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Introduction

Let X be a projective algebraic variety, defined over the complex numbers. The

study of X can be approached from two points of view: the algebraic point of

view, in which one is interested in the local rings of the points of X , in rational

or regular maps from X to other varieties, and the analytic (sometimes called

“transcendental”) point of view in which it is the notion of a holomorphic function

onX which plays the principal role. One knows that this second point of view shows

itself to be particularly fecund provided X is nonsingular, since this hypothesis

allows one to apply all the resources of the theory of Kähler manifolds (harmonic

forms, currents, cobordism, etc.).

In many questions, the two points of view lead to essentially equivalent results,

although by very different methods. For example, we know that the differential

forms which are holomorphic at each point of X are none other than the ratio-

nal differential forms which are everywhere “of the first kind” (the variety X still

assumed to be non-singular); Chow’s Thm., which says that every closed analytic

subspace of X is an algebraic variety, is another example of the same type.

The principal goal of this paper is to extend this equivalence to coherent sheaves ;

in a precise way, we show that coherent algebraic sheaves and coherent analytic

sheaves correspond bijectively and that the correspondence between the two cate-

gories of sheaves leaves the cohomology groups invariant (see no 12 for the state-

ments); we indicate many applications of these results, notably to the comparison

between algebraic fiber spaces and analytic fiber spaces.

The first two paragraphs are preliminary. In §1 we recall the definition and the

principal properties of “analytic spaces.” The definition that we have adopted is the

one proposed by H. Cartan in [3], except for the fact that H. Cartan limited himself

to normal varieties, a useless restriction for our goal; a very similar definition has

been used byW.-L. Chow in his works, as yet unpublished, on this subject. In §2, we

show how one can equip every algebraic variety X with the structure of an analytic

space, and we give many elementary properties of this. The most important thing

is without doubt the fact that, if Ox (resp. Hx) denotes the local ring (resp. the

ring of germs of holomorphic functions) of X at the point x, the rings Ox and Hx

have the same completion, and, as a result, form a “flat couple” in the sense of the

Appendix, Def. 4.

§3 contains the proofs of the theorems about coherent sheaves to which we have

alluded above. These proofs rest principally both on the theory of coherent algebraic
1
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sheaves developed in [18], and on Thms. A and B in [3], exp. XVIII–XIX; in order

to be complete, we have reproduced the proofs of these theorems.

§4 is dedicated to applications1: invariance of Betti numbers under an automor-

phism of the field of complex numbers, Chow’s Thm., comparison of algebraic and

analytic fiber spaces with structure group a given algebraic group. Our results on

this last question are still greatly incomplete: of all the semisimple groups, we only

know how to deal with the special linear group and the symplectic group.

Finally, we have needed a certain number of results about local rings which are

not found explicitly in the literature; we have grouped them into an Appendix.

1. Analytic Spaces

1. Analytic subsets of affine space. Let n be an integer ≥ 0, and let Cn be

the n-dimensional vector space over the complex numbers, equipped with the usual

topology. If U is a subset of Cn, we say that U is analytic if, for each x ∈ U ,

there are functions f1, . . . , fk, holomorphic in a neighborhood W of x, such that

U ∩ W is identical to the set of points x ∈ W satisfying the equations fi(z) = 0,

i = 1, . . . , k. The subset U is then locally closed in Cn (i.e., is the intersection of

an open and a closed set), whence locally compact provided one equips it with the

topology induced by that of Cn.

We are now going to equip the topological space U with a sheaf. If X is a any

space, we denote by C (X) the sheaf of germs of functions on X with values in C

(cf. [18], no 32). If H denotes the sheaf of germs of holomorphic functions on Cn,

the sheaf H is a subsheaf of C (Cn). So let x be a point in U ; we have a restriction

homomorphism

ǫx : C (Cn)x −→ C (U)x.

The image of Hx under ǫx is a subring Hx,U of C (U)x; the Hx,U form a subsheaf

HU of C (U), which we call the sheaf of germs of holomorphic functions on U ; it

is a sheaf of rings. We denote by Ax(U) the kernel of ǫx : Hx → Hx,U ; in light of

the definition of Hx,U , it is the set of f ∈ Hx whose restriction to U is zero in a

neighborhood of x; we frequently identify Hx,U with the quotient ring Hx/Ax(U).

Since we have a topology and a sheaf of functions on U , we can define the notion

of a holomorphic map (cf. [3], exp. VI as well as [18], no 32):

Let U and V be two analytic subsets of Cr and Cs, respectively. A map φ :

U → V will be called holomorphic if it is continuous, and if f ∈ Hφ(x),V implies

f ◦φ ∈ Hx,U . This is the same as saying that the s coordinates of φ(x), x ∈ U , are

holomorphic functions of x, which is to say sections of HU .

The composition of two holomorphic maps is holomorphic. A bijection φ : U →

V is called an analytic isomorphism (or simply an isomorphism) if φ and φ−1 are

holomorphic; this is equivalent to saying that φ is a homeomorphism of U onto V

which transforms the sheaf HU onto the sheaf HV .

If U and U ′ are two analytic subsets of C
r and C

r′ , the product U × U ′ is

an analytic subset of Cr+r′ . The properties stated in [18], no 33 are valid, by

replacing everywhere locally closed subset with analytic subset, and regular map

1We have left aside the applications to automorphic functions, for which we refer to [3], exp. XX.



ALGEBRAIC GEOMETRY AND ANALYTIC GEOMETRY 3

by holomorphic map; in particular, if φ : U → V and φ′ : U ′ → V ′ are analytic

isomorphisms, then so is

φ× φ′ : U × U ′ −→ V × V ′.

Nevertheless, contrary to the algebraic case, the topology of U×U ′ is the product

of the topologies of U and U ′.

2. The notion of an analytic space.

Definition 1. We call an analytic space a set X equipped with a topology and a

subsheaf HX of the sheaf C (X), these data being subject to the following axioms:

(H1): There exists an open cover {Vi} of X such that each Vi, equipped with

the topology and sheaf induced by those of X , is isomorphic to an analytic

subset Ui of an affine space, equipped with the topology and sheaf defined

in no 1.

(H2): The topology of X is Hausdorff.

The definitions of no 1, being of a local nature, extend to analytic spaces. Thus,

if X is an analytic space, the sheaf HX will be called the sheaf of germs of holomor-

phic functions on X ; if X and Y are two analytic spaces, a map φ : X → Y will be

called holomorphic if it is continuous and if f ∈ Hφ(x),Y implies f ◦φ ∈ Hx,X ; these

maps form a family of morphisms (in the sense of N. Bourbaki) for the structure

of an analytic space.

If V is an open subset of an analytic space X , we will call a chart of V any

analytic isomorphism of V onto an analytic subspace U of some affine space. The

axiom (H1) shows that it is possible to cover X by opens possessing charts. If Y

is a subset of X , we will say that Y is analytic if, for each chart φ : V → U , the

image φ(Y ∩ V ) is an analytic subset of U . If this is the case, then Y is locally

closed in X , and can be equipped in a natural way with the structure of an analytic

space, said to be induced by that of X (cf. [18], no 35 for the algebraic case).

Likewise, let X and X ′ be two analytic spaces; then there exists on X × X ′ a

unique analytic structure such that if φ : V → U and φ′ : V ′ → U ′ are charts,

φ×φ′ : V ×V ′ → U ×U ′ is a chart of V ×V ′; equipped with this structure, X×X ′

is called the product of the analytic spaces X and X ′; one will observe that the

topology of X ×X ′ coincides with the product of the topologies of X and X ′.

We leave to the reader the task of transporting the other results of [18], nos 34–35.

3. Analytic sheaves. The definition of analytic sheaves given in [2], exp. XV

extends to the case of an analytic space X : an analytic sheaf F is simply a sheaf

of modules over the sheaf of rings HX , which is to say a sheaf of HX -modules

(cf. [18], no 6).

Let Y be a closed analytic subspace of X ; for each x ∈ X , let Ax(Y ) be the set

of f ∈ Hx,X whose restriction to Y is zero in a neighborhood of x. The Ax(Y )

form a sheaf of ideals A (Y ) of the sheaf HX ; the sheaf A (Y ) is thus an analytic

sheaf. The quotient sheaf HX/A (Y ) is zero outside of Y , and its restriction to Y

is none other than HY , by the very definition of the induced structure; one may

thus identify it with HY , cf. [18], n
o 5.
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Proposition 1. a) The sheaf HX is a coherent sheaf of rings ([18], no 15).

b) If Y is a closed analytic subspace of X , the sheaf A (Y ) is a coherent analytic

sheaf (i.e., a coherent sheaf of HX -modules, in the sense of [18], no 12).

Proof. In the case where X is open in Cn, these results are due to K. Oka and

H. Cartan, cf. [1], Thms. 1 and 2 as well as [2], exp. XV–XVI. The general case

reduces immediately to these; indeed, since the question is local, one may assume

that X is a closed analytic subset of an open U in Cn; one has HX = HU/A (X),

and, according to the preceding, HU is a coherent sheaf of rings and A (X) is a

coherent sheaf of ideals of HU ; it follows from this that HU is coherent, cf. [18],

no 16. The assertion b) is proven in the same way. �

As other examples of coherent analytic sheaves, we indicate the sheaves of germs

of sections of fiber spaces with vector space fibers (cf. no 20), and the sheaf of germs

of automorphic functions.

4. A neighborhood of a point in an analytic space. Let X be an analytic

space, x a point of X , and Hx the ring of germs of holomorphic functions on X at

the point x; this ring is an algebra over C, admitting as its unique maximal ideal the

idealm formed from the functions f vanishing at x, and the field Hx/m is none other

than C; in other words, Hx is a local algebra over C. When X = Cn, the algebra

Hx is none other than the algebra C{z1, . . . , zn} of convergent series in n variables;

in the general case, Hx is isomorphic to a quotient algebra C{z1, . . . , zn}/a, since X

is locally isomorphic to an analytic subspace of Cn; if follows from this that Hx is

a Noetherian ring; it is moreover an analytic ring, in the sense of H. Cartan ([3],

exp. VII).

Once sees easily that the knowledge of Hx determines X in a neighborhood of X

([3], loc. cit.). In particular, for X to be isomorphic to Cn in a neighborhood of x,

it is necessary and sufficient that the algebra Hx be isomorphic to C{z1, . . . , zn};

one sees easily that this condition is equivalent to saying that Hx is a regular local

ring of dimension n (for all that concerns local rings, cf. [15]). The point x is then

called a simple point of dimension n on X ; if all the points of X are simple, X is

called a manifold.

We return to the general case; the ring Hx having no nonzero nilpotent elements,

it follows that (cf. [16], Chap. IV, §2) one has:

0 =
⋂

pi,

the pi denoting the minimal prime ideals of Hx. If one denotes byXi the irreducible

components of X at x, one has pi = Ax(Xi) and Hx/pi = Hx,Xi
. This essentially

carries the local study ofX to that of theXi; for example, the dimension (analytic—

i.e., half of the topological dimension) of X at x is the supremum of the dimensions

of the Xi. One observes that this dimension coincides with the dimension (in the

sense of Krull) of the local ring Hx; indeed, it suffices to verify this when X is

irreducible at x, i.e., when Hx is an integral domain; in this case, if one denotes

by r the analytic dimension of X at x, one knows (cf. [14], §4 as well as [3],

exp. VIII) that Hx is a finite extension of C{z1, . . . , zr}; since C{z1, . . . , zr} has as
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its completion the algebra of formal power series C[[z1, . . . , zr]], its dimension is r,

and thus it is also so for Hx, according to [15], p. 18, which proves our assertion.

2. The Analytic Space Associated to an Algebraic Variety

In what follows, we are going to consider algebraic varieties over the field C.

Such a variety will be equipped with with two topologies: the “usual” topology,

and the “Zariski” topology. In order to avoid confusion, we will place the letter Z

in front of notions relative to the latter topology; for example, “Z-open” will signify

“open in the Zariski topology.”

5. Definition of the analytic space associated to an algebraic variety. The

possibility of equipping every algebraic variety with the structure of an analytic

space results from the following lemma:

Lemma 1. a) The Z-topology of Cn is less fine than the usual topology.

b) Every Z-locally closed subset of Cn is analytic.

c) If U and U ′ are two Z-locally closed subsets of Cn and Cn′

, and if f : U → U ′

is a regular map, then f is holomorphic.

d) In the hypotheses of c), if one supposes moreover that f is a biregular iso-

morphism, then it is also an analytic isomorphism.

Proof. By definition, a Z-closed subset of Cn is defined as the zero set of a certain

number of polynomials; since a polynomial is continuous (resp. holomorphic) in

the usual topology, one deduces from this a)
(

resp. b)
)

. In order to prove c), one

may assume that U ′ = C; one must then show that every regular function on U is

holomorphic, which results again from the fact that a polynomial is a holomorphic

function. Finally, d) is an immediate consequence of c), applied to f−1. �

Now let X be an algebraic variety over the field C (in the sense of [18], no 34,

so not necessarily irreducible). Let V be a Z-open subset of X , possessing an

(algebraic) chart

φ : V −→ U

onto a Z-locally closed subset U of an affine space. According to Lemma 1, b), U

can be equipped with the structure of an analytic space.

Proposition 2. There exists on X a unique structure of an analytic space such

that, for every chart φ : V → U , the Z-open set V is open, and φ is an analytic

isomorphism of V (equipped with the analytic structure induced by that of X)

onto U (equipped with the analytic structure defined in no 1).

(More briefly: every algebraic chart must be an analytic chart).

Proof. The uniqueness is clear, since one can cover X by Z-open sets V possessing

charts. In order to prove existence, let φ : V → U be a chart, and transport to V the

analytic structure of U by way of φ−1. If φ′ : V ′ → U ′ is another chart, the analytic

structures induced on V ∩V ′ by V and V ′ are the same, by virtue of Lemma 1, d);

moreover, V ∩ V ′ is open at once in V and in V ′, by virtue of Lemma 1, a). By

gluing, one obtains also on X a topology and a sheaf HX which visibly satisfies the

axiom (H1). In order to satisfy (H2), we use the axiom (VA2′) of [18], no 34; with
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the notation of this axiom, the graphs Tij of the identification relations between

two Ui and Uj are Z-closed in Ui × Uj, thus a fortiori closed, which surely shows

that X is Hausdorff. �

Remark. One can give a direct definition of the analytic structure on X , without

passing to the charts φ : V → U . One defines the topology as the least fine in

which the regular functions on the Z-open subsets of X are still continuous, and

one defines Hx,X to be the analytic subring of C (X)x generated by Ox,X (in the

sense of [3], exp. VIII). We leave to the reader the task of verifying the equivalence

of these two definitions.

In what follows, we denote by Xh the set X equipped with the structure of

an analytic space which was just defined. The topology of Xh is finer than the

topology of X ; since Xh can be covered by a finite number of opens possessing

charts, Xh is a locally compact σ-compact2 space.

The following properties result immediately from the definition of Xh:

If X and Y are two algebraic varieties, one has (X × Y )h = Xh × Y h. If Y is

a Z-locally closed subset of X , then Y h is an analytic subset of Xh; moreover, the

analytic structure of Y h coincides with the analytic structure induced on Y by Xh.

Finally, if f : X → Y is a regular map of an algebraic variety X to an algebraic

variety Y , f is also a holomorphic map from Xh to Y h.

6. Relations between the local ring at a point and the ring of holomorphic

functions at that point. Let X be an algebraic variety, and let x be a point of X .

We intend to compare the local ring Ox of regular functions on X at the point x

with the local ring Hx of holomorphic functions on Xh in a neighborhood of x.

Since every regular function is holomorphic, every function f ∈ Ox defines a germ

of a holomorphic function at x, which we denote by θ(f). The map θ : Ox → Hx

is a homomorphism, and maps the maximal ideal of Ox into that of Hx; it extends

then by continuity to a homomorphism θ̂ : Ôx → Ĥx of the completion of Ox into

that of Hx (cf. Appendix, no 24).

Proposition 3. The homomorphism θ̂ : Ôx → Ĥx is bijective.

We will prove the preceding proposition at the same time as another result:

Let Y be a Z-locally closed subset of X , and let Ix(Y ) (or Ix(Y,X) if one wants

to specify X) be the ideal of Ox formed from functions f whose restriction to Y

is zero in a Z-neighborhood of x (cf. [18], no 39). The image of Ix(Y ) under θ is

clearly contained in the ideal Ax(Y ) of Hx defined in no 3.

Proposition 4. The ideal Ax(Y ) is generated by θ
(

Ix(Y )
)

.

Proof. We will first prove Props. 3 and 4 in the particular case where X is the affine

space Cn. Prop. 3 is then trivial, for Ôx and Ĥx are none other than the algebra

C[[z1, . . . , zn]] of formal power series in n indeterminates. We pass to Prop. 4; let a

be the ideal of Hx generated by Ix(Y ) (the ring Ox being identified with a subring

of Hx by way of θ). Each ideal of Hx defines the germ of an analytic subset of X

2In fact, Xh is easily seen to be second countable (hence a fortiori σ-compact, as it is locally

compact) [translator’s note].
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at x, cf. [1], no 3 or [3], exp. VI, p. 6; it is clear that the germ defined by a is none

other than Y . So let f be an element of Ax(Y ); by virtue of the “zero theorem”

(which is valid for the ideals of Hx, cf. [14], p. 278, as well as [2], exp. XIV, p. 3,

and [3], exp. VIII, p. 9) there exists an integer r ≥ 0 such that f r ∈ a. A fortiori,

one has

f r ∈ aĤx = Ix(Y )Ĥx = Ix(Y )Ôx.

But the ideal Ix(Y ) is an intersection of prime ideals, which correspond to the

irreducible components of Y passing through x. According to a theorem of Cheval-

ley (cf. [15], p. 40 as well as [17], p. 67), the same is then true of the ideal IxÔx,

and the relation f r ∈ IxÔx thus implies f ∈ IxÔx. Since Hx is a Noetherian

local ring, one has aĤx ∩ Hx = a (cf. [16], Chap. IV, or Appendix, Prop. 27); one

then has f ∈ a, which proves Prop. 4 in the case under consideration.

We pass to the general case. The question being local, one may assume that X

is a subvariety of an affine space which we denote by U . By definition, one has:

Ox = Ox,U/Ix(X,U) and Hx = Hx,U/Ax(X,U).

The map θ : Ox → Hx is obtained by passage to the quotient from the map

θ : Ox,U → Hx,U , and, according to the preceding, we know that θ̂ : Ôx,U → Ĥx,U

is bijective, and that Ax(X,U) = θ
(

Ix(X,U)
)

Hx,U . Prop. 3 results from this

immediately, by applying Prop. 29 of the Appendix. As for Prop. 4, it results from

the fact that Ax(Y ) is the canonical image of the ideal Ax(Y, U), which is generated

by θ
(

Ix(Y, U)
)

according to the preceding. �

Prop. 3 shows in particular that θ : Ox → Hx is injective, which permits us to

identify Ox with the subring θ(Ox) of Hx. Taking into account this identification,

one has:

Corollary 1. The pair of rings (Ox,Hx) is a flat couple (in the sense of the

Appendix, Def. 4).

Proof. This follows immediately from Prop. 3 and Prop. 28 of the Appendix. �

Corollary 2. The rings Ox and Hx have the same dimension.

Proof. Indeed, one knows that the dimension of a Noetherian local ring is equal to

that of its completion (cf. [15], p. 26). �

Taking into account some results stated in no 4, one obtains the following result

(where we assume X to be irreducible in order to simplify the statement):

Corollary 3. If X is an irreducible algebraic variety of dimension r, the analytic

space Xh is of analytic dimension r at each of its points.

7. Relations between the usual topology and the Zariski topology of an

algebraic variety.

Proposition 5. Let X be an algebraic variety, and U a subset of X . If U is Z-open

and Z-dense in X , then U is dense in X .
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Proof. Let Y be the complement of U in X ; it is a Z-closed subset of X . Let x

be a point of X ; if x does not belong to the closure of U , one has Y = X in a

neighborhood of x, whence Ax(Y ) = 0, with the notation of no 6. Since Ax(Y )

contains θ
(

Ix(Y )
)

, and since θ is injective (Prop. 3), one then has that Ix(Y ) = 0,

which means that Y = X in a Z-neighborhood of x, contrary to the hypothesis

that U is Z-dense in X , QED. �

Remark. One sees easily that Prop. 5 is equivalent to the fact that θ : Ox → Hx

is injective, a much more elementary fact than Prop. 3, and which one can, for

example, prove by reduction to the case of a curve.

We are now going to give two simple applications of Prop. 5.

Proposition 6. In order for an algebraic variety X to be complete, it is necessary

and sufficient that it be compact.

Proof. We first recall a result of Chow (cf. [7], as well as [19], no 4): for each

algebraic variety X , there exists a projective variety Y , a subset U of Y , Z-open

and Z-dense in Y , and a surjective regular map f : U → X whose graph T is

Z-closed in X × Y . One has U = Y if an only if X is complete.

This being the case, we first suppose that X is complete; one then has X = f(Y ),

and, since every projective variety is compact in the usual topology, one concludes

that X is compact. Conversely, suppose X is compact; then T , which is closed in

X × Y , is likewise compact; thus U is closed in Y , and Prop. 5 shows that U = Y ,

which completes the proof. �

The following lemma is essentially due to Chevalley:

Lemma 2. Let f : X → Y be a regular map of an algebraic variety X to an

algebraic variety Y , and suppose that f(X) is Z-dense in Y . Then there exists a

subset U ⊆ f(X) which is Z-open and Z-dense in Y .

Proof. Provided that X and Y are irreducible, this result is well know, cf. [4], exp. 3

or [17], p. 15, for example. We are going to reduce the general case to this: let Xi,

i ∈ I, be the irreducible components of X , and let Yi be the Z-closure of f(Xi)

in Y ; the Yi are irreducible, and one has Y =
⋃

Yi; there is then J ⊆ I such that

the Yj , j ∈ J , are the irreducible components of Y . According to the result recalled

at the beginning, for each j ∈ J , there exist a subset Uj ⊆ f(Xj) which is Z-open

and Z-dense in Yj ; even if it means restricting Uj , one can moreover assume that Uj

does not meet any of the Yk, k ∈ J , k 6= j. Then by setting U =
⋃

j∈J Uj , one

obtains a subset of Y which satisfies all the required properties. �

Proposition 7. If f : X → Y is a regular map of an algebraic variety X to an

algebraic variety Y , the closure and the Z-closure of f(X) coincide.

Proof. Let T be the Z-closure of f(X) in Y . By applying Lemma 2 to f : X → T ,

one sees that there exists a subset U ⊆ f(X) which is Z-open and Z-dense in T .

According to Prop. 5, U is then dense in T , and the same is a fortiori true of f(X);

this shows that T is contained in the closure of f(X); since the opposite inclusion

is clear, this completes the proof. �
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8. An analytic criterion for regularity. One knows that every regular map is

holomorphic. The following proposition (which we will add to moreover in no 19)

indicates in which case the converse is true.

Proposition 8. Let X and Y be two algebraic varieties, and let f : X → Y be

a holomorphic map from X to Y . If the graph T of f is a Z-locally closed subset

(i.e., an algebraic subvariety) of X × Y , the map f is regular.

Proof. Let p = prX be the canonical projection of T onto the first factorX ofX×Y ;

the map p is regular, bijective, and its inverse map is the map x 7→
(

x, f(x)
)

, which

is holomorphic by hypothesis; thus p is an analytic isomorphism, and we have

reduced to showing that p is a biregular isomorphism (since one has f = prY ◦p−1).

This results from the following proposition: �

Proposition 9. Let T and X be two algebraic varieties, and let p : T → X be a

bijective regular map. If p is an analytic isomorphism from T onto X , then it is

also a biregular isomorphism.

Proof. We show first that p is a homeomorphism for the Zariski topologies of T

and X . Let F be a Z-closed subset of T ; since p is an analytic isomorphism, it

is a fortiori a homeomorphism, and p(F ) is closed in X . By applying Prop. 7 to

p : F → X , one concludes that p(F ) is Z-closed in X , which proves our assertion.

It remains for us to show that p transforms the sheaf OX of local rings of X into

the sheaf OT of local rings of T . More precisely, if t is a point of T , and if x = p(t),

the map p defines a homomorphism

p∗ : Ox,X −→ Ot,T ,

and we need to prove that p∗ is bijective3.

From the fact that p is a Z-homeomorphism, p∗ is injective, which allows us to

identify Ox,X with a subring of Ot,T . In order to simplify the exposition, we put

A = Ox,X , A′ = Ot,T , so that one has A ⊆ A′. Likewise, we denote by B (resp. B′)

the ring Hx,X (resp. Ht,T ), and we consider A and A′ as included respectively into

B and B′ (which is allowed, by virtue of Prop. 3). The hypothesis that p is an

analytic isomorphism means that B = B′.

LetXi be the irreducible components ofX passing through x; eachXi determines

a prime ideal pi = Ix(Xi) of the ring A, and the local quotient Ai = A/pi is none

other than the local ring of x on Xi; the quotient field of Ai, call it Ki, is thus

none other than the field of rational functions on the irreducible variety Xi. The

ideals pi are clearly the minimal primes of the ring A, and one has 0 =
⋂

pi. The

set S of elements of A which do not belong to any of the pi is multiplicative (it is

easy to see that it is the set of regular elements of A). The total ring of fractions

AS is equal to the direct product of the fields Ki (cf. Lemma 3 hereafter).

Let Ti = p−1(Xi); since p is a Z-homeomorphism, the Ti are the irreducible

components of T passing through t, and define the prime ideals p′i of A
′; we put

again A′

i = A′/p′i, and we denote by K ′

i the field of fraction of A′

i; the total ring of

3The proof which follows was communicated to me by P. Samuel.
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fractions A′

S′ is equal to the direct product of the K ′

i. We note that p′i ∩ A = pi,

whence Ai ⊆ A′

i, Ki ⊆ K ′

i, and AS ⊆ A′

S′ .

We are first going to show that Ki = K ′

i, said differently that p defines a “bira-

tional” correspondence between Ti andXi; since p : Ti → Xi is a Z-homeomorphism,

Ti and Xi have the same dimension, and the fields Ki and K ′

i have the same tran-

scendence degree over C. If one puts then ni = [K ′

i : Ki], one knows4 that there

exists a nonempty Z-open subset Ui of Xi such that the inverse image of every

point of Ui is made up of exactly ni points of Ti. Since p is bijective, this shows

that ni = 1, and one has of course Ki = K ′

i.

Since AS (resp. A′

S′) is the direct product of the Ki (resp. the K
′

i), it follows that

AS = A′

S′ . So let f ′ ∈ A′; according to what precedes, one has f ′ ∈ AS , i.e., there

exist g ∈ A and s ∈ S such that g = sf ′. One then has g ∈ sA′, whence g ∈ sB′,

which is to say g ∈ sB. But, according to Cor. 1 of Prop. 3, the couple (A,B) is a flat

couple, and one thus has sB ∩A = sA, cf. Appendix, no 22. One then gets g ∈ sA,

i.e., there exists f ∈ A such that g = sf , where again s(f − f ′) = 0, and, since s is

not a zerodivisor in A′; this implies f = f ′, which is to say A = A′, QED. �

We have used in the course of the proof the following result, which we are now

going to prove:

Lemma 3. Let A be a commutative ring, in which the ideal 0 is the intersection of

a finite number of distinct minimal prime ideals pi; let Ki be the field of fractions

of A/pi, and let S be the set of those elements of A which do not belong to any of

the pi. The ring of fractions AS is then isomorphic to the direct product of the Ki.

Proof. One knows that the prime ideals of AS correspond bijectively to those prime

ideals of A which do not meet S (cf. [16], Chap. VI, §3, to which we return for all

that concerns rings of fractions). It follows that, if one puts mi = piAS , the mi are

the only prime ideals of AS ; in particular, they are maximal ideals, clearly distinct,

since mi ∩ A = pi ([16], loc. cit.). Moreover, the field AS/mi is generated by A/pi,

and thus coincides with Ki. It remains to show that the canonical homomorphism

φ : AS −→
∏

AS/mi =
∏

Ki

is bijective.

In the first place, the relation
⋂

pi = 0 implies
⋂

mi = 0, which shows that φ

is injective. We denote then by bi the product (in the ring AS) of the ideals mj,

j 6= i, and we put b =
∑

bi. The ideal b is not contained in any of the mi, and so

is identical to AS , and there exist elements xi ∈ bi such that
∑

xi = 1. One has:

xi ≡ 1 (mod mi) and xi ≡ 0 (mod mj), j 6= i,

which shows that φ(AS) contains the elements (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of
∏

Ki.

Since these elements generate the AS-module
∏

Ki, this indeed shows that φ is

bijective, and completes the proof. �

4This is a classical result, and easy to prove, about correspondences. One will find in [17],

p. 16 a slightly weaker result, but sufficient for the application for which we are using it.
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3. The Correspondence Between Algebraic Sheaves and Coherent

Analytic Sheaves

9. The analytic sheaf associated to an algebraic sheaf. LetX be an algebraic

variety, and let Xh be the analytic space which is associated to it by the process in

no 5. If F is any sheaf on X , we will equip the set F with a new topology which

makes it into a sheaf on Xh; this topology is defined in the following manner: if

π : F → X denotes the projection from F to X , one injects F into Xh × F by

the map f 7→ (π(f), f), and the topology in question is that induced on F by that

of Xh × F . One verifies immediately that one has equipped the set F with the

structure of a sheaf on Xh, a sheaf which we denote by F ′. For each x ∈ X , one

then has F ′

x = Fx; the sheaves F and F ′ only differ in their topologies (F ′ is

nothing more than the inverse image of F under the continuous map Xh → X).

What precedes applies in particular to the sheaf O of local rings of X ; Prop. 3 of

no 6 allows us to identify the sheaf O′ so obtained with a subsheaf of the sheaf H

of germs of holomorphic functions on Xh.

Definition 2. Let F be an algebraic sheaf on X . One calls the analytic sheaf

associated to F the sheaf Fh on Xh defined by the formula:

F
h = F

′ ⊗ H ,

the tensor product being taken over the sheaf of rings O′.

(Said differently, Fh comes from F ′ by extension of the ring of operators to H .)

The sheaf Fh is a sheaf of H -modules, which is to say an analytic sheaf; the

injection O′ → H defines a canonical homomorphism α : F ′ → Fh.

Every algebraic homomorphism (which is to say O-linear)

φ : F −→ G

defines, by extension of the ring of operators, an analytic homomorphism

φh : F
h −→ G

h.

Thus Fh is a covariant functor of F .

Proposition 10. a) The functor Fh is an exact functor.

b) For every algebraic sheaf F , the homomorphism α : F ′ → Fh is injective.

c) If F is a coherent algebraic sheaf, Fh is a coherent analytic sheaf.

Proof. If F1 → F2 → F3 is an exact sequence of algebraic sheaves, it is clear that

the sequence F ′

1 → F ′

2 → F ′

3 is too, and also the sequence

F
′

1 ⊗ H −→ F
′

2 ⊗ H −→ F
′

3 ⊗ H ,

according to Cor. 1 to Prop. 3, which proves a). The assertion b) is likewise a result

of the same corollary.

In order to prove c), we first remark that one has Oh = H ; so if F is coherent

algebraic, and if x is a point of X , one can find an exact sequence:

Oq −→ Op −→ F −→ 0,
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valid on a Z-neighborhood U of x. According to a), one gets an exact sequence

H
q −→ H

q −→ F
h −→ 0,

valid over U . Since U is a neighborhood of x, and since the sheaf of rings H is

coherent (Prop. 1, no 3), this indeed shows that Fh is coherent ([18], no 15). �

The preceding proposition shows in particular that, if I is a sheaf of ideals of O,

the sheaf I h is none other than the sheaf of ideals of H generated by the elements

of I .

10. Extension of a sheaf. Let Y be a Z-closed subvariety of the algebraic vari-

ety X , and let F be a coherent algebraic sheaf on Y . If one denotes by FX the

sheaf obtained by extending F by 0 on X r Y (cf. [18], no 5), one knows that FX

is a coherent algebraic sheaf on X , and the sheaf (FX)h is well-defined; it is a

coherent analytic sheaf on Xh. But on the other hand, the sheaf Fh is a coherent

analytic sheaf on Y h, that one can extend to 0 on Xh r Y h, thus obtaining a new

sheaf (Fh)X . One has:

Proposition 11. The sheaves (Fh)X and (FX)h are canonically isomorphic.

Proof. The two sheaves in question are zero outside of Y h; thus it will suffice for

us to show that their restrictions to Y h are isomorphic.

Let x be a point of Y . We put, in order to simplify notation:

A = Ox,X , A′ = Ox,Y , B = Hx,X , B′ = Hx,Y , E = Fx.

One then has

(Fh)Xx = E ⊗A′ B′ and (FX)hx = E ⊗A B.

The ring A′ is the quotient of A by an ideal a, and, according to Prop. 4 of

no 6, one has B′ = B/aB = B ⊗A A′. By virtue of the associativity of the tensor

product, one then obtains an isomorphism:

θx : E ⊗A′ B′ = E ⊗A′ AA′ ⊗A B −→ E ⊗A B,

which varies continuously with x, as one easily sees; the proposition follows from

this. �

One can express Prop. 11 by saying that the functor Fh is compatible with the

usual identification of F with FX .

11. Homomorphisms induced on cohomology. The notation being the same

as in no 9, let X be an algebraic variety, F an algebraic sheaf on X , and Fh the

analytic sheaf associated to F . If U is a Z-open subset of X , and if s is a section

of F over U , one can consider s as a section s′ of F ′ over the open Uh of Xh, and

α(s′) = s′ ⊗ 1 is a section of Fh = F ′ ⊗ H over Uh. The map s 7→ α(s′) is a

homomorphism

ǫ : Γ(U,F ) −→ Γ(Uh,Fh).



ALGEBRAIC GEOMETRY AND ANALYTIC GEOMETRY 13

Now let U = {Ui} be a finite Z-open covering of X ; the Uh
i form a finite open

covering of Xh, which we denote by Uh. For all systems of indices i0, . . . , iq, one

has, according to the preceding, a canonical homomorphism

ǫ : Γ(Ui0 ∩ · · · ∩ Uiq ,F ) −→ Γ(Uh
i0
∩ · · ·Uh

iq
,Fh),

and hence a homomorphism

ǫ : C(U,F ) −→ C(Uh,Fh),

with the notation of [18], no 18.

This homomorphism commutes with the coboundary d, and so defines, by pas-

sage to cohomology, homomorphisms:

ǫ : Hq(U,F ) −→ Hq(Uh,Fh).

Finally, by passage to the inductive limit over U, one obtains the homomorphisms

induced on the cohomology groups

ǫ : Hq(X,F ) −→ Hq(Xh,Fh).

These homomorphisms enjoy the usual functorial properties; they commute with

the homomorphisms φ : F → G ; if one has an exact sequence of algebraic sheaves:

0 −→ A −→ B −→ C −→ 0,

where the sheaf A is coherent, the diagram:

Hq(X,C )
δ

//

ǫ

��

Hq+1(X,A )

ǫ

��

Hq(Xh,C h)
δ

// Hq+1(Xh,A h)

is commutative: this is seen, for example, by taking for coverings U coverings by

open affines (cf. [18]).

12. Projective varieties. Statements of the theorems. Suppose that X is a

projective variety, which is to say a Z-closed subvariety of a projective space Pr(C).

One then has the following theorems, which we will prove in the paragraphs to

come:

Theorem 1. For every coherent algebraic sheaf F on X , and for every integer

q ≥ 0, the homomorphism

ǫ : Hq(X,F ) −→ Hq(Xh,Fh),

defined in no 11, is bijective.

For q = 0, one obtains in particular an isomorphism of Γ(X,F ) with Γ(Xh,Fh).

Theorem 2. If F and G are two coherent algebraic sheaves on X , every analytic

homomorphism of Fh into G h comes from a unique algebraic homomorphism of

F into G .

Theorem 3. For every coherent analytic sheaf M on Xh, there exists a coherent

algebraic sheaf F on X such that Fh is isomorphic to M . Moreover, this property

determines F in a unique fashion, up to isomorphism.
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Remarks. 1. These three theorems signify that the theory of coherent analytic

sheaves onXh essentially coincides with that of coherent algebraic sheaves onX . Of

course, they are due to the fact that X is a projective variety, and so are inaccurate

for an affine variety.

2. One can factor ǫ as:

Hq(X,F ) −→ Hq(Xh,F ′) −→ Hq(Xh,Fh).

Thm. 1 leads one to ask whether Hq(X,F ) → Hq(Xh,F ′) is bijective. The

response is negative; indeed, if this homomorphism were bijective for every coherent

algebraic sheaf F , it would also be the case for the constant sheaf K = C(X) of

rational functions on X (supposed irreducible), since this sheaf is the union of

coherent sheaves (compare with [19], §2); but one has Hq(X,K) = 0 for q > 0,

while on the other hand Hq(Xh,K) is a K-vector space of dimension equal to the

qth Betti number of Xh.

13. Proof of Theorem 1. Suppose that X is embedded in the projective space

Pr(C); if we identify F with the sheaf obtained by extending it by 0 outside of X ,

one knows ([18], no 26) that one has:

Hq(X,F ) = Hq(Pr(C),F ) and Hq(Xh,Fh) = Hq(Pr(C)
h,Fh),

the notation Fh being justified by Prop. 11. One sees then that it suffices to prove

that

ǫ : Hq(Pr(C),F ) −→ Hq(Pr(C)
h,Fh)

is bijective, in other words, we reduce to the case where X = Pr(C).

We first establish two lemmas:

Lemma 4. Thm. 1 is true for the sheaf O.

Proof. For q = 0, H0(X,O) and H0(Xh,Oh) are both reduced to the constants.

For q > 0, one knows that Hq(X,O) = 0, cf. [18], no 85, Prop. 8; on the other hand,

according to Dolbeault’s Thm. (cf. [8]), Hq(Xh,Oh) is isomorphic to the cohomol-

ogy of type (0, q) of the projective space X , and so is reduced to 0, QED5. �

Lemma 5. Thm. 1 is true for the sheaf O(n).

(For the definition of O(n), cf. [18], no 54, as well as no 16 hereafter.)

Proof. We argue by induction on r = dimX , the case r = 0 being trivial. Let t be

a linear form, not identically zero, on the homogeneous coordinates t0, . . . , tr, and

let E be the hyperplane defined by the equation t = 0. One has an exact sequence:

0 −→ O(−1) −→ O −→ OE −→ 0,

where O → OE is the restriction homomorphism, so that O(−1) → O is multi-

plication by t (cf. [18], no 81). From this, one gets an exact sequence, valid for

all n ∈ Z:

0 −→ O(n− 1) −→ O(n) −→ OE(n) −→ 0.

5One can also directly calculate Hq(X,O) by using the open covering of X defined in no 16,

as well as some developments in Laurent series (J. Frenkel, not published). One thus avoids all

recourse to the theory of Kähler manifolds.
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According to no 11, one has a commutative diagram:

· · · // Hq
(

X,O(n − 1)
)

//

��

Hq
(

X,O(n)
)

//

��

Hq
(

X,OE(n)
)

//

��

Hq+1
(

X,O(n − 1)
)

//

��

· · ·

· · · // Hq
(

Xh,O(n − 1)h
)

// Hq
(

Xh,O(n)h
)

// Hq
(

Xh,OE (n)h
)

// Hq+1
(

Xh,O(n − 1)h
)

// · · ·

Given the inductive hypothesis, the homomorphism

ǫ : Hq
(

E,OE(n)
)

−→ Hq
(

Eh,OE(n)
h
)

is bijective for all q ≥ 0 and all n ∈ Z. By applying the Five Lemma, one then sees

that, if Thm. 1 is true for O(n), it is true for O(n− 1), and conversely. Since it is

true for n = 0 by Lemma 4, it is thus true for all n. �

We can now proceed to the proof of Thm. 1. We will reason by descending

induction on q, the theorem being trivial for q > 2r, since then Hq(X,F ) and

Hq(Xh,Fh) are both zero. According to [18], no 55, Cor. to Thm. 1, there exists

an exact sequence of coherent algebraic sheaves:

0 −→ R −→ L −→ F −→ 0,

where L is a direct sum of sheaves isomorphic to O(n); given Lemma 5, Thm. 1 is

true for the sheaf L .
One has a commutative diagram:

Hq(X,R) //

ǫ1

��

Hq(X,L ) //

ǫ2

��

Hq(X,F ) //

ǫ3

��

Hq+1(X,R) //

ǫ4

��

Hq+1(X,L )

ǫ5

��

Hq(Xh,Rh) // Hq(Xh,L h) // Hq(Xh,Fh) // Hq+1(Xh,Rh) // Hq+1(Xh,L h)

In this diagram, the homomorphisms ǫ4 and ǫ5 are bijective, according to the in-

ductive hypothesis; according to what we have just said, the same is true of ǫ2.

The Five Lemma shows then that ǫ3 is surjective. This result, being valid for ev-

ery coherent algebraic sheaf F applies in particular to R, which shows that ǫ1 is

surjective. A new application of the Five Lemma shows then that ǫ3 is bijective,

which completes the proof.

14. Proof of Theorem 2. Let A = Hom(F ,G ) be the sheaf of germs of homo-

morphisms of F into G (cf. [18], nos 11 and 14). An element f ∈ Ax is the germ of

a homomorphism of F into G in a neighborhood of x, and so defines a germ of a

homomorphism fh of the analytic sheaf Fh into the sheaf G h; the map f 7→ fh is

an O′-linear homomorphism of the sheaf A ′ defined by A (cf. no 9) into the sheaf

B = Hom(Fh,G h); this homomorphism extends by linearity to a homomorphism

ι : A
h −→ B.

Lemma 6. The homomorphism ι : A h → B is bijective.

Proof. Let x ∈ X . Since F is coherent, one has, according to [18], no 14:

Ax = Hom(Fx,Gx), whence A
h
x = Hom(Fx,Gx)⊗ Hx,

the functors ⊗ and Hom being applied over the ring Ox.
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Since Fh is coherent, one likewise has:

Bx = Hom(Fx ⊗ Hx,Gx ⊗ Hx),

the functor ⊗ being taken over Ox, and the functor Hom over Hx.

Everything reduces to seeing that the homomorphism

ιx : Hom(Fx,Gx)⊗ Hx −→ Hom(Fx ⊗ Hx,Gx ⊗ Hx)

is bijective, which results from the fact that the couple (Ox,Hx) is flat and from

Prop. 24 of the Appendix. �

We now prove Thm. 2. Let us consider the homomorphisms

H0(X,A )
ǫ

−−→ H0(Xh,A h)
ι

−−→ H0(Xh,B).

An element of H0(Xh,A )
(

resp. of H0(Xh,B)
)

is none other than a homomor-

phism from F into G (resp. of Fh into G h). Moreover, if f ∈ H0(X,A ), one has

ι ◦ ǫ(f) = fh, by very definition of ι. Thm. 2 thus comes again to affirm that ι ◦ ǫ is

bijective. But ǫ is bijective according to Thm. 1 (which is applicable because A is

coherent, according to [18], no 14), and ι is bijective according to Lemma 6, QED.

15. Proof of Theorem 3. Preliminaries. The uniqueness of the sheaf F re-

sults from Thm. 2. Indeed, if F and G are two coherent algebraic sheaves on X re-

sponding to the question, there exists by hypothesis an isomorphism g : Fh → G h.

According to Thm. 2, there thus exists a homomorphism f : F → G such that

g = fh. If one denotes by A and B the kernel and cokernel of f , one has an exact

sequence:

0 −→ A −→ F
f

−−→ G −→ B −→ 0,

whence, according to Prop. 10 a), an exact sequence:

0 −→ A
h −→ F

h g
−−→ G

h −→ B
h −→ 0.

Since g is bijective, this implies that A h = Bh = 0, whence, according to

Prop. 10 b), A = B = 0, which indeed shows that f is bijective.

It remains to prove the existence of F . I claim that one may limit oneself to the

case where X is a projective space Pr(C). Indeed, let Y be an algebraic subvariety

of X = Pr(C), and let M be a coherent analytic sheaf on Y h. The sheaf MX

obtained by extending M by 0 outside of Y h is a coherent analytic sheaf on Xh. If

one assumes Thm. 3 proven for the space X , there then exists a coherent algebraic

sheaf G on X such that G h is isomorphic to MX . Let I = I (Y ) be the coherent

sheaf of ideals defined by the subvariety Y . If f ∈ Ix, multiplication by f is an

endomorphism φ of Gx; the endomorphism φh of G h
x = M h

x is reduced to 0, since M

is a coherent analytic sheaf on Y h; the same is thus true of φ by Prop. 10 b). Hence,

one has I · G = 0, which means that there exists a coherent algebraic sheaf F

on Y such that G = FX ([18], no 39, Prop. 3). According to Prop. 11, (Fh)X is

isomorphic to (FX)h = G h, which is isomorphic to MX . By restriction to Y , one

sees that Fh is isomorphic to M , which proves our assertion.
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16. Proof of Theorem 3. The sheaves M (n). Given the preceding no, we

suppose that X = Pr(C), and reason by induction on r, the case r = 0 being

trivial.

For all n ∈ Z, we first define a new analytic sheaf, the sheaf M (n):

Let t0, . . . , tr be a system of homogeneous coordinates on X , and let Ui be the

open set formed from the points where ti 6= 0; we denote by Mi the restriction

of the sheaf M to Ui; multiplication by tnj /t
n
i is an isomorphism of Mi with Mj,

defined over Ui∩Uj. The sheaf M (n) is thus defined by regluing the sheaves Mi by

way of the preceding isomorphisms (cf. [18], no 54, where the same construction is

applied to algebraic sheaves). The sheaf M (n) is locally isomorphic to M , and thus

coherent because M is; one has a canonical isomorphism M (n) = M ⊗H (n), the

tensor product being over H . If F is an algebraic sheaf, one has Fh(n) = F (n)h.

Lemma 7. Let E be a hyperplane of Pr(C), and let A be a coherent analytic sheaf

on E. One has Hq
(

Eh,A (n)
)

= 0 for q > 0 and sufficiently large n.

(This is the “Theorem B” of [3], exp. XVIII.)

Proof. By virtue of the inductive hypothesis, there exists a coherent algebraic sheaf

F on E such that A = Fh, whence A (n) = F (n)h; according to Thm. 1,

Hq
(

Eh,A (n)
)

is isomorphic to Hq
(

E,F (n)
)

, and Lemma 7 then results from

Prop. 7 of [18], no 65. �

Lemma 8. Let M be a coherent analytic sheaf on X = Pr(C). There exists an

integer n(M ) such that, for all n ≥ n(M ), and for all x ∈ X , the Hx-module

M (n)x is generated by the elements of H0
(

Xh,M (n)
)

.

(This is the “Theorem A” of [3], exp. XVIII.)

Proof. We first remark that, ifH0
(

Xh,M (n)
)

generates M (n)x, the same property

holds for all m ≥ n. Indeed, let k be an index such that x ∈ Uk; for each i, let θi be

the endomorphism of Mi given by multiplication by (tk/ti)
m−n; the θi commute

with the identifications which define respectively M (n) and M (m), and so give

rise to a homomorphism θ : M (n) → M (m); since θ is an isomorphism over Uk,

our assertion follows.

We also remark that ifH0
(

Xh,M (n)
)

generatesM (n)x, it also generates M (n)y
for y near enough to x, according to [18], no 12.

These two remarks, together with the compactness of Xh, bring us to proving

the following statement:

For all x ∈ X , there exists an integer n, depending on x and M , such that

H0
(

Xh,M (n)
)

generates M (n)x.

We choose a hyperplane E passing through x with homogeneous equation t = 0.

If A (E) denotes the sheaf of ideals defined by E (cf. no 3), one has an exact

sequence:

0 −→ A (E) −→ H −→ HE −→ 0.

Moreover, the sheaf A (E) is isomorphic to H (−1), the isomorphism H (−1) →

A (E) being defined by multiplication by t (cf. the proof of Lemma 5).



18 JEAN-PIERRE SERRE

By tensoring with M , we get an exact sequence:

M ⊗ A (E) −→ M −→ M ⊗ HE −→ 0.

We denote by B the sheaf M ⊗ HE , and we denote by C the kernel of the homo-

morphism M ⊗ A → M
(

one has C = Tor1(M ,HE)
)

; from the fact that A (E)

is isomorphic to H (−1), the sheaf M ⊗ A (E) is isomorphic to M (−1), and one

thus obtains an exact sequence:

(1) 0 −→ C −→ M (−1) −→ M −→ B −→ 0.

By applying the functor M (n) to the exact sequence (1), one obtains a new

exact sequence:

(2) 0 −→ C (n) −→ M (n− 1) −→ M (n) −→ B(n) −→ 0.

Let Pn be the kernel of the homomorphism M (n) → B(n); the sequence (2)

decomposes into two exact sequences:

0 −→ C (n) −→ M (n− 1) −→ Pn −→ 0,(3)

0 −→ Pn −→ M (n) −→ B(n) −→ 0,(4)

which, each in turn, give rise to exact sequences in cohomology:

(5) H1
(

Xh,M (n− 1)
)

−→ H1(Xh,Pn) −→ H2
(

Xh,C (n)
)

and

(6) H1(Xh,Pn) −→ H1
(

Xh,M (n)
)

−→ H1
(

Xh,B(n)
)

.

According to the definition of B and C , one has A (E)·B = 0 and A (E)·C = 0,

which shows that B and C are coherent analytic sheaves on the hyperplane E.

Thus, applying Lemma 7, one sees that there exists an integer n0 such that one

has, for each n ≥ n0, H1
(

Xh,B(n)
)

= 0 an H2
(

Xh,C (n)
)

= 0. The exact

sequences (5) and (6) thus give the inequalities:

(7) dimH1
(

Xh,M (n− 1)
)

≥ dimH1(Xh,Pn) ≥ dimH1
(

Xh,M (n)
)

.

These dimensions are finite, according to [5] (see also [3], exp. XVII). It fol-

lows from this that dimH1
(

Xh,M (n)
)

is a decreasing function of n, for n ≥ n0;

thus there exists an integer n1 ≥ n0 such that the function dimH1
(

Xh,M (n)
)

is

constant for n ≥ n1. One has then:

(8) dimH1
(

Xh,M (n)
)

= dimH1(Xh,Pn) = dimH1
(

Xh,M (n)
)

if n > n1.

Since n1 ≥ n0, one has H1
(

Xh,B(n)
)

= 0, and the exact sequence (6) shows

that H1(Xh,Pn) → H1
(

Xh,M (n)
)

is surjective; but, according to (8), these

two vector spaces have the same dimension; the homomorphism in question is thus

injective, and the exact sequence in cohomology associated to the exact sequence (4)

shows that6:

(9) H0
(

Xh,M (n)
)

−→ H0
(

Xh,B(n)
)

is surjective for n > n1.

We now choose a integer n > n1 such that H0
(

Xh,B(n)
)

generates B(n)x;

this is possible, for B, being a coherent analytic sheaf on E, is of the form G h,

6One recalls the process used by Kodaira-Spencer to prove the theorem of Lefschetz (cf. [12]).
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whence H0
(

Xh,B(n)
)

= H0
(

Xh,G (n)
)

, according to Thm. 1, and one knows that

H0
(

Xh,G (n)
)

generates G (n)x for n big enough, cf. [18], no 55, Thm. 1.

This being the case, I say that every integer n works. Indeed, we put, to simplify

the notation, A = Hx, M = M (n)x, p = Ax(E), and let N be the A-submodule

ofM generated by H0
(

Xh,M (n)
)

. One has that B(n)x = M (n)x⊗Hx,E = M⊗A

A/p = M/pM ; on the other hand, it results from the preceding that the canonical

image of N in M/pM generates M/pM . This can be written as M = N + pM ,

whence, a fortiori, M = N + mM (m denoting the maximal ideal of the local

ring A), which indeed implies M = N (Appendix, Prop. 24, Cor.), and completes

the proof of Lemma 8. �

17. End of the proof of Theorem 3. Let M always be a coherent analytic sheaf

on X = Pr(C). By virtue of Lemma 8, there exists an integer n such that M (n)

is isomorphic to a quotient sheaf of a sheaf H p, and M is thus isomorphic to a

quotient of H (−n)p. If we denote by L0 the coherent algebraic sheaf O(−n)p, one

sees then that one has an exact sequence:

0 −→ R −→ L
h
0 −→ M −→ 0,

where R is a coherent analytic sheaf.

Applying the same reasoning to the sheaf R, one constructs a coherent algebraic

sheaf L1 and a surjective analytic homomorphism L h
1 → R. Whence an exact

sequence:

L
h
1

g
−−→ L

h
0 −→ M −→ 0.

According to Thm. 2, there exists a homomorphism f : L1 → L0 such that

g = fh. If one denotes by F the cokernel of f , one has an exact sequence:

L1
f

−−→ L0 −→ F −→ 0,

whence (Prop. 10) a new exact sequence:

L
h
1

g
−−→ L

h
0 −→ F

h −→ 0,

which shows indeed that M is isomorphic to Fh, which completes the proof of

Thm. 3.

4. Applications

18. The algebraic nature of Betti numbers. Let σ be an automorphism of

the field C; if x is a point of Pr(C), with homogeneous coordinates [t0, . . . , tr], we

denote by xσ the point with homogeneous coordinates [tσ0 , . . . , t
σ
r ]; thus, σ defines

an automorphism of Pr(C).

If X is a Z-closed algebraic subvariety of Pr(C), its transform Xσ by σ is again a

Z-closed algebraic subvariety of Pr(C); if X is nonsingular, the same is true of Xσ

(because of the Jacobian criterion, for example).

Proposition 12. If X is nonsingular, then the Betti numbers of X and Xσ are

the same.
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Proof. Let bn(X) be the nth Betti number of X , and let Ωp(X)h be the sheaf of

germs of degree p holomorphic differentials on X . We put:

hp,q(X) = dimHq
(

Xh,Ωp(X)h
)

.

According to Dolbeault’s Thm. (cf. [18]), one has:

bn(X) =
∑

p+q=n

hp,q(X),

and likewise:

bn(X
σ) =

∑

p+q=n

hp,q(Xσ).

But, according to Thm. 1, one has hp,q(X) = dimHq
(

X,Ωp(X)
)

, where this

time Ωp(X) denotes the coherent algebraic sheaf of degree p regular differential

forms on X , and likewise hp,q(Xσ) = dimHq
(

Xσ,Ωp(Xσ)
)

. Moreover, if ω is a

regular differential form on a Z-open subset U of X , the form ωσ is regular on the

Z-open subset Uσ of Xσ; one concludes from this that for each Z-open cover U

of X , σ defines a semilinear isomorphism of C
(

U,Ωp(X)
)

onto C
(

Uσ,Ωp(Xσ)
)

,

thus of Hq
(

U,Ωp(X)
)

onto Hq
(

Uσ,Ωp(Xσ)
)

, thus also of Hq
(

X,Ωp(X)
)

onto

Hq
(

Xσ,Ωp(Xσ)
)

, and one has indeed that hp,q(X) = hp,q(Xσ), which proves the

proposition. �

Prop. 12 implies the following result, conjectured by A. Weil:

Corollary. Let V be a nonsingular projective variety defined over an algebraic

number field K. The complex varieties X obtained from V by embedding K into C

have Betti numbers independent of the choice of embedding.

Proof. Indeed, one knows that two embeddings of K into C only differ by an auto-

morphism of C. �

Remark. I ignore whether the varieties X and Xσ are always homeomorphic7; at

any rate, the example of a curve of genus 1 shows already that they are not always

analytically isomorphic.

19. Chow’s Theorem. This is the following result (cf. [6]):

Proposition 13. Every closed analytic subset of projective space is algebraic.

Proof. We show how this proposition results from Thm. 3. Let X be a projective

space, and let Y be a closed analytic subset of Xh. According to a theorem of

H. Cartan, cited above (no 3, Prop. 1), the sheaf HY = HX/A (Y ) is a coherent

analytic sheaf on Xh; thus there exists (Thm. 3) a coherent algebraic sheaf F on X

such that HY = Fh. According to Prop. 10 b), the support of Fh is equal to that

of F (recalling, cf. [18], no 81, that the support of F is the set of x ∈ X such that

Fx 6= 0), thus is Z-closed, since F is coherent. Since Fh = HY , this means that Y

is Z-closed, QED. �

7They aren’t: in the paper Exemples de variétés projectives conjugées non homéomorphes,

C.R. Acad. Sci. Paris 258 (1964), 4194–4196, Serre constructs a nonsingular projective surface X

such that the varieties X and Xσ are not homeomorphic [translator’s note].
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We now indicate some simple applications of Chow’s Thm.:

Proposition 14. If X is an algebraic variety, every compact analytic subset X ′

of X is algebraic.

Proof. We reestablish the notation used in the proof of Prop. 6: let Y be a projective

variety, U a subset of Y , Z-open and Z-dense in Y , and f : U → X a surjective

regular map whose graph T is Z-closed in X × Y . Let T ′ = T ∩ (X ′ × Y ); since

X ′ and Y are compact, and since T is closed, T ′ is compact; this is therefore

also the case for the projection Y ′ of T ′ onto the factor Y . On the other hand,

Y ′ = f−1(X ′), which shows that Y ′ is an analytic subset of U , and hence of Y ;

Chow’s Thm. then shows that Y ′ is a Z-closed subset of Y . By applying Prop. 7

to f : Y ′ → X , one concludes that X ′ = f(Y ′) is Z-closed in X , QED. �

Proposition 15. Every holomorphic map f of a compact algebraic variety X into

an algebraic variety Y is regular.

Proof. Let T be the graph of f in X × Y . Since f is holomorphic, T is a compact

analytic subset of X × Y ; Prop. 14 shows then that T is algebraic, whence the fact

that f is regular, according to Prop. 8. �

Corollary. Each compact analytic space possesses at most one structure of an

algebraic variety.

20. Algebraic fiber spaces and analytic fiber spaces. Let G be an algebraic

group and X an algebraic variety. The germs of regular maps from X into G form

a sheaf of groups, in general not abelian, which we denote by G .

One knows that if A is a sheaf of groups, one can define the group H0(X,A )

and the set H1(X,A ): cf. [9] as well as [10], Chap. V, for example. In particular,

H1(X,G ) is defined; the elements of this set are none other than the classes of

principal algebraic fiber spaces with base X and structure group G (in the sense

defined by A. Weil, cf. [20]). For example, the elements of H1(X,OX) are the

classes of fiber spaces with group the additive group C.

Likewise, if G h is the sheaf of germs of holomorphic maps of X into G, the

elements of H1(Xh,G h) are none other than the classes of analytic fiber spaces

with base X and group G. Every algebraic fiber space E defines an analytic fiber

space Eh, whence a map

ǫ : H1(X,G ) −→ H1(Xh,G h)

analogous to the map defined in no 11.

Proposition 16. If X is compact, the map ǫ is injective.

Proof. Let E and E′ be two principal algebraic fiber spaces with base X and struc-

ture group G. Prop. 16 means that if E and E′ are analytically isomorphic, then

they are also algebraically isomorphic. In fact, we are going to prove a result which

is a little more precise, namely that every analytic isomorphism φ : E → E′ is an

algebraic isomorphism (which is to say, regular).

The space E × E′ is a principal algebraic fiber space with base X × X and

structure group G×G; we denote by (E,E′) its pullback under the diagonal map
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X → X ×X : this is the “fiber product” of E and E′. We make G × G act on G

by the formula:

(g, g′) · h = ghg′−1.

Let T be the fiber space associated to the principal fiber space (E,E′) allowing

for fiber type the group G, equipped with the preceding operations8. One sees

immediately that the sections of T correspond bijectively to the isomorphisms of

E onto E′; in particular, the isomorphism φ corresponds to an analytic section s

of T . By applying Prop. 15 to s : X → T , one sees that s is regular, which shows

that φ is regular and proves the proposition. �

Suppose now that X is a projective variety. One can ask whether ǫ : H1(X,G ) →

H1(Xh,G h) is bijective, said differently (given Prop. 16), whether every analytic

fiber space is algebraic. This is clearly untrue if one does not impose any conditions

on G, as is shown by the case where G is an abelian variety (or a finite group); in

the following propositions, we are going to indicate a certain number of groups G

for which this holds.

Proposition 17. If G is the additive group C, the map ǫ is bijective.

Proof. Indeed, one has then G = O and G h = Oh, and the proposition is a special

case of Thm. 1. �

Proposition 18. If G is the general linear group GLn(C), the map ǫ is bijective.

Proof. To every principal fiber space with structure group GLn(C) is associated a

fiber space with vector space fibers, of fiber type Cn, which characterizes it. Given

the correspondence between fiber spaces with vector space fibers and locally free

sheaves (cf. [18], no 41, for example), one can thus reduce to proving the following

statement:

If M is a coherent analytic sheaf on Xh which is locally isomorphic to H n,

there exists a coherent algebraic sheaf F on X which is locally isomorphic to On

such that Fh is isomorphic to M .

According to Thm. 3, there exists a coherent algebraic sheaf F on X satisfying

the second condition. For each x ∈ X , the Hx-module Fh = Fx ⊗ Hx is thus

isomorphic to H n
x ; by applying Prop. 30 of the Appendix to the rings A = Ox,

A′ = Hx and to the module E = Fx, one concludes that Fx is isomorphic to On
x ;

since F is coherent, this shows that F is locally isomorphic to On, and completes

the proof. �

Remarks. 1. For n = 1, GLn(C) coincides with the multiplicative group C∗; if

one assumes that X is a normal variety, the group H1(X,G ) coincides with the

group of divisor classes locally linearly equivalent to zero (cf. [20], §3) and Prop. 18

shows that every analytic fiber space with base X and structure group C∗ comes

from such a divisor. Provided X is nonsingular, this result has been obtained by

Kodaira-Spencer [12]; in this case, it is essentially equivalent anyway to the theorem

of Lefschetz on the existence of divisors with a given homology class.

8I.e., T is the fiber space with base X, fiber G, structure group G×G, and transition functions

the same as those for (E,E′) [translator’s note].
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2. Prop. 18 permits one to understand other results of Kodaira on arbitrary

projective varieties (allowing singularities); this is notably the case with Thms. 7

and 8 in [11]. We will not discuss these.

Now let G be an algebraic group, and H an algebraic subgroup of G; one knows

(cf. [13], for example) that the homogeneous space G/H can be equipped with the

structure of an algebraic variety, the quotient of that of G. The group H acts on G

by right translation; we assume that these operations define on G the structure

of a principal algebraic fiber space with base G/H and structure group H , where,

which amounts to the same thing, we assume that there exists a rational section

G/H → G (which is not always the case, as we will see further on). Under this

hypothesis, one has the following result, which was communicated to me, as well

as its proof, by A. Grothendieck:

Proposition 19. Let X be a compact algebraic variety, and let P be a prin-

cipal analytic fiber space with structure group H and base X . In order for P

to be algebraic, it is necessary and sufficient that the same be true of the prin-

cipal fiber space P ×H G induced by P by extending the structure group H

to G.

Proof. The necessity is clear. In order to prove the sufficiency, we suppose that

P ×H G is algebraic. This means that there exists an algebraic principal fiber

space P0 with structure group G and an analytic isomorphism h : P0 → P ×H G.

We consider the fiber space E (resp. E0) associated to P ×H G (resp. to P0) with

fiber type G/H on which G operates by translations. One has:

E0 = P0 ×G G/H and E = (P ×H G)×G G/H = P ×H G/H.

The analytic isomorphism h defines an analytic isomorphism f : E0 → E. But

the fiber space E = P ×H G/H possesses a canonical section s, since the group H

leaves invariant the point of G/H corresponding to the neutral element of G. The

isomorphism f transforms s into a section s0 = f−1 ◦ s of E0; the section s0 is

holomorphic, thus regular, according to Prop. 15.

On the other hand, since G operates on P0, the same is true of H , and P0/H

is none other than E0; more precisely, P0 is a principal algebraic fiber space with

structure group G and base E0: this is easily verified by reasoning locally, using the

hypothesis that G is a principal algebraic fiber space with structure group H and

base G/H . So let P1 = s−1
0 (P0) be the pullback of P0 under the map s0 : X → E0;

the fiber space P1 is a principal algebraic fiber space with base X and structure

group H . We are going to show that P1 is analytically isomorphic to P , which will

prove the proposition.

The relation s0 = f−1 ◦ s, together with the fact that f is an analytic iso-

morphism, shows that P1 = s−1
0 (P0) is analytically isomorphic to the pullback of

P ×H G (considered as a principal fiber space with structure group H) under the

map s : X → E. But this last pullback is none other than P , as is shown by the

following commutative diagram:
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P //

��

P ×H G

��

X s
// E = P ×H G/H.

This completes the proof. �

By combining Props. 18 and 19 one obtains:

Proposition 20. Let G be an algebraic subgroup of the group GLn(C) satisfying

the following condition:

(R): There exists a rational section GLn(C)/G → GLn(C).

Then, for every projective variety X , the map:

ǫ : H1(X,G ) −→ H1(Xh,G h)

is bijective.

Examples. The condition (R) is satisfied in the following cases:

a) if G is solvable, by virtue of a theorem of Rosenlicht, [13];

b) if G = SLn(C), the rational section being evident in this case;

c) if G = Spn(C), n = 2m; in this case, the homogeneous space GLn/G is

the space of nondegenerate alternating forms
∑

i<j uijxi ∧ xj , and the condition

(R) results from the fact that the generic
∑

i<j uijxi ∧ xj can be reduced to the

canonical form
∑m

i=1 x2i−1 ∧ x2i by a linear change of variables with coefficients in

the field C(uij).

These last two examples lead one to conjecture that the condition (R) is satisfied

each time that G is a semisimple simply-connected group.

On the contrary, one can show that the special orthogonal group G = O+
n (C)

does not satisfy the condition (R) provided that n ≥ 3. I ignore whether, in this

case, the map ǫ : H1(X,G ) → H1(Xh,G h) is bijective.

Appendix

All the rings considered below are assumed commutative and with unity; all the

modules over these rings are assumed unitary.

21. Flat modules.

Definition 3. Let B be an A-module. One says that B is A-flat (or flat) if, for every

exact sequence of A-modules

E −→ F −→ G,

the sequence

E ⊗A B −→ F ⊗A B −→ G⊗A B

is exact.
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In view of the definition of the Tor functors, the preceding condition is equivalent

to saying that TorA1 (B,Q) = 0 for every A-module Q; since Tor commutes with

inductive limits, one can reduce to the case of modules Q of finite type, and likewise

(thanks to the exact sequence of the Tor) to modules Q with one generator; thus

for B to be A-flat, it is necessary and sufficient that TorA1 (B,A/a) = 0 for every

ideal a of A, in other words that the canonical homomorphism a ⊗A B → B is

injective.

Examples. 1. If A is a PID, it follows that “B is A-flat” is equivalent to “B is

torsion free.”

2. If S is a multiplicative subset of a ring A, the ring of fractions AS is A-flat,

according to [18], no 48, Lemma 1.

Let A and B be two rings, and let θ : A → B a homomorphism from A to B;

this homomorphism makes B into an A-module. If E and F are two A-modules,

E ⊗A B and F ⊗A B are equipped with the structure of B-modules; moreover, if

f : E → F is a homomorphism, f ⊗ 1 is a B-homomorphism from E ⊗A B to

F ⊗A B; one obtains in this way a canonical A-linear map:

HomA(E,F ) −→ HomB(E ⊗A B,F ⊗A B),

which extends by linearity to a B-linear map:

ι : HomA(E,F )⊗A B −→ HomB(E ⊗A B,F ⊗A B).

Proposition 21. The homomorphism ι defined above is bijective provided A is a

Noetherian ring, E is a finite A-module, and B is A-flat.

Proof. For a fixed module F , we set:

T (E) = HomA(E,F )⊗A B and T ′(E) = HomB(E ⊗A B,F ⊗A B),

so that ι is a homomorphism of the functor T (E) to the functor T ′(E).

For E = A, one has T (E) = T ′(E) = F ⊗A B and ι is bijective; the same is true

provided E is a free module of finite type.

But the ring A is Noetherian, and E is of finite type; thus there exists an exact

sequence:

L1 −→ L0 −→ E −→ 0,

where L0 and L1 are free modules of finite type. We consider the commutative

diagram:

0 // T (E)

ι

��

// T (L0) //

ι0

��

T (L1)

ι1

��

0 // T ′(E) // T ′(L0) // T ′(L1)

The first line of this sequence is exact from the fact that B is A-flat; the second

line is too from general properties of the functors ⊗ and Hom. Since we know that

ι0 and ι1 are bijective, it follows that ι is bijective, QED. �
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22. Flat couples.

Definition 4. Let A be a ring, and let B a ring containing A. One says that the

couple (A,B) is flat if the A-module B/A is A-flat.

One has:

Proposition 22. For a couple (A,B) to be flat, it is necessary and sufficient that

B be A-flat, and that one of the following properties is satisfied:

a) (resp. a′)) For every A-module (resp. for each A-module of finite type) E, the

homomorphism E → E ⊗A B is injective.

a′′) For every ideal a of A, one has aB ∩ A = a.

Proof. If E is any A-module, the exact sequence:

0 −→ A −→ B −→ B/A −→ 0,

gives rise to the exact sequence:

TorA1 (A,E) −→ TorA1 (B,E) −→ TorA1 (B/A,E) −→ A⊗A E −→ B ⊗A E.

Given that A⊗AE = E and TorA1 (A,E) = 0, one obtains the new exact sequence:

0 −→ TorA1 (B,E) −→ TorA1 (B/A,E) −→ E −→ E ⊗A B.

One sees then that for TorA1 (B/A,E) to be 0, it is necessary and sufficient that

the same be true of TorA1 (B,E) and that the homomorphism E → E ⊗A B be

injective; the proposition results immediately from that (noting that the property

a′′) reduces to saying that the homomorphism A/a → A/a⊗A B is injective). �

Proposition 23. Let A ⊆ B ⊆ C be three rings. If the couples (A,C) and (B,C)

are flat, then so is the couple (A,B).

Proof. We first show that B is A-flat, which is to say that if one has an exact

sequence of A-modules:

0 −→ E −→ F,

the sequence: 0 → E ⊗A B → F ⊗A B is then exact.

Let N be the kernel of the homomorphism E⊗AB → F ⊗AB; since C is B-flat,

one has an exact sequence:

0 −→ N ⊗B C −→ (E ⊗A B)⊗B C −→ (F ⊗A B)⊗B C.

But, according to the associativity of the tensor product, (E ⊗A B) ⊗B C is

identified with E ⊗A C, and likewise (F ⊗A B) ⊗B C is identified with F ⊗A C.

Moreover, C being A-flat, the homomorphism E ⊗A C → F ⊗A C is injective. It

follows that N ⊗B C = 0, and, upon applying Prop. 22 to the couple (B,C), one

sees that N = 0, which completes the proof that B is A-flat.

On the other hand, if E is any A-homomorphism, the composite homomorphism

E → E ⊗A B → E ⊗A C is injective (since the couple (A,C) is flat), and the same

is true a fortiori of E → E⊗AB; this shows that the couple (A,B) satisfies all the

hypotheses of Prop. 22, QED. �
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Remark. Analogous reasoning shows that if (A,B) and (B,C) are flat, then so

is (A,C). On the contrary, it can happen that (A,B) and (A,C) are flat with-

out (B,C) being so.

23. Modules over a local ring. In this paragraph, we denote by A a local Noe-

therian ring9, with maximal ideal m.

Proposition 24. If a finite A-module E satisfies the relation E = mE, then one

has E = 0.

(Cf. [16], p. 138 or [4], exp. I, for example.)

Proof. Suppose E 6= 0, and let e1, . . . , en be a system of generators of E having the

smallest possible number of elements. Since en ∈ mE, one has en = x1e1+· · ·+xnen,

with xi ∈ m, whence

(1− xn)en = x1e1 + · · ·+ xn−1en−1;

since 1 − xn is invertible in A, this shows that the e1, . . . , en−1 generate E, which

is a contradiction to the hypothesis made on n. �

Corollary 4. Let E be a finite A-module. If a submodule F of E satisfies the

relation E = F +mE, one has E = F .

Proof. Indeed, this relation means that E/F = m(E/F ). �

We equip A-module E with the m-adic topology in which the submodules mnE

form a base of neighborhoods of 0 (cf. [16], p. 153).

Proposition 25. Let E be a finite A-module. Then:

a) The topology induced on a submodule F of E by the m-adic topology of E

coincides with the m-adic topology of F .

b) Every submodule of E is closed in the m-adic topology of E (and, in particular,

E is totally disconnected).

(Cf. [16], loc. cit., as well as [3], exp. VIII bis).

Proof. We recall briefly the proof of this proposition. One begins by proving a),

which can be done either by using the theory of primary decomposition (Krull,

cf. [16]), or by establishing the existence of an integer r such that one has

F ∩mnE = mn−r(F ∩mrE) for n ≥ r

(Artin-Rees, cf. [4], exp. 2).

One shows then that E is totally disconnected: by applying a) to the submod-

ule F , the closure of 0 in E, one sees that F = mF , whence F = 0, according to

Prop. 24. By applying this result to the quotient modules, one deduces b). �

Let E still be a finite A-module, and let Ê and Â be the completions of E and A

with respect to the m-adic topology. The bilinear map A × E → E extends by

9In fact, all the results proved in these two paragraphs are true as stated for any Zariski ring

(cf. [16], p. 157).
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continuity to a map Â × Ê → Ê which makes Ê into a Â-module. The canonical

injection of E into Ê thus extends by linearity to a homomorphism

ǫ : E ⊗A Â → Ê.

Proposition 26. For every finite A-module E, the homomorphism ǫ defined above

is bijective.

Proof. Let 0 → R → L → E → 0 be an exact sequence of A-modules, L being a

free module of finite type. From the fact that A is Noetherian, R is of finite type;

on the other hand, Prop. 25 shows that the m-adic topology of R is induced by that

of L, and it is clear that the topology of E is the quotient of that of L; as these

topologies are metrizable, one gets an exact seqence:

0 −→ R̂ −→ L̂ −→ Ê −→ 0.

We then consider the commutative diagram:

R⊗A Â //

ǫ′′

��

L⊗A Â //

ǫ′

��

E ⊗A Â //

ǫ

��

0

R̂ // L̂ // Ê // 0.

The two rows of this diagram are exact, and, on the other hand, it is clear that ǫ′

is bijective. One concludes that ǫ is surjective (otherwise said, one has Ê = Â · E,

cf. [16], p. 153, Lemma 1). This result, being proven for every finite A-module,

applies in particular to R, which shows that ǫ′′ is surjective, and, by applying the

Five Lemma, one concludes that ǫ is bijective, QED. �

24. Flatness properties of local rings. All the local rings considered below are

assumed Noetherian.

Proposition 27. Let A be a local ring, and let Â be its completion. The couple

(A, Â) is flat.

Proof. First off, Â is A-flat. Indeed, it suffices to show that if E → F is injective,

then so is E ⊗A Â → F ⊗A Â, and one can also assume that E and F are of finite

type. In this case, Prop. 26 shows that E ⊗A Â is identified with Ê, and likewise

F ⊗A Â is identified with F̂ , and our assertion results then from the obvious fact

that Ê injects into F̂ .

Likewise, the fact that E → Ê is injective if E is of finite type shows that the

couple (A, Â) satisfies the property a′) of Prop. 22, and so is indeed a flat couple. �

Now let A and B be two local rings, and let θ be a homomorphism from A into B.

We assume that θ maps the maximal ideal of A into the maximal ideal of B. Then θ

is continuous, and extends by continuity to a homomorphism θ̂ : Â → B̂.

Proposition 28. Suppose that θ̂ : Â → B̂ is bijective, and identify A with a

subring of B by way of θ. The couple (A,B) is then a flat couple.

Proof. One has A ⊆ B ⊆ B̂ = Â, and the couples (A, Â) and (B, B̂) are flat,

according to the preceding proposition. Prop. 23 shows then that (A,B) is a flat

couple. �
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Proposition 29. Let A and B be two local rings, let a be an ideal of A, and let θ

be a homomorphism from A into B. If θ satisfies the hypothesis of Prop. 28, then

so does the homomorphism from A/a into B/θ(a)B defined by θ (which shows that

the couple (A/a, B/θ(a)B) is a flat couple).

Proof. According to Prop. 26, the completion of A/a is Â/aÂ, and, likewise, that

of B/θ(a)B is B̂/θ(a)B̂, whence the result. �

Proposition 30. Let A and A′ be two local rings, let θ be a homomorphism of A

into A′ satisfying the hypothesis of Prop. 28, and let E be a finite A-module. If

the A′-module E′ = E ⊗A A′ is isomorphic to A′n, then E is isomorphic to An.

Proof. We identify A with a subring of A′ by way of θ. If m and m′ are the

maximal ideals of A and A′, one then has m ⊆ m′; on the other hand, since m′

is a neighborhood of 0 in A′, and since A is dense in A′, one has A′ = m′ + A,

which shows that A/m = A′/m′,whence E/mE = E′/m′E′. Since the A′-module

E is a free module of rank n, the same is true of the A′/m′-module E′/m′E′. One

concludes that it is possible to choose n elements e1, . . . , en in E whose images

in E/mE form a basis of E/mE, considered as a vector space over A/m. The

elements ei define a homomorphism f : An → E which is surjective by virtue of the

corollary to Prop. 24. We are going to show that f is injective, which will prove

the proposition.

Let N be the kernel of f . From the fact that the couple (A,A′) is flat (Prop. 28),

the exact sequence

0 −→ N −→ An f
−−→ E −→ 0

gives rise to the exact sequence

0 −→ N ′ −→ A′n f ′

−−→ E′ −→ 0.

Since the module E′ is free, N ′ is a direct summand in A′n, and one has an exact

sequence

0 −→ N ′/m′N ′ −→ A′n/m′A′n −→ E′/m′E′ −→ 0.

But, by the same construction, f ′ defines a bijection of A′n/m′A′n onto E′/m′E′.

It follows that N ′/m′N ′ = 0, whence N ′ = 0 (Prop. 24), whence N = 0 since the

couple (A,A′) is flat, QED. �
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