by (w, x , y ) 7→
�

0,OC2
(w − c ), x , y

�

,

ψ′1 : C1 ×C1 ×C2 ,→ J1 × J2 ×C1 ×C2 given by (z , x , y ) 7→
�

OC1
(z − x ),OC2

(c − y ), x , y
�

,

ψ′2 : C2 ×C1 ×C2 ,→ J1 × J2 ×C1 ×C2 given by (w, x , y ) 7→
�

0,OC2
(w − y ), x , y

�

.

We take T := C1 × C2 as the base variety and view the other varieties as T -schemes through the
projections onto the last two factors. We also write J := J1 × J2 ×T . The divisor θ corresponding
to J → T is θ = θ1 × [ J2]× [T ] + [ J1]×θ2 × [T ].

Let C ⊂ J be the union of the images of ψ1 and ψ2; similarly, let C ′ ⊂ J be the union of the
images of ψ′1 and ψ′2. Then the restriction of C (resp. C ′) over T is exactly C (resp. C ′). Define

q i :=F
�

θ · [C ](i )
�

∈ CHi
(i )(J ), and q ′i :=F

�

θ · [C ′](i )
�

∈ CHi
(i )(J ).

Again, the restriction of q i (resp. q ′i ) over T is exactly the class qi of C (resp. C ′).
As J is a constant abelian scheme over T , we have a Künneth decomposition

H m(J ) =
⊕

a1+b1+a2+b2=m
H a1( J1)⊗H b1(C1)⊗H a2( J2)⊗H b2(C2).
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5.2. Codimension 2 and a result of Green and Gri�ths

Here, and in what follows, we omit the coe�cients of the cohomology groups. Also on the right
hand side we have sorted the factors in the order J1-C1- J2-C2, as this turns out to be convenient in
our calculations. Given a class h ∈ H m(J ), we denote by h [a1,b1,a2,b2] its Künneth component in the
indicated degrees.

In this case, the cycle class map (2.112.11) takes the form

(5.3) cl: CHi
( j )(J )→

⊕

a1+a2=2i− j
b1+b2= j

H a1( J1)⊗H b1(C1)⊗H a2( J2)⊗H b2(C2).

So ifα is one of the classes q2
1, q2, q ′21 , q ′2 ∈ CH2

(2)(J ), we can only have cl(α)[a1,b1,a2,b2] 6= 0 if a1+a2 = 2
and b1 + b2 = 2. Moreover, we remark that H 2(C1) (resp. H 2(C2)) is supported on a point of C1

(resp. C2). As we should like to have the cycle classes after restriction to open subsets V ⊂ T ⊂ T ,
the only interesting components are cl(α)[a1,1,a2,1] with a1+ a2 = 2 (in fact, we will see in the proof of
Proposition 5.95.9 that for cl(α)[a1,1,a2,1] to be non-zero, we also have a1 = a2 = 1).

The following elementary calculation is the key point in the proof of Theorem 5.45.4.

Proposition 5.9. There exist non-zero classes

h1 ∈ H 1( J1)⊗H 1(C1)⊗H 1( J2)⊗H 1(C2)

h2, h4 ∈ H 0( J1)⊗H 0(C1)⊗H 1( J2)⊗H 1(C2)

h3 ∈ H 1( J1)⊗H 1(C1)⊗H 0( J2)⊗H 0(C2)

such that

cl(q2)
[1,1,1,1] = h1, cl(q2

1)
[1,1,1,1] = 2h2 ∪ h3,

cl(q ′2)
[1,1,1,1] = −h1, cl(q ′21 )

[1,1,1,1] = −2h2 ∪ h3 + 2h3 ∪ h4.

Moreover, the classes h2 ∪ h3 and h3 ∪ h4 are also non-zero.

Proof. The proof is just a careful analysis of the embeddings ψ1,ψ2,ψ′1,ψ′2. We first calculate the
relevant Künneth components of cl

�

[C ](i )
�

and cl
�

[C ′](i )
�

. Then by intersecting with cl(θ) and
applyingF in cohomology, we obtain the relevant components of cl(q i ) and cl(q ′i ).

We start with the cycle classes of [C ](1) and [C ](2). Observe that the image of ψ2 only gives a
class in H 4( J1)⊗H 0(C1)⊗H 2( J2)⊗H 0(C2), which by (5.35.3), does not contribute to either [C ](1) or
[C ](2). Regarding ψ1, we may view it as the product of

ψ3 : C1 ×C1 ,→ J1 ×C1 ψ4 : C2 ,→ J2 ×C2

(z , x ) 7→
�

OC1
(z − x ), x

�

, y 7→
�

OC2
(y − c ), y

�

.
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5. Tautological classes on a Jacobian variety

The class of Im(ψ3) has components in H 2( J1)⊗H 0(C1), H 1( J1)⊗H 1(C1) and H 0( J1)⊗H 2(C1).
The third component is irrelevant due to the appearance of H 2(C1). We claim that the other two
components are both non-zero. For the first, we regard J1 ×C1 as a constant family over C1. Then
C1 × C1 is fiberwise an ample divisor, which gives a non-zero class in H 2( J1) ⊗ H 0(C1). For the
component in H 1( J1)⊗H 1(C1), we consider

C1 ×C1
id×∆−−→ C1 ×C1 ×C1

σ2×id
−−→ C [2]1 ×C1

ϕ2×id
−−−→ J1 ×C1

(z , x ) 7→ (z , x , x ) 7→
�

(z , x ), x
�

7→
�

OC1
(z + x − 2x ), x

�

.

The class of the diagonal in C1 × C1 has a component in H 1(C1) ⊗ H 1(C1) which, viewed as a
correspondence, gives the identity H 1(C1)

∼−→ H 1(C1). It follows that the class of Im(id×∆) has
a non-zero component in H 0(C1)⊗H 1(C1)⊗H 1(C1). Moreover, we have isomorphisms

σ2,∗ : H 0(C1)⊗H 1(C1)
∼−→ H 1(C [2]1 ), and ϕ2,∗ : H 1(C [2]1 )

∼−→ H 1( J1),

the latter due to the fact that C [2]1 is obtained by blowing up a point in J1. Therefore Im(ψ3) as a
correspondence gives an isomorphism H 1( J1)

∼−→ H 1(C1), which implies a non-zero component in
H 1( J1)⊗H 1(C1).

Similarly, the class of Im(ψ4) has non-zero components in H 4( J2)⊗H 0(C2) and H 3( J2)⊗H 1(C2).
Now we collect all non-zero contributions to the classes of [C ](1) and [C ](2) that do not involve either
H 2(C1) or H 2(C2). For [C ](2), there is only one non-zero class

h0
1 ∈ H 1( J1)⊗H 1(C1)⊗H 3( J2)⊗H 1(C2).

By intersecting with cl(θ) and applyingF , we obtain a non-zero class

h1 ∈ H 1( J1)⊗H 1(C1)⊗H 1( J2)⊗H 1(C2),

For [C ](1), there are two non-zero classes

h0
2 ∈ H 2( J1)⊗H 0(C1)⊗H 3( J2)⊗H 1(C2), and h0

3 ∈ H 1( J1)⊗H 1(C1)⊗H 4( J2)⊗H 0(C2).

Again by intersecting with cl(θ) and applyingF , we obtain non-zero classes

h2 ∈ H 0( J1)⊗H 0(C1)⊗H 1( J2)⊗H 1(C2), and h3 ∈ H 1( J1)⊗H 1(C1)⊗H 0( J2)⊗H 0(C2).

Then we have cl(q2)
[1,1,1,1] = h1 and cl(q2

1)
[1,1,1,1] = h2 ∪ h3 + h3 ∪ h2 = 2h2 ∪ h3.

For the cohomology classes of q ′2 and q ′21 , we remark that the embedding ψ′1 di�ers from ψ1

only by an action of [−1] on the J2 factor. As a consequence, by repeating the same procedure we
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5.2. Codimension 2 and a result of Green and Gri�ths

obtain classes h ′1 = −h1, h ′2 = −h2 and h ′3 = h3, so that 2h ′2∪ h ′3 = −2h2∪ h3. However, this time the
embedding ψ′2 makes an additional contribution. The class of Im(ψ′2) has a non-zero component

h0
4 ∈ H 4( J1)⊗H 0(C1)⊗H 1( J2)⊗H 1(C2),

which belongs to the class of [C ′](1). By intersecting with cl(θ) and applying F , we get a non-
zero class

h4 ∈ H 0( J1)⊗H 0(C1)⊗H 1( J2)⊗H 1(C2).

It follows that cl(q ′2)
[1,1,1,1] = −h1 and cl(q ′21 )

[1,1,1,1] = −2h2 ∪ h3 + 2h3 ∪ h4.

Finally, since the 0-th cohomology groups H 0(Ci ) and H 0( Ji ) are generated by the unit of the
ring structures, we see that both h2 ∪ h3 and h3 ∪ h4 are non-zero.

As h1 6= 0 and h3∪ h4 6= 0, it follows from Proposition 5.95.9 that that for any (r , s ) 6= (0, 0) ∈Q2, at
least one of the classes cl(r q2

1+ s q2)
[1,1,1,1] and cl(r q ′21 + s q ′2)

[1,1,1,1] is non-zero in H 1(C1)⊗H 1( J1)⊗
H 1(C2)⊗H 1( J2).

It remains to ensure that this non-zero cohomology class does not vanish when restricted to non-
empty open subsets of T = C1 × C2, i.e. that it is not supported on a divisor of C1 × C2. We can
achieve this by imposing additional assumptions on C1 and C2. In positive characteristic, we choose
C1 to be ordinary and C2 supersingular. OverQ, and hence for any k = k of characteristic 0, we take
C1 and C2 such that J1 and J2 are both simple, and such that End( J1) = Z and J2 is of CM type
(see [CF96CF96], Chapters 14 and 15 for explicit examples). In both situations we have Hom( J1, J2) = 0,
which implies that there is no non-zero divisor class in H 1(C1)⊗H 1(C2). This completes the proof
of Theorem 5.45.4 for g = 4.

When g > 4, we may attach to both families a constant curve C0 of genus g −4 via a fixed point
c ′ ∈ C0, and use another fixed point c ′′ ∈ C0 as the marked point, as is shown in Figure 77. We repeat
the same procedure, and the proof is exactly the same. Alternatively, one can follow the degeneration
argument of Ceresa (see [Cer83Cer83], Section 3) and reduce to the genus 4 case.

C1 C2

C0

x y

c

c ′

c ′′

C1 C2

C0

x c

y

c ′

c ′′

Figure 7. Two families of test curves ( g > 4).

71



5. Tautological classes on a Jacobian variety

Consequence: a result of Green and Gri�ths

Let C be a smooth projective curve of genus g over k . Denote by K ∈ CH1(C ) the canonical divisor
class of C . Faber and Pandharipande introduced the 0-cycle (class)

Z := K ×K − (2 g − 2)K∆ ∈ CH2(C ×C ),

where K∆ is the divisor K on the diagonal ∆ ⊂ C × C . The cycle Z is of degree 0 and lies in the
kernel of the Albanese map.

It is easy to see that Z = 0 for g = 0, 1, or 2. Faber and Pandharipande showed that it is also the
case when g = 3, using the fact that curves of genus 3 are either hyperelliptic or plane curves (see
Proposition 5.105.10 (iii) for a unified proof ). They asked if Z vanishes in general.

The question over k =C was answered in the negative by Green and Gri�ths using lengthy com-
putations of infinitesimal invariants ([GG03GG03], Theorem 2; see Corollary 5.115.11). We give a new proof
of this result in arbitrary characteristic, showing that it is an immediate consequence of Theorem 5.45.4.

The idea is the followingnote 77note 77: observe that Z ∈R(C ×C )S2 'R(C [2]), where C [2] is the second
symmetric power of C and the tautological ringsR(C ×C ) andR(C [2]) are defined in Section 4.24.2.
Then by the isomorphism (4.184.18), we should be able to express Z as the pull-back of a certain class
W ∈ T ( J ) (possibly also the class ξ2 ∈ CH1(C ×C )S2 defined in (4.44.4)) via the mapφ2 : C ×C → J
with respect to x0. Since Z is Abel-Jacobi trivial, we should look for W in T 2

(2)( J ).

Proposition 5.10.

(i) Define W := 2
�

q2
1 − (2 g − 2)q2

�

∈ T 2
(2)( J ). Then Z =φ∗2(W ).

(ii) We have Z = 0 if and only if W = 0. In particular, whether W vanishes or not is independent of
the point x0.

(iii) If g = 3, then Z = 0 in CH2(C ×C ).

Proof. Statement (i) is obtained by an explicit calculation. The essential ingredients are the pull-back
of θ via ι : C ,→ J , and the pull-back of ℓ via ι×φ2 : C × (C ×C )→ J × J . Write η = ι∗(θ) and
ℓ1,2 = (ι×φ2)

∗(ℓ). Then we have by (2.192.19) and (4.134.13)

η =
1
2

K + [x0]

and
ℓ1,2 = [∆1] + [∆2]− 2 pr∗1

�

[x0]
�

− pr∗2
�

[x0 ×C ] + [C × x0]
�

,

where ∆1 =
�

(x , x , y ) : x , y ∈ C
	

and ∆2 =
�

(x , y, x ) : x , y ∈ C
	

, and pr1 : C × (C × C ) → C ,
pr2 : C × (C ×C )→ C ×C are the projections.
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5.2. Codimension 2 and a result of Green and Gri�ths

We chase through the following cartesian squares

C × (C ×C ) J × (C ×C ) C ×C

C × J J × J J

C J

→ι×idC×C

→idC ×φ2

→pr2

→ id J ×φ2 → φ2

→
ι×id J

→pr1

→pr2

→ pr1

→ι

and we find

φ∗2
�

F
�

θ · [C ]
�

�

= pr2,∗

�

pr∗1(η) · exp(ℓ1,2)
�

= pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

· exp
�

[∆1] + [∆2]− 2 pr∗1
�

[x0]
�

�

�

· exp
�

−[x0 ×C ]− [C × x0]
�

= pr2,∗



pr∗1

�

�

1
2

K + [x0]
�

· exp
�

−2[x0]
�

�

· exp
�

[∆1] + [∆2]
�



 · exp
�

−[x0 ×C ]− [C × x0]
�

= pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

· exp
�

[∆1] + [∆2]
�

�

· exp
�

−[x0 ×C ]− [C × x0]
�

.

Then by expanding the exponentials while keeping track of the codimension, we get

φ∗2(q1) = pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

·
�

[∆1] + [∆2]
�

�

− pr2,∗ pr∗1

�

1
2

K + [x0]
�

·
�

[x0 ×C ] + [C × x0]
�

=
1
2
�

K × [C ] + [C ]×K
�

− ( g − 1)
�

[x0 ×C ] + [C × x0]
�

and

φ∗2(q2) = pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

· 1
2
�

[∆1] + [∆2]
�2
�

− pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

·
�

[∆1] + [∆2]
�

�

·
�

[x0 ×C ] + [C × x0]
�

+ pr2,∗ pr∗1

�

1
2

K + [x0]
�

· 1
2
�

[x0 ×C ] + [C × x0]
�2
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5. Tautological classes on a Jacobian variety

= pr2,∗

�

pr∗1

�

1
2

K + [x0]
�

·
�

[∆1] · [∆2]
�

�

− 1
2
�

K × [x0] + [x0]×K
�

+ ( g − 2)[x0 × x0]

=
1
2

K∆ −
1
2
�

K × [x0] + [x0]×K
�

+ ( g − 1)[x0 × x0].

Hence

φ∗2(q
2
1 ) =

1
2

K ×K − ( g − 1)
�

K × [x0] + [x0]×K
�

+ 2( g − 1)2[x0 × x0],

and we obtain φ∗2
�

2
�

q2
1 − (2 g − 2)q2

�

�

= K ×K − (2 g − 2)K∆.
For (ii), we calculate the push-forward φ2,∗(Z ). The algorithm is given by the proof of Proposi-

tion 4.164.16: we have

Z = K ×K − (2 g − 2)K∆

= 4
�

1
2

K + [x0]
�

×
�

1
2

K + [x0]
�

− 4
�

1
2

K + [x0]
�

× [x0]− 4[x0]×
�

1
2

K + [x0]
�

− (4 g − 4)
�

1
2

K + [x0]
�

∆

+ 4 g [x0 × x0],

so that

φ2,∗(Z ) = 4
�

θ · [C ]
�

∗
�

θ · [C ]
�

− 8θ · [C ]− (4 g − 4)[2]∗
�

θ · [C ]
�

+ 4 g [o]

= 0
�

θ · [C ](0)
�

+ 0
�

θ · [C ](1)
�

+ 4
�

θ · [C ](1)
�

∗
�

θ · [C ](1)
�

− (8 g − 8)
�

θ · [C ](2)
�

+
�

terms in⊕ j≥3 T
g
( j )( J )

�

= 4
�

�

θ · [C ](1)
�

∗
�

θ · [C ](1)
�

− (2 g − 2)
�

θ · [C ](2)
�

�

+
�

terms in⊕ j≥3 T
g
( j )( J )

�

.

Observe that the Fourier dual of
�

θ · [C ](1)
�

∗
�

θ · [C ](1)
�

− (2 g −2)
�

θ · [C ](2)
�

is exactly W . Therefore
if Z = 0, then every component ofφ2,∗(Z ) in the Beauville decomposition is zero, and hence W = 0.

Statement (iii) follows directly from (i) and (5.25.2).

By applying Theorem 5.45.4 and Proposition 5.105.10, we obtain the result of Green and Gri�ths over
an arbitrary base field k .

Corollary 5.11. For the generic curve C overM g with g ≥ 4, we have Z 6= 0. Also if k is uncountable,
the same statement holds for a very general curve C overM g with g ≥ 4.

5.3. Examples in higher codimensions

In this section we assume k = C, as we shall use a Hodge-theoretic argument. The goal is to prove
the following result, which extends Proposition 5.25.2.
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5.3. Examples in higher codimensions

Proposition 5.12. For a very general pointed curve (C , x0) overM g ,1, we have

(5.4) T g−1
( g−1)( J ) ' T

g
( g−1)( J ) 'Q.

The first isomorphism in (5.45.4) is given by the Fourier transform F . The proof of the second
isomorphism consists of two steps. First we use relations coming from the sl2-action to show that
T g−1
( g−1)( J ) is at most 1-dimensional (valid over any base field k ). Then we apply a similar degeneration

argument as in Theorem 5.45.4 to prove non-triviality (over k =C).

Lemma 5.13. For any smooth projective pointed curve (C , x0) over a field, the class q g−1 generates
T g−1
( g−1)( J ). Hence T g−1

( g−1)( J ) is at most 1-dimensional.

Proof. The argument is essentially due to Polishchuk (see [Pol07Pol07], Proposition 4.1). By Theorem 5.15.1,
the component T g−1

( g−1)( J ) is spanned by monomials

(5.5) qi1
qi2
· · · qim

with i1 + i2 + · · ·+ im = g − 1.

We would like to show that all such monomials are proportional to q g−1, and we proceed by induction
on the number of factors m. The assertion is trivial for m = 1. Now suppose all monomials in (5.55.5)
with 1 ≤ m < m0 are proportional to q g−1. Then to each qi1

qi2
· · · qim0

with i1+ i2+ · · ·+ im0
= g −1,

we associate the monomial
pi1+1 pi2+1 · · · pim0

+1 ∈ T
g−1+m0
( g−1) ( J ).

Since m0 > 1, we have T g−1+m0
( g−1) ( J ) = 0 for dimension reasons. By applying m0 times the di�erential

operator D in (5.15.1), we obtain

Dm0(pi1+1 pi2+1 · · · pim0
+1) = 0 in T g−1

( g−1)( J ).

But if we analyze the explicit expression ofD, two of the three terms in (5.15.1) have the e�ect of merging
two factors into one, while only the third term

∑

i qi−1∂ pi keeps the same number of factors. So
in Dm0(pi1+1 pi2+1 · · · pim0

+1) we find a positive multiple of qi1
qi2
· · · qim0

, and all other terms have the
number of factors strictly smaller than m0. Those terms are proportional to q g−1 by the induction
hypothesis, and so is qi1

qi2
· · · qim0

.

Proposition 5.14. Let (C , x0) be a very general pointed curve overM g ,1/C. Then we have pi 6= 0 for
1 ≤ i ≤ g , and qi 6= 0 for 0 ≤ i ≤ g − 1.

This means all the classes {pi} and {qi} depicted in Figure 55 are non-trivial on a very general
pointed curve.

75



5. Tautological classes on a Jacobian variety

Proof. The strategy is exactly the same as in the codimension 2 case (see Theorem 5.45.4). For sim-
plicity, we only prove non-triviality for p g and q g−1. The general case can be obtained either by
attaching constant components to the family shown in Figure 88 and repeating the same procedure,
or by applying Ceresa’s degeneration argument (see [Cer83Cer83], Section 3).

Moreover, since p1 p g ∈ T
g+1
( g−1)( J ) = 0, we have D(p1 p g ) = q g−1 p1 − p g = 0. Then we see that

p g = e (q g−1) and q g−1 = f (p g ), where e , f ∈ sl2. So it su�ces to prove non-triviality for p g , or for
the class [C ]( g−1) by Fourier duality.

The statement is trivial for g = 1, so we assume g ≥ 2. In view of Remark 5.55.5, Proposition 5.65.6
and Lemma 5.75.7, it su�ces to construct a family of test curves C over the boundary ofM ct

g ,1, and
to show that the cycle class of [C ]( g−1) does not vanish over any non-empty open subset of the base
variety.

The following is analogous to the first family in Construction 5.85.8. Take a complex smooth
curve C of genus 2, with J its Jacobian. Also take g − 2 complex elliptic curves E1, . . . , E g−2, and
denote by o1, . . . , o g−2 their respective zeros. Let x be a varying point of C , and y1, . . . , y g−2 be vary-
ing points on E1, . . . , E g−2 respectively. The family is obtained by joining x with y1, and oi with yi+1

for 1 ≤ i ≤ g − 3. Finally o g−2 serves as the marked point, as is shown in Figure 88.

C E1 E2 E g−3 E g−2

x y1

o1

y2

o2 · · · · · · y g−3

o g−3

y g−2

o g−2

Figure 8. A family of test curves.

The base variety is then

T = C ×
�

E1\{o1}
�

× · · · ×
�

E g−2\{o g−2}
�

.

Write C → T for this family, whose relative Jacobian is simply J = J × E1 × · · · × E g−2 ×T over
the last factor T . Similar to the codimension 2 case, the embedding C ,→ J with respect to o g−2

naturally extends over T = C × E1 × · · · × E g−2. More precisely, we have

ψC : C ×C × E1 × · · · × E g−2 ,→ J × E1 × · · · × E g−2 ×C × E1 × · · · × E g−2

(z , x , y1, . . . , y g−2) 7→
�

OC (z − x ), y1, . . . , y g−2, x , y1, . . . , y g−2

�

,

and for 1 ≤ i ≤ g − 2

ψEi
: Ei ×C × E1 × · · · × E g−2 ,→ J × E1 × · · · × E g−2 ×C × E1 × · · · × E g−2

(wi , x , y1, . . . , y g−2) 7→
�

0, 0, . . . , 0, wi , yi+1, . . . , y g−2, x , y1, . . . , y g−2

�

.
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5.4. Application: smash-nilpotent 1-cycles on an abelian variety

Write J = J × E1 × · · · × E g−2 ×T . Let C ⊂ J be the union of the images of ψC ,ψE1
, . . . ,ψE g−2

,
whose restriction over T is exactly C ⊂J .

Our goal is to calculate the cycle class of [C ]( g−1) ∈ CH g−1
( g−1)(J ) using the Künneth formula (we

omit the coe�cients of the cohomology groups)

H m(J ) =
⊕

∑ g−2
i=0 ai+bi=m

H a0( J )⊗H b0(C )⊗H a1(E1)⊗H b1(E1)⊗ · · · ⊗H a g−2(E g−2)⊗H b g−2(E g−2).

Here the cycle class map (2.112.11) takes the form

cl: CHi
( j )(J )→

⊕

∑ g−2
i=0 ai=2i− j
∑ g−2

i=0 bi= j

H a0( J )⊗H b0(C )⊗H a1(E1)⊗H b1(E1)⊗· · ·⊗H a g−2(E g−2)⊗H b g−2(E g−2).

The computation is somewhat tedious but elementary (essentially the same as in Proposition 5.95.9). In
the end the only relevant component (i.e. non-zero, and not easily killed by restricting to non-empty
open subsets V ⊂ T ) of cl

�

[C ]( g−1)

�

is given by the embedding ψC . We call it h and we have

(5.6) h ∈ H 1( J )⊗H 1(C )⊗H 1(E1)⊗H 1(E1)⊗ · · · ⊗H 1(E g−2)⊗H 1(E g−2),

i.e. all the ai and bi are equal to 1.
It remains to ensure that the class h in (5.65.6) does not vanish when restricted to non-empty open

subsets of T , i.e. that it is not supported on a divisor of T . We have the following observation: by
construction h is a tensor product of classes in

H 1( J )⊗H 1(C ), H 1(E1)⊗H 1(E1), . . . , H 1(E g−2)⊗H 1(E g−2).

So its factor in H 1(C )⊗H 1(E1)⊗· · ·⊗H 1(E g−2) ⊂ H g−1(T ) has maximal Hodge level, which cannot
be supported on a divisor of T . The proof is thus completed.

Finally, Proposition 5.125.12 is obtained by combining Lemma 5.135.13 and Proposition 5.145.14.

5.4. Application: smash-nilpotent 1-cycles on an abelian variety

The subject of this section is independent of the two previous sections. We discuss Voevodsky’s
smash-nilpotence conjecture, and explain how we can apply our knowledge of tautological classes to
a special case of the conjecture.

Let k be a field and X be an object in Vk . Voevodsky [Voe95Voe95] introduced the following notion.

Definition 5.15. A class α ∈ CH(X ) is called smash-nilpotent if there exists an integer N > 0 such
that

α×α× · · · ×α
︸ ︷︷ ︸

N

= 0 in CH(X N ).
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5. Tautological classes on a Jacobian variety

The set of smash-nilpotent classes forms an ideal in CH(X ) and is stable under correspondences.
It is easy to see that smash-nilpotent classes are homologically equivalent to zero, and hence numeri-
cally equivalent to zero. Voevodsky conjectured the converse ([Voe95Voe95], Conjecture 4.2).

Conjecture 5.16. If α ∈ CHnum(X ), i.e. α is numerically equivalent to zero, then α is smash-nilpotent.

One can view Conjecture 5.165.16 as a stronger version of the standard conjecture ∼hom=∼num. Also
it fits into the Bloch-Beilinson-Murre (BBM) framework: notably the BBM conjecture plus the stan-
dard conjecture implies Conjecture 5.165.16. We refer to [And05And05], Sections 2.6 and 2.7 for more details.

The first known case of Conjecture 5.165.16 was given by Voevodsky ([Voe95Voe95], Corollary 3.2), and
independently by Voisin ([Voi96Voi96], Lemma 2.3).

Theorem 5.17. Conjecture 5.165.16 is true for α ∈ CHalg(X ), i.e. α algebraically equivalent to zero.

A related (and weaker; see [And05And05], Théorème 3.33) conjecture is the finite dimensionality con-
jecture of Kimura-O’Sullivan. Let M ∈Mk be a Chow motive over k (see Section 2.22.2). Recall that
we have the n-th symmetric (resp. wedge) product S n(M ) (resp. ∧n(M )) (see Examples 2.132.13 (iii)).
Kimura and independently O’Sullivan introduced the following notion and conjecture ([Kim05Kim05],
Definition 3.7 and Conjecture 7.1).

Definition 5.18.

(i) The motive M is called even (resp. odd ) if there exists an integer N > 0 such that ∧N (M ) = 0
(resp. S N (M ) = 0).

(ii) The motive M is called finite-dimensional if M can be written as a direct sum M +⊕M − with
M + even and M − odd.

Conjecture 5.19. All motives M ∈Mk are finite-dimensional.

So far Conjecture 5.195.19 is only known for the subcategory of Mk generated by the motives of
curves (or abelian varieties) ([Kim05Kim05], Theorem 4.2). In the case of an abelian variety A, if we write
h(A) = ⊕i h i (A) for the motivic decomposition (see Theorem 2.142.14; here h i (A) = R i (A/k )), then
h i (A) is even (resp. odd) for i even (resp. odd).

On the other hand, using properties of finite-dimensional motives, Kahn and Sebastian obtained
a second case of Conjecture 5.165.16 ([KS09KS09], Proposition 1).

Theorem 5.20. Conjecture 5.165.16 is true for α ∈ CH(M ) with M odd.

More recently, based on Theorems 5.175.17 and 5.205.20, Sebastian proved the following case ([Seb12Seb12],
Theorem 9).
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5.4. Application: smash-nilpotent 1-cycles on an abelian variety

Theorem 5.21. Conjecture 5.165.16 is true for 1-cycles on an abelian variety. In other words, if A is an
abelian variety of dimension g and α ∈ CH1,num(A) =CH g−1

num(A), then α is smash-nilpotent.

Remark 5.22. The standard conjecture ∼hom=∼num is known for 1-cycles on abelian varieties. In
fact, since Conjecture 2.102.10 (i) and (ii) are true for CH g−1(A), we have CH g−1

num(A) = ⊕ j≥1 CH g−1
( j ) (A).

Here we present a simple proof of Theorem 5.215.21 using tautological classes on Jacobian varieties.
Our starting point will also be Theorems 5.175.17 and 5.205.20. Let (C , x0) be a smooth projective pointed
curve of genus g over k , with ( J ,θ) its Jacobian. The first step is to prove smash-nilpotence for
tautological 1-cycles.

Lemma 5.23. For j ≥ 1, the class [C ]( j ) ∈ T
g−1
( j ) ( J ) is smash-nilpotent. As a consequence, all classes in

Tnum( J ) = ⊕ j≥1T( j )( J ) are smash-nilpotent.

Proof. By Fourier duality, it is equivalent to prove that pi is smash-nilpotent for all i ≥ 2. First of all,
we know that p2 ∈ CH

�

h3( J )
�

(see Figure 55). Since h3( J ) is odd, Theorem 5.205.20 implies that p2 is
smash-nilpotent.

The following argument is essentially in [Her07Her07], Lemma 4 and [Pol08Pol08], Proposition 2.5 (iii).
For i ≥ 3, apply the di�erential operator D in (5.15.1) to the class p2 pi−1, and we get

(5.7) D(p2 pi−1) = −
i (i + 1)

2
pi + q1 pi−1 + qi−1 p2.

Since p2 is smash-nilpotent, the identity (5.75.7) shows that if pi−1 is smash-nilpotent, then so is pi .
Hence by induction we obtain smash-nilpotence for all pi with i ≥ 2.

The second step is a simple observation that all 1-cycles on an abelian variety are tautological in
some sense.

Proof of Theorem 5.215.21. Let α ∈ CH g−1
num(A). By Remark 5.225.22, we have α ∈ ⊕ j≥1 CH g−1

( j ) (A). Choose a
representative of α

α =
m
∑

i=1
ni [Ci ],

where the Ci ⊂ A are (possibly singular) irreducible curves. By Theorem 5.175.17, we may assume after
translation that all Ci pass through o ∈ A.

Take the normalization σi : eCi → Ci and write fi : eCi → A. By functoriality, if we denote by eJi

the Jacobian of eCi , then the map fi factors through

eCi A

eJi

→fi

,→→

ιi

→

φi
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5. Tautological classes on a Jacobian variety

where ιi : eCi ,→ eJi is the embedding with respect to x0,i ∈ eCi (k ) satisfying fi (x0,i ) = o.
Back to the class α. We have

α =
m
∑

i=1
ni [Ci ] =

m
∑

i=1
ni fi ,∗

�

[ eCi ]
�

=
m
∑

i=1
niφi ,∗

�

�

ιi ( eCi )
�

�

Apply the Beauville decomposition to
�

ιi ( eCi )
�

, and we get

(5.8) α =
m
∑

i=1
niφi ,∗

�

�

ιi ( eCi )
�

(0)

�

+
m
∑

i=1

∑

j≥1
niφi ,∗

�

�

ιi ( eCi )
�

( j )

�

Now since α ∈ ⊕ j≥1 CH g−1
( j ) (A), the first term on the right-hand side of (5.85.8) is zero, and the second

term is smash-nilpotent by Lemma 5.235.23.

From Theorem 5.215.21, it is not di�cult to deduce a slightly stronger statement ([Seb12Seb12], Theo-
rem 6).

Corollary 5.24. Conjecture 5.165.16 is true for 1-cycles on a product of curves.

The statement follows essentially from the observation below.

Lemma 5.25. Let X be an object in Vk , and π : P → X be a projective bundle of relative dimension n.
Then if Conjecture 5.165.16 is true for 1-cycles on X , it is also true for 1-cycles on P .

Proof. Write P = P(V ) for some vector bundle V → X . Denote by ξ ∈ CH1(P ) the first Chern class
of the line bundle O

P(V )(1). Take a class α ∈ CH1(P ). It is classical that α is uniquely expressible as

α = ξ n ·π∗(β) + ξ n−1 ·π∗(γ ),

withβ ∈ CH1(X ) and γ ∈ CH0(X ) (see [Ful98Ful98], Theorem 3.3). Also α ∈ CH1,num(P ) if and only if
β ∈ CH1,num(X ) and γ ∈ CH0,num(X ). In this case, since CH0,num(X ) = CH0,alg(X ), we know from
Theorem 5.175.17 that γ is smash-nilpotent. Then if β is smash-nilpotent, so is α.

Proof of Corollary 5.245.24. For 1 ≤ i ≤ m, let Ci be a smooth projective curve of genus gi over k ,
together with a point x0,i ∈ Ci (k ). We would like to prove Conjecture 5.165.16 for 1-cycles on C1×· · ·×
Cm . Denote by Ji the Jacobian of Ci . Take ni ≥ 2 gi − 1 and consider the product of symmetric
powers C [n1]

1 × · · · ×C [nm ]
m . Using the points x0,i we have maps

C1 × · · · ×Cm
ι
,−→ C [n1]

1 × · · · ×C [nm ]
m −� J1 × · · · × Jm .

We know that C [n1]
1 ×· · ·×C [nm ]

m can be written as an iteration of projective bundles over J1×· · ·× Jm .
Then by Theorem 5.215.21 and Lemma 5.255.25, we obtain Conjecture 5.165.16 for 1-cycles on C [n1]

1 ×· · ·×C [nm ]
m .
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5.4. Application: smash-nilpotent 1-cycles on an abelian variety

Finally, the passage from C [n1]
1 × · · · ×C [nm ]

m to C1 × · · · ×Cm is given by a correspondence

Γ ∈ Corr(C [n1]
1 × · · · ×C [nm ]

m , C1 × · · · ×Cm)

satisfying Γ∗ ◦ ι∗ = id (see Remark 4.24.2). If α ∈ CH1,num(C1×· · ·×Cm), then we have α = Γ∗
�

ι∗(α)
�

and
that ι∗(α) ∈ CH1,num(C

[n1]
1 × · · · ×C [nm ]

m ) is smash-nilpotent. Since smash-nilpotence is stable under
correspondences, we see that α is also smash-nilpotent.

Further, an object X ∈ Vk is called dominated by Y ∈ Vk if there exists a surjective morphism
f : Y −� X .

Corollary 5.26. Conjecture 5.165.16 is true for 1-cycles on X ∈ Vk that is dominated by a product of curves.

Proof. Let f : Y = C1 × · · · ×Cm −� X be a surjective map of relative dimension n = m − dim(X ).
Consider a divisor l ∈ CH1(Y ) that is ample relative to f . We have f∗(l n) =N [X ] for some N > 0.
Then for α ∈ CH1,num(X ), by applying the projection formula we find f∗

�

l n · f ∗(α)
�

= Nα. We
know by Corollary 5.245.24 that l n · f ∗(α) ∈ CH1,num(Y ) is smash-nilpotent, and so is α.

We refer to Schoen’s paper [Sch96Sch96] for more discussions on the set of varieties that are dominated
by products of curves.
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6

Tautological classes in higher Gri�ths groups

We consider tautological classes modulo equivalences induced by S. Saito’s filtration on
Chow groups. For the Jacobian of a very general complex pointed curve, we detect
non-trivial classes in Saito’s higher Gri�ths groups. This improves a result of Ikeda.

6.1. Motivation

In this chapter we work over k =C. Let (C , x0) be a smooth projective pointed curve of genus g > 0
over C, with J its Jacobian. Using the embedding ι : C ,→ J with respect to x0, we obtain classes
[C ]( j ) ∈ CH g−1

( j ) ( J ) for j ≥ 0.
We would like to study these classes (or more generally, classes in the tautological ring T ( J ))

modulo other equivalences, e.g. algebraic equivalence. The history began with Ceresa’s theorem,
stating that [C ](1) is not algebraically equivalent to zero for a very general curve C overM g with g ≥ 3
([Cer83Cer83], Theorem 3.1; the statement makes sense since the class [C ]( j ) modulo algebraic equivalence
is independent of the point x0). Later Fakhruddin proved the same non-triviality statement for [C ](2)
and g ≥ 11 ([Fak96Fak96], Corollary 4.6), and Beauville raised the question for higher components [C ]( j )
(see [Bea04Bea04], Section 5.5).

The general picture has become clearer since Polishchuk’s work onT ( J )/ ∼alg (see [Pol05Pol05], Intro-
duction). In particular, we have precise expectations for the smallest g = g ( j ) such that [C ]( j ) �alg 0
when C is very general and of genus g (see [Moo09Moo09], Corollary 2.9). The same bound can be ob-
tained via Colombo and van Geemen’s gonality consideration (see [CG93CG93], Theorem 1.3 and [Voi13Voi13],
Conjecture 0.4).

Conjecture 6.1. For a very general curve C overM g with g ≥ 2 j +1, the class [C ]( j ) is not algebraically
equivalent to zero.
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6. Tautological classes in higher Griffiths groups

What makes Conjecture 6.16.1 di�cult is again the fact that [C ]( j ) is Abel-Jacobi trivial for j ≥ 2.
So one needs a more sophisticated yet computable invariant which detects cycles modulo algebraic
equivalence. Recently such an invariant has been constructed by Voisin (see [Voi13Voi13], Section 1.2).
She carried out computations for a family of plane curves studied by Ikeda [Ike03Ike03]. In particular,
she was able to improve Fakhruddin’s result for [C ](2) to g ≥ 6 ([Voi13Voi13], Corollary 0.7), while the
optimal bound should be g ≥ 5 according to Conjecture 6.16.1.

In a series of papers ([Sai96Sai96], [Sai00Sai00], [Sai00bSai00b] and [Sai02Sai02]), S. Saito introduced a related theme.
The idea is based on a closer look at the definition of algebraic equivalence: for X ∈ V

C
we have

(6.1) CHi
alg(X ) =

∑

Y ,Γ
Im
�

Γ∗ : CH0,hom(Y )→ CHi (X )
�

,

where the sum ranges over all Y ∈ V
C

and all Γ ∈ CHi (Y ×X ). A key observation is that CH0,hom(Y )
represents the first term of a filtration F •CH0(Y ) conjectured by Bloch-Beilinson-Murre (BBM).
More generally, the BBM conjecture predicts for all X ∈ V

C
a descending filtration F •CHi (X ) on

CHi (X ), called the Bloch-Beilinson (BB) filtration. It should be preserved by correspondences, satisfy
F 0 CHi (X ) =CHi (X ) and F i+1 CHi (X ) = 0, and for all 0 ≤ j ≤ i the graded piece

Gr j
F CHi (X ) = F j CHi (X )/F j+1 CHi (X )

should in some sense be controlled by the cohomology group H 2i− j (X ,Q) (see [Mur93Mur93], [Jann94Jann94]
and [Voi02Voi02], Chapitre 23 for more details). Further, one expects F 1 CHi (X ) = CHi

hom(X ). It then
follows that we can rewrite (6.16.1) as

CHi
alg(X ) =

∑

Y ,Γ
Im
�

Γ∗ : F 1 CH0(Y )→ CHi (X )
�

.

In theory, if we replace F 1 CH0(Y ) by deeper terms F j CH0(Y ) of the BB filtration, we obtain a
family of equivalences that refine algebraic equivalence.

In practice we use Saito’s candidate of the BB filtration to make statements unconditional. From
now on F •CHi (X ) stands for Saito’s filtration on CHi (X ). The precise definition and properties of
F •CHi (X ) will be given in Section 6.26.2. Define

Z0F j CHi (X ) =
∑

Y ,Γ
Im
�

Γ∗ : F j CH0(Y )→ CHi (X )
�

,

where the sum is taken in the same way as (6.16.1). Then we have Z0F j CHi (X ) ⊂ F j CHi (X ), and
Z0F 1 CHi (X ) = CHi

alg(X ). As mentioned, each of the terms Z0F j can be interpreted as a refined
algebraic equivalence.

Also recall the Gri�ths group Gri� i (X ) =CHi
hom(X )/CHi

alg(X ). In the context of the filtration
F •CHi (X ), Saito introduced the higher Gri�ths group

Gri� i , j (X ) = F j CHi (X )
��

Z0F j CHi (X ) + F j+1 CHi (X )
�

.
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6.2. Saito’s filtration and higher Gri�ths groups

Note that Gri� i ,1(X ) is the quotient of Gri� i (X ) by F 2 CHi (X ).
Similar to Conjecture 6.16.1, one may now ask the question of detecting non-trivial classes in higher

Gri�ths groups. The question was partially answered by Ikeda, who proved non-triviality for a
specific family of plane curves ([Ike03Ike03], Theorem 1). In this chapter we improve Ikeda’s result in the
very general case (modulo a slight di�erence in the definition of Saito’s filtration), with sharp bounds
on the genus. To give an example, we can prove the following statement (see Theorem 6.136.13 for the
full result).

Theorem 6.2. For a very general pointed curve (C , x0) overM g ,1 with g ≥ j + 2 and j ≥ 1, the class
[C ]( j ) is not zero in Gri� g−1, j (X ).

A key ingredient in the proof is that the Mumford-Tate group (or more precisely the Hodge
group) of a very general curve is the full symplectic group. Using this fact, we find a simple invariant
for the higher Gri�ths groups of a very general Jacobian. The invariant is easily computable via
Fakhruddin’s degeneration argument (already seen in the proof of Theorem 5.45.4).

6.2. Saito’s filtration and higher Gri�ths groups

In this section we briefly review (a version of ) Saito’s filtration on Chow groups, and discuss its basic
properties. The filtration induces a family of equivalence relations, for which one can define the
notion of higher Gri�ths groups.

We begin with the definition in the relative setting. Let S be a smooth connected variety over C,
and let π : X → S be an object in VS .

Definition 6.3. We define a descending filtration F •S CHi (X ), indexed by the non-negative integers,
in the following inductive way.

(i) We set F 0
S CHi (X ) =CHi (X ) for all i ≥ 0.

(ii) Suppose that F j
S CHi ′(Y ) is defined for every Y /S in VS and every i ′ ≥ 0. Then we let

F j+1
S CHi (X ) :=

∑

Y ,Γ
Im
�

Γ∗ : F j
S CHi ′(Y )→ CHi (X )

�

,

where the sum ranges over all φ : Y → S in VS and all correspondences Γ ∈ Corri−i ′
S (Y , X ),

with the condition that

(6.2) Γ∗ : R2i ′− jφ∗Q→ R2i− jπ∗Q

is the zero map.
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6. Tautological classes in higher Griffiths groups

Note that when S = C, the map (6.26.2) becomes Γ∗ : H 2i ′− j (Y ,Q) → H 2i− j (X ,Q). Also in this
case we drop the subscript S and write simply F •CHi (X ).

Remark 6.4. When S = C, the filtration above is denoted by F •B CHi (X ) in [Sai00Sai00], Section 1. It
di�ers slightly from the one adopted by Ikeda [Ike03Ike03], which is denoted by F •H CHi (X ) in [Sai96Sai96],
Section 9. Both filtrations are candidates of the Bloch-Beilinson filtration, and conjecturallynote 88note 88

they coincide. Here our choice of filtration is based on the compatibility with the (classical) Leray
filtration in cohomology (see Lemma 6.66.6).

We list a few properties of F •S CHi (X ), which can be found in [Sai02Sai02], Sections 0 and 2.

Proposition 6.5.

(i) For j ≥ 0, the terms F j
S are preserved by correspondences. In particular we have F j+1

S CHi (X ) ⊂
F j

S CHi (X ), meaning that F •S CHi (X ) is indeed a descending filtration.

(ii) The filtration F •S CHi (X ) is also preserved under base change: if f : S ′ → S is a morphism of
smooth connected varieties over C, then for all i , j ≥ 0 we have

f ∗
�

F j
S CHi (X )

�

⊂ F j
S ′ CHi (X ×S S ′).

(iii) Let α ∈ CHi (X ). For s ∈ S, denote by αs the restriction of α to the fiber Xs . By (ii) we know
that α ∈ F j

S CHi (X ) implies αs ∈ F j CHi (Xs ) for all s ∈ S. Conversely, if αs ∈ F j CHi (Xs ) for
all s ∈ S (or equivalentlynote 99note 99, for a very general s ∈ S ), then there exists a non-empty open subset
U ⊂ S such that αU ∈ F j

U CHi (XU ) (here XU = X ×S U and αU = α|XU
).

(iv) When S = C, the first term F 1 CHi (X ) is CHi
hom(X ). The second term F 2 CHi (X ) is contained

in the kernel of the Abel-Jacobi map aj: CHi
hom(X )→ J i (X )⊗

Z
Q, and conjecturally they coincide.

Further, we have

F 2 CHi (X )∩CHi
alg(X ) = Ker(aj)∩CHi

alg(X ).

In particular, we know that F 2 CH0(X ) = Ker
�

alb: CH0,hom(X ) → Alb(X ) ×
Z
Q

�

, where
CH0(X ) is the Chow group of 0-cycles on X and alb is the Albanese map.

Recall that in cohomology, the Leray spectral sequence

E p,q
2 = H p(S , R qπ∗Q)⇒ H p+q (X ,Q)

degenerates at E2 ([Del68Del68], Proposition 2.1). Denote by L•S H p+q (X ,Q) the Leray filtration on
H p+q (X ,Q) relative to S . Then we have

H p(S , R qπ∗Q) 'Grp
LS

H p+q (X ,Q).
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6.2. Saito’s filtration and higher Gri�ths groups

Also recall the cycle class map cl: CHi (X ) → H 2i (X ,Q) (for simplicity we omit the Tate twists).
The following compatibility property is essential in the discussion.

Lemma 6.6. The cycle class map cl preserves the filtrations on both sides, i.e. we have for all i , j ≥ 0

cl
�

F j
S CHi (X )

�

⊂ L j
S H 2i (X ,Q).

Proof. We proceed by induction on j . The statement is trivial for j = 0. Suppose for all Y /S ∈ VS

and i ′ ≥ 0 we have
cl
�

F j
S CHi ′(Y )

�

⊂ L j
S H 2i ′(Y ,Q).

Let α ∈ F j+1
S CHi (X ). By Definition 6.36.3 we may assume α = Γ∗(β), withβ ∈ F j

S CHi ′(Y ) for some
φ : Y → S in VS , and Γ ∈ Corri−i ′(Y , X ) such that

Γ∗ : R2i ′− jφ∗Q→ R2i− jπ∗Q

is the zero map. By the induction assumption, we have the following commutative diagram.

F j
S CHi ′(Y ) F j+1

S CHi (X )

L j
S H 2i ′(Y ,Q) L j

S H 2i (X ,Q)

Gr j
LS

H 2i ′(Y ,Q) Gr j
LS

H 2i (X ,Q)

H j (S , R2i ′− jφ∗Q) H j (S , R2i− jπ∗Q)

→Γ∗

→cl → cl

→Γ∗

→pr → pr

→Γ∗

→' → '

→Γ∗

Here the arrows pr are projections to the graded pieces. The condition on Γ implies that the last
horizontal arrow is zero, so that

pr
�

cl(α)
�

= pr
�

cl
�

Γ∗(β)
�

�

= Γ∗
�

pr
�

cl(β)
�

�

= 0 ∈Gr j
LS

H 2i (X ,Q).

Hence cl(α) ∈ L j+1
S H 2i (X ,Q).

We are mostly interested in the case of abelian schemes. Let A/S be a principally polarized abelian
scheme over S (again the principal polarization is not important here). The Beauville decomposition
provides another filtration on CHi (A), namely

eF j
S CHi (A) :=

⊕

j ′≥ j
CHi

( j ′)(A).
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6. Tautological classes in higher Griffiths groups

At least when S =C, the two filtrations F j CHi (A) and eF j CHi (A) are believed to coincide (since
they are both candidates of the Bloch-Beilinson filtration). Ikeda proved the following inclusion
([Ike03Ike03], Lemma 3.1).

Lemma 6.7. For all i , j ≥ 0, we have

(6.3)
⊕

j ′≥ j
CHi

( j ′)(A) ⊂ F j
S CHi (A).

Induced equivalence relations

Using the filtration F •S CHi (X ), we define a family of equivalences on CHi (X ) which in some sense
generalize algebraic equivalence. For simplicity we restrict to the case S =C, and we refer to [Sai02Sai02],
Section 5 for the definition in the relative setting. If X is an object in V

C
, denote by CHr (X ) the

Chow group of dimension r cycles on X .

Definition 6.8. For i , j , r ≥ 0, define subgroups of F j CHi (X )

Zr F j CHi (X ) :=
∑

Y ,Γ
Im
�

Γ∗ : F j CHr (Y )→ CHi (X )
�

,

where the sum ranges over all Y ∈ V
C

and all correspondences Γ ∈ CHi+r (Y ×X ).

In particular, we have Z0F 1 CHi (X ) = CHi
alg(X ). Similar to algebraic equivalence, one may

regard Zr F j CHi (X ) as an equivalence on CHi (X ) by setting for α,β ∈ CHi (X )

α ∼Zr F j β if and only if α−β ∈ Zr F j CHi (X ).

The terms Zr F j are preserved by correspondences. Also we have by definition

Zr F j+1 CHi (X ) ⊂ Zr F j CHi (X ),

so Zr F •CHi (X ) is a descending filtration. Moreover, to every pair β ∈ F j CHr (Y ) and Γ ∈
CHi+r (Y ×X ) one can associateβ×P1 ∈ F j CHr+1(Y ×P1) and Γ ×pt ∈ CHi+r+1 �(Y ×P1)×X

�

.
This implies

Zr F j CHi (X ) ⊂ Zr+1F j CHi (X ),

meaning that Z•F j CHi (X ) is an ascending filtration. Finally if X is connected and of dimension n,
we have

(6.4) Zn−i F
j CHi (X ) = F j CHi (X ).
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6.3. Detecting non-trivial classes in higher Gri�ths groups

To summarize, we have the following diagram of filtrations.

CHi (X ) ⊃ Z0F 1 CHi (X ) ⊃ Z0F 2 CHi (X ) ⊃ · · · ⊃ Z0F j CHi (X ) ⊃ · · ·
= ∩ ∩ ∩

CHi (X ) ⊃ Z1F 1 CHi (X ) ⊃ Z1F 2 CHi (X ) ⊃ · · · ⊃ Z1F j CHi (X ) ⊃ · · ·

= ∩ ∩ ∩
CHi (X ) ⊃ Z2F 1 CHi (X ) ⊃ Z2F 2 CHi (X ) ⊃ · · · ⊃ Z2F j CHi (X ) ⊃ · · ·

= ∩ ∩ ∩
...

...
... . . .

... . . .

= ∩ ∩ ∩
CHi (X ) ⊃ Zr F 1 CHi (X ) ⊃ Zr F 2 CHi (X ) ⊃ · · · ⊃ Zr F j CHi (X ) ⊃ · · ·

= ∩ ∩ ∩
...

...
... . . .

... . . .

= ∩ ∩ ∩
CHi (X ) ⊃ Zn−i F 1 CHi (X ) ⊃ Zn−i F 2 CHi (X ) ⊃ · · · ⊃ Zn−i F j CHi (X ) ⊃ · · ·

= = = =
CHi (X ) ⊃ F 1 CHi (X ) ⊃ F 2 CHi (X ) ⊃ · · · ⊃ F j CHi (X ) ⊃ · · ·

Here the column Z•F 1 CHi (X ) is known as Nori’s filtration (see [Nor93Nor93], Section 5), with one end
Z0F 1 CHi (X ) =CHi

alg(X ) and the other Zn−i F 1 CHi (X ) = F 1 CHi (X ) = CHi
hom(X ).

Definition 6.9. For i , j ≥ 0, define the higher Gri�ths groups

Gri� i , j (X ) := F j CHi (X )
��

Z0F j CHi (X ) + F j+1 CHi (X )
�

.

Note that Gri� i ,1(X ) is not the classical Gri�ths group Gri� i (X ) = CHi
hom(X )/CHi

alg(X ), but
its quotient by F 2 CHi (X ).

6.3. Detecting non-trivial classes in higher Gri�ths groups

We work in the setting of the diagram (2.152.15), with S =M g ,1 over C. Let s ∈M g ,1 be a very general
point, i.e. a point outside a countable union of Zariski-closed proper subsets. Denote by (Cs , x0,s )
the pointed curve over s , and by Js the Jacobian of Cs . We refer to Section 5.15.1 for the definition of
the tautological ring T ( Js ).

Our goal is to detect non-trivial tautological classes (e.g. [Cs ]( j ) ∈ T
g−1
( j ) ( Js )) in the higher Gri�ths

groups Gri� i , j ( Js ). To begin with, we introduce an invariant for Gri� i , j ( Js ), which can be viewed as
an analogue of the one used in Proposition 5.65.6 (for detecting classes modulo rational equivalence).
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Consider the universal Jacobian π : J →M g ,1 and the cycle class map

cl: CHi
( j )( J )→ H j (M g ,1, R2i− jπ∗Q).

Recall from Corollary 2.172.17 that there is the Lefschetz decomposition

R2i− jπ∗Q =
b(2i− j )/2c
⊕

k=max{0,2i− j− g }

�

Rπ∗(u)
�k R2i− j−2k

prim π∗Q,

where u = cl(−θ) ∈ H 2( J ,Q) and Rπ∗(u) : R iπ∗Q→ R i+2π∗Q is the induced map. For simplicity,
when 2i − j > g we write R2i− j

prim π∗Q for the sheaf

�

Rπ∗(u)
�k R2i− j−2k

prim π∗Q with k = 2i − j − g .

Proposition 6.10. Let g , i , j , r be non-negative integers satisfying

(6.5) g > i + r , and i > j + r .

Consider a class α ∈ CHi
( j )( J ), with π : J →M g ,1 the universal Jacobian. Suppose for a very general

point s ∈M g ,1, the restriction αs lies in

Zr F j CHi ( Js ) + F j+1 CHi ( Js ).

Then there exists a non-empty open subset U ⊂M g ,1, such that the component of cl(αU ) in

H j (U , R2i− j
prim π∗Q)

is zero (here αU = α| JU
with JU = J ×M g ,1

U ).

Remark 6.11. The two numerical conditions in (6.56.5) are necessary. If either of the two is not satisfied,
then the assumption on the class αs always holds (while the conclusion of Proposition 6.106.10 may not
be true). In fact, we know that αs lies in CHi

( j )( Js ). If g ≤ i + r , by (6.46.4) and (6.36.3) we have

CHi
( j )( Js ) ⊂ F j CHi ( Js ) = Zr F j CHi ( Js ).

Similarly if i ≤ j + r , by applying the Fourier transformF we find

CHi
( j )( Js ) =F

�

CH g−i+ j
( j ) ( Js )

�

⊂ Zr F j CHi ( Js ).

Proof of Proposition 6.106.10. Write αs = α1,s +α2,s , with α1,s ∈ Zr F j CHi ( Js ) and α2,s ∈ F j+1 CHi ( Js ).
Using the fact that both Zr F j CHi ( Js ) and F j+1 CHi ( Js ) are stable under correspondences, we may
assumeα1,s ,α2,s ∈ CHi

( j )( Js ) by taking Beauville components. Since s is very general, by the spreading
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6.3. Detecting non-trivial classes in higher Gri�ths groups

out procedure we can find a non-empty open subset U ⊂ M g ,1, and classes α1,U ,α2,U ∈ CHi ( JU )
whose restrictions over s are α1,s and α2,s respectively. Again by taking Beauville components, we
may assume α1,U ,α2,U ∈ CHi

( j )( JU ). This means we are reduced to the proof of two separate cases
αs ∈ Zr F j CHi ( Js ) or αs ∈ F j+1 CHi ( Js ).

If αs ∈ F j+1 CHi ( Js ), by Proposition 6.56.5 (iii) and Lemma 6.66.6 there exists a non-empty open
subset U ⊂M g ,1 such that cl(αU ) = 0. In particular, the primitive component of cl(αU ) is zero.

Suppose αs ∈ Zr F j CHi ( Js ). By Definition 6.86.8, we may assume αs = Γs ,∗(βs ), with βs ∈
F j CHr (Ys ) for some Ys ∈ VC, and Γs ∈ CHi+r (Ys × Js ). Without loss of generality, we take Ys to be
connected and of dimension n. Now since s is very general, by the spreading out procedure we may
also assume there exists a non-empty open subset U ⊂M g ,1 containing s , such that Ys is the fiber
over s of some φ : YU →U in VU (with connected fibers), that βs (resp. Γs ) is the restriction over s
of some βU ∈ CHn−r (YU ) (resp. ΓU ∈ CHi+r (YU ×U JU )), and that αU = ΓU ,∗(βU ). Further, we
know from Proposition 6.56.5 (iii) that by possibly shrinking U , we can take βU ∈ F j

U CHn−r (YU ).
The cycle class cl(αU ) lies in H j (U , R2i− jπ∗Q), which is canonically isomorphic to

Gr j
LU

H 2i ( JU ,Q) = L j
U H 2i ( JU ,Q)/L j+1

U H 2i ( JU ,Q).

On the other hand, by Lemma 6.66.6 we have cl(βU ) ∈ L j
U H 2n−2r (YU ,Q). Then since the Leray

filtration satisfies Lp
U · L

q
U ⊂ Lp+q

U , we see that cl(αU ) depends only on the class of cl(ΓU ) in

Gr0
LU

H 2i+2r (YU ×U JU ,Q) = L0
U H 2i+2r (YU ×U JU ,Q)/L1

U H 2i+2r (YU ×U JU ,Q),

which is isomorphic to

(6.6) H 0�U , R2i+2r (φ×U π)∗Q
�

.

Recall the Künneth formula

R2i+2r (φ×U π)∗Q =
⊕

p+q=2i+2r
R pφ∗Q⊗ R qπ∗Q.

Consider YU ×U JU as an abelian scheme over YU , endowed with the action of [N ], i.e. the multipli-
cation by N (for N ∈ Z). By comparing the action of [N ]∗, we find that the only relevant component
in (6.66.6) (for obtaining cl(αU )) is

(6.7) H 0(U , R2r+ jφ∗Q⊗ R2i− jπ∗Q).

By the theorem of the fixed part, the latter is further isomorphic to

(6.8)
�

H 2r+ j (Ys ,Q)⊗H 2i− j ( Js ,Q)
�π1(U ,s ).

Denote by h the corresponding class of cl(ΓU ) in (6.86.8). Then h is a Hodge class of type (i+r , i+r ).
We now apply the two numerical conditions in (6.56.5), and we distinguish two cases.
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6. Tautological classes in higher Griffiths groups

(i) Case 2i − j ≤ g . We have a Hodge decomposition

H 2i− j ( Js ,C) = H 2i− j ,0( Js )⊕H 2i− j−1,1( Js )⊕ · · · ⊕H 1,2i− j−1( Js )⊕H 0,2i− j ( Js ),

with H 2i− j ,0( Js ) 6= 0. The numerical conditions force g ≥ 2i − j > i + r .

(ii) Case 2i − j ≥ g . This time the Hodge decomposition becomes

H 2i− j ( Js ,C) = H g ,2i− j− g ( Js )⊕H g−1,2i− j− g+1( Js )⊕ · · · ⊕H 2i− j− g+1, g−1( Js )⊕H 2i− j− g , g ( Js ),

with H g ,2i− j− g ( Js ) 6= 0. The numerical conditions force 2i − j ≥ g > i + r .

To summarize, the numerical conditions ensure that h does not reach the maximal Hodge level in the
factor H 2i− j ( Js ,C). In other words, if we denote by V the largest sub-variation of Hodge structures
(VHS) of R2i− jπ∗Q of Hodge coniveau at least 1, the corresponding class of cl(ΓU ) in (6.76.7) lies in

Im
�

H 0(U , R2r+ jφ∗Q⊗V)→ H 0(U , R2r+ jφ∗Q⊗ R2i− jπ∗Q)
�

.

As a result, we have

(6.9) cl(αU ) ∈ Im
�

H j (U ,V)→ H j (U , R2i− jπ∗Q)
�

.

Now the crucial step is an argument using Mumford-Tate groups. We refer to [Moo99Moo99] for the
general theory. As before s ∈U is a very general point. Write H := H 1( Js ,Q). It is well known that
the Hodge group (also called special Mumford-Tate group) of H is the full symplectic group Sp(H )
(for example, we know that the mapping class group is surjective to the symplectic group). Then by
the classical representation theory of symplectic groups (see [FulH91FulH91], Section 17.2), the fact that

Vs ⊂ H 2i− j ( Js ,Q) = ∧
2i− j (H )

is not of maximal Hodge level implies that Vs is included in the non-primitive part of H 2i− j ( Js ,Q).
It follows thatV and R2i− j

prim π∗Q are, as VHS’s and also as local systems, direct summands of R2i− jπ∗Q

with trivial intersection (in fact we have R2i− jπ∗Q = R2i− j
prim π∗Q⊕V by the definition ofV). By (6.96.9),

we conclude that the component of cl(αU ) in H j (U , R2i− j
prim π∗Q) is zero.

Remark 6.12. The above proof only requires that the Hodge group of a very general fiber is the full
symplectic group. So whenever this condition is satisfied, Proposition 6.106.10 stays valid. This is the
case even over the hyperelliptic locus (see [A’C79A’C79], Théorème 1).

With the invariant in hand, we detect non-trivial tautological classes in higher Gri�ths groups.
To be coherent with the literature, we state the result in terms of the curve class [C ] ∈ CH g−1( J ) and
the Pontryagin product (∗). Let m ≥ 1 and j1, . . . , jm ≥ 1. Write j = j1 + · · ·+ jm , and consider

�

[C ]∗m
�

( j1,..., jm )
:= [C ]( j1) ∗ · · · ∗ [C ]( jm ) ∈ CH g−m

( j ) ( J ).
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6.3. Detecting non-trivial classes in higher Gri�ths groups

Let r ≥ 0. The two numerical conditions in (6.56.5) for a class in CH g−m
( j ) ( J ) read

(6.10) m ≥ r + 1, and g ≥ m + j + r + 1.

Theorem 6.13. Let g , m, j1, . . . , jm, j , r be as above satisfying the conditions in (6.106.10). Then if s ∈M g ,1

is a very general point, the class
�

[Cs ]
∗m
�

( j1,..., jm )
does not lie in

Zr F j CH g−m( Js ) + F j+1 CH g−m( Js ).

In particular for r = 0 and g ≥ m + j + 1, we have
�

[Cs ]
∗m�

( j1,..., jm )
6= 0 in Gri� g−m, j ( Js ).

It follows from Remark 6.116.11 that for m ≥ r+1 fixed, the bound on the genus g is sharp. The proof
of Theorem 6.136.13 is similar to those of Theorem 5.45.4 and Proposition 5.145.14: according to Lemma 5.75.7
and Proposition 6.106.10, it su�ces to construct a family of test curves over the boundary ofM ct

g ,1, and to
show that the relevant primitive cohomology class does not vanish over any non-empty open subset
of the base variety.

Proof of Theorem 6.136.13. For simplicity, we only prove the case g = m + j + r + 1: the general case
follows either from the same construction (see Figure 99) with more constant components, or from
Ceresa’s degeneration argument (see [Cer83Cer83], Section 3).

To construct a family of test curves for g = m + j + r + 1, we need the following ingredients:

(i) a collection of m complex smooth curves C1, . . . , Cm of genus 2, with varying points xi ∈ Ci

for 1 ≤ i ≤ m, and fixed points ci ∈ Ci for 2 ≤ i ≤ m;

(ii) a collection of j −m complex elliptic curves E1, . . . , E j−m (by definition j ≥ m), with varying
points yi ∈ Ei and zeros oi ∈ Ei , for 1 ≤ i ≤ j −m;

(iii) another collection of r + 1 complex elliptic curves E ′1, . . . , E ′r+1, with fixed points bi ∈ E ′i and
zeros o′i ∈ E ′i such that bi 6= o′i , for 1 ≤ i ≤ r + 1.

C1 C2 Cm E1 E j−m E ′1 E ′r+1

x1 x2

c2

x3
· · · · · ·

cm−1

xm

cm y1

o1

y2
· · · · · ·

o j−m−1

y j−m

o j−m b1

o′1
b2

· · · · · ·
o′r

br+1

o′r+1

Figure 9. A family of test curves ( g = m + j + r + 1).

As is shown in Figure 99, the family is obtained by joining x1 with x2, ci with xi+1 (for 2 ≤ i ≤ m−1),
cm with y1, oi with yi+1 (for 1 ≤ i ≤ j − m − 1), o j−m with b1, and o′i with bi+1 (for 1 ≤ i ≤ r ).
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6. Tautological classes in higher Griffiths groups

Finally we let o′r+1 serve as the marked point. There are some extreme cases: we join x1 with y1 if
j > m = 1, cm with b1 if j = m > 1, and x1 with b1 if j = m = 1. We verify that the genus of the
resulting curves is 2m + ( j −m) + (r + 1) = m + j + r + 1.

Write C → T for this family, where

T = C1 ×
�

C2\{c2}
�

× · · · ×
�

Cm\{cm}
�

×
�

E1\{o1}
�

× · · · ×
�

E j−m\{o j−m}
�

.

For 1 ≤ i ≤ m, denote by ( Ji ,θi ) the Jacobian of Ci . Then the relative Jacobian of C → T is

J = J1 × · · · × Jm × E1 × · · · × E j−m × E ′1 × · · · × E ′r+1 ×T

over the last factor T . An important observation is that the embeddingC ,→J with respect to o′r+1

can be extended over
T = C1 × · · · ×Cm × E1 × · · · × E j−m .

More precisely, write J = J1×· · ·× Jm ×E1×· · ·×E j−m ×E ′1×· · ·×E ′r+1×T . We have embeddings

ψCi
: Ci ×T ,→J , for 1 ≤ i ≤ m,

ψEi
: Ei ×T ,→J , for 1 ≤ i ≤ j −m,

ψE ′i
: E ′i ×T ,→J , for 1 ≤ i ≤ r + 1,

and if we denote by C ⊂ J the union of the Im(ψCi
), Im(ψEi

) and Im(ψE ′i
), then the restriction

of C over T is exactly C .
The formulae for these embeddings are a bit too long to write down, but are essentially the same

as those in the proof of Proposition 5.145.14. For example ψC1
is given by

(z , x1, . . . , xm , y1, . . . , y j−m) 7→
�

OC1
(z − x1),OC2

(x2 − c2), . . .OCm
(xm − cm), y1, . . . , y j−m , b1, . . . , br+1, x1, . . . , xm , y1, . . . , y j−m

�

.

More generally, all the embeddings ψCi
, ψEi

and ψE ′i
can be written as products of the following

maps, which we shall refer to as basic building blocks:

(i) C1 ×C1→ J1 ×C1, given by (z , x1) 7→
�

OC1
(z − x1), x1

�

;

(ii) (for 2 ≤ k ≤ m) Ck ×Ck → Jk ×Ck , given by (z , xk ) 7→
�

OCk
(z − ck ), xk );

(iii) (for 2 ≤ k ≤ m) Ck → Jk ×Ck , given by xk 7→
�

OCk
(xk − ck ), xk

�

;

(iv) (for 1 ≤ k ≤ m) Ck → Jk ×Ck , given by xk 7→ (0, xk );

(v) (for 1 ≤ k ≤ j −m) Ek × Ek → Ek × Ek , given by (z , yk ) 7→ (z , yk );
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(vi) (for 1 ≤ k ≤ j −m) Ek → Ek × Ek , given by yk 7→ (yk , yk );

(vii) (for 1 ≤ k ≤ j −m) Ek → Ek × Ek , given by yk 7→ (0, yk );

(viii) (for 1 ≤ k ≤ r + 1) E ′k → E ′k , given by z 7→ z ;

(ix) (for 1 ≤ k ≤ r + 1) pt→ E ′k , given by z 7→ bk ;

(x) (for 1 ≤ k ≤ r + 1) pt→ E ′k , given by z 7→ 0.

The example ofψC1
is then the product of (i), (iii), (vi) and (ix). Note that the building blocks involve

only one index k at a time, i.e. there is no interaction between di�erent curves. For future reference,
when looking at an embeddingψCi

, ψEi
orψE ′i

, we shall call its building block with target in Jk ×Ck

(resp. Ek × Ek and E ′k ) the Jk -Ck (resp. Ek -Ek and E ′k ) factor of the embedding.
We use the Künneth formula to calculate the cycle class of

�

[C ]∗m
�

( j1,..., jm )
= [C ]( j1) ∗ · · · ∗ [C ]( jm ) ∈ CH j+r+1

( j ) (J ),

which lies in

H j+2r+2( J1 × · · · × Jm × E1 × · · · × E j−m × E ′1 × · · · × E ′r+1)⊗H j (C1 × · · · ×Cm × E1 × · · · × E j−m).

Here, and in what follows, we omit the coe�cients of the cohomology groups. We know that the
only relevant Künneth component (i.e. not killed by restricting to non-empty open subsets V ⊂ T )
of H j (T ) = H j (C1 × · · · ×Cm × E1 × · · · × E j−m) is

(6.11) H 1(C1)⊗ · · · ⊗H 1(Cm)⊗H 1(E1)⊗ · · · ⊗H 1(E j−m).

Then we have two immediate observations. First, the images of the embeddingsψE ′i
do not contribute

to the class of
�

[C ]∗m
�

( j1,..., jm )
. In fact, since ψE ′i

is a section of the projection J → E ′i ×T , we have

�

Im(ψE ′i
)
�

=
�

Im(ψE ′i
)
�

(0)
.

Second, the images of ψEi
make no essential contribution either. This is because the Ei -Ei factor

ofψEi
is the identity id: Ei ×Ei → Ei ×Ei , which only gives a class in H 0(Ei )⊗H 0(Ei ). On the other

hand, the Ei -Ei factor of other embeddings is either the diagonal map∆ : Ei → Ei ×Ei , which gives
classes in H 2(Ei )⊗H 0(Ei ), H 1(Ei )⊗H 1(Ei ) and H 0(Ei )⊗H 2(Ei ), or the map (0, id) : Ei → Ei ×Ei ,
which gives a class in H 2(Ei )⊗H 0(Ei ). Among them, only H 2(Ei )⊗H 0(Ei ) has non-zero Pontryagin
product with H 0(Ei )⊗H 0(Ei ), but the product does not lead to a factor in (6.116.11).

It follows that one only need to consider the images of ψCi
, or more precisely the cycle class of

(6.12) [Im(ψC1
)
�

( j1)
∗ · · · ∗ [Im(ψCm

)
�

( jm )
+ permutations.
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The computation is just careful bookkeeping (essentially the same as in Proposition 5.95.9): we collect
all non-zero cohomology classes given by the Jk -Ck (resp. Ek -Ek and E ′k ) factors, do tensor products,
and sum all terms up. Here with the same building blocks, we always get the same class for each of
the factors. Then the sum of non-zero classes is again non-zero, meaning that there is no cancellation
e�ect. In the end we obtain only one relevant component (i.e. non-zero, and not easily killed by
restricting to non-empty open subsets V ⊂ T ) of the class of (6.126.12). We denote it by h and it lies in

H 1( J1)⊗ · · · ⊗H 1( Jm)⊗H 1(E1)⊗ · · · ⊗H 1(E j−m)⊗H 2(E ′1)⊗ · · · ⊗H 2(E ′r+1)

⊗H 1(C1)⊗ · · · ⊗H 1(Cm)⊗H 1(E1)⊗ · · · ⊗H 1(E j−m).
(6.13)

We now look at the component of h in

H j+2r+2
prim ( J1 × · · · × Jm × E1 × · · · × E j−m × E ′1 × · · · × E ′r+1)⊗H j (C1 × · · · ×Cm × E1 × · · · × E j−m).

Here for the abelian scheme J → T , the associated divisor class θ ∈ CH1
(0)(J ) is

θ = pr∗J1
(θ1) + · · ·+ pr∗Jm

(θm) + pr∗E1

�

[o1]
�

+ · · ·+ pr∗E j−m

�

[o j−m]
�

+ pr∗E ′1
�

[o′1]
�

+ · · ·+ pr∗E ′r+1

�

[o′r+1]
�

,

where pr Ji
: J → Ji , prEi

: J → Ei and prE ′i
: J → E ′i are the projections. Then it follows immedi-

ately from the form of (6.136.13) that h 6= cl(−θ)∪ h ′, i.e. the primitive part of h is non-zero.
Finally it remains to ensure that the primitive part of h does not vanish when restricted to non-

empty open subsets of T , i.e. that it is not supported on a divisor of T . The observation is the same
as in the proof of Proposition 5.145.14: by construction h is a tensor product of classes in

H 1( J1)⊗H 1(C1), . . . , H 1( Jm)⊗H 1(Cm), H 1(E1)⊗H 1(E1), . . . , H 1(E j−m)⊗H 1(E j−m),

H 2(E ′1), . . . , H 2(E ′r+1).

So its factor in H 1(C1) ⊗ · · · ⊗ H 1(Cm) ⊗ H 1(E1) ⊗ · · · ⊗ H 1(E j−m) ⊂ H j (T ) has maximal Hodge
level. The same goes for the primitive part of h , which then cannot be supported on a divisor of T .
In view of Lemma 5.75.7 and Proposition 6.106.10, the proof is now completed.

We end this chapter by a remark and a conjecture. Let (C , x0) be a very general pointed curve
overM g ,1, with J its Jacobian. From Theorem 6.136.13 we know that

[C ]( j ) /∈ Z0F j CH g−1( J ) for g ≥ j + 2.

Moreover, by Conjecture 6.16.1 we expect that

[C ]( j ) /∈ Z0F 1 CH g−1( J ) for g ≥ 2 j + 1.

Observe that there are exactly (2 j + 1)− ( j + 2) = j − 1 values of g to fill the gap between the terms
Z0F j CH g−1( J ) and Z0F 1 CH g−1( J ). So we make the following guess.
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Conjecture 6.14. For (C , x0) very general overM g ,1 with g ≥ 2 j + 2− k and 1 ≤ k ≤ j , we have

[C ]( j ) /∈ Z0F k CH g−1( J ).

Using Polishchuk’s sl2-action on T ( J ) (see Section 5.15.1), we show that the bound on g is sharp.
Recall the classes pi =F

�

[C ](i−1)

�

and qi =F
�

θ · [C ](i )
�

. The following result generalizes [Pol05Pol05],
Corollary 0.2 (which corresponds to the case k = 1).

Proposition 6.15. Let (C , x0) be a smooth projective pointed curve of genus g over C. Then for g ≤
2i − 1− k and 1 ≤ k ≤ i − 1, we have

T i
(i−1)( J ) ⊂ Z0F k CHi ( J ).

In particular pi ∈ Z0F k CHi ( J ).

Proof. The argument is essentially the same as in Lemma 5.135.13. By Theorem 5.15.1, the component
T i
(i−1)( J ) is spanned by monomials

(6.14) qa1
· · · qam

pb with a1 + · · ·+ am + b = i .

To show that all such monomials belong to Z0F k CHi ( J ), we proceed by induction on b . For
b ≤ i − k , i.e. a1 + · · ·+ am = i − b ≥ k , we have by (6.46.4) and (6.36.3)

qa1
· · · qam

∈ CHi−b
(i−b )( J ) =F

�

CH g
(i−b )( J )

�

⊂ Z0F i−b CHi−b ( J ) ⊂ Z0F k CHi−b ( J ),

so that qa1
· · · qam

pb ∈ Z0F k CHi ( J ).
Now suppose all monomials in (6.146.14) with i − k ≤ b < b0 are in Z0F k CHi ( J ). Then for each

qa1
· · · qam

pb0
with a1 + · · ·+ am = i − b0, we look for a monomial

(6.15) qa1
· · · qam

pc1
· · · pc g−i+1

∈ CH g
(i−1)( J ) ⊂ Z0F i−1 CH g ( J ) ⊂ Z0F k CH g ( J ),

with c1+· · ·+c g−i+1 = g −i+b0 and c1, . . . , c g−i+1 ≥ 2. The existence of such monomials is guaranteed
by our assumption: in fact, since g ≤ 2i − 1− k and b0 ≥ i − k + 1, we have

g − i + b0 ≥ 2( g − i + 1),

meaning that one can always divide g − i + b0 into g − i +1 parts, with all parts greater than or equal
to 2. We apply g − i times the di�erential operator D in (5.15.1) to (6.156.15), and we obtain

(6.16) D g−i (qa1
· · · qam

pc1
· · · pc g−i+1

) ∈ Z0F k CHi ( J ).

Then by analyzing the explicit expression ofD, we find in (6.166.16) a non-zero multiple of qa1
· · · qam

pb0

(with sign (−1) g−i ), plus multiples of monomials qa′1
· · · qa′

m′
pb ′ with b ′ < b0. Those monomials are

in Z0F k CHi ( J ) by the induction assumption, and so is qa1
· · · qam

pb .
In particular, the last stage of the induction shows that pi ∈ Z0F k CHi ( J ).
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6. Tautological classes in higher Griffiths groups

g [C ](1) [C ](2) [C ](3) [C ](4) [C ](5)
3 /∈ Z0F 1 C

4 /∈ Z0F 1 C /∈ Z0F 2

∈ Z0F 1 P
5 /∈ Z0F 1 C /∈ Z0F 1 ? /∈ Z0F 3

∈ Z0F 2

6 /∈ Z0F 1 C /∈ Z0F 1 V /∈ Z0F 2 ? /∈ Z0F 4

∈ Z0F 1 P ∈ Z0F 3

7 /∈ Z0F 1 C /∈ Z0F 1 V /∈ Z0F 1 ? /∈ Z0F 3 ? /∈ Z0F 5

∈ Z0F 2 ∈ Z0F 4

Table 2. Results and questions in genus g ≤ 7.

By applying F −1 to p j+1, we obtain that [C ]( j ) ∈ Z0F k CH g−1( J ) for g ≤ 2 j + 1 − k and
1 ≤ k ≤ j .

In Table 22, we summarize some of our findings in low genus cases. Statements marked with C, P
and V are known to Ceresa, Polishchuk and Voisin respectively. Those without marks are proven in
this section, while those with a question mark remain open.
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2. Preliminaries

1. (page 88) The polarization λ provides Lλ ∈ Pic(A) ⊗
Z
Q defined in (2.12.1). Conversely, to every

L ∈ Pic(A) ⊗
Z
Q that is relatively ample, symmetric and trivialized along the zero section, we may

associate a symmetric quasi-isogeny ϕL ∈Hom(A, At )⊗
Z
Q. It sends a point x ∈ As for some s ∈ S to

the class ϕL(x ) := Ls⊗T ∗x (Ls )
−1, where Tx is the translation of As by x . In total we have ϕLλ

= λ⊗
Z
Q.

There is a classical sign issue in the definition of ϕL, hence of the polarization λ (see [Pol03Pol03],
Section 17.3). After some struggle we decide to choose the somewhat unconventional definition
(which is also adopted by Beauville). The reason is well explained in [Bea10Bea10], Section 1.6, and we
dare to repeat it here.

Most people follow Mumford’s formula φL(x ) = −ϕL(x ) = T ∗x (L) ⊗ L−1 (see [Mum70Mum70], Sec-
tion 6). Then for an elliptic curve E defined over k , and for L = OE (o), we have φL(x ) = OE (o − x ).
More generally, consider a smooth projective curve C over k with its Jacobian J := Pic0(C ). By choos-
ing a point x0 ∈ C (k ) we obtain an embedding ι : C → J , defined on points by ι(x ) := OC (x − x0).
On the other hand, we have the Albanese map alb: C → J t also with respect to x0. We would very
much like to identify the two maps ι and alb. However, the identification is given by ϕL and not
φL = −ϕL (here L is the line bundle associated to a symmetric theta divisor).

Here we also followed [GMxxGMxx], Chapter 11 in the definition of a polarization, as it turned out
to be the right approach. The point is that one should regard the polarization as an isogeny, rather
than a line bundle or a divisor class. In fact, the line bundle or divisor class with Z-coe�cients may
not even exist in the relative setting (see [GH13GH13], Section 1), and with Q-coe�cients it is di�cult to
recover the corresponding isogeny.

2. (page 1212) Regarding Part (ii) of Conjecture 2.102.10, Grothendieck’s standard conjectures predict
that numerical and homological equivalences coincide (see [Kle94Kle94], Section 5). This is known for
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abelian varieties in characteristic zero, but only for codimension i = 0, 1, g − 1 and g in positive
characteristic (see [Mil02Mil02] for more details).

Conjecture 2.102.10 is a concrete special case of a more general conjecture, the so-called Bloch-
Beilinson-Murre (BBM) conjecture. We refer to [Mur93Mur93], [Jann94Jann94] and [Voi02Voi02], Chapitre 23 for
the precise statements. Roughly speaking, the BBM conjecture predicts for all varieties X ∈ Vk a
descending filtration F •CHi (X ) on CHi (X ), with F 0 CHi (X ) = CHi (X ) and F i+1 CHi (X ) = 0,
such that the terms F j are stable under correspondences. Also for all 0 ≤ j ≤ i , the graded piece

Gr j
F CHi (X ) = F j CHi (X )/F j+1 CHi (X )

should in some sense be controlled by the cohomology group H 2i− j (X ). Further, one expects that
H 2i (X ) controls Gr0

F CHi (X ) via the cycle class map, and that H 2i−1(X ) controls Gr1
F CHi (X ) via

the Abel-Jacobi map.
In the case of an abelian variety A, the Beauville decomposition provides a candidate for the

conjectural filtration, namely
F j CHi (A) :=

⊕

j ′≥ j
CHi

( j ′)(A).

Conjecture 2.102.10 states exactly what is needed for this candidate to satisfy all requirements set by the
BBM conjecture.

3. A tale of two tautological rings (I)

3. (page 2626) We refer to [Fab99Fab99], Conjecture 1, [FP00FP00], Section 0.5, and [Pan02Pan02], Conjecture 1
for various versions of the Faber conjectures. These conjectures concern the tautological ring of the
following moduli spaces:

(i) moduli of stable n-pointed curves of genus g , denoted byM g ,n ;

(ii) moduli of stable n-poined curves of genus g and of compact type, denoted byM ct
g ,n;

(iii) moduli of stable n-poined curves of genus g with rational tails, denoted byM rt
g ,n;

(iv) moduli of smooth curves of genus g , denoted byM g .

See also Faber’s notes [Fab13Fab13] for the current status of these conjectures, and [PT12PT12], Corollary 2.5
for a first counterexample in Case (i) (forM 2,n).

OurM g ,1 version (Conjecture 3.23.2) is the closest to the originalM g version. Although it is never
stated explicitly in the literature, one can relate it to Case (iii) via the isomorphism(s)

M g ,1 'M
rt
g ,1('C g ).
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More generally, for n ≥ 1 there are surjective mapsM rt
g ,n −� C n

g , where C n
g is the n-th power

of the universal curve over M g . One can also formulate a version of the conjectures for C n
g (see

Speculation 4.214.21). It is believed that the versions forM rt
g ,n and C n

g are equivalent, but to the best of
our knowledge there is no written proof of this.

4. (page 3838) Consider the component eR g−1, where the expected socle is situated. It is spanned
by the image of Mon(0,2 g−2), and the goal is to relate all elements in Mon(0,2 g−2) to a single element,
namely x0,2 g−2. So far we have been able to associate a relation to every element in Mon(0,2 g−2) other
than x0,2 g−2. By defining a partial order on Mon(0,2 g−2), we can show that the relation matrix is block
triangular. What is combinatorially di�cult is to prove that all diagonal blocks are of maximal rank.

The construction goes as follows: first remark that there is a correspondence between Mon(0,2 g−2)

and the set of partitions of all integers k such that 0 ≤ k ≤ g − 1. In fact, to every such partition
λ = (i1, . . . , im) with i1 + · · ·+ im = k , we associate the element y g−1−k x0,2i1

· · · x0,2im
in Mon(0,2 g−2).

In particular, the cardinal # Mon(0,2 g−2) is p(0) + · · ·+ p( g − 1), where p(−) stands for the partition
function. Then observe that to every partition λ above, we may associate a partition λ′ of 2 g − 2

λ = (i1, . . . , im) 7→ λ′ = (2i1 + g − 1− k , 2i2, . . . , 2im , 1, . . . , 1
︸ ︷︷ ︸

g−1−k

).

The partial order on Mon(0,2 g−2) is defined as the first part of λ′, i.e. 2i1+ g −1−k . Using the elements
{xi+2,i} located to the right of the diagonal i = j in the Dutch house, we define the monomial

Mλ′ = x2i1+ g−1−k+2,2i1+ g−1−k x2i2+2,2i2
· · · x2im+2,2im

x g−1−k
3,1 ,

which belongs to Mon(4 g−4+2m−2k ,2 g−2). We see that for all λ except λ = ( g − 1), we have 4 g − 4+
2m − 2k > 2 g , so that Mλ′ = 0 in eR . Then to every element in Mon(0,2 g−2) other than x0,2 g−2,
we associate a relation F 2 g−2+m−k (Mλ′) = 0 in eR g−1. By the explicit expression of F (3.113.11), we can
prove that F 2 g−2+m−k (Mλ′) only contains terms of order greater than or equal to the first part of λ′.

For eR i with i > g − 1, the situation is similar: this time there are no more new generators x0,2i ,
and every element in Mon(0,2i ) corresponds to a relation. The question is still to show that the relation
matrix is of maximal rank. Here we should say that, di�cult combinatorics aside, we do get a feeling
why the socle should lie in codimension g − 1, and why beyond g − 1 everything should vanish.

4. A tale of two tautological rings (II)

5. (page 5050) This notion of tautological rings can be extended to more general settings. In fact, for
any object X ∈ VS , we have the same tautological maps

T : X m→ X n , with m ≥ 1 and n ≥ 0,
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such that each factor of T is a projection. Then for n ≥ 0, we define the system of tautological rings
of X n to be the collection of smallest Q-subalgebras

�

R(X n) ⊂CH(X n)
	

, such that

(i) the ringR(X ) contains a (usually finite) set A of geometrically constructed classes;

(ii) the system is stable under pull-backs and push-forwards via all tautological maps T .

Over a field (i.e. S = k ), this notion is studied by O’Sullivan in [O’S10O’S10]. Also an interesting case
is when X is a K 3 surface. Here we take A to be a finite set that spans Pic(X ) ×

Z
Q. In this case,

Voisin conjectured that for all n ≥ 1, the restriction of the cycle class map cl: CH(X n)→ H (X n) to
R(X n) is injective ([Voi08Voi08], Conjecture 1.6). When n = 1, this is the well-known result of Beauville
and Voisin ([BV04BV04], Theorem 1). The conjecture turns out to be rather strong: for example it implies
that the motive of X is finitely dimensional in the sense of Kimura-O’Sullivan (see Conjecture 5.195.19).

For any variety X ∈ Vk , one may further generalize this notion of tautological rings by including
a finite set A ∈R(X m) for some m > 1. O’Sullivan showed that the finite dimensionality ofR(X n)
for all n is roughly equivalent to the Kimura-O’Sullivan finite dimensionality of the motive of X
([O’S10O’S10], Theorem 1.1).

6. (page 6161) Recently a new set of tautological relations for various moduli spaces (includingC n
g ) has

been conjectured by Pixton ([Pix12Pix12], Conjecture 1), and proven by Pandharipande-Pixton-Zvonkine
in cohomology ([PPZ13PPZ13], Corollary 2), and by Janda in the Chow ring ([Jan13Jan13], Proposition 1).
Data have been collected regarding the discrepancies between Pixton’s relations and the conjectural
Gorenstein property, for C n

g with many values of g and n. Our computation seems to be coherent
with those data.

Corollary 4.314.31 shows that when g ≤ 7, the Gorenstein property for the symmetric powers C [n]g

holds for n arbitrarily large. It then appears that after g = 24 for n = 0 and g = 20 for n = 1, the
number g = 8 is the ultimate critical number for any large n (at least if one restricts to the symmetric
powers). It is certainly one of the most interesting cases for those who want to prove or disprove the
various Gorenstein type properties.

On the other hand, following the first counterexample given by Petersen and Tommasi (forM 2,n ;
see [PT12PT12], Corollary 2.5), one tends to think that the tautological rings behave worse as n increases.
So it is somewhat surprising to get positive results such as Corollary 4.314.31 for arbitrarily large n. Pre-
viously, similar positive results were obtained only for the moduli spacesM 0,n ([Kee92Kee92], Section 2),
M ct

1,n ([Tav11Tav11], Theorem 0.1),M 1,n ([Pet12Pet12], Section 1) andM rt
2,n ([Tav11bTav11b], Theorem 0.1).

Finally, our approach sheds some light on the importance of the universal Jacobian. One might
hope that the nice structures and powerful machinery on the Jacobian side would help resolving
further problems on the moduli and curve sides.
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5. Tautological classes on a Jacobian variety

7. (page 7272) The following remark is based on a discussion with Johan Commelin. Similar to the
Faber-Pandharipande cycle, there is a geometrically constructed 1-cycle on C × C × C introduced
by Gross and Schoen (see [GS95GS95], Section 0). It comes in two versions, one with respect to a point
x0 ∈ C (k ) and the other canonical. Denote by ∆ the diagonal C ⊂ C × C and by ∆sm the small
diagonal C ⊂ C ×C ×C . We then define

∆x0
= [∆sm]−

�

[∆× x0] + permutations
�

+
�

[x0 × x0 ×C ] + permutations
�

,

∆K = [∆sm]−
1

2 g − 2
�

[∆]×K + permutations
�

+
1

(2 g − 2)2
�

K ×K × [C ] + permutations
�

.

We have ∆x0
,∆K ∈ CH2(C ×C ×C )S3 , and they are both homologically trivial.

Similar to Proposition 5.105.10, we can express ∆x0
and ∆K as the pull-back of certain classes in

T ( J ) via the mapφ3 : C ×C ×C → J with respect to x0, together with the class ξ3 = [x0×C ×C ]+
permutations ∈ CH1(C ×C ×C )S3 . After some tedious but elementary computations, we obtain

∆x0
=φ∗3(p2) + 2φ∗3(q2) +φ

∗
3(q1) · ξ3,

and
∆K =φ

∗
3(p2)−

2
2 g − 2

φ∗3(q1 p1) +
4 g

2 g − 2
φ∗3(q2)−

2(2 g − 3)
(2 g − 2)2

φ∗3(q
2
1 ).

If we work modulo algebraic equivalence, since q1 and q2 are algebraically trivial, only the p2 terms
on the right-hand side above will survive. In fact, by a similar argument as in Proposition 5.105.10 (ii),
one can show that ∆x0

(resp. ∆K ) is algebraically trivial if and only if p2 is algebraically trivial. The
latter is also equivalent to the Ceresa cycle [C ]− [−1]∗[C ] being algebraically trivial.

6. Tautological classes in higher Gri�ths groups

8. (page 8686) When S =C, the filtration F •H CHi (X ) is defined by replacing the vanishing of

Γ∗ : H 2i ′− j (Y ,Q)→ H 2i− j (X ,Q)

by the condition that
Γ∗
�

H 2i ′− j (Y ,Q)
�

⊂N i− j+1H 2i− j (X ,Q),

where N k H m(X ,Q) is the largest Q-sub-Hodge structure of H m(X ,Q) such that N k H m(X ,C) ⊂
F k H m(X ,C). Besides F •B CHi (X ) and F •H CHi (X ), there is yet a third version of Saito’s filtration,
denoted by F •B M CHi (X ) in [Sai00Sai00], Section 1. It replaces the condition above by

Γ∗
�

H 2i ′− j (Y ,Q)
�

⊂ eN i− j+1H 2i− j (X ,Q),
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where
eN k H m(X ,Q) =

∑

Y ,→X
codim(Y )≥k

Ker
�

H m(X ,Q)→ H m(X −Y ,Q)
�

.

The three filtrations F •B M CHi (X ), F •B CHi (X ) and F •H CHi (X ) are studied in [Sai96Sai96], [Sai00Sai00]
and [Sai00bSai00b] respectively for di�erent purposes. By definition we have F j

B CHi (X ) = F j
B M CHi (X ) =

F j
H CHi (X ) for j ≤ 2, and in general

F j
B CHi (X ) ⊂ F j

B M CHi (X ) ⊂ F j
H CHi (X ).

Further, the generalized Hodge conjecture predicts eN • =N •, and thus F •B M CHi (X ) = F •H CHi (X ).
Saito proved that by assuming the standard conjecture ∼hom=∼num, we also have F •B CHi (X ) =
F •B M CHi (X ) ([Sai00Sai00], Theorem 1.1).

9. (page 8686) In fact, the locus
�

s ∈ S : αs ∈ F j CHi (Xs )
	

is a countable union of Zariski-closed
subsets of S . One way to see this is to use relative Hilbert schemes (or Chow varieties). Since objects
in VS are projective over S , one can parametrize all data in Definition 6.36.3 by countably many projec-
tive schemes over S (note that the cohomological condition in each inductive step is Zariski-closed).
The more precise procedure is documented in [Voi02Voi02], Section 22.2 (see also [Voi12bVoi12b], Sections 0.1
and 2.1).

Similar to Remark 5.55.5, there is also a more general argument without using projectivity. First
remark that the data π : X → S and α can be defined over a finitely generated subfield k ⊂ C.
Denote by η the generic point of S/k . We can extend Definition 6.36.3 to more general settings (over
a arbitrary field) using ℓ-adic cohomology. In particular, we obtain the filtration F •CHi (Xη) over η.
Then if αη ∈ F j CHi (Xη), by specialization we have αs ∈ F j CHi (Xs ) for all s ∈ S (C). On the other
hand if αη /∈ F j CHi (Xη), by base change we have αs /∈ F j CHi (Xs ) for any s ∈ S (C) that maps to η,
or equivalently, for any s ∈ S (C) that does not lie in a subvariety of S defined over k . Since k is
finitely generated and hence countable, there are only countably many such varieties. This argument
can also be found in [Ike03Ike03], proof of Proposition 2.10.
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Samenvatting

Tautologische klassen zijn meetkundig geconstrueerde klassen van algebraïsche cykels. De meetkunde
en de enumeratieve eigenschappen van dergelijke klassen zijn bijzonder interessant.

Het eerste deel van dit proefschrift verenigt twee klassieke noties van tautologische klassen: de
ene op de moduliruimte van krommen (in de zin van Mumford, Faber, etc.), en de andere op de
Jacobiaan van een kromme (in de zin van Beauville, Polishchuk, etc.). In navolging van Polishchuk,
construeren we relaties tussen tautologische klassen gebruikmakend van motivische structuren van de
Jacobiaan. Met deze relaties verkrijgen we diverse gevolgen van de bekende vermoedens van Faber.

Het tweede deel is gewijd aan het detecteren van tautologische klassen die niet verdwijnen op de
generieke Jacobiaan. Gebruikmakend van een degeneratie-argument van Fakhruddin ontwikkelen
we een invariant in deze context. We detecteren niet-triviale klassen in de Chowgroepen en in de
hogere Gri�thsgroepen in de zin van S. Saito. In het bijzonder krijgen we een nieuw bewijs van een
stelling van Green en Gri�ths, alsook een verbetering van een resultaat van Ikeda.
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Résumé

Les classes tautologiques sont des classes de cycles algébriques construites de façon géométrique. La
géométrie et les propriétés énumératives autour de ces classes sont particulièrement intéressantes.

La première partie de cette thèse unifie deux notions classiques de classes tautologiques : l’une
sur l’espace de modules des courbes (d’après Mumford, Faber, etc.), et l’autre sur la jacobienne d’une
courbe (d’après Beauville, Polishchuk, etc.). Suivant Polishchuk, on construit des relations entre les
classes tautologiques en utilisant les structures motiviques de la jacobienne. Avec ces relations, on
obtient diverses conséquences sur les célèbres conjectures de Faber.

La deuxième partie est consacrée à la détection des classes tautologiques qui ne s’annulent pas sur
la jacobienne générique. En utilisant un argument de dégénération dû à Fakhruddin, on développe
un invariant simple dans ce contexte. On détecte des classes non-triviales dans les groupes de Chow
et dans les groupes de Gri�ths supérieurs au sens de S. Saito. En particulier, on obtient une nouvelle
preuve d’un théorème de Green et Gri�ths, ainsi qu’une amélioration d’un résultat d’Ikeda.
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