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Chapter 1

Algebraic varieties with
boundaries

{Chapter 1}
In this chapter, we introduce basic concepts of algebraic varieties with
boundaries, where a boundary of an algebraic variety in this book is a di-
visor with real coefficients. Using the language of numerical geometry, we
define cones of curves and cones of divisors. According to the Hironaka
desingularization theorem, it is possible to use birational modifications to
make algebraic varieties smooth and divisors normal crossing. We focus on
adjoint divisors of algebraic varieties with boundaries, and introduce defini-
tions of KLT pairs and DLT pairs. We explain how to use the covering trick
to generalize the Kodaira vanishing theorem for smooth projective varieties
to KLT or DLT pairs. Also we discuss the classification of algebraic varieties
and singularities in lower dimensions.

1.1 Q-divisors and R-divisors
{section 1.1}

The linear equivalence class of a divisor defines a coherent sheaf associated
to this divisor which is called its divisorial sheaf. In many situations in
algebraic geometry, we deal with coherent sheaves. But in this book, we
mainly focus on divisors. It is like dealing with differential forms themselves
instead of cohomology classes of differential forms in differential geometry.

Fix a base field k. An algebraic variety X is an irreducible reduced
separated scheme of finite type over k.

An algebraic variety X is said to be non-singular if for every point P on
X, the local ring OX,P of the structure sheaf OX at P is a regular local ring.
A point P with this property is called a non-singular point of X. In this
book we mostly work over a field of characteristic zero, and we will mainly
use the word smooth instead of non-singular. When dimX = n, X is smooth
if and only if for every closed point P on X, the maximal ideal mP of OX,P

11
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is generated by n elements x1, . . . , xn. Such x1, . . . , xn are called the regular
system of parameters or local coordinates. If k = C, this is equivalent to that
the set of closed points of X forms a complex manifold. For an algebraic
variety X, the set of all smooth points Reg(X) is a non-empty open subset
of X, and its complement Sing(X) = X \ Reg(X), which is a proper closed
subset of X, is called the singular locus.

An algebraic variety X is said to be normal if the local ring at every
point is an integrally closed domain. Since normal local rings of dimension
1 are regular, the singular locus of a normal algebraic variety is a closed
subset of codimension at least 2. Every algebraic variety X can be easily
modified into a normal one: there is a unique finite morphism f : Xν → X
from a normal algebraic variety which is isomorphic over Reg(X), which
is called the normalization of X. Normality can be determined by Serre’s
criterion ([102]):

Theorem 1.1.1. An algebraic variety X is normal if and only if the fol-
lowing 2 conditions are satisfied:

(1) (R1) Its singular locus is a closed subset of codimension at least 2.

(2) (S2) For any open subset U and any closed subset Z of codimension at
least 2, the restriction map Γ(U,OX)→ Γ(U \ Z,OX) is bijective.

From now on we always assume that X is a normal algebraic variety.
A prime divisor on X is a closed subvariety of codimension 1. A divisor is

a formal finite sum of prime divisors D =
∑
diDi. Unless otherwise stated,

the coefficients di are integers, and Di are distinct prime divisors. In other
words, divisors are elements in the free abelian group Z1(X) generated by
all prime divisors on X. D is said to be effective if all coefficients di are non-
negative. D is said to be reduced if all coefficients di = 1. For two divisors
D,D′, we write the inequality D ≥ D′ if D −D′ is an effective divisor.

Let D be a prime divisor on X and P be the generic point of D, then
the local ring OX,P is a discrete valuation ring with quotient field k(X). For
a rational function h ∈ k(X)∗1.1.0.1, the divisor div(h) is defined as

div(h) =
∑

vP (h)D,

which is known to be a finite sum. Here the sum runs over all prime divisors
D, P is the generic point of the prime divisor D, and vP is the valuation of
the discrete valuation ring OX,P . Any divisor of the form div(h) for some
h ∈ k(X) is called a principal divisor.

For a divisor D, the corresponding divisorial sheaf OX(D) is defined as
the following: for any open subset U of X,

Γ(U,OX(D)) = {h ∈ k(X)∗ | div(h)|U +D|U ≥ 0} ∪ {0}.1.1.0.2

1.1.0.1corrction
1.1.0.2correction
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Also we define

H0(X,D) = H0(X,OX(D)).

If a non-zero global section s of OX(D) corresponds to a rational function
h, we define the divisor of s by

div(s) = div(h) +D,

which is an effective divisor. Generally we can also define the divisor div(s)
of a rational section s of OX(D) similarly, but in this case div(s) is not
necessarily effective. For example, if we take s1 to be the rational section
corresponding to the rational function h = 1, then div(s1) = D. Let η be
the generic point of X, then there is an isomorphism (OX(D))η ∼= OX,η.
Also since by taking dual, we have

OX(D)∗ := Hom(OX(D),OX) ∼= OX(−D),

the divisorial sheaf OX(D) is a reflexive sheaf of rank one. A reflexive sheaf
is a coherent sheaf which is isomorphic to its double dual.

A divisor is called a Cartier divisor if its divisorial sheaf is invertible.
In other words, this is to say that this divisor is a principal divisor in a
neighborhood of each point P . To distinguish from Cartier divisors, we call
a divisor by a Weil divisor or an integral divisor. Denote by Div(X) the
set of all Cartier divisors. There is an inclusion Div(X) ⊂ Z1(X), and they
coincide if X is smooth.

Two divisors D,D′ on X are said to be linearly equivalent, denoted by
D ∼ D′, if D − D′ is a principal divisor. Note that D ∼ D′ if and only
if there is an isomorphism OX(D) ∼= OX(D′). In other words, divisorial
sheaves can be viewed as linear equivalence classes of divisors. Here D,D′

are not necessarily Cartier divisors.

We also have the relative version as follows. Given a morphism f :
X → S between algebraic varieties, two divisors D,D′ on X are said to be
relatively linearly equivalent over S, and denoted by D ∼S D′, if there exists
an open covering {Si} of S such that D|Si ∼ D′|Si after restriction over each
Si. Here we remark that in some other references, D,D′ are defined to be
relatively linearly equivalent over S if there exists a Cartier divisor B on
S such that D ∼ D′ + f∗B. In general these two definitions are not the
same and our definition is weaker. But under certain condition, for example
when f is proper surjective with connected geometric fibers, it is easy to see
that these two definitions coincide. This condition on f is very natural in
applications.

A closed subset B on a smooth algebraic variety X is called a normal
crossing divisor if at each closed point P there are local coordinates z1, . . . , zn
of the local ring OX,P and an integer 1 ≤ r ≤ n such that B is defined by
the equation z1 . . . zr = 0 locally around P . In this case, every irreducible
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component of B is smooth, and the union of several irreducible components
of B is again a normal crossing divisor. Given an algebraic variety X and a
closed subset B, the set of points in a neighborhood of which X is smooth
and B is a normal crossing divisor is an open subset of X, which is denoted
by Reg(X,B). The complement set Sing(X,B) = X \ Reg(X,B) is called
the singular locus of (X,B).

{SNC divisor}
Remark 1.1.2. A normal crossing divisor defined above is also called a
simple normal crossing divisor in many references.

If X is a complex algebraic manifold and z1, . . . , zn are local coordinates
on Xan as the complex manifold associated to X, then a normal crossing
divisor B defined as above is not necessarily a simple normal crossing divisor
in the algebraic setting. In fact, irreducible components of B may have self-
intersection. So we use the term “simple” in the algebraic setting in order
to distinguish with the analytic setting.

For example, consider the closed subset defined by the equation x2 +
y2 + y3 = 0 in the affine plane C2 with coordinates x, y. It is irreducible
and has self-intersection at the point (0, 0). It is a normal crossing divisor
on the complex manifold C2, but not a simple normal crossing divisor.

One feature of this book is to consider divisors with not necessarily
integer coefficients. Let X be a normal algebraic variety. If the coefficients di
in D =

∑
diDi are rational numbers (respectively, real numbers), then D is

called a Q-divisor (respectively, an R-divisor). Note that a Q-divisor is also
an R-divisor. Those are elements in Z1(X)⊗Q or Z1(X)⊗R respectively,
and these vector spaces are usually denoted by Z1(X)Q are Z1(X)R. We
will see soon that the range of discussion of birational geometry is expanded
widely by considering Q-divisors and R-divisors.

Let D =
∑
diDi be an R-divisor on X, where Di are distinct prime

divisors. D is said to be effective if all coefficients di are non-negative. D
is said to be reduced if all coefficients di = 1. For two R-divisors D,D′, we
write the inequality D ≥ D′ if D − D′ is an effective divisor. The support
of D is the union of all Di with di 6= 0, and is denoted by Supp(D). In this
situation, set D+ =

∑
di>0 diDi and D− =

∑
di<0(−di)Di, then D+ and D−

are effective R-divisors with no common components and D = D+ − D−.
D+, D− are called the positive part and negative part of D respectively.

Given two R-divisors D =
∑

i diDi and D′ =
∑

i d
′
iDi, define their

maximum to be max{D,D′} =
∑

i max{di, d′i}Di. For example, D+ =
max{D, 0}, D− = max{−D, 0}. Similarly we can define min{D,D′} =∑

i min{di, d′i}Di. The round up (respectively, round down) of an R-divisor
is defined via the round up (respectively, round down) of coefficients:

pDq =
∑

pdiqDi, xDy =
∑

xdiyDi.

A Q-divisor (respectively, an R-divisor) is said to be Q-Cartier (respec-
tively, R-Cartier) if it is an element of Div(X)⊗Q (respectively, Div(X)⊗
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R). Note that if a Q-divisor is R-Cartier, then it is automatically Q-Cartier.
For a Q-Cartier divisor D, there exists a positive integer m such that mD is
a Cartier divisor. However, this is not true for R-Cartier divisors in general.
X is said to be factorial (respectively, Q-factorial), if all Weil divisors on
X are Cartier divisors (respectively, Q-Cartier divisors), in other words, if
Div(X) = Z1(X) (respectively, Div(X)Q = Z1(X)Q).

Two R-divisors D,D′ are said to be R-linearly equivalent, denoted by
D ∼R D′, if D − D′ can be written as an R-linear combination of princi-
pal divisors. The relative version and Q-linear equivalence can be defined
similarly.

Remark 1.1.3. Recently considering R-divisors becomes essential to the
development of the minimal model theory. This book can be viewed as a
revised version of [82], in which only Q-divisors are treated. Already in
[64], R-divisors played a central role. The divisorial Zariski decomposition
(which is called the sectional decomposition in [64]) is defined via limits of
Q-divisors, where R-divisors appear naturally. Moreover, it is proved in
[63] that the existence of Zariski decomposition (in a good sense that the
positive part is nef) as R-Cartier divisors implies the finite generation of
canonical rings. Unfortunately, this paper was classified in “Affine algebraic
geometry” session instead of “Threefolds” session since the word “log” did
not have a proper citizenship at that time.

{ODP}
Example 1.1.4. We give examples for a Q-Cartier Weil divisor which is
not Cartier and a Weil divisor which is not Q-Cartier.

(1) Let X be the hypersurface defined by the equation xy = z2 in 3-
dimensional affine space A3 with coordinates x, y, z. It is a surface
with an ordinary double point at the origin (0, 0, 0). The line D defined
by x = z = 0 is a prime divisor on X. At lease 2 equations are needed
to define D in X, so D is not a Cartier divisor. On the other hand, we
have div(x) = 2D on X, so D is Q-Cartier.

(2) Let X be the hypersurface defined by xy = zw in A4 with coordinates
x, y, z, w. It is a 3-fold with an ordinary double point at the origin
(0, 0, 0, 0). The 2-dimensional linear subspace D1 defined by x = z = 0
is a prime divisor on X, which is not a Q-Cartier divisor (see Exam-
ple 1.2.4). It is the same for D2 defined by x = w = 0. However, the
sum D1 + D2 = div(x) is a Cartier divisor. See Example 2.5.4(2) for
related discussions.

1.2 Rational maps and birational maps
{subsection 1.2}

Let X,Y be two algebraic varieties. A rational map f : X 99K Y is a
morphism f : U → Y from a non-empty open subset U of X. Since f might
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not be defined on the whole X, we use dashed arrow to denote this map.
If there is another non-empty open subset U ′ and a morphism f ′ : U ′ → Y
such that f and f ′ coincide on U ∩ U ′, then we consider f = f ′ as the
same rational map. The domain of definition of a rational map f is defined
to be the largest non-empty open subset U such that there is a morphism
f : U → Y representing f . The graph of a rational map f : X 99K Y is
defined to be the closure of the graph Γ ⊂ U×Y of the morphism f : U → Y
in X × Y .

A rational map f : X 99K Y is said to be a birational map if there exist
non-empty open subsets U, V on X,Y such that f induces an isomorphism
U ∼= V . In this situation, the inverse map f−1 : Y 99K X is also a (bi-
)rational map. X and Y are said to be birationally equivalent if there exists
a birational map f : X 99K Y . In this case, we also say that one is the
birational model to the other.

A morphism f : X → Y is said to be a birational morphism if it is a
birational map. If U is the largest open subset of X on which f induces an
isomorphism U ∼= V , then Exc(f) = X \ U is called the exceptional set of
f . In this situation, V is the domain of definition of f−1. A prime divisor
contained in the exceptional set is called an exceptional divisor over Y or
an f -exceptional divisor. Generally, a divisor with all components contained
in the exceptional set is also called an exceptional divisor over Y or an
f -exceptional divisor.

For a morphism f : Y → X and a closed subset D of X, the inverse
image f−1(D) is a closed subset of Y . In this book, f−1(D) only means
the set-theoretic inverse image, and we forget about its scheme structure.
However, for a divisor we can define its direct image and inverse image as
the following.

Firstly we define the inverse image or pullback of a Cartier divisor.

Given a morphism f : Y → X and an invertible sheaf L on X, we can
always define the pullback f∗L which is an invertible sheaf on Y . On the
other hand, for a Cartier divisor D on X, we can define its pullback only
if the image f(Y ) is not contained in the support of D. In this situation,
the pullback f∗D is defined by pulling back the local functions defining D.
If D is given by a rational section s of the invertible sheaf OX(D), then
the pullback f∗D is give by the rational section f∗s of the invertible sheaf
f∗OX(D).

For an R-Cartier divisor D, if we write it as an R-linear combina-
tion of Cartier divisors D =

∑
diDi, then we can define the pullback by

f∗D =
∑
dif
∗Di. Here Di are Cartier divisors, not prime divisors. In other

words, the pullback of R-Cartier divisors can be defined by extending the
coefficients of the pullback morphism f∗ : Div(X) → Div(Y ) of Cartier di-
visors. Note that this definition does not depend on the expression of D.
The pullback f∗D is also called the total transform of D.
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On the other hand, we can not define the pullback for non-R-Cartier
divisors in general. However, if the morphism f : Y → X is a birational
map, we can define another form of “pullback” (the strict transform by
inverse map f−1) as the following.

Let f : X 99K Y be a birational map and D a prime divisor on X. For
the domain of definition of U , if D ∩U 6= ∅, then the image (f |U )(D ∩U) is
a locally closed subvariety of Y . If its closure is a prime divisor on Y , then
we denote the closure by f∗D; If D ∩ U = ∅ or the image (f |U )(D ∩ U) has
codimension at least 2, then we set f∗D = 0. Here f∗D is called the strict
transform or birational transform ofD. Generally for R-divisors, we consider
the linear map f∗ : Z1(X)R → Z1(Y )R by extending the coefficients, the
definition is extended by linearity f∗(

∑
diDi) =

∑
dif∗(Di).

Example 1.2.1. Given a projective birational morphism f : Y → X, for
any prime divisor D on X, the strict transform f−1

∗ D on Y is again a prime
divisor, which is not 0. In fact, the inverse map f−1 is well-defined at the
generic point of D, and there is no prime divisor contracted by f−1, hence
the strict transform is a prime divisor.

Remark 1.2.2. A birational map f : X 99K Y between normal algebraic
varieties induces an isomorphism between function fields k(X) ∼= k(Y ). For
a prime divisor D on X whose strict transform f∗D is non-zero, this iso-
morphism identifies the local rings at generic points of D and f∗D. When
regarding birationally equivalent algebraic varieties as the same, we identify
the divisors defining the same discrete valuation ring, which is equivalent to
identifying divisors connected by strict transforms.

A birational map f : X 99K Y is said to be surjective in codimension 1
if the map f∗ : Z1(X) → Z1(Y ) is surjective, that is, for any prime divisor
E ⊂ Y there is a prime divisor D on X such that E = f∗D. Moreover, it is
said to be isomorphic in codimension 1 if the map f∗ : Z1(X) → Z1(Y ) is
bijective. The minimal model theory mainly deals with the phenomenon in
codimension one, so these maps play important roles.

{blowup}
Example 1.2.3. A classical example of biratonal maps is a blowing up. A
blowing up is obtained by glueing the following local construction.

(1) Define the rational map f : X = An 99K Y = Pr−1 by f(x1, . . . , xn) =
[x1 : · · · : xr]. Let Z be the linear subspace of X defined by x1 =
· · · = xr = 0, then the domain of definition of f is U = X \ Z. The
graph X ′ ⊂ X × Y of f is defined by xiyj = xjyi (1 ≤ i, j ≤ r) where
y1, . . . , yr are the homogenous coordinates of Y . The first projection
p : X ′ → X is the blowing up along center Z. E = p−1(Z) is the
exceptional set of the birational morphism p, which is a prime divisor.
Moreover, E ∼= Z×Pr−1, and p induces an isomorphism X ′\E → X\Z.
In this case p is surjective in codimension 1, but p−1 is not.
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(2) Let X1 be a subvariety of X which is not contained in Z. The strict
transform X ′1 = p−1

∗ (X1) of X1 is the closure of p−1(X1 \ Z). In this
case, p1 = p|X′1 : X ′1 → X1 is the blowing up of X1 along center Z ∩X1.
In particular, the case Z ⊂ X1 is important. Since X1 6⊂ Z, p1 is a
birational morphism. However, the exceptional set Exc(p1) does not
necessarily coincide with E ∩X ′1. For example, consider n = 4, r = 2,
X1 ⊂ A4 is the subvariety defined by x1x3 + x2x4 = 0. This is the
situation in Example 1.1.4(2). In this case, Z ⊂ X1, the exceptional set
C of p1 : X ′1 → X1 is isomorphic to P1, and p1(C) is the origin. Hence
p1 is isomorphic in codimension 1, and so is p−1

1 .

{ODP2}
Example 1.2.4. Consider the situations in Example 1.1.4.

(1) For a Q-Cartier Weil divisor which is not Cartier, the pullback might
not be a Weil divisor but only a Q-divisor. The blowing up f : X ′ → X
of X along the origin Z = (0, 0, 0) gives a resolution of singularities.
The exceptional set C ⊂ X ′ is isomorphic to P1. We have f∗D =
f−1
∗ D + 1

2C. The projection formula (f∗D · C) = (D · f∗C) stated
later (before Proposition 1.4.3) can be confirmed by the following facts:
(f−1
∗ D · C) = 1, (C2) = −2, f∗C = 0.

(2) Non-Q-Cartier divisor can not be pulled back according to the projec-
tion formula. Consider the blowing up p1 : X ′1 → X1 in the end of
Example 1.2.3(2). We change the notation by f : X ′ → X. Then X ′

is smooth, the exceptional set C ⊂ X ′ is isomorphic to P1, and p1 is
isomorphic in codimension 1. If the pullbacks f∗D1, f

∗D2 of D1, D2

would exist, they would have to coincide with the strict transforms
f−1
∗ D1, f

−1
∗ D2 since there is no exceptional divisor. However, inter-

secting with C, (f−1
∗ D1 · C) = −1, (f−1

∗ D2 · C) = 1. This violates the
projection formula (f∗D · C) = (D · f∗C) since f∗C = 0.

A coherent sheaf F on an algebraic variety X is said to be generated
by global sections if the natural homomorphism H0(X,F ) ⊗ OX → F is
surjective.

For a Cartier divisor D, its complete linear system is defined by |D| =
{D′ | D ∼ D′ ≥ 0}, and its base locus is defined by Bs |D| =

⋂
D′∈|D| Supp(D′).

When Bs |D| = ∅, |D| is said to be free, which is equivalent to that the cor-
responding coherent sheaf OX(D) is generated by global sections. Here D
is also said to be free if |D| is free, and D is said to be semi-ample if there
exists a positive integer m such that mD is free.

More generally, a finite dimensional linear subspace V ⊂ H0(X,D) cor-
responds to a (not necessarily complete) linear system Λ = {div(s) | s ∈
V \{0}}. The base locus of Λ is defined similarly by Bs Λ =

⋂
D′∈Λ Supp(D′),

and Λ is said to be free if Bs Λ is empty, which is equivalent to that the nat-
ural homomorphism V ⊗OX → OX(D) is surjective.
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The fixed part of a linear system Λ is the effective divisor F = minD′∈ΛD
′.

In other words, F is the maximal divisor such that F ≤ D′ for all D′ ∈ Λ.
In this case, the image of the natural injection H0(X,D − F )→ H0(X,D)
contains V . Being viewed as a subspace of H0(X,D − F ), V corresponds
to the linear system Λ′ = {D′ − F | D′ ∈ Λ}, which is called the movable
part of Λ. We write Λ = Λ′ + F . Usually Λ′ and F are denoted by Mov Λ
and Fix Λ respectively. By definition, the support of F coincides with the
codimension one components of Bs Λ.

If we assume moreover that X is proper, then Λ is isomorphic to the
projective space P(V ∗) := (V \{0})/k∗ as an algebraic variety. A non-empty
linear system Λ induces a rational map ΦΛ : X 99K P(V ) := (V ∗\{0})/k∗ to
its dual projective space. The domain of definition of ΦΛ contains U = X \
Bs Λ; for P ∈ U , ΦΛ(P ) is the point in P(V ) corresponding to the hyperplane
{s ∈ V | s(P ) = 0} of V . In other words, if we take a basis s1, s2, . . . , sm ∈
V , then we can define ΦΛ(P ) = [s1(P ) : s2(P ) : · · · : sm(P )] ∈ P(V ). Note
that here si(P ) is not a well-defined value, but [s1(P ) : s2(P ) : · · · : sm(P )]
is a well-defined point as long as P ∈ U . In particular, when Λ is free, ΦΛ is
a morphism. The rational map given by the movable part of a linear system
coincides with the rational map given by the original linear system.

For a morphism f : Y → X and a linear system Λ on X, the pullback is
defined by f∗Λ = {f∗D′ | D′ ∈ Λ}. If there is a morphism to a projective
space, a free linear system can be obtained by pulling back the linear system
consisting of all hyperplanes.

The base locus of a linear system can be removed in the following sense:

Proposition 1.2.5. Let Λ be a linear system of Cartier divisors on a normal
algebraic variety X. Then there exists a projective birational morphism f :
Y → X from a normal algebraic variety Y such that the pullback has the
form f∗Λ = Λ1 + F where F is the fixed part of f∗Λ and the movable part
Λ1 is free.

Proof. Let V ⊂ H0(X,D) be the linear subspace corresponding to Λ. The
image of the natural map V ⊗ OX → OX(D) can be written as IOX(D)
where I is an ideal sheaf on X. Take f to be the normalization of the blowing
up of I, then the inverse image ideal sheaf IOY is an invertible sheaf on Y ,
and the image of f∗V ⊗OY → OY (f∗D) can be written as OY (f∗D−F ) for
some effective divisor F . Since the natural map f∗V ⊗OY → OY (f∗D−F )
is surjective, the linear system Λ1 = f∗Λ− F is free and F is the fixed part
of f∗Λ.

For an R-divisor D on a normal proper algebraic variety X, the set of
global sections H0(X, xDy) is a finite dimensional k-linear space. Consider-
ing all natural number multiples mD and taking direct sum, we define the
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section ring of D by

R(X,D) =

∞⊕
m=0

H0(X, xmDy).

Here m runs over all non-negative integers. It admits a graded k-algebra
structure defined by

H0(X, xmDy)⊗H0(X, xm′Dy)→ H0(X, x(m+m′)Dy)

since

xmDy + xm′Dy ≤ x(m+m′)Dy.

The Iitaka–Kodaira dimension of an R-divisor can be defined by the tran-
scendental degree of the section ring:

κ(X,D) =

{
tr.degk R(X,D)− 1 if R(X,D) 6= k,

−∞ otherwise.

The Iitaka–Kodaira dimension takes value among −∞, 0, 1, . . . , n = dimX.
When it takes the maximal value, that is, when κ(X,D) = dimX, D is said
to be big. For example, ample divisors are big.

If R(X,D) = k, that is, H0(X, xmDy) = 0 for any m > 0, then κ(X,D)
is defined to be −∞ instead of −1. This definition is reasonable by the
following lemma:

Lemma 1.2.6 ([49, Theorem 10.2], [123, Theorem II.3.7]). There exist pos-
itive real numbers c1, c2 such that for any sufficiently large and sufficiently
divisible integer m,

c1m
κ(X,D) ≤ dimH0(X, xmDy) ≤ c2m

κ(X,D).

Remark 1.2.7. Canonical ring is the section ring of the canonical divi-
sor, which is proved to be finitely generated for smooth projective varieties
([15]), and one of the main goals of this book is to explain the proof. How-
ever, in general the section ring R(X,D) of a divisor D is not necessarily
finitely generated. There exist examples such that the anti-canonical ring
(i.e. the section ring of the anti-canonical divisor −KX) of a smooth projec-
tive surface is not finitely generated ([132], see also Example 2.4.8). Also,
the anti-canonical ring R(X,−KX) is not a birational invariant.

The relative version is as follows. Let f : X → S be a proper morphism
from a normal algebraic variety. The relative global sections of a coherent
sheaf F on X are given by the direct image sheaf f∗F . F is said to be
generated by relative global sections if the natural homomorphism f∗f∗F →
F is surjective. A Cartier divisor D on X is said to be relatively free if the
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corresponding coherent sheaf OX(D) is generated by relative global sections.
D is said to be relatively semi-ample if there exists a positive integer m such
that mD is relatively free.

For an R-divisor D on X, the direct image sheaf f∗(OX(xDy)) is a
coherent OS-module. The relative section ring of D is defined by the direct
sum

R(X/S,D) =

∞⊕
m=0

f∗(OX(xmDy)),

which is a graded OS-algebra.
The relative Iitaka–Kodaira dimension is defined by the Iitaka–Kodaira

dimension of the generic fiber. Here we always assume that f is surjective
with irreducible geometric generic fiber, and define

κ(X/S,D) = κ(Xη̄, D|Xη̄).

Here Xη is the generic fiber which is the fiber of f over the generic point
η of S, and Xη̄ is the geometric generic fiber which is the base change of
Xη to the algebraic closure of k(S). D is said to be relatively big or f -big if
κ(X/S,D) = dimXη̄. In Section 1.5.1 we will give an equivalent definition
for (relative) bigness using Kodaira’s lemma (Corollary 1.5.10).

1.3 Canonical divisors

A normal algebraic variety X is automatically associated with a Weil divisor
KX which is called the canonical divisor. KX is the key player of this book.
The canonical ring is the section ring of the canonical divisor. The minimal
model program is a sequence of operations that “minimizes” the canonical
divisor.

As X is normal, the singular locus Sing(X) is a closed subset of X
of codimension at least 2. Since the complement set U = X \ Sing(X)
is smooth, the sheaf of differentials Ω1

X/k is a locally free sheaf of rank

n = dimX over U . The determinant ωU = det(Ω1
X/k|U ) is an invertible

sheaf on U . Taking a non-zero rational section θU of ωU , we get a canonical
divisor KU = div(θU ) of U . Since X \ U contains no prime divisors of X,
the restriction map of divisors Z1(X) → Z1(U) is bijective. Denote by
KX ∈ Z1(X) the corresponding divisor of KU ∈ Z1(U), which is called the
canonical divisor of X.

Remark 1.3.1. (1) By construction, KX depends on the choice of θU .
However, traditionally arguments proceed as if the canonical divisor
is a fixed one. Anyway, in this book, all discussions are independent of
the choice of θU . On the other hand, the corresponding divisorial sheaf
ωX = OX(KX) is uniquely determined. It is called the canonical sheaf.
The canonical sheaf ωX is a natural subject.
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(2) In this book, the following situation appears frequently: let f : Y → X
be a birational morphism between normal algebraic varieties and B an
R-divisor on X such that KX +B is R-Cartier. Consider the pullback
f∗(KX + B). By using the isomorphism between function fields f∗ :
k(X) → k(Y ), we can take the same rational differential form θ which
defines KX and KY (in particular, KX = f∗KY ), then the R-divisor C
can be defined by f∗(KX+B) = KY +C. Here C is uniquely determined
as the sum of the strict transform f−1

∗ B and an R-divisor supported on
the exceptional set of f .

We will discuss general boundary divisors later. Here we consider such
a pair when X is a smooth algebraic variety and B =

∑
Bi is a normal

crossing divisor. Let n = dimX. The sheaf of differentials Ω1
X(logB)

with at most logarithmic poles along B is naturally defined as a locally
free sheaf of rank n with the following property. For any closed point
P ∈ X, choose a regular system of parameters x1, . . . , xn of the local
ring OX,P such that the local equation of B is x1 · · ·xr = 0 for some in-
teger r. In this case, the stalk Ω1

X(logB)P is a free OX,P -module with
basis dx1/x1, . . . , dxr/xr, dxr+1, . . . , dxn. The determinant Ωn

X(logB) of
Ω1
X(logB) is isomorphic to OX(KX + B). Therefore KX + B is called the

logarithmic canonical divisor or just log canonical divisor. This is the origin
of the terminology “log”.

In general, a log canonical divisorKX+B is a sum of the canonical divisor
and an effective R-divisor. Usually certain conditions on singularities will be
imposed on the pair (X,B), which will be discussed later. The log canonical
ring is defined to be R(X,KX+B), and the log Kodaira dimension is defined
to be κ(X,KX +B).

LetX be a smooth projective variety. R(X) = R(X,KX) is the canonical
ring of X. Pm(X) = dimH0(X,mKX) is called the m-genus, which is
an important birational invariant having been studied for a long time. Its
growth order κ(X,KX) is called the Kodaira dimension, sometimes is simply
denoted by κ(X). X is said to be of general type if KX is big.

When doing induction on dimensions, one key is the adjunction formula.

Let D be a smooth prime divisor on a smooth algebraic variety X. Then
the log canonical divisor on X and the canonical divisor of D are connected
by the following adjunction formula:

(KX +D)|D = KD.

In this formula, KX |D and D|D have no natural meaning, but their sum
does. The adjunction is given by the map

ResD : Ωn
X(logD)→ Ωn−1

D
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which is induced by the residue map

ResD : Ω1
X(logD)→ OD

and the restriction map Ω1
X → Ω1

D. The residue map is a natural map
which is independent of the choice of coordinates. Therefore, the adjunction
formula is also a natural formula. Note that this adjunction formula still
holds if D is normal and D∩Sing(X) has codimension at least 2 in D, as we
can first apply the above adjunction formula to D \Sing(X) ⊂ X \Sing(X),
then extend it to D by normality. 1.3.0.1

When D is not a prime divisor but a normal crossing divisor, if taking
an irreducible component D1 of D and write E = (D−D1)|D1 , then we have
the adjunction formula

(KX +D)|D1 = KD1 + E.

Here the restriction E is well-defined since the intersection of D −D1 and
D1 is of codimension one on D1.

More generally, we can consider the adjunction formula as a relation
between canonical divisors of relevant varieties. For example, consider a
surjective finite morphism f : Y → X between smooth algebraic varieties
whose ramification locus is a smooth prime divisor D on X with ramification
index m. The set-theoretic inverse image E = f−1(D) is a prime divisor on
Y and f∗D = mE. In this case, the ramification formula or the adjunction
formula related to the ramification is the following:

KY = f∗KX + (m− 1)E.

If written as

KY = f∗(KX +
m− 1

m
D),

then it looks like the adjunction formula for subvarieties. The latter formula
is the origin of considering boundary divisors with rational coefficients. Also,
if you write

KY + E = f∗(KX +D),

you will find that “ramification is killed by log setting”.

As another example of the adjunction formula, consider the blowing up
of an n-dimensional smooth algebraic variety X along an r-codimensional
smooth subvariety Z. The blowing up f : Y → X is a birational morphism
with exceptional set E a prime divisor isomorphic to a Pr−1-bundle over Z.
The relation of canonical divisors is given by

KY = f∗KX + (r − 1)E.

1.3.0.1I added this sentence.
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As can be seen in the following example, if X is a singular normal al-
gebraic variety and a prime divisor D on X intersects Sing(X) such that
D∩Sing(X) contains an irreducible component of codimension 1 on D, then
the singularities contribute to the adjunction formula. This phenomenon is
called the subadjunction formula, which is very important.

{SAF example}
Example 1.3.2. Let X be the quadric surface defined by xy + z2 = 0
in projective space P3 with homogenous coordinates x, y, z, w. X has a
singularity at [0 : 0 : 0 : 1]. Let H be a hyperplane section, then KX ∼ −2H.
The projective line L defined by x = z = 0 is a prime divisor on X. We
have div(x) = 2L on X, hence L ∼Q

1
2H. Therefore (KX +L)|L ∼Q −3

2H|L
since L|L ∼Q

1
2H|L. On the other hand, KL ∼ −2H|L. Therefore we have

the subadjunction formula (KX +L)|L = KL + 1
2H|L (see Remark 1.11.14).

1.4 Intersection numbers and numerical geometry

Problems in algebraic geometry are equivalent to solving simultaneous poly-
nomial equations, which are highly nonlinear. Numerical geometry attempts
to linearize those using intersection numbers. In the following two sections,
we explain basic definitions in numerical geometry. In Chapter 2, we explain
the base point free theorem and the cone theorem which are important in
numerical geometry. The explanation here is according to Kleiman [86].

All definitions here will be for a proper morphism f : X → S between
algebraic varieties over a field k. In the case S = Spec k, the definitions
are for a proper algebraic variety X. We use words “relative” or “over S”
to keep in mind this setting. In the case S = Spec k, those words will
be removed. For simplicity, one can just consider S = Spec k and ignore
the word “relative”, the context will be almost the same. However, it is
indispensable to consider the relative version in applications.

In the following definition, k is an arbitrary field, and X is of finite type
over k, not necessarily irreducible or reduced. However, when considering
Cartier divisors, X is always assumed to be a normal algebraic variety.

A closed subvariety Z on X is called a relative subvariety over S if f(Z)
is a closed point of S. In particular, if dimZ = 1, it is called a relative curve
over S. Denote dimZ = t and take t invertible sheaves L1, . . . , Lt on X.
Then the intersection number (L1 · · ·Lt · Z) is defined as the coefficient of
the following polynomial ([86, p.296])

χ(Z,L⊗m1
1 ⊗ · · · ⊗ L⊗mtt ⊗OZ) = (L1 · · ·Lt · Z)m1 · · ·mt + (other terms).

Here m1, . . . ,mt are variables with integer values, and

χ(Z, •) =
∑

(−1)p dimkH
p(Z, •)
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is the Euler–Poincaré characteristic. Here note that X itself is not necessar-
ily proper, but Z is proper as f(Z) is a point, hence the cohomology groups
of coherent sheaves on Z are finite dimensional.

The intersection number (L1 · · ·Lt · Z) takes integer value, and it is a
symmetric t-linear form with respect to L1, . . . , Lt ([86, p.296]). That is, it
is independent of order of Li, and

((L⊗n1
1 ⊗ L′⊗n

′
1

1 ) · · ·Lt · Z) = n1(L1 · · ·Lt · Z) + n′1(L′1 · · ·Lt · Z).

For Cartier divisors D1, . . . , Dt, define

(D1 · · ·Dt · Z) = (OX(D1) · · · OX(Dt) · Z).

In particular, when dimZ = 1, taking ν : Zν → Z1.4.0.1 to be the normal-
ization where Zν is a smooth projective curve, then by the Riemann–Roch
theorem,

(D1 · Z) = degZν (ν∗(OX(D1)|Z)).

When Z = X, we simply write (D1 · · ·Dt) = (D1 · · ·Dt ·X). If moreover all
Di are the same D, then write (D1 · · ·Dt) = (Dt).

By multi-linearity, the definition of (D1 · · ·Dt · Z) can be extended to
the case when Di are R-Cartier divisors, which takes value in real numbers.

Remark 1.4.1. (1) Here we use Euler–Poincaré characteristic to give a
simple definition for intersection numbers, but the correct geometric
definition is by adding up local intersection numbers to get the global
intersection number. This is how intersection number (the number of
“intersection points”) is defined originally. Using the geometric defi-
nition, for effective R-Cartier divisors Di and a t-dimensional relative
subvariety Z, if the intersection

⋂t
i=1 Supp(Di)∩Z is non-empty and of

dimension 0, then the intersection number is positive, and if the inter-
section is empty, then the intersection number is zero.

(2) By using intersection numbers of divisorial sheaves, we can define the
self-intersection number of a divisor, which seems to be a weird name.
For example, for an effective Cartier divisor D on an n-dimensional al-
gebraic variety, the self-intersection number (Dn) can be either positive
or non-positive.

(3) In this book, a curve is an irreducible reduced projective variety of
dimension 1. The only intersection number considered in this book is
the intersection number of a Cartier divisor with a curve. Among all
curves, rational curve plays a very important role in the minimal model
theory (see Sections 2.7 and 2.8). A rational curve is a curve whose
normalization is isomorphic to P1. In general a rational curve might
have singularities and not necessarily isomorphic to P1.

1.4.0.1notation changed



26 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

{ODP3}
Example 1.4.2. The intersection number of a divisor and a curve can
be defined if this divisor is a Q-Cartier divisor. However, the intersection
number is not necessarily an integer if the divisor is not Cartier. In general
it can not be defined if the divisor is not Q-Cartier.

Consider X as in Examples 1.1.4 or 1.2.4, and let X̄ be its compactifi-
cation in projective space P3 or P4.

(1) X̄ is defined by xy = z2 in P3 with homogenous coordinates u, x, y, z.
The compactification D̄ of D is a prime divisor defined by x = z = 0. In
this case, (D̄2) = 1

2 . In fact, take a plane H̄, then H̄|X̄ ∼ div(x) = 2D̄,
(H̄ · D̄) = 1.

(2) X̄ is defined by xy = zw in P4 with homogenous coordinates u, x, y, z, w.
The compactifications D̄1, D̄2 of D1, D2 are prime divisors defined by
x = z = 0, x = w = 0. Take curve C defined by y = z = w = 0.
D1 + D2 is a Cartier divisor and ((D1 + D2) · C) = 1. The blowing up
f1 : Y1 → X̄ is isomorphic in codimension one. If intersection numbers
(Di · C) (i = 1, 2) could be defined, by the projection formula stated
later (before Proposition 1.4.3), (Di · C) = (f−1

1∗ Di · f−1
1∗ C) as there is

no exceptional divisor. The right hand side can be calculated to be 1, 0
for i = 1, 2. This is absurd since the relations between D1, D2 and C
are symmetric.

Two invertible sheaves L,L′ are called relatively numerically equivalent,
denoted by L ≡S L′, if (L · C) = (L′ · C) for any relative curve C. When
the base is clear, we just write L ≡ L′. The abelian group consisting of
isomorphism classes of all invertible sheaves is denoted by Pic(X), and the
subgroup consisting of all invertible sheaves relatively numerically equivalent
to OX is denoted by Picτ (X/S). The quotient group Pic(X)/Picτ (X/S) is
a finitely generated abelian group ([86, p.323]), which is called the relative
Neron–Severi group, and is denoted by NS(X/S). ρ(X/S) = rank NS(X/S)
is called the relative Picard number. When S = Spec k, it is just called the
Picard number and is denoted by ρ(X).

If L1 ≡S OX , (L1 · L2 · · ·Lt · Z) = 0 holds for arbitrary L2, . . . , Lt, Z
([86, p.304]). Also, for any invertible sheaf F on a relative subvariety Z,
χ(Z,F ) = χ(Z,F ⊗ L1) holds ([86, p.311]).

Two R-Cartier divisors D,D′ are called relatively numerically equivalent,
denoted by D ≡S D′ or D ≡ D′, if (D · C) = (D′ · C) for any relative
curve C. The numerical equivalence class of D is denoted by [D]. The
set of all numerical equivalence classes of R-Cartier divisors coincides with
NS(X/S) ⊗ R, which is a ρ(X/S)-dimensional real vector space, and is
denoted by N1(X/S).

If X is a smooth complete complex manifold, D ≡ D′ is equivalent to
having the same cohomology class [D] = [D′] ∈ H2(X,R).
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Fix an integer t, a finite formal linear sum of t-dimensional relative
subvarieties Z =

∑
ajZj is called a relative t-cycle. The coefficients ai can

be integers, rational numbers, or real numbers depending on the situation.
By linearity, intersection numbers can be defined for relative t-cycles. In
this book we only consider the case t = 1 or dimX − 1.

Two relative 1-cycles C,C ′ are called numerically equivalent, denoted by
C ≡S C ′, if (D · C) = (D · C ′) for any Cartier divisor D. The set N1(X/S)
of all numerical equivalence classes of relative 1-cycles with real coefficients
is a finite dimensional real vector space. N1(X/S) and N1(X/S) are dual
to each other.

Let g : Y → X be a proper morphism from another algebraic variety.
For a relative subvariety Z on Y over S, the direct image g∗Z as an algebraic
cycle is defined as the following: if dim g(Z) = dimZ, then g∗Z = [k(Z) :
k(g(Z))]g(Z); if dim g(Z) < dimZ, then g∗Z = 0. Here g(Z) is the set-
theoretic image of Z, and [k(Z) : k(g(Z))] is the extension degree of function
fields. If g is a birational morphism, then g∗Z coincides with the strict
transform defined before in Section 1.2.

For a relative t-cycle Z and invertible sheaves L1, . . . , Lt on X, the pro-
jection formula

(g∗L1 · · · g∗Lt · Z) = (L1 · · ·Lt · g∗Z)

holds ([86, p.299]). In this book we often use this formula for t = 1 in which
case

(g∗L · C) = (L · g∗C).
{pullback1}

Proposition 1.4.3 ([86, p.304]). Let f : X → S and g : Y → X be two
proper morphisms and L an invertible sheaf on X.

(1) If L ≡S 0, then g∗L ≡S 0. Therefore, g induces a natural linear map
g∗ : N1(X/S)→ N1(Y/S).

(2) Conversely, if g is surjective and g∗L ≡S 0, then L ≡S 0, that is, the
pullback map g∗ is injective.

Proof. (1) For any relative curve C ′ on Y ,

(g∗L · C ′) = (L · g∗C ′)

=

{
[k(C ′) : k(g(C ′))](L · g(C ′)) if dim g(C ′) = 1;

0 if dim g(C ′) = 0.

which implies the statement.

(2) If g is surjective, for any relative curve C on X, there exists a relative
curve C ′ on Y such that C = g(C ′), which proves the statement.
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Let h : S → T be a proper morphism, the identity map on Div(X)
induces a surjective linear map (1/h)∗ : N1(X/T ) → N1(X/S). By taking
dual, (1/h)∗ : N1(X/S) → N1(X/T ) is injective. For proper morphisms
f : X → S and g : Y → X, the composition of g∗ : N1(X/S) → N1(Y/S)
and (1/f)∗ : N1(Y/S)→ N1(Y/X) is zero map.

1.5 Cones of curves and cones of divisors

Cones and polytopes contained in finite dimensional vector spaces play im-
portant roles in this book. In Chapter 2, morphisms from algebraic varieties
can be constructed by using faces of convex cones (the cone theorem). Also
in Chapter 3, sequences of rational maps can be analyzed by looking at a
cluster of polytopes.

1.5.1 Pseudo-effective cones and nef cones
{subsec cones}

We will define the closed cone generated by numerical equivalence classes
of curves in the real vector space N1(X/S), and the closed cones generated
by numerical equivalence classes of effective divisors and nef divisors in the
dual space N1(X/S).

A subset C in a finite dimensional vector space V is called a convex cone
if for any a, a′ ∈ C and r > 0, a + a′ ∈ C and ra ∈ C hold. It is called a
closed convex cone if moreover it is a closed subset.

For an element u ∈ V ∗ in the dual space, define Cu≥0 = {v ∈ C | (u ·v) ≥
0}. Cu=0 and Cu<0 can be defined similarly. The dual closed convex cone of
a closed convex cone C is defined by

C∗ =
⋂
v∈C

V ∗v≥0 = {u ∈ V ∗ | for any v ∈ C, (u · v) ≥ 0}.

As C is a closed convex cone, v ∈ C is equivalent to (u · v) ≥ 0 for all u ∈ C∗.
That is, C = C∗∗.

Given a morphism f : X → S, an invertible sheaf L on X is called rel-
atively ample, or ample over S, or f -ample, if there exists an open covering
{Si} of S, positive integers m,N , and locally closed immersion gi : Xi =
f−1(Si)→ PN × Si such that L⊗m|Xi ∼= g∗i p

∗
1OPN (1) where p1 : PN × Si →

PN is the first projection. Here the left hand side is the m-th tensor power
of L, and the right hand side is the pullback of the invertible sheaf corre-
sponding to a hyperplane section by the first projection and gi. A Cartier
divisor D is called relatively ample if its divisorial sheaf is so. A morphism
admitting a relatively ample invertible sheaf is called quasi-projective. In
particular, if all immersions gi are closed immersion, the morphism is called
projective.
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Here we recall the following useful fact. Let f : X → S and g : Y → X be
two projective morphisms, L an invertible sheaf on X, and M an invertible
sheaf on Y . Suppose that L is f -ample and M is g-ample, then ng∗L+M
is ample over S for sufficiently large n ([46, II.7.10]).

In the following, X is assumed to be normal, and the morphism f : X →
S is assumed to be projective.

In general, the convex cone consisting of numerical equivalence classes
of all effective R-Cartier divisors is neither closed nor open. This is because
there might be infinitely many prime divisors showing up when consider-
ing a limit of effective divisors in N1(X/S). The closure of this cone is
denoted by Eff(X/S), which is called the relative pseudo-effective cone, in
some literature it is denoted by Psef(X/S). An R-Cartier divisor D is called
relatively pseudo-effective if its numerical equivalence class [D] is contained
in Eff(X/S).

The set of interior points of the closed convex cone Eff(X/S) is called the
relative big cone and is denoted by Big(X/S). Recall that in Section 1.2, we
introduced the definition of an R-Cartier divisor D being relatively big or
f -big. By Kodaira’s lemma later (Corollary 1.5.8), it can be shown that an
R-Cartier divisor D is relatively big if and only if its numerical equivalence
class [D] is contained in Big(X/S).

An R-Cartier divisor D is called relatively nef or f -nef if (D · C) ≥ 0
for any relative curve C. This is also called relatively numerically effective.
“Nef” is an abbreviation, but commonly used now. The set of numerical
equivalence classes of all nef R-Cartier divisors is a closed convex cone of
N1(X/S), which is denoted by Amp(X/S), and called the relative nef cone,
sometimes it is denoted by Nef(X/S).

The set of interior points of the relative nef cone is called the relative
ample cone and is denoted by Amp(X/S). An R-Cartier divisor D is called
relatively ample or f -ample if its numerical equivalence class [D] is con-
tained in Amp(X/S). This notation will be justified by Kleiman’s criterion
described later (Theorem 1.5.4): for a Cartier divisor D, being f -ample in
this sense is equivalent to being f -ample in the original sense. By defini-
tion, the sum of a relatively ample R-Cartier divisor and a relatively nef
R-Cartier divisor is again a relatively ample R-Cartier divisor.

In the dual space N1(X/S), the cone of relative curves is the convex
cone generated by numerical equivalence classes of all relative curves, which
is in general neither open nor closed. Its closure is called the closed cone
of relative curves, which is denoted by NE(X/S). By definition, the latter
one is the dual closed convex cone of the relative nef cone and the relative
ample cone:

Amp(X/S) = {u ∈ N1(X/S) | (u · v) ≥ 0 for all v ∈ NE(X/S)},
Amp(X/S) = {u ∈ N1(X/S) | (u · v) > 0 for all v ∈ NE(X/S)}.
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Remark 1.5.1. The cones Amp(X/S) and NE(X/S) considered here con-
tain interior points, but contain no linear subspaces. This is a consequence of
f : X → S being projective and Kleiman’s criterion. For example, NE(X/S)
contains no lines since the intersection number of a relatively ample divi-
sor with a curve class in NE(X/S) is alway positive by Theorem 1.5.4. A
relatively ample divisor is also called a polarization as it gives the positive
direction.

The structures of the relative nef cone and the closed cone of relative
curves are important themes of this book.

{pullback2}
Proposition 1.5.2 ([86, p.337]). Let f : X → S and g : Y → X be two
projective morphisms, and L an invertible sheaf on X.

(1) If L is f -nef, then the pullback g∗L is f ◦ g-nef.

(2) If g is surjective and g∗L is f ◦ g-nef, then L is f -nef.

(3) If g is surjective, then

g∗Amp(X/S) = Amp(Y/S) ∩ g∗N1(X/S).

(4) Assume that g is surjective. If moreover g is a finite morphism, then

g∗Amp(X/S) = Amp(Y/S) ∩ g∗N1(X/S),

otherwise

g∗Amp(X/S) = (∂Amp(Y/S)) ∩ g∗N1(X/S).

Here ∂ is the boundary of the closed convex cone.

Proof. The proof of (1) and (2) is similar to that of Proposition 1.4.3. (3)
follows from (2).

(4) When g is a finite morphism, the pullback of a relatively ample
invertible sheaf is again a relatively ample invertible sheaf, hence the former
statement follows. On the other hand, when g is not a finite morphism, the
pullback of a relatively ample invertible sheaf is never a relatively ample
invertible sheaf, hence the latter statement follows from (3).

It was shown that a non-finite morphism gives a face of the relative nef
cone. Conversely, there are cases where it is possible to construct a non-
finite morphism from a face of the relative nef cone; this is the contraction
theorem in the minimal model theory.

Example 1.5.3. (1) Let X be a smooth projective complex algebraic sur-
face and C a curve on X with negative self-intersection (C2) < 0. For
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any curve C ′ different from C, the intersection number is always non-
negative: (C · C ′) ≥ 0. Denote by C′ ⊂ N1(X) the closed convex cone
generated by the numerical equivalence classes of all curves C ′ different
from C, then the closed cone of curves NE(X) is generated by C′ and
[C]. [C] 6∈ C′ since (C · C ′) ≥ 0 for all C ′ ∈ C′. Therefore, one can see
that [C] generates an extremal ray of NE(X). Here an extremal ray ` in
a convex cone C is a 1-dimensional subcone such that if α + α ∈ ` and
α, α ∈ C, then α, α ∈ `. Taking a dual, we get a face F = Amp(X)C=0

of Amp(X). According to a result of Grauert ([35]), there exists a com-
pact complex analytic surface Y with only normal singularities and a
birational morphism f : X → Y between complex analytic surfaces such
that C is contracted to a point. That is, f(C) is a point and there is
an isomorphism f : X \ C → Y \ f(C). However, Y is in general not
an algebraic variety. But according to a result of Artin ([7]), if C ∼= P1,
then Y is a projective algebraic surface and f becomes a birational mor-
phism between algebraic varieties. In this sense, it may or may not be
possible to construct a morphism from a face of the nef cone.

(2) Let X be an Abelian variety, that is, a smooth projective algebraic
variety with an algebraic group structure. In this case, any prime divisor
D on X is nef, and

Amp(X) = {v ∈ N1(X) | (vn) > 0}0.

Here n = dimX and 0 on the right hand side means a connected com-
ponent.

1.5.2 Kleiman’s criterion and Kodaira’s lemma

In this subsection, we introduce Kleiman’s ampleness criterion. Also we
prove Kodaira’s lemma, which characterizes big divisors.

{Kleiman}
Theorem 1.5.4 (Kleiman’s criterion ([86])). For a projective morphism
f : X → S between algebraic varieties, a Cartier divisor D on X is relatively
ample if and only if its numerical equivalence class is contained in the relative
ample cone Amp(X/S).

Remark 1.5.5. Kleiman’s criterion is a paraphrase of Nakai’s criterion for
projectivity and ampleness using the language of cones of divisors instead
of intersection numbers with subvarieties. In Kleiman’s criterion as well as
Nakai’s criterion, X is not necessarily assumed to be irreducible or reduced.
It is not necessarily assumed to be projective, and whether a proper scheme
is projective can be determined by whether Amp(X) is not empty.

As ampleness is an algebro-geometric property which is non-linear, we
can say that it is linearized by Kleiman’s criterion using conditions in nu-
merical geometry. This is a typical example of numerical geometry.
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An invertible sheaf L on a projective algebraic variety X induces a func-
tional hL on the dual space N1(X). By Kleiman’s criterion, L is ample if
and only if hL is positive on the closed cone of curves NE(X).

This condition is strictly stronger than the condition that hL(C) = (L ·
C) > 0 for any curve C. We explain this by the following example:

Example 1.5.6 (Mumford’s example). Let Γ be a smooth complex algebraic
curve of genus at least 2 and F a locally free sheaf on Γ of rank 2 and of
degree 0. The last condition means that

∧2 F ≡ OΓ. Assume that F is
stable, that is, deg(M) < 0 for any invertible subsheaf M of F . Such F can
be constructed by using unitary representations of the fundamental group
π1(Γ). In this case, for any surjective morphism f : C → Γ from a smooth
projective curve, f∗F is also stable. Let X = P(F ) be the corresponding
P1-bundle over Γ and L = OP(F )(1). Let C0 be a curve on X. If it is not a
fiber of f , take f : C → Γ to be the composition of normalization g : C → C0

and the projection C0 → Γ. In this case, g∗L is an invertible sheaf which
is a quotient of f∗F , hence its degree is positive. If C0 is a fiber of f , then
(L · C0) = 1. That is, (L · C0) > 0 holds for any curve C0 on X. On the
other hand, (L2) = 0 since deg(F ) = 0, which means that L is not ample.

The following Kodaira’s lemma gives a characterization of big divisors.

Theorem 1.5.7 (Kodaira’s lemma). (1) A Cartier divisor D on a normal
projective algebraic variety X is big if and only if there exists a positive
integer m, an ample Cartier divisor A, and an effective Cartier divisor
E such that mD = A+ E.

(2) For a surjective projective morphism f : X → S from a normal algebraic
variety to a quasi-projective algebraic variety, a Cartier divisor D on X
is relatively big if and only if there exists a positive integer m, a relatively
ample Cartier divisor A, and an effective Cartier divisor E such that
mD = A+ E.

In other words, big divisors are divisors bigger than ample divisors.

Proof. (1) As ample divisors are big, the condition is sufficient.
Conversely, assume that D is big. Denote n = dimX. Take a very

ample divisor A and a general element in its complete linear system Y ∈ |A|.
Consider the exact sequence

0→ OX(mD − Y )→ OX(mD)→ OY (mD|Y )→ 0.

Look at the corresponding exact sequence

0→ H0(X,mD − Y )→ H0(X,mD)→ H0(Y,mD|Y ),

as dimY = n − 1, the dimension of the last term is bounded by cmn−1 for
some constant c. Since the central term increases by order mn by bigness,
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the first term is not 0 for sufficiently large m. Hence there exists an effective
divisor E with linear equivalence mD−Y ∼ E. In this case, A′ = mD−E ∼
Y is ample and the proof is completed.

(2) As the restriction of relatively ample divisors (resp. effective) divisors
on the generic fiber are ample (resp. effective), the condition is sufficient.

Conversely, assume that D is relatively big. By the argument of (1), for
a relatively ample Cartier divisor A, there exists a sufficiently large m such
that the direct image sheaf f∗(OX(mD−A)) 6= 0. Take a sufficiently ample
Cartier divisor B on S such that

H0(X,mD −A+ f∗B) = H0(S, f∗(OX(mD −A))⊗OS(B)) 6= 0.

Then there exists an effective Cartier divisor E with linear equivalence mD−
A+ f∗B ∼ E. In this case, mD−E ∼ A− f∗B is relatively ample and the
proof is completed.

As a corollary, together with Kleiman’s criterion, the definition of relative
big cone is justified.

{equiv definition big}
Corollary 1.5.8. For a surjective projective morphism f : X → S from
a normal algebraic variety to a quasi-projective algebraic variety, a Cartier
divisor D on X is relatively big if and only if the numerical equivalence class
[D] is contained in the relative big cone Big(X/S).

Proof. By Kleiman’s criterion and Kodaira’s lemma, D is relatively big if
and only if [D] is an interior point of closed convex cone generated by rela-
tively effective divisors.

Corollary 1.5.9. Amp(X/S) ⊂ Eff(X/S).

Proof. As ample divisors are big, we have an inclusion of cones Amp(X/S) ⊂
Big(X/S). The conclusion follows by taking closures.

Kodaira’s lemma can be generalized as the following:
{kod lemma R-div}

Corollary 1.5.10. An R-Cartier divisor D on a normal projective algebraic
variety X is big if and only if there exists a positive integer m, an ample R-
Cartier divisor A, and an effective R-Cartier divisor E such that D = A+E.

Proof. Assume that D = A + E. Then there exists an ample Q-Cartier
divisor A′ and an effective R-Cartier divisor E′, such that we can write
A = A′ + E′, hence D is big.

Conversely, assume that D is big. By the proof of Kodaira’s lemma, for
sufficiently large m, there exists an ample Cartier divisor A and an effective
divisor E, such that xmDy = A + E. Since mD − xmDy is effective, the
statement is proved.
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Proposition 1.5.11. Let f : Y → X be a birational morphism between
normal projective algebraic varieties and D an R-Cartier divisor on X.
Then D is big if and only if the pullback f∗D is big.

Proof. For a rational function h ∈ k(X) ∼= k(Y ), divX(h) + xmDy ≥ 0 is
equivalent to divX(h)+mD ≥ 0. Here the subscript X means taking divisor
on X. The latter one is equivalent to divY (h) + mf∗D ≥ 0, which is then
equivalent to divY (h) + xmf∗Dy ≥ 0. Therefore, the natural homomor-
phism H0(X, xmDy) → H0(Y, xmf∗Dy) is bijective, and the statement is
concluded.

{nef big +}
Theorem 1.5.12 ([100, Theorem 2.2.16]). Let X be an n-dimensional pro-
jective algebraic variety and D a nef R-Cartier divisor. Then D is big if
and only if (Dn) > 0.

Proof. If D is big, we can write D = A+E for some ample Q-divisor A and
effective R-divisor E. In this case, since D and A are nef,

(Dn) = (Dn−1 ·A) + (Dn−1 · E) ≥ (Dn−1 ·A)

= (Dn−2 ·A2) + (Dn−2 ·A · E) ≥ · · · ≥ (An) > 0.

Conversely, to show that B is big provided that D is nef and (Dn) > 0,
we will show the following slightly generalized statement: if for two nef R-
Cartier divisors L,M we have (Ln) > n(Ln−1 ·M), then L−M is big. The
theorem follows by taking M = 0.

Firstly we assume that L,M are ample Q-Cartier divisors. We may
assume that they are very ample by taking multiples. Taking m general
elements Mi ∈ |M | (1 ≤ i ≤ m), by the exact sequence

0→ OX(m(L−M))→ OX(mL)→
⊕
i

OMi(mL),

and the Riemann–Roch theorem1.5.2.1, when m→∞, we have

dimH0(X,m(L−M))

≥ dimH0(X,mL)−
m∑
i=1

dimH0(Mi,mL|Mi)

=
(Ln)

n!
mn −

m∑
i=1

(Ln−1 ·Mi)

(n− 1)!
mn−1 +O(mn−1)

=
(Ln)− n(Ln−1 ·M)

n!
mn +O(mn−1).

1.5.2.1in original text, it says ”by the Serre vanishing”, but I think this is not needed
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Here note that we have the estimateO(mn−1) since the dimension ofH0(Mi,mL|Mi)
is of order O(mn−2) and independent of the choice of Mi. Therefore, L−M
is big.

Then we consider the general case. We may take two sufficiently small
ample R-Cartier divisors H,H ′ such that H ′ − H is big and L + H and
M +H ′ are ample Q-Cartier divisors. Here H,H ′ can be taken sufficiently
small in the sense that ((L+H)n) > n((L+H)n−1 · (M +H ′)) holds. Then
we already showed that L+H −M −H ′ is big, which implies that L−M
is big.

We can investigate how cones of divisors are changed under birational
maps:

Lemma 1.5.13. Let α : X 99K X ′ be a birational map between Q-factorial
normal varieties which is isomorphic in codimension 1 and f : X → S and
f ′ : X ′ → S projective morphisms with f = f ′ ◦ α.

(1) α induces an isomorphism α∗ : N1(X/S) → N1(X ′/S) between real
linear spaces.

(2) α∗(Eff(X/S)) = Eff(X ′/S).

(3) If α is not an isomorphism, then α∗(Amp(X/S)) ∩Amp(X ′/S) = ∅.

Proof. (1) Since α is isomorphic in codimension 1, there is a 1-1 correspon-
dence between prime divisors on X,X ′. Hence Z1(X) ∼= Z1(X ′).

Take a divisor D on X and take its strict transform D′ = α∗D. Applying
the desingularization theorem described in the next subsection, there exists
a smooth algebraic variety W and projective birational morphisms g : W →
X, g′ : W → X ′, such that we can write g∗D = (g′)∗D′+E where g∗E = 0,
g′∗E = 0. Assume that D ≡S 0, then g∗D ≡S 0.

In the following we will show that D′ ≡S 0. We may assume that E 6= 0
otherwise it is obvious. Write E = E+ − E− into the positive part and
negative part. If E+ 6= 0, by the negativity lemma (Lemma 1.6.3), there
exists a curve C contracting by g′ such that (E+ ·C) < 0 and (E− ·C) ≥ 0.
On the other hand, ((g′)∗D′ · C) = (D′ · g′∗C) = 0 and (g∗D · C) = 0, a
contradiction. We can get a contraction similarly if E− 6= 0.

(2) follows from (1) as the strict transform of an effective divisor is again
effective.

(3) As the intersection is an open cone, if the intersection is non-empty,
there exists a relatively ample divisor D on X such that α∗D is a relatively
ample divisor on X ′. Since α is isomorphic in codimension 1, for any integer
m, α∗ : f∗OX(mD)→ f ′∗OX′(mD′) is an isomorphism. Therefore,

X = ProjS

( ∞⊕
m=0

f∗OX(mD)

)
∼= ProjS

( ∞⊕
m=0

f ′∗OX′(mD′)

)
= X ′,

and α is an isomorphism.
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1.6 The Hironaka desingularization theorem

The desingularization theorem is established by Hironaka for algebraic va-
rieties in characteristic 0. Although it is expected that the same theorem
holds for positive characteristics and mixed characteristics, it is only shown
in dimension 2 and for positive characteristics in dimension 3, while it re-
mains open in general case. The Hironaka desingularization theorem, as well
as the Kodaira vanishing theorem explained in the next section, is a very im-
portant theorem in characteristic 0. Here we introduce the desingularization
theorem ([47]) without proof.

{HDT}
Theorem 1.6.1 (Hironaka desingularization theorem). (1) For any algebraic

variety X defined over a field of characteristic 0, there exists a smooth
algebraic variety Y and a projective birational morphism f : Y → X.

(2) For any algebraic variety X defined over a field of characteristic 0 and
a proper 1.6.0.1 closed subset B of X, there exists a smooth algebraic
variety Y , a normal crossing divisor C on Y , and a projective birational
morphism f : Y → X with the following properties:

(a) If B is non-empty1.6.0.2, the set-theoretic inverse image f−1(B) is a
union of several irreducible components of C.

(b) The exceptional set Exc(f) is a union of several irreducible compo-
nents of C.

For each statement, we can assume further the following properties hold:

(1’) f is isomorphic over the smooth locus Reg(X) = X \ Sing(X) and the
exceptional set Exc(f) coincides with the set-theoretic inverse image
f−1(Sing(X)).

(2’) f is isomorphic over Reg(X,B) and the exceptional set Exc(f) coin-
cides with the set-theoretic inverse image f−1(Sing(X,B)).

A birational morphism with property in (1) is called a resolution of
singularities of X. A birational morphism with property in (2) is called a
log resolution of (X,B). For the definition of normal crossing divisors please
refer to Section 1.1.{resolution remark}
Remark 1.6.2. (1) If replacing two conditions for log resolution by the

condition that f−1(B) ∪ Exc(f) is a normal crossing divisor, we call it
a log resolution in weak sense. This is called a log resolution in some
literatures. On the other hand, if we assume furthermore that Exc(f)
is the support of an f -ample divisor in condition (b), we call it a log
resolution in strong sense. In this case, the f -ample divisor supported
on Exc(f) has negative coefficients according to Lemma 1.6.3 below.

1.6.0.1I added ”proper”
1.6.0.2added
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(2) The resolution of singularities in the Hironaka desingularization theo-
rem can be obtained by blowing up along smooth centers finitely many
times. Since there exists a relatively ample divisor supported on ex-
ceptional divisors with negative coefficients for a blowing up along a
smooth center, the resolution of singularities obtained in this way is a
log resolution in strong sense. By using Theorem 1.6.4, starting from
any log resolution, one can construct a log resolution in strong sense by
further taking blowing ups along the exceptional set.

(3) In the latter part of the above theorem, a normal crossing divisor is in the
sense of Zariski topology, that is, it is a “simple normal crossing divisor”.
It does not hold for normal crossing divisors in complex analytic sense.
For example, take divisor B defined by x2 + y2z = 0 in X = C3. The
singular locus of B is the line defined by x = y = 0 and B is a normal
crossing divisor in complex analytic sense if z 6= 0. However, the origin
P = (0, 0, 0) has the so-called pinch point singularity, no blowing up
which is isomorphic outside P can make B a normal crossing divisor.

(4) The above theorem is proved in Hironaka’s original paper ([47]), but it
has been shown that there exists a more precise “canonical resolution” in
subsequent development. The canonical resolution admits strong func-
tionality such that any local isomorphism of the pair (X,B) lifts to a
local isomorphism of (Y,C). However, the canonical resolution is not
unique, it is only shown that there exists a universal choice ([48], [12],
[149], [150]).

{neg coeff}
Lemma 1.6.3 (Negativity lemma). Let f : X → Y be a projective birational
morphism between normal algebraic varieties and D R-Cartier divisors on
X supported in the exceptional set Exc(f).

(1) If D is non-zero and effective, then there exists a family of curves C
which are contracted by f and cover an irreducible component of D,
such that (D · C) < 0.

(2) If D is f -nef and non-zero, then the coefficients of D are all negative.

Proof. We may assume that Y is affine. Take i to be the maximal dimension
of irreducible components of f(Supp(D)) and j = dimX−2− i. Take Yi by
cutting Y by general hyperplane sections i times, and take Xij by cutting
f−1(Yi) by general hyperplane sections j times. Since i + j = dimX − 2,
Xij is a normal algebraic surface. Let Yij be the normalization of f(Xij),
then f induces a projective birational morphism fij : Xij → Yij . Note
that Dij = D|Xij is an non-zero effective R-Cartier divisor supported in the
exceptional set Exc(fij).

(1) By the Hodge index theorem, applying Corollary 1.13.2 to π : X̃ij →
Yij and π∗Dij , where X̃ij is a resolution of Xij , we get (Dij)

2 < 0. In
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particular, for every irreducible component C of Dij , (Dij ·C) < 0. View C
as a curve in X, we have (D · C) < 0. Note that by construction, C comes
from cutting an irreducible component of D by hyperplane sections, so such
C is in a family covering an irreducible component of D.

(2) Note that E|Xij appears as an irreducible component of Dij . We
may write Dij = D+

ij − D−ij in terms of its positive and negative parts.

Since Dij is fij-nef, (D+
ij)

2 ≥ (D+
ij ·Dij) ≥ 0. By the Hodge index theorem

(Corollary 1.13.2), D+
ij = 0. Hence coefficients of Dij are negative, and then

the coefficient of E in D is negative. As E is taken arbitrarily, coefficients
of D are all negative.

Let X be a smooth algebraic variety and B a normal crossing divisor
on X. A smooth subvariety Z is called a permissible center with respect to
(X,B) if the following is satisfied: for the local ring OX,P at every point
P ∈ X, there exists a regular system of parameters z1, . . . , zn and integers
r, s, t, such that the equations of B,Z are z1 · · · zr = 0, zs = · · · = zt = 0
respectively. Here, 0 ≤ r ≤ n and 0 ≤ s ≤ t ≤ n, but there is no specific
relation between r and s, t.

The blowing up f : Y → X along a permissible center Z with respect to
(X,B) is called a permissible blowing up. In this case, the exceptional set E
is a smooth prime divisor on Y and coincides with the set-theoretic inverse
image f−1(Z). The sum C = f−1

∗ B + E is a normal crossing divisor on Y .
We have KY = f∗KX + (t− s)E and f∗B = f−1

∗ B + max{r − s+ 1, 0}E.

The desingularization theorem also contains the following statement:
{birational morphism control}

Theorem 1.6.4 ([47]). Let X be a smooth algebraic variety defined over a
field of characteristic 0, B a normal crossing divisor on X, and f : Y → X a
proper birational morphism from another smooth algebraic variety Y . Then
there exists a sequence of blowing ups fi : Xi → Xi−1 (i = 1, . . . , n) and a
birational morphism g : Xn → Y with the following properties:

(1) X = X0 and f ◦ g = fn ◦ · · · ◦ f1.

(2) fi is a permissible blowing up with respect to (Xi−1, Bi−1). Here B =
B0 and the normal crossing divisor Bi on Xi is defined inductively by
Bi = f−1

i∗ Bi−1 + Exc(fi).

1.7 The Kodaira vanishing theorem

The Kodaira vanishing theorem holds only in characteristic 0. There are
counterexamples in positive characteristics [125]. Vanishing theorems and
extension theorems are indispensable tools for the minimal model theory
over fields of characteristic 0. Here we introduce the Kodaira vanishing
theorem ([88]) without proof.
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Theorem 1.7.1 (Kodaira vanishing theorem). Let X be a smooth complex
algebraic variety and D an ample divisor on X. Then for any positive integer
p, Hp(X,KX +D) = 0. Here KX is the canonical divisor of X.

The Kodaira vanishing theorem is a theorem in complex differential ge-
ometry established for compact complex manifold X. Let L be a holomor-
phic line bundle. L is always endowed with a C∞ Hermitian metric h. The
curvature of the corresponding connection of h determines a C∞ (1, 1)-form
on X. In this case, the following holds by the Kodaira embedding theorem:

Theorem 1.7.2 ([89]). Let X be a compact complex manifold and L a
line bundle with a Hermitian metric h. If the curvature

√
−1Θ is positive

definite, then X has a projective complex algebraic variety structure and L
is a line bundle corresponding to an ample divisor.

We have the following comparison:

Algebraic geometry⇒ Complex differential geometry⇒ Numerical geometry

Ample divisor⇒ Positive curvature line bundle⇒ Numerically positive divisor

The feature of the Kodaira vanishing theorem is that canonical divisor
appears in the argument and it provides a more accurate vanishing com-
paring to the Serre vanishing theorem below. Hence it has applications to
geometry. To be applied in higher dimensional algebraic geometry, the Ko-
daira vanishing theorem is greatly generalized and used in many directions,
as will be discussed later.

Remark 1.7.3. The Kodaira vanishing theorem is originally proved for al-
gebraic varieties defined over complex numbers, but it holds also for algebraic
varieties defined over any field in characteristic 0, as a field in characteristic
0 finitely generated over the prime field Q can be always embedded into C.

Theorem 1.7.4 (Serre vanishing theorem [133], [46, III.5.2]). Let X be a
projective scheme, L an ample sheaf on X, and F a coherent sheaf on X.
Then there exists a positive integer m0 such that for any integer m ≥ m0,
the following hold:

(1) F ⊗ L⊗m is generated by global sections.

(2) For any positive integer p, Hp(X,F ⊗ L⊗m) = 0.

The Serre vanishing theorem holds without conditions on characteristics
of the base field and singularities of X. It has much more applicability than
the Kodaira vanishing theorem, but it is weaker.

The log version of the Kodaira vanishing theorem can be proved by the
adjunction formula ([124]):
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Corollary 1.7.5. Let X be a smooth projective algebraic variety defined over
a field of characteristic 0, B a normal crossing divisor on X, and an ample
divisor D on X. Then for any positive integer p, Hp(X,KX +B +D) = 0.

Proof. We do induction on the dimension n of X and the number r of prime
divisors of B. If r = 0, this is just the Kodaira vanishing theorem. If r > 0,
take a prime divisor B1 of B, denote B′ = B − B1 and C = B′|B1 . By the
adjunction formula, we get the following exact sequence

0→ OX(KX +B′+D)→ OX(KX +B+D)→ OB1(KB1 +C +D|B1)→ 0.

By induction hypothesis, for any positive integer p, Hp(X,KX +B′+D) =
Hp(B1,KB1 + C +D|B1) = 0. This concludes the statement.

1.8 The covering trick

The covering trick is a classical method to construct new algebraic varieties
from a given one by using cyclic coverings. However in this method, the
new constructed algebraic variety may have singularities even if the given
one is smooth. Therefore, we describe how to construct a covering without
creating new singularities.

Firstly, we describe the construction of cyclic covering. Let X be an
algebraic variety over an algebraically closed field k, h a rational function
on X, and m a positive integer coprime to the characteristic of k. When
k = C, m can be taken arbitrarily. Consider the extension of function fields
K = k(X)[h1/m], take Y to be the normalization of X in K with the natural
map f : Y → X. The extension Y/X is a Galois extension as a cyclic group
is Galois, the extension degree m′ = [k(Y ) : k(X)] is a divisor of m. Y can
be constructed as the following. Assume that X is covered by affine open
subsets Ui = Spec(Ai). The fractional field of Ai is the function field k(X).
Take Bi to be the normalization of Ai in K, then Y is obtained by gluing
affine varieties Spec(Bi).

Example 1.8.1. Let X be a smooth complex algebraic variety, D a divisor
on X, and s a global section of OX(mD). The divisor of s and the divisor
of the rational function h corresponding to s is related by

div(s) = div(h) +mD.

Here div(s) is an effective divisor and in general div(h) is not effective and
has poles along D.

Assume that B = div(s) is reduced and it is a smooth subvariety of X.
Consider Y to be the cyclic covering of X induced by h. In this case, Y is
smooth and f : Y → X is a finite morphism branched along B. Here D
is not contained in the branch locus. In fact, for any point P in B, take
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a regular system of parameters z1, . . . , zn such that B = div(z1), then the

regular system of parameters of Q over P can be taken as z
1/m
1 , z2, . . . , zn.

One should be careful that if B = div(s) has singularities, then Y has
singularities correspondingly. When the support of B is a normal crossing
divisor, Y has at worst toric singularities, which is easier to handle. This
will be discussed later.

We can produce a more useful covering by considering the Kummer cov-
ering, a generalization of cyclic covering.

{covering}
Theorem 1.8.2 ([55]). Let X be a smooth projective algebraic variety de-
fined over an algebraically closed field1.8.0.1 of characteristic 0 and B a nor-
mal crossing divisor on X. Fix a positive integer mi for each irreducible
component Bi of B. Then there exists a smooth projective algebraic variety
Y and a finite morphism f : Y → X with the following properties:

(1) The set-theoretic inverse image C = f−1(B) is a normal crossing divi-
sor.

(2) For each i, there exists a reduced divisor Ci such that the pullback of Bi
as a divisor can be written as f∗Bi = miCi. Here a reduced divisor is a
divisor with all coefficients equal to 1.

(3) f is a Galois covering and the Galois group G is an abelian group.

One feature of this covering is that it is a finite morphism branched along
a normal crossing divisor such that the covering space is again smooth. Note
that the branch locus of f is a normal crossing divisor containing B, but
they do not coincide in general. Since X is smooth, f is a flat morphism.

Proof. Denote n = dimX. Take a very ample divisor A such that miA−Bi
is very ample for all i. For each i, take n general global sections sij ∈
H0(X,miA−Bi) (j = 1, . . . , n) . We may assume that for each i, j, Mij =
div(sij) is smooth and

∑
i,jMij +

∑
iBi is a normal crossing divisor.

Take the rational function hij corresponding to sij and take fij : Yij → X

to be the normalization of X in k(X)[h
1/mi
ij ]. It is easy to see that the branch

locus is Mij +Bi and the ramification index is mi.

Take f : Y → X to be the normalization of the fiber product of all
fij : Yij → X. In other words, Y is just the normalization of X in the field

k(X)[h
1/mi
ij ]ij . We will check that this Y satisfied the required properties.

For any point P in X, denote by Bil (l = 1, . . . , r) and Mjmkm (m =
1, . . . , s) the irreducible components of

∑
i,jMij+

∑
iBi containing P . Note

that r + s ≤ dimX = n.

1.8.0.1we need algebraically closed, which is not assumed in original text.
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If r = 0, that is, P is not contained in the support of B, then by con-
struction, Yij is smooth over a neighborhood of P , and there is nothing to
prove. So we may assume that r ≥ 1.

By the numbers of Mij , for each il, there exists at least one pl such that
Milpl does not contain P . Denote h̄jmkm = hjmkm/hilpl if jm = il; otherwise
h̄jmkm = hjmkm . In this case,

hi1p1h
mi1
A , . . . , hirprh

mir
A , h̄j1k1 , . . . , h̄jsks

is a part of a regular system of parameters of OX,P , where hA is a local
equation of the divisor A. The localization Y ×X SpecOX,P is étale over the
normalization of SpecOX,P in

k(X)[h
1/mi1
i1p1

, . . . , h
1/mir
irpr

, h
1/mj1
j1k1

, . . . , h
1/mjs
jsks

]

= k(X)[h
1/mi1
i1p1

hA, . . . , h
1/mir
irpr

hA, h̄
1/mj1
j1k1

, . . . , h̄
1/mjs
jsks

].

Therefore Y is smooth.

The covering in the above theorem preserves smoothness by adding
branch locus artificially. The covering below is a natural construction for
Q-Cartier Weil divisor which is not Cartier.

Proposition 1.8.3. Let X be a normal algebraic variety defined over an
algebraically closed field of characteristic 0 and D a divisor on X. Assume
that for some positive integer r, rD is Cartier and moreover OX(rD) ∼= OX .
Take r to be such a minimal one, then there exists a Galois finite morphism
f : Y → X from a normal algebraic variety whose Galois group is the cyclic
group of degree r, such that f is étale in codimension one and f∗D is a
Cartier divisor on Y .

Proof. Fix an everywhere non-zero global section s of OX(rD). The corre-
sponding rational function h satisfies divX(h) = −rD. Take Y to be the
normalization of X in the function field extension L = k(X)[h1/r]. L is a
field as r is minimal. Then −f∗(D) = divY (h1/r) is Cartier. It is easy to
see that f is étale over the locally free locus of OX(D), and in particular, f
is étale over X \ Sing(X).

Such f : Y → X is called the index 1 cover of the divisorD. In particular,
if D = KX , it is called the canonical cover.

Remark 1.8.4. (1) This covering is not unique, it depends on the choice
of s. Take another global section s′, there is a nowhere zero function u
such that s′ = us. The normalization of X in k(X)[u1/r] gives an étale
covering X ′ → X, and the base change to X ′ gives an isomorphism
Y ×X X ′ ∼= Y ′ ×X X ′. Here Y ′ is the cyclic covering obtained by s′.
Therefore, this covering is unique up to étale base changes.
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(2) Fix a point P ∈ X, take rP to be the minimal positive number such that
rPD is Cartier in a neighborhood of P , then f−1(P ) consists of r/rP
points by construction. In particular, f is étale over the points where
D is Cartier.

1.9 Generalizations of the Kodaira vanishing the-
orem

According to [82], we generalize the Kodaira vanishing theorem to different
directions in order to apply to higher dimensional algebraic geometry. The
generalized vanishing theorems will be used as one key point of the proof in
each part of this book.

In this section, we always assume that the base field is of characteristic
0.

Firstly, we extend the Kodaira vanishing theorem to R-divisors:
{R-div vanishing 1}

Theorem 1.9.1. Let X be a smooth projective algebraic variety and D an
ample R-divisor on X such that the support of pDq−D is a normal crossing
divisor. Then for any positive integer p, Hp(X,KX + pDq) = 0.

Here we prove the following equivalent theorem:
{R-div vanishing 2}

Theorem 1.9.2. Let X be a smooth projective algebraic variety, B an R-
divisor on X with coefficients in (0, 1) and supported on a normal crossing
divisor, and D an integral divisor on X. Assume that D − (KX +B) is an
ample R-divisor. Then for any positive integer p, Hp(X,D) = 0.

Proof. Write B =
∑
biBi. Here Bi are prime divisors and

∑
Bi is a nor-

mal crossing divisor. As ampleness is an open condition, for each i take
fraction ni/mi (0 < ni < mi) sufficiently close to bi, such that D − (KX +∑

(ni/mi)Bi) is an ample Q-divisor. In the following we may assume that
B =

∑
(ni/mi)Bi.

Taking the covering f : Y → X as in Theorem 1.8.2 for irreducible
components Bi of B with positive integers mi. By construction, f∗B is
a divisor with integral coefficients. As the Galois group G of f acts as
automorphism of Y , −f∗(KX + B) is G-invariant and the invertible sheaf
OY (KY − f∗(KX +B)) admits a G-action. Since f is flat, the direct image
sheaf f∗OY (KY − f∗(KX +B))) is a locally free sheaf with a G-action and
the G-invariant part L = (f∗OY (KY −f∗(KX +B)))G is an invertible sheaf.
Hence L can be written as the form of divisorial sheaf OX(E). In order
to determine E, we only need to look at the generic point of the branched
divisor.

Firstly, any prime divisor not contained in B is not an irreducible com-
ponent of E. In fact, for any finite Galois covering g : W → Z be-
tween smooth varieties with Galois group G, we have a natural isomorphism
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(g∗ωW )G ∼= ωZ , which means that over U = X \ B, L|U = (f∗OY (KY −
f∗(KX +B)))G|U = (f∗OY (KY − f∗(KX)))G|U = OU .

For the generic point P of Bi, set x1 to be the regular parameter of the

discrete valuation ring OX,P . Then for a point Q on Y over P , y1 = f∗x
1/mi
1

is a regular parameter and the invertible sheaf OY (KY − f∗(KX + B)) is

generated by the section y
−(mi−1)+ni
1 . Since 0 < ni < mi, G-invariant

sections are generated by 1. Therefore, it turns out that E = 0. In summary,
L = (f∗OY (KY − f∗(KX +B)))G = OX .

As the pullback of an ample divisor by a finite map is ample, the pullback
f∗(D−(KX+B)) is again ample. By the Kodaira vanishing theorem, for any
positive integer p, Hp(Y,KY + f∗(D− (KX +B))) = 0. As f is finite, there
is no higher direct image, hence Hp(X, f∗OY (KY +f∗(D−(KX +B)))) = 0.
As the G-invariant part is a direct summand, Hp(X,D) = 0.

Next, we prove the relative version:
{rel R-div vanishing 2}

Theorem 1.9.3. Let X be a smooth algebraic variety, B an R-divisor on
X with coefficients in (0, 1) and supported on a normal crossing divisor, D
an integral divisor on X, and f : X → S a projective morphism to another
algebraic variety. Assume that D−(KX+B) is a relatively ample R-divisor.
Then for any positive integer p,

Rpf∗(OX(D)) = 0.

We will prove the following equivalent theorem:
{rel R-div vanishing 1}

Theorem 1.9.4. Let X be a smooth algebraic variety, f : X → S a pro-
jective morphism to another algebraic variety, and D a relatively ample R-
divisor on X such that the support of pDq−D is a normal crossing divisor.
Then for any positive integer p,

Rpf∗(OX(KX + pDq)) = 0.

Proof. As the statement is local on S, we may assume that S is affine.
Replacing the integral part of D by a linear equivalent one while keeping
pDq − D unchanged, we may assume that the support of D is a normal
crossing divisor. However, D is not necessarily effective. We may assume
that D is a Q-divisor as ampleness is an open condition.

Shrinking S if necessary, we can find a sufficiently large m such that mD
is an integral divisor and there exists a closed immersion g : X → PN × S
such that OX(mD) ∼= g∗p∗1OPN (1), where p1 is the first projection.

Next, take projective algebraic variety S̄ to be the compactification of S,
and take X̄ to be the normalization of closure of X in PN×S̄. Note that the
projective morphism f̄ : X̄ → S̄ and the finite morphism ḡ : X̄ → PN × S̄
are naturally induced.
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Here X̄ is possibly singular, the extension of D is a Q-Cartier divisor
D̄ defined by OX̄(mD̄) ∼= ḡ∗p∗1OPN (1). Since D̄ is relatively ample over S̄,
we can choose an ample Q-Cartier divisor A1 on S̄ such that D̄ + f̄∗A1 is
ample. As S is affine, we may assume that the support of A1 is contained
in S̄ \ S.

Take h : Y → X̄ to be a log resolution of the pair (X̄, D̄+f̄∗A1) in strong
sense. As X is smooth and the support of D is a normal crossing divisor, h
can be assumed to be identity over X. We may choose a Q-Cartier divisor
A2 supported in the exceptional set of h such that D̄′ = h∗D̄+h∗f̄∗A1 +A2

is ample. By construction, the support of D̄′ is a normal crossing divisor,
and by Theorem 1.9.1, for any positive integer p, Hp(Y,KY + pD̄′q) = 0.
Note that the support of h∗f̄∗A1 +A2 is contained in Y \X.

Consider the following spectral sequence:

Ep,q2 = Hp(S̄, Rq(f̄ ◦ h)∗(OY (KY + pD̄′q)))⇒ Hp+q(Y,KY + pD̄′q).

For any positive integer m1, replacing A1 by m1A1, the above argument still
works. When m1 is sufficiently large, by the Serre vanishing theorem, for
any positive integer p and any integer q,

Hp(S̄, Rq(f̄ ◦ h)∗(OY (KY + pD̄′q))) = 0.

Also the coherent sheaf Rq(f̄ ◦ h)∗(OY (KY + pD̄′q)) is generated by global
sections.

By the spectral sequence, when q > 0, H0(S̄, Rq(h ◦ f̄)∗(OY (KY +
pD̄′q))) = 0. Therefore, Rq(f̄ ◦ h)∗(OY (KY + pD̄′q)) = 0. We conclude
the theorem by restricting on S.

The next lemma shows that the conditions as KLT and LC defined later
are birational properties:

{log dis}
Lemma 1.9.5. Let f : Y → X be a proper birational morphism between
smooth algebraic varieties and B,C R-divisors on X,Y supported on normal
crossing divisors such that f∗(KX + B) = KY + C. Then coefficients of B
are all contained in (−∞, 1) if and only if so are coefficients of C.

Also the same holds for the condition that all coefficients are contained
in (−∞, 1]. Moreover, in this case, assume that the irreducible components
of B with coefficient exactly 1 are disjoint, then coefficients of C−f−1

∗ B are
all contained in (−∞, 1).

Proof. As B = f∗C, if coefficients of C are all contained in (−∞, 1), then
coefficients of B are all contained in (−∞, 1).

Conversely, assume that coefficients of B are all contained in (−∞, 1).
Firstly we consider the case that f is a permissible blowing up with respect
to (X,B). Set B =

∑
biBi. Suppose that the center Z of the blowing up
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is of codimension r and contained in B1, . . . , Bs. Note that r ≥ s. The
coefficient e of the exceptional divisor E of f in C is given by

e =
s∑
j=1

bj + 1− r.

As bj < 1, we have e < 1. Since coefficients of other prime divisors of C
coincide with those of B, coefficients of C are all contained in (−∞, 1).

The general case can be proved by Theorem 1.6.4 and induction on
numbers of permissible blowing ups. The later part can be proved similarly.

We can also prove the following lemma which will be used later:
{lemma P not LC}

Lemma 1.9.6. Fix an n-dimensional pair (X,B) and a point P . Take
effective Cartier divisors D1, . . . , Dn passing through P such that P is an
irreducible component of

⋂
Di. Then there exists a log resolution f : Y →

(X,B +
∑
Di) such that if we write KY + C = f∗(KX + B +

∑
Di), then

there exists an irreducible component C1 of C with coefficient at least 1 and
f(C1) = {P}.

Proof. We may assume that X is affine. Write Di = div(hi) where hi
are regular functions on X. Define the morphism h : X → Z = An by
h = (h1, . . . hn). By the assumption, h is quasi-finite in a neighborhood
of P . Take E1, . . . , En to be coordinate hyperplanes of Z, and h∗Ei = Di

by construction. Take g : Z ′ → Z to be the blowing up at the origin and
F the exceptional divisor, we get g∗(KZ +

∑
Ei) = KZ′ + F +

∑
g−1
∗ Ei.

As differential forms on Z with poles along
∑
Ei can be pullback by h,

h∗(KZ +
∑
Ei) ≤ KX + B +

∑
Di. By taking a log resolution f : Y →

(X,B +
∑
Di) properly, we may assume that the exceptional set contains

an irreducible divisor C1 over F , and this satisfies the requirements.

Using the relative version of the vanishing theorem, it is easy to show
the following generalization:

{rel R-div nef big vanshing}
Theorem 1.9.7 ([82, Theorem 1.2.3]). Let X be a smooth algebraic variety,
f : X → S a projective morphism to another algebraic variety, and D a
relatively nef and relatively big R-divisor on X such that the support of
pDq−D is a normal crossing divisor. Then for any positive integer p,

Rpf∗(OX(KX + pDq)) = 0.

Proof. We can write D = A+E for some relatively ample R-Cartier divisor
A and effective R-Cartier divisor E. For any positive number ε, D − εE =
(1− ε)D + εA is relatively ample.

Take g : Y → X to be a log resolution of (X,D+E) in strong sense, and
h : Y → S is the composition with f . We can choose a sufficiently small
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effective R-divisor A′ supported on the exceptional set of g such that −A′
is g-ample and D′ = g∗(D− εE)−A′ is h-ample. By Theorem 1.9.4, for any
positive integer p,

Rph∗(OY (KY + pD′q)) = Rpg∗(OY (KY + pD′q)) = 0.

By the spectral sequence

Ep,q2 = Rpf∗(R
qg∗(OY (KY + pD′q)))⇒ Rp+qh∗(OY (KY + pD′q)),

Rpf∗(g∗(OY (KY + pD′q))) = 0 holds for p > 0.
Take ε and A′ to be sufficiently small, then pD′q = pg∗Dq. Take B =

pDq−D and g∗(KX +B) = KY +C, by Lemma 1.9.5, coefficients of C are
less than 1. Therefore, by

g∗(KX + pDq) = g∗(KX +B +D) = KY + C + g∗D ≤ KY + pg∗Dq

(here note that C+ g∗D is integral by construction) and g∗(KY + pg∗Dq) =
KX + pDq, we have

g∗(OY (KY + pD′q)) = OX(KX + pDq),

which proves the theorem. Here the last inequality of the first equation is
because C + g∗D is an integral divisor and Supp(C) ⊂ Supp(g∗D).

Higher dimensional algebraic variety got great developed since the fol-
lowing result was proved:

Corollary 1.9.8 (Kawamata–Viehweg vanishing theorem, [57], [148]). Let
X be a smooth projective algebraic variety and D a nef and big R-divisor
on X such that the support of pDq−D is a normal crossing divisor. Then
for any positive integer p,

Hp(X,KX + pDq) = 0.

1.10 KLT singularities

We can define various singularities for a pair (X,B) where X is a normal
algebraic variety and B is an R-divisor on X. B is called the boundary of
the pair for historical reasons. These singularities appear naturally in the
minimal model theory. Vanishing theorems can be also generalized to these
singularities. The characteristic of the base field is always assumed to be 0
if not specified.

Firstly, we define KLT condition. This is a very natural condition cor-
responding to L2 condition in complex analysis. It does not depend on the
choice of log resolution. Furthermore, it is easy to handle since it satisfies
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so-called “open condition” in the sense that it is stable under perturbation
of divisors. KLT condition defines a category in which the minimal model
theory works most naturally and easily.

For simplicity, sometimes we denote a pair (X,B) and a morphism f :
X → S together by a morphism f : (X,B)→ S.

{KLT}
Definition 1.10.1. A pair (X,B) is KLT (short for kawamata log terminal)
if it satisfies the following conditions:

(1) KX +B is R-Cartier.

(2) Coefficients of B are contained in (0, 1).

(3) There exists a log resolution f : Y → (X,B) such that if we write
f∗(KX + B) = KY + C, then the coefficients cj of C =

∑
cjCj are

contained in (−∞, 1). Here, Cj are distinct prime divisors.

Condition (1) is necessary in order to define the R-divisor C in condition
(3). The support of C is contained in the union of set-theoretic inverse image
of the support of B and the exceptional set of f , which is a normal crossing
divisor. Coefficients cj of C play an important role in higher dimensional
algebraic geometry. −cj is called the discrepancy coefficient, and 1 − cj is
called the log discrepancy coefficient.

Historically, KLT singularity is just called log terminal singularity in [60].

Condition (3) in the definition of KLT does not depend on the choice of
log resolution:

{KLT indep log res}
Proposition 1.10.2. Assume (X,B) satisfies conditions (1), (2) in Defi-
nition 1.10.1 and there exists a log resolution f : Y → (X,B) in weak sense
satisfies condition (3). Then (X,B) is KLT. Moreover, for any log reso-
lution f ′ : Y ′ → (X,B) in weak sense, condition (3) in Definition 1.10.1
holds.

Proof. For two log resolutions f1 : Y1 → X, f2 : Y2 → X, there exists a third
log resolution f3 : Y3 → X dominating them. That is, there exist morphisms
gi : Y3 → Yi (i = 1, 2) such that f3 = fi ◦gi. Therefore the statement follows
from Lemma 1.9.5.

The following proposition is obvious:
{KLT obvious}

Proposition 1.10.3. (1) A pair (X,B) is KLT if and only if there exists
an open covering {Xi} of X such that pairs (Xi, B|Xi) are all KLT.

(2) Let (X,B) be a KLT pair and B′ another effective R-divisor such that
B ≥ B′ and B −B′ is R-Cartier, then (X,B′) is again KLT.
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(3) When X is a normal complex analytic variety, we can define complex
analytic KLT condition similarly by using complex analytic resolution of
singularities. When X is a complex algebraic variety, for a pair (X,B),
the algebraic KLT condition and analytic KLT condition coincide.

Remark 1.10.4. Take regular functions h1, . . . , hr on polydisk X = ∆n =
{(z1, . . . , zn) ∈ Cn | |zi| < 1}, and write the corresponding divisors by
Bi = div(hi). Take real numbers bi ∈ (0, 1). Then (X,B =

∑
biBi) is KLT

if and only if the function h =
∏
|hi|−bi is L2 everywhere.

In fact, the integrability condition L2 can be studied via resolution of
singularities. When the support of B is a normal crossing divisor, the ab-
solute value of a regular function with poles along B satisfies L2 condition
if and only if coefficients of B are in (−∞, 1), which is exactly the KLT
condition.

We introduce quotient singularities as an important example of KLT
pairs.

An algebraic variety X is said to have only quotient singularities if it is
a quotient of a smooth algebraic variety in an étale neighborhood of each
point P . That is, there exists a neighborhood U of P , an étale morphism
g : V → U such that P ∈ g(V ), and a smooth algebraic variety Ṽ with a
finite group action G, such that V ∼= Ṽ /G.

{type quot sing}
Example 1.10.5. Fix a positive integer r and integers a1, . . . , an. Define the
action of cyclic group G = Z/(r) on affine space X̃ = An by zi → ζaizi. Here
(z1, . . . , zn) are coordinates of X̃ and ζ is a primitive r-th root of 1. Then
the quotient space X = X̃/G has only quotient singularities. The image P0

of the origin might or might not be an isolated singularity, depending on the
choice of ai. X is said to have a quotient singularity of type 1

r (a1, . . . , an) at
P0.

Proposition 1.10.6. For an algebraic variety X with only quotient singu-
larities, the pair (X, 0) is KLT.

Proof. As discrepancy coefficients remain unchanged under étale morphisms,
we may assume that X is a global quotient variety. That is, there is a
smooth algebraic variety X̃ and a finite group G such that X = X̃/G. It
is not hard to see that KX Q-Cartier, in fact, X is Q-factorial. Take a
log resolution f : Y → X and write f∗KX = KY + C. Take Ỹ to be the
normalization of Y in the function field k(X̃) and f̃ : Ỹ → X̃, πY : Ỹ → Y
the induced maps, write f̃∗KX̃ = KỸ + C̃. Take a prime divisor E on Y

contained in the exceptional set of f , take a prime divisor Ẽ on Ỹ such that
πY (Ẽ) = E. Denote coefficients of E, Ẽ is C, C̃ by c, c̃ respectively, denote
the ramification index of Ẽ with respect to πY by e, then we have

ce = c̃+ e− 1.

Here c̃ ≤ 0 as X̃ is smooth, hence c < 1.
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KLT pairs admit the following special log resolutions. We call it the very
log resolution in this book.

{very log}
Proposition 1.10.7. Let (X,B) be a KLT pair consisting of a normal al-
gebraic variety and an R-divisor. Then there exists a log resolution f : Y →
(X,B) such that if we write f∗(KX +B) = KY +C, then the support of the
R-divisor C ′ = max{C, 0} is a disjoint union of smooth prime divisors.

Proof. Fix a log resolution f0 : Y0 → (X,B) and write f∗0 (KX + B) =
KY0 + C0. Choose two prime divisor in C0 and blowing up along their
intersection, we get g1 : Y1 → Y0. The composition with f0 gives a new log
resolution f1 : Y1 → Y0. We will show that a very log resolution can be
constructed by repeating this operation.

Write C0 =
∑
c0jC0j . Fix a positive number n such that c0j ≤ 1− 1

n for
all j.

For any log resolution f : Y → (X,B), write f∗(KX + B) = KY + C
and C =

∑
cjCj . Note that it is easy to see that cj ≤ 1 − 1

n for all j by
induction and Theorem 1.6.4. We define the sequence of integers r(f) =
(r3(f), . . . , r2n(f)) by the formula

ri(f) = #{(j1, j2) | j1 < j2, Cj1 ∩ Cj2 6= ∅, 2−
i

n
< cj1 + cj2 ≤ 2− i− 1

n
}.

We consider the lexicographical order for sequences of integers. As ri ≥ 0,
the set of sequences of non-negative integers (r3, . . . , r2n) satisfies the DCC
(short for descending chain condition). That is, there is no infinite strictly
decreasing chain.

For a given f , take the minimal i such that ri(f) 6= 0 and take a pair
(j1, j2) realizing it. That is, j1 < j2, Cj1 ∩ Cj2 6= ∅, and 2− i

n < cj1 + cj2 ≤
2− i−1

n . Take g : Y ′ → Y to be the blowing up along Z = Cj1 ∩Cj2 , denote
f ′ = f ◦ g and write (f ′)∗(KX + B) = KY ′ + C ′. The coefficient e of the
exceptional divisor E = Exc(g) in C ′ satisfies 1 − i

n < e ≤ 1 − i−1
n . Note

that for l = 1, 2, e + cjl ≤ 1 − i
n as cjl ≤ 1 − 1

n . The construction of Y ′

kills the intersection of Cj1 and Cj2 , and produces the intersections of E
with the strict transforms of Cj1 and Cj2 . But these two intersections do
not contribute to rk(f

′) for k ≤ i by the coefficient computation. Therefore
rk(f

′) = rk(f) = 0 for k < i and ri(f
′) = ri(f) − 1, which means that

r(f ′) < r(f). Since there is no infinite strictly decreasing chain for the
sequence r(f), eventually we can get a log resolution f such that ri(f) = 0
for all i. This conclude the proof.

Note that the log resolution in the above proposition is obtained by
blowing up repeatedly, it does not satisfies condition (2’) in Theorem 1.6.1.
Also the proposition can not be extended to DLT pairs.

We can generalize the vanishing theorem to KLT pairs:
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{KLT vanishing}
Theorem 1.10.8 ([82, 1.2.5]). Let X be a normal algebraic variety, f : X →
S a projective morphism, B an R-divisor on X, and D a Q-Cartier integral
divisor on X. Assume that (X,B) is KLT and D − (KX + B) is relatively
nef and relatively big. Then for any positive integer p, Rpf∗(OX(D)) = 0.

Proof. Take a log resolution g : Y → (X,B), denote h = f ◦ g and write
g∗(KX +B) = KY +C. Note that g∗D− (KY +C) is h-nef and h-big. Here
note that coefficients of g∗D are not necessarily integers. By Theorem 1.9.7,
for any positive integer p, Rpg∗(OY (pg∗D−Cq)) = Rph∗(OY (pg∗D−Cq)) =
0. Hence Rpf∗(g∗(OY (pg∗D − Cq))) = 0.

For a rational function r ∈ k(X) ∼= k(Y ), if divX(r) + D ≥ 0, then
divY (r) + g∗D ≥ 0. In this case, divY (r) + xg∗Dy ≥ 0, and then divY (r) +
pg∗D−Cq ≥ 0 since coefficients of C are contained in (−∞, 1). This shows
that the natural inclusion

g∗(OY (pg∗D − Cq)) ⊂ g∗(OY (pg∗Dq)) = OX(D)

is in fact an identity g∗(OY (pg∗D−Cq)) = OX(D) and the proof is finished.

Remark 1.10.9. In a KLT pair (X,B), X has only rational singularity, and
hence is Cohen–Macaulay ([82, 1.3.6]). This asserts that KLT is a “good”
singularity. On the other hand, LC to be introduced in the next section is
not “good” in this sense. This fact will not be used in this book.

Consider a pair (X,B) consisting of a normal algebraic variety and an
effective R-divisor such that KX + B is R-Cartier. In Chapter 2, we in-
troduce the multiplier ideal sheaf in order to measure how far this pair is
from being KLT. The set of points P ∈ X in whose neighborhood the pair
(X,B) is not KLT is a closed subset of X. It is called the non-KLT locus
of the pair (X,B). The support of the multiplier ideal sheaf coincides with
the non-KLT locus. Also, the vanishing theorem can be generalized using
multiplier ideal sheaves (see Section 2.11).

1.11 LC, DLT, PLT singularities

KLT condition is easy to handle since it is an open condition with respect
to change of coefficients of divisors. However, in the minimal model theory,
as it is necessary to consider the limits of divisors, it is necessary to consider
the closed condition so-called LC condition. Among LC pairs, we call by
KLT pairs the pairs obtained by increasing boundaries of KLT pairs. The
property of general LC pairs is not so good, but for KLT pairs it is possible
to have similar discussions as for KLT pairs. Besides, there are conditions
called DLT and PLT between KLT and LC, which are a little complicated
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but very useful. In this book, we develop the minimal model theory mainly
for DLT pairs. The characteristic of the base field is always assumed to be
0 if not specified.

1.11.1 Various singularities
{LC}

Definition 1.11.1. A pair (X,B) is LC (short for log canonical) if it satisfies
the following conditions:

(1) KX +B is R-Cartier.

(2) Coefficients of B are contained in (0, 1].

(3) There exists a log resolution f : Y → (X,B) such that if we write
f∗(KX + B) = KY + C, then the coefficients cj of C =

∑
cjCj are

contained in (−∞, 1]. Here, Cj are distinct prime divisors.

When (X,B) is an LC pair, (X,B) is said to have log canonical singular-
ities. Same as Proposition 1.10.2, condition (3) above does not depend on
the choice of log resolution. Also same statement as in Proposition 1.10.3
holds for LC pairs.

Example 1.11.2. The property of singularities of LC pairs is not always
good. Let Z be a smooth projective n-dimensional algebraic variety such
that KZ ∼ 0, i.e., ωZ ∼= OZ . Take an ample invertible sheaf L and take
the total space Y = SpecZ(

⊕∞
m=0 L

⊗m) of the dual sheaf L∗. Y admits
an A1-bundle structure over Z. Denote X = Spec(

⊕∞
m=0H

0(Z,L⊗m)),
there is a natural birational morphism f : Y → X which maps the 0-
section E of Y → Z to a point P = f(E). By the adjunction formula
(KY + E)|E ∼ KE ∼ 0, we have KY + E ∼ 0 and KX ∼ 0, which implies
that f∗KX ∼ KY +E. Hence (X, 0) is LC. The higher direct images of OY
are supported on the singular point P of X:

Rpf∗OY ∼=
∞⊕
m=0

Hp(Z,L⊗m) ⊃ Hp(Z,OZ).

For p = n, Hn(Z,OZ) 6= 0, hence X is not a rational singularity. Moreover,
if Z is an Abelian variety, then for 0 < p ≤ n, the right hand side is not 0,
and X is not Cohen-Macaulay.

As the property of singularities of LC pairs is not always good, we con-
sider intermediate conditions:

{DLT,PLT}
Definition 1.11.3. A pair (X,B) is DLT (short for divisorially log terminal)
if it satisfies the following conditions:

(1) KX +B is R-Cartier.
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(2) Coefficients of B are contained in (0, 1].

(3) There exists a log resolution f : Y → (X,B) such that if we write
f∗(KX + B) = KY + C, then the coefficients cj of C =

∑
cjCj are

contained in (−∞, 1) for those Cj contained in the exceptional set of f .

A pair (X,B) is PLT (short for purely log terminal) if it satisfies the
above conditions (1), (2) and the following condition (3’):

(3’) For any log resolution f : Y → (X,B), if we write f∗(KX + B) =
KY + C, then the coefficients cj of C =

∑
cjCj are contained in

(−∞, 1) for those Cj contained in the exceptional set of f .
{WLT=DLT}

Remark 1.11.4. (1) In [82], a condition called WLT (short for weak log
terminal) is considered. The definition of WLT is by assuming further
that the log resolution in condition (3) of definition of DLT is in strong
sense. By using similar argument as in Proposition 1.10.2, it can be
shown that DLT and WLT are in fact equivalent ([144]). In this book,
we will just use DLT rather than WLT.

(2) For a log resolution f : Y → X of (X,B), when considering the relation
f∗(KX + B) = KY + C, sometimes we just write “a morphism f :
(Y,C)→ (X,B)”.

{LC example}
Example 1.11.5. (1) Take affine space X = An and coordinates hyper-

planes B1, . . . , Bn, denote B =
∑
biBi. Then (X,B) is KLT (resp.

PLT, DLT) if and only if 0 ≤ bi < 1 for all i (resp. 0 ≤ bi ≤ 1 for all i
and bi < 1 except for at most one i, 0 ≤ bi ≤ 1 for all i). Furthermore,
DLT and LC coincide.

(2) Let X = A2/Z2 be the quotient of the 2-dimensional affine space C2

with coordinates x, y by the degree 2 cyclic group action (x, y) 7→
(−x,−y). That is, it is a quotient singularity of type 1

2(1, 1). This sin-
gularity is the same as the ordinary double point in Example 1.1.4(1).
Denote the image of coordinate axes in X to be B1, B2 and take B =∑
biBi. Then (X,B) is KLT (resp. PLT, LC) if and only if 0 ≤ bi < 1

for all i (resp. 0 ≤ bi1 ≤ 1 for one i1 and 0 ≤ bi2 < 1 for the other i2,
0 ≤ bi ≤ 1 for all i). Furthermore, PLT and DLT coincide. In fact, the
blowing up f : Y → X along the image of the origin (0, 0) is a log reso-
lution. The exceptional set E is isomorphic to P1, f∗Bi = f−1

∗ Bi + 1
2E,

and f∗KX = KY . So the claim can be checked easily.

(3) Take X = A2 to be the 2-dimensional affine space with coordinates x, y
and a prime divisor D = div(x2 + y3). We determine the necessary
and sufficient condition for the pair (X, dD) to be KLT, LC for a real
number d (see Figure ??).
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We can construct a log resolution of (X, dD) in the following way.
Firstly, take the blowing up f1 : Y1 → X along the origin P0 = (0, 0),
the exceptional set E1 is a prime divisor isomorphic to P1. The strict
transform D1 = f−1

1∗ D is smooth, E1 and D1 intersect at one point
P1. Take the blowing up f2 : Y2 → Y1 along P1, the exceptional set
E2 is a prime divisor isomorphic to P1. 3 smooth prime divisors E2,
D2 = f−1

2∗ D1, E′1 = f−1
2∗ E1 intersect at one point P2. Take the blow-

ing up f3 : Y = Y3 → Y2 along P2, the exceptional set E3 is a prime
divisor isomorphic to P1. The union of 4 smooth prime divisors E3,
D3 = f−1

3∗ D2, E′′1 = f−1
3∗ E

′
1, E′2 = f−1

3∗ E2 is a normal crossing divisor.
The composition f : Y → X is a log resolution of (X, dD). We have
KY = f∗KX + E′′1 + 2E′2 + 4E3 and f∗D = D3 + 2E′′1 + 3E′2 + 6E3.
Therefore the pair (X, dD) is KLT (resp. LC) if and only if 0 ≤ d < 5/6
(resp. 0 ≤ d ≤ 5/6).

(4) Consider the example in Examples 1.1.4(2) or 1.2.4(2). In addition
to prime divisors D1, D2, consider prime divisors D3, D4 defined by
y = z = 0 or y = w = 0. Note that D3 + D4 and KX are Cartier
divisors. Take B =

∑4
i=1Di and consider the pair (X,B). Take the

resolution of singularities f : X ′ → X as in Example 1.2.4(2), then
B′ =

∑4
i=1 f

−1
∗ Di is a normal crossing divisor. As f is isomorphic in

codimension 1, f∗(KX + B) = KX′ + B′. The pair (X,B) is LC but
not DLT. Here, as the exceptional set of f is not a normal crossing di-
visor, f is a log resolution in weak sense, but not a log resolution in
the sense of Theorem 1.6.1(2). In order to obtain a log resolution, we
need to do further blowing up on X ′ along the exceptional locus of f
and that will induce an exceptional divisor with log discrepancy coef-
ficient 1. The blowing up g : Y → X along the origin (0, 0, 0, 0) is a
log resolution. The exceptional set E is a prime divisor isomorphic to
P1 ×P1, and C =

∑4
i=1 g

−1
∗ Di + E is a normal crossing divisor. Since

g∗(KX +B) = KY + C, (X,B) is LC.

(5) Take a smooth projective algebraic curve C of genus 1 and two line
bundles L1, L2 of negative degrees. Take Y to be the total space of the
vector bundle L = L1 ⊕ L2, denote by C1, C2, E the subvarieties of Y
corresponding to subbundles L1 ⊕ 0, 0 ⊕ L2, 0 ⊕ 0 respectively. Note
that E ∼= C. Denote X = Spec(

⊕∞
m=0H

0(C,L⊗−m)), there is a natural
birational morphism f : Y → X which maps E to a point P = f(E).
Write Bi = f(Ci). Then f∗(KX +B1 +B2) = KY +C1 +C2 and the pair
(X,B1 +B2) is not DLT but LC. In fact X is not a rational singularity.
The pairs (Bi, 0) are also LC.

We introduce one more definition:{barKLT}
Definition 1.11.6. A pair (X,B) is KLT if it satisfies the following condi-
tions:
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(1) (X,B) is LC.

(2) There is another effective R-divisor B′ such that B′ ≤ B and (X,B′) is
KLT.

In this situation, for any positive real number ε < 1, (X, (1− ε)B+ εB′)
is KLT. That is, KLT is the limit of KLT. For this reason, different from
general LC pairs, it shares similar properties as a KLT pair.

Toric varieties provide good examples (see [85], [33] for details).

Proposition 1.11.7. Take an algebraic torus T , and T ⊂ X a toric variety,
that is, a T -equivariant open immersion into a normal algebraic variety with
a T -action. Consider the complement set B = X \ T as a reduced divisor.
Then the following statements hold:

(1) The pair (X,B) is LC. Moreover, it is KLT.

(2) X is Q-factorial if and only if the corresponding fan consists of simpli-
cial cones.

Proof. (1) Take a T -equivariant resolution of singularities f : Y → X such
that f−1(T ) ∼= T and C = Y \ f−1(T ) is a normal crossing divisor.

Denote dimT = n, take coordinates x1, . . . , xn by pulling back by the
standard embedding T ⊂ An. The regular differential form θ = dx1/x1 ∧
· · · ∧ dxn/xn on T can be extended to a logarithmic differential form on X
and gives a non-zero global section of KX + B. Therefore KX + B ∼ 0.
Similarly θ extends to a non-zero global section of KY + C. Therefore,
f∗(KX +B) = KY +C, and hence (X,B) is LC. As T is affine, there exists
an effective Cartier divisor B′ with the same support as B. For a sufficiently
small real number ε > 0, (X,B − εB′) is KLT, and hence (X,B) is KLT.

(2) We may assume that X is affine and its fan consists of a single cone σ.
Irreducible components Bi of B correspond to points Pi on one dimensional
rays of σ. The condition for Bi becoming a Q-Cartier divisor is that there
exists a regular function on X such that the corresponding principal divisor
is a non-zero multiple of Bi. This is equivalent to that there exists a linear
function on σ which takes value 1 at Pi and 0 at all points on other rays,
which is equivalent to σ being simplicial.

The following is a corollary of Lemma 1.9.6.
{P is not LC}

Corollary 1.11.8. Fix an n-dimensional KLT pair (X,B) and a point
P . Take sufficiently general effective Cartier divisors D1, . . . , Dn, E passing
through P and a positive number 1 > ε > 0. Then there exists a suffi-
ciently small number δ > 0 such that (X,B +

∑
(1− δ)Di + εE) is KLT in

a punctured neighborhood of P , but not LC at P .



56 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

Proof. As D1, . . . , Dn, E are general, take a log resolution f̄ : Y → (X,B)
and write f̄∗(KX +B) = KY + C̄, we may assume that C̄ + f̄∗(

∑
Di + E)

is normal crossing outside f̄−1(P ). Coefficients of D1, . . . , Dn, E in (X,B+∑
(1− δ)Di + εE) is strictly smaller than 1 for δ > 0, hence the pair is KLT

in a punctured neighborhood of P .
On the other hand, take the log resolution f and prime divisor C1 as

in Lemma 1.9.6, then the coefficient of C1 in f∗E is at least 1, and the
coefficient of C1 in f∗(KX +B+

∑
Di+ εE) is strictly larger than 1. Hence

(X,B +
∑

(1− δ)Di + εE) is not LC at P for sufficiently small δ > 0.

1.11.2 The sub-adjunction formula

We will look at the behavior of singularities when restricting a given pair to
lower dimensions.

Firstly we show Shokurov’s connectedness lemma ([135], [99, Theorem
17.4]), which is a consequence of the vanishing theorem:

{connectedness}
Lemma 1.11.9 (Connectedness lemma). Let (X,B) be a pair of a normal
variety and an R-divisor such that KX+B is R-Cartier, and let f : (Y,C)→
(X,B) be a log resolution in weak sense. Write C = C+−C− where C+, C−

are effective R-divisors with no common components. Then the induced
morphism Supp(xC+)y→ f(Supp(xC+y)) has connected fibers.

Proof. Note that

−xCy− (KY + C − xCy) ≡ −f∗(KX +B)

is f -nef and f -big. As coefficients of C − xCy are contained in (0, 1), by the
vanishing theorem,

R1f∗(OY (−xCy)) = 0.

Since xCy = xC+y− pC−q, the natural homomorphism

f∗(OY (pC−q))→ f∗(OxC+y(pC
−q))

is surjective. Since the support of the effective divisor C−is contained in
the exceptional set, the natural homomorphism f∗OY → f∗(OY (pC−q)) is
bijective. In the commutative diagram

OX ∼= f∗OY −−−−→ f∗OxC+yy y
f∗(OY (pC−q)) −−−−→ f∗(OxC+y(pC

−q)).

The left vertical arrow is bijective, the bottom horizontal arrow is surjective,
and the right vertical arrow is injective, hence the top horizontal arrow is
surjective. We conclude the proof.
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Corollary 1.11.10. A DLT pair (X,B) is PLT if and only if xBy is a
disjoint union of its irreducible components.

Proof. The sufficiency is easy. Conversely, suppose that two irreducible
components B1, B2 of xBy intersect. Take a log resolution f : (Y,C) →
(X,B) as in Lemma 1.11.9, then the strict transforms f−1

∗ B1, f
−1
∗ B2 are

contained in the same connected components of the support of xC+y. Then
there exists an irreducible component of xC+y− f−1

∗ B1 intersecting f−1
∗ B1.

Blowing up along the intersection, the coefficient of the exceptional divisor
is 1, which means that (X,B) is not PLT.

Corollary 1.11.11. For a DLT pair (X,B), every irreducible component
of xBy is normal.

Proof. We may assume that X is affine. Take H to be an ample divisor on
X. Take D to be an irreducible component of xBy. Take a log resolution
f : (Y,C) → (X,B) in strong sense. By the definition of DLT, we may
assume that the coefficients of exceptional divisors in C are strictly less
than 1, note that here we use the fact that DLT is equivalent to WLT (see
Remark 1.11.4). Take a sufficiently small effective Q-divisor E supported
on the exceptional set of g such that −E is g-ample and f∗H −E is ample
on Y .

Write B = D +
∑
biBi where Bi are distinct prime divisors, and write

f−1
∗ B = D′ +

∑
biB
′
i the strict transform on Y . We can choose a positive

integer m such that for every i, the divisorial sheaf OY (B′i+m(f∗H−E)) is
generated by global sections. By taking a general global section, we can find
a prime divisor D′i ∼ B′i + m(f∗H − E). Take a sufficiently small positive
real number δ and take C ′ = C − δ

∑
biB
′
i + δ

∑
biD

′
i +mδ

∑
biE ∼R C +

mδ
∑
bi(f

∗H). Note that the support of C ′ is a normal crossing divisor as D′i
are general, and the coefficients of C ′−D′ are less than 1 as δ is sufficiently
small. Then we can take B′ = f∗C

′ = D′ + (1− δ)
∑
biBi + δ

∑
bif∗D

′
i ∼R

B+m
∑
biH. Note that KX +B′ is R-Cartier and f∗(KX +B′) = KY +C ′,

which implies that (X,B′) is DLT. Also by construction, we have xC ′y = D′

and xB′y = D. Therefore, by Lemma 1.11.9, D′ → D has connected fibers,
which means that D is normal.

Remark 1.11.12. According to this corollary, the irreducible components
of xBy have no “self-intersection”. For example, if X is a smooth complex
algebraic variety and B is a reduced divisor normal crossing in analytic sense
but not simple normal crossing, then (X,B) is not DLT. This follows from
the definition of normal crossing divisors and log resolutions.

Induction arguments on dimensions using the adjunction formula is com-
patible with the property of DLT. The reason is the following result:
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{SAF}
Theorem 1.11.13 (Subadjunction formula). Let (X,B) be a DLT pair and
Z an irreducible component of xBy. Then we can naturally define an effec-
tive R-divisor BZ on Z satisfying

(KX +B)|Z = KZ +BZ ,

and the pair (Z,BZ) is again DLT. Moreover, if (X,B) is PLT in a neigh-
borhood of Z, then (Z,BZ) is KLT.

Proof. Take a log resolution f : (Y,C) → (X,B) such that coefficients of
exceptional prime divisors in C are less than 1. Write W = f−1

∗ Z, CW =
(C −W )|W , and BZ = (f |W )∗CW . Here coefficients of CW are at most 1,
so are those of BZ .

Here we claim that the coefficients of BZ are contained in (0, 1]. To see
this, after cuttingX by general hyperplanes, we may assume that dimX = 2.
In this case, f : (Y,C) → (X,B) factors through the minimal resolution of
X (see Proposition 1.13.8). Hence there exists a pair (Y1, C1) and birational
morphisms f1 : Y → Y1, f2 : Y1 → X such that f = f2 ◦ f1 and KY1 +C1 =
f∗2 (KX +B), and moreover C1 ≥ 0. Then it is easy to see that BZ ≥ 0.

As (KY + C)|W = KW + CW , we get (KX + B)|Z = KZ + BZ . Hence
KZ + BZ is R-Cartier. Note that f |W is a log resolution of (Z,BZ) and
(f |W )∗(KZ +BZ) = KW + CW .

Recall that every irreducible component of C with coefficient 1 is a strict
transform of an irreducible component of xBy. Take D to be an irreducible
component of CW with coefficient 1, then D is contained in the intersection
of f−1

∗ xBy−W and W and hence it is not contained in Exc(f). In fact, if D
is contained in Exc(f), then it is an irreducible component of Exc(f), which
contradicts the fact that Exc(f) is a normal crossing divisor. Therefore D
is not contained in the exceptional set of f |W and hence (Z,BZ) is DLT.

The latter part is obvious.
{SAF remark}

Remark 1.11.14. We may haveBZ 6= 0 even ifB = Z, that is, KZ might be
smaller than expected, and this is why we use the word “sub”. For example,
consider the quadric surface X defined by xy = z2 in affine space C3 with
coordinates x, y, z and the divisor Z on X defined by x = z = 0. Then the
pair (X,Z) is DLT and the subadjunction formula is (KX+Z)|Z = KZ+ 1

2P
(see Example 1.3.2).

For a pair (X,B), a subvariety Z of X is called an LC center if there
exists a log resolution f : (Y,C)→ (X,B) such that there is an irreducible
component Ci of xC+y with Z = f(Ci).

Lemma 1.11.15. Fix a log resolution f : (Y,C) → (X,B) of an LC pair
(X,B). The its LC centers consist of images of irreducible components of
intersections of several irreducible components of xC+y.
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Proof. Take the blowing up Y along an irreducible component of the inter-
section of several irreducible components of xC+y, we get a new log resolu-
tion and the exceptional divisor has coefficient 1 in the new boundary. Hence
the image is an LC center. On the other hand, by easy computation, the
blowing up along other centers gives an exceptional divisor with coefficient
strictly smaller than 1. By Theorem 1.6.4, any log resolution is dominated
by a log resolution obtained in this way, which concludes the proof.

In particular, when (X,B) is DLT, there exists a log resolution f :
(Y,C) → (X,B) with xC+y = f−1

∗ xBy, hence an LC center is nothing but
an irreducible component of the intersection of several irreducible compo-
nents of xBy. In other words, the reduced part of the boundary obtained by
applying the subadjunction formula several times to (X,B) are LC centers.

We extend the vanishing theorem to DLT pairs. Note that the condition
“relatively ample” can not be replaced by “relatively nef and big” as DLT
is not an open condition.

{DLT vanishing}
Theorem 1.11.16. Let X be a normal algebraic variety, f : X → S a
projective morphism, B an R-divisor on X, and D a Q-Cartier integral
divisor on X. Assume that (X,B) is DLT and D − (KX + B) is relatively
ample. Then for any positive integer p, Rpf∗(OX(D)) = 0.

Proof. Take a log resolution g : (Y,C) → (X,B) in strong sense, denote
h = f ◦ g. By the definition of DLT, we may assume that the coefficients of
exceptional divisors in C are strictly less than 1, note that here we use the
fact that DLT is equivalent to WLT (see Remark 1.11.4). Take a sufficiently
small effective R-divisor A supported on the exceptional set of g such that
−A is g-ample, xC +Ay = xCy, and g∗D− (KY +C +A) is h-ample. Take
a sufficiently small number ε > 0 such that g∗D − (KY + (1 − ε)C + A) is
again h-ample.

Write D′−C ′ = g∗D− ((1− ε)C+A) where D′ is a divisor with integral
coefficients and C ′ is an R-divisor with coefficients in (0, 1), in other words,
takeD′ = pg∗D−((1−ε)C+A)q. Since the support of C ′ is a normal crossing
divisor, by Theorem 1.9.3, for p > 0, Rpg∗(OY (D′)) = Rph∗(OY (D′)) = 0.
Therefore, for p > 0, Rpf∗(g∗(OY (D′))) = 0. Since g∗D

′ = D by definition
and D′ ≥ xg∗Dy as coefficients of (1− ε)C +A are smaller than 1, we have
g∗(OY (D′)) = OX(D) and the theorem is proved.

Here we remark that we can avoid using WLT in this proof by applying
Lemma 2.1.7 to replace (X,B) by a KLT pair.

1.11.3 Terminal singularities and canonical singularities

We conclude this section by introducing terminal singularities and canonical
singularities. These singularities are not considered in the main part of



60 CHAPTER 1. ALGEBRAIC VARIETIES WITH BOUNDARIES

this book. However, they are important in applications and have longer
history than KLT, DLT, LC, etc in dimension 3 or higher. Originally 3-
dimensional algebraic geometry was successful because these singularities
can be classified. But classification of singularities is impossible in higher
dimensions, and it is replaced by using pairs and induction on dimensions.

Definition 1.11.17. A normal algebraic variety X is said to have canonical
singularities if the following conditions are satisfied:

(1) KX is Q-Cartier.

(2) For a resolution of singularities f : Y → X, if write f∗KX = KY + C,
then −C is effective.

Furthermore, X is said to have terminal singularities if the following is
satisfied:

(3) the support of −C coincides with the divisorial part of Exc(f).

In terms of discrepancy coefficients, terminal singularities (canonical sin-
gularities) have all discrepancy coefficients positive (non-negative). It is easy
to see that conditions (2) and (3) do not depend on the choice of resolu-
tion of singularities. The concept of terminal singularities and canonical
singularities can also be extended to pairs.

Definition 1.11.18. A pair (X,B) consisting of a normal algebraic variety
X and an effective R-divisor B is said to have canonical singularities if the
following conditions are satisfied:

(1) KX +B is R-Cartier.

(2) For any resolution of singularities f : Y → X, if write f∗(KY + B) =
KY + C, then −C + f−1

∗ B is effective.

Furthermore, (X,B) is said to have terminal singularities if the following is
satisfied:

(3) the support of −C+f−1
∗ B coincides with the divisorial part of Exc(f).

It is easy to see that in conditions (2) and (3) it is not sufficient to check
for one log resolution.

As will be explained later, discrepancy coefficients are not decreasing
under the minimal model program (MMP), hence the MMP preserves sin-
gularities. That is, when applying a birational map in MMP to an algebraic
variety with certain singularities, we get an algebraic variety with the same
type of singularities. In other words, MMP can be considered within the
category of varieties having certain singularities. In particular, when consid-
ering MMP starting from a smooth algebraic variety, everything is within
the category of terminal singularities. Note that 2-dimensional terminal
singularities without boundaries are just smooth, that is the reason why
singularities are not considered in classical 2-dimensional MMP.
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1.12 Minimality and log minimality
{section 1.12}

The minimality in the minimal model theory is defined by the minimality of
canonical divisors. Log minimal model is the log version of minimal model,
where the log canonical divisor is minimized. The minimal model program
(MMP) is a process to find a “minimal model” which is a birational model
with good properties for a given algebraic variety.

Firstly, we define “minimality” by the property of singularities and nu-
merical property of canonical divisors:

{minimality}
Definition 1.12.1. (1) A projective morphism f : X → S from a normal

algebraic variety to another algebraic variety is said to be relatively
minimal over S if it satisfies the following conditions (a), (b). It is said
to be relatively minimal in weak sense over S if it satisfies the following
conditions (a’), (b).

(a) X has Q-factorial terminal singularities.

(a’) X has canonical singularities.

(b) KX is relatively nef over S.

(2) A projective morphism f : (X,B)→ S for a pair consisting of a normal
algebraic variety X and an R-divisor B to another algebraic variety
is said to be relatively log minimal over S if it satisfies the following
conditions (a), (b). It is said to be relatively log minimal in weak sense
over S if it satisfies the following conditions (a’), (b).

(a) X is Q-factorial and (X,B) is DLT.

(a’) (X,B) is LC.

(b) KX +B is relatively nef over S.

The minimality in weak sense defined above leads to the minimality of
canonical divisor KX and log canonical divisor KX +B:

{canonical divisor minimal}
Proposition 1.12.2. (1) Let f : X → S be a morphism minimal in weak

sense. Consider a projective morphism g : Y → S from another normal
algebraic variety and birational projective morphisms f ′ : Z → X, g′ :
Z → Y from a third normal algebraic variety with f ◦ f ′ = g ◦ g′. Then
if KY is Q-Cartier, the inequality (f ′)∗KX ≤ (g′)∗KY holds. That is,
KX is minimal in birational equivalence classes.

(2) Let f : (X,B)→ S be a morphism log minimal in weak sense. Consider
a projective morphism g : (Y,C) → S from anther pair of a normal
algebraic variety and an R-divisor and birational projective morphisms
f ′ : Z → X, g′ : Z → Y from a third normal algebraic variety with
f ◦ f ′ = g ◦ g′. Furthermore, assume the following conditions:
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(a) For each irreducible component Bi of B, the strict transform Ci =
g′∗(f

′)−1
∗ Bi is an irreducible component of C. If denote coefficients

of Bi, Ci to be bi, ci, then bi ≤ ci.
(b) For each irreducible component Cj of C satisfying f ′∗(g

′)−1
∗ Cj = 0,

its coefficent cj is 1.

Then if KY +C is R-Cartier, the inequality (f ′)∗(KX+B) ≤ (g′)∗(KY +
C) holds. That is, KX +B is minimal in birational equivalence classes.

Proof. (1) By the desingularization theorem we may assume that Z is smooth.
Write (f ′)∗KX = KZ + E, (g′)∗KY = KZ + F .

Since X has canonical singularities, −E is effective. That is, KX is
smaller thanKZ . So the condition on singularities guarantees the minimality
locally. In order to see the global properties, we apply the negativity lemma
(Lemma 1.6.3). Write F − E = G+ − G− where G+, G− are effective Q-
divisors with no common components. Our goal is to show G− = 0. Suppose
that G− 6= 0. As −E is effective, the support of G− is contained in the
support of F , which is contracted by g′. By Lemma 1.6.3, there exists a
family of curves C contracted by g′ and covering a component of G−, such
that (G− ·C) < 0. Note that ((KZ + F ) ·C) = 0 and (G− ·C) ≥ 0. On the
other hand, since KX is nef,

0 ≤ ((KZ + E) · C) = ((E − F ) · C) = −(G+ · C) + (G− · C) < 0

a contradiction. Therefore G− = 0 and F − E is effective.

(2) We may assume that f ′, g′ are log resolutions. Write (f ′)∗(KX+B) =
KZ + E, (g′)∗(KY + C) = KZ + F .

Since (X,B) is LC, coefficients of E are at most 1. That is, if denote by
Ē the sum of the strict transform (f ′)−1

∗ B and all exceptional divisors of f ′

with coefficient 1, then KX + B is smaller than KZ + Ē. So LC condition
guarantees the minimality locally.

Let us look at the global property. Write F − E = G+ − G− where
G+, G− are effective R-divisors with no common components. Our goal is
to show G− = 0. Once it is shown that the support of G− is contracted by
g′, the conclusion follows exactly as the proof of (1). In order to show that
the support of G− is contracted by g′, for any prime divisor R on Z, we are
going to show that R is not an irreducible component of G− if g′∗R = Q is
a prime divisor on Y .

If f ′∗R = P is a prime divisor on X, by assumption (a), the coefficient
of P in B is not greater than that of Q in C. This holds even if P is not
a component of B in which case we just formally set the coefficient to be
0. Therefore the coefficient of R in F − G is non-negative and it is not a
component of G−.
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If f ′∗R = 0, by assumption (b), the coefficient of of Q in C is 1 while
that of R in E is at most 1. Therefore the coefficient of R in F − G is
non-negative and it is not a component of G−.

Remark 1.12.3. (1) In the minimal model theory in classical algebraic
surface theory, a minimal model is defined to be the minimal one under
the following relation using birational maps: for two smooth projective
algebraic surfaces X,Y , we define X ≤ Y if there exists a birational
morphism Y → X.

However, in dimension 3 or higher, there are examples showing that
such definition does not work [27], [26]. Therefore, in the minimal model
theory discussed in this book, we consider projective algebraic varieties
with singularities, and define the minimal model by the size of canonical
divisors; the relation X ≤ Y between two birational equivalent algebraic
varieties is defined by the inequality KX ≤ KY . Here the inequality
of divisors is by comparing the pullbacks on a birational model: we
write KX ≤ KY if f∗KX ≤ g∗KY for projective birational morphisms
f : Z → X, g : Z → Y . The relation (X,B) ≤ (Y,C) for log pairs is
defined by f∗(KX+B) ≥ g∗(KY +C) for projective birational morphisms
f : Z → X, g : Z → Y together with 2 conditions of (2) of the above
proposition.

Such kind of change of viewpoint has already been observed in algebraic
surfaces in logarithmic situation ([54]). The importance of considering
logarithmic situation showed up at that time. Furthermore, extending
to the logarithmic situation is indispensable for inductive proof of the
existence of minimal models in this book.

(2) Form the above proposition, the minimality in weak sense is equiva-
lent to the minimality of canonical divisors. Furthermore, according to
Corollary 3.6.10, minimal models are maximal among minimal models
in weak sense under the relation defined by birational morphisms.

Looking at this locally, we can say that: canonical singularities are
characterized by the property that the canonical divisors are minimal
locally. Furthermore, Q-factorial terminal singularities are maximal,
among those with canonical divisors minimal locally, under the relation
defined by birational morphisms.

For pairs, the log minimality in weak sense is equivalent to the mini-
mality of log canonical divisors. But as a DLT blowing up can be blown
up any times, it is impossible to construct a “maximal minimal model”.
However, if the minimal model is KLT, then we can construct a maxi-
mal minimal model by Corollary 3.6.10. This is a pair with Q-factorial
terminal singularities.
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Looking at this locally, we can say that: LC pairs are characterized by
the property that the log canonical divisors are minimal locally. Fur-
thermore, by only looking at KLT pairs, Q-factorial terminal pairs are
maximal, among pairs with canonical divisors minimal locally, under
the relation defined by birational morphisms.

Therefore, the situation requiring Q-factorial terminal singularities can
be called “maximality theory” and the situation requiring canonical sin-
gularities or LC singularities can be called “minimality theory”. A
model expected to be obtained using a minimal model program gets
into the “maximality theory”.

(3) Let α : X 99K Y be a birational morphism between projective normal
algebraic varieties over S. X,Y are said to be crepant or K-equivalent
to each other if there are birational projective morphisms f : Z → X,
g : Z → Y from a third normal algebraic variety with g = α ◦ f such
that f∗KX = g∗KY . Here the comparison of canonical divisors is by
using rational differential forms identified by the birational map. By the
above proposition, birational equivalent minimal models are crepant to
each other.

Furthermore, given effective R-divisors B,C on X,Y , assume that KX+
B, KY +C are R-Cartier. Pairs (X,B), (Y,C) are said to be log crepant
or K-equivalent to each other if f∗(KX + B) = g∗(KY + C), or just
crepant for simplicity. When considering minimal models with bound-
aries, only being birational is not enough, we should also pay attention
to how to define the boundaries. This is settled in Section 2.5.5.

1.13 The curve case and the surface case

In this section, we describe known results such as the finite generation of
canonical rings in dimension up to 2. Many of them are special phenomena
which only happen in dimension up to 2. In particular, we describe the clas-
sification of DLT pairs in dimension 2. We obtain a subadjunction formula
which will be useful later. For a DLT pair in general dimensions, its struc-
ture in codimension two can be considered by cutting down the dimension
by general hyperplanes and reducing to the classification of DLT pairs in
dimension 2.

1.13.1 The curve case

Firstly we discuss dimension 1 case briefly. Take an algebraic curve X, that
is, a smooth projective 1-dimensional algebraic variety. Denote its genus by
g. If g = 0, then X ∼= P1 and R(X,KX) ∼= k. If g = 1, then KX ∼ 0 and
R(X,KX) ∼= k[t]. These cases are simple.
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In the following we consider g ≥ 2. This is equivalent to X being of gen-
eral type. It is also equivalent to deg(KX) > 0 since the degree of the canon-
ical divisor KX is 2g− 2. The plurigenera are given by dimH0(X,mKX) =
(2m − 1)(g − 1) for m ≥ 2. As KX is ample, the canonical ring R(X,KX)
is finitely generated and

X = ProjR(X,KX).

X is called a hyperelliptic curve if there exists a finite morphism π : X → P1

of degree 2. The canonical linear system |KX | is always free, but it is very
ample if and only if X is not a hyperelliptic curve. When X is a hyperelliptic
curve,

|KX | = π∗|OP1(g − 1)|

and π is the morphism corresponding to |KX |. In this case, |3KX | is very
ample ([46, IV.5]).

To be more specific, if X is not a hyperelliptic curve, then the canonical
ring is generated by the degree 1 part H0(X,KX) (Max Noether [6, p.117]).
On the other hand, if X is a hyperelliptic curve, then degree up to 3 parts
are required to generate the canonical ring.

1.13.2 Minimal model of algebraic surfaces

In the following we consider 2-dimensional case. For details please refer to
[11]. An algebraic surface is a 2-dimensional algebraic variety.

Numerical geometry is particularly effective on algebraic surfaces. This
is because the intersection number becomes a symmetric bilinear form as
prime divisors are the same as curves. The following powerful theorem is
often used in algebraic surface theory.

{HIT}
Theorem 1.13.1 (Hodge index theorem, [46, Theorem V.1.9]). Let A,B be
Cartier divisors on a proper 2-dimensional algebraic variety X. If (A2) > 0,
(A ·B) = 0, and B 6≡ 0, then (B2) < 0.

{negative definite}
Corollary 1.13.2. Let f : Y → X be a resolution of singularities of an
algebraic surface and D a non-zero divisor on Y supported in the exceptional
set Exc(f). Then (D2) < 0. Therefore, if exceptional divisors of f are
E1, . . . , Er, then the matrix of intersection numbers [(Ei · Ej)] is negative
definite.

Proof. We may assume that X is projective. Take an ample divisor H on
X, then (f∗H · f∗H) > 0 and (f∗H ·D) = 0. If D ≥ 0, as Y is projective,
D 6= 0 implies D 6≡ 0. Therefore (D2) < 0. In general, we can write
D = D+ − D− in terms of the positive part and the negative part, then
(D2) ≤ (D+)2 + (D−)2 < 0.
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The Hodge index theorem can be used even for problems in higher di-
mensional algebraic geometry, because we can cut by hyperplane sections
and reduce to algebraic surfaces (see Lemma 1.6.3).

In general, given a resolution of singularities f : Y → X, the dual graph
Γ can be constructed from the exceptional set as the following:

(1) Take vertices v1, . . . , vr of Γ corresponding to prime divisors E1, . . . , Er
in Exc(f).

(2) Join vi, vj with an edge if two distinct prime divisors Ei, Ej intersect,
and associate the edge with weight (Ei · Ej).

(3) Associate each vertex vi with weight (E2
i ).

First of all, we recall the minimality of algebraic surfaces. The definition
of minimal models in algbraic surface theory is different from that in higher
dimensional algebraic geometry. Hence here we use “minimal in the classical
sense”. Given two smooth algebraic surfaces X,Y , the relation X ≥ Y is
defined by that there is a projective birational morphism f : X → Y . An
algebraic surface minimal under this relation is defined to be minimal in the
classical sense.

A curve C on a smooth projective algebraic surface X is called a (−1)-
curve if C ∼= P1 and (C2) = −1. If take a blowing up of a smooth algebraic
surface Y at a point P , then the exceptional set is a (−1)-curve. Conversely,
a (−1)-curve can be contracted to a smooth curve:

{Castelnuovo}
Theorem 1.13.3 (Castelnuovo’s contraction theorem, [46, Theorem V.5.7]).
For a smooth algebraic surface X and a (−1)-curve C on X, there exists
a projective birational morphism f : X → Y to another smooth algebraic
surface, such that f(C) is a point and f induces an isomorphism X \ C ∼=
Y \ f(C).

Minimality is characterized by the absence of (−1)-curve:

Theorem 1.13.4 ([46, Proposition V.5.3]). A smooth algebraic surface X
is minimal in the classical sense if and only if there is no (−1)-curve on X.

Corollary 1.13.5. For a smooth projective algebraic surface X, its minimal
model in the classical sense always exists.

Proof. In the case that f : X → Y is a contraction of a (−1)-curve, the
Picard number decreases exactly by one: ρ(X) = ρ(Y ) + 1. As Picard
number is always positive, a minimal model in the classical sense can be
obtained by taking contractions finitely many times until there is no more
(−1)-curve.

Minimal projective algebraic surfaces in the classical sense are classified
into the following 3 types:
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(1) A surface with KX nef.

(2) A P1-bundle over a curve.

(3) P2.

In this book, (1) is called a minimal model, and (2) or (3) is called a Mori
fiber space. In case (1), the minimal model is unique. However in cases (2)
and (3), the minimal model (in the classical sense) is not unique, so such a
model is sometimes said to be relatively minimal, but to avoid confusion we
will not use this terminology.

Combining the existence of resolution of singularities and Castelnuovo’s
contraction theorem, we get the minimal resolution of singularities of a
normal algebraic surface. It is a minimal model in relative setting, which is
obtained by considering ρ(Y/X) instead of ρ(X):

Corollary 1.13.6 ([46, Theorem V.5.8]). Let X be a normal algebraic sur-
face. Then among all projective birational map g : Y → X from a smooth
algebraic surface, there exists a unique minimal one in the classical sense.

We also have the following minimal log resolution of singularities which
is the log version of minimal resolution of singularities:

Proposition 1.13.7. Let (X,B) be a pair consisting of a normal algebraic
surface and a reduced divisor on it. Then among all projective birational map
g : Y → X from a smooth algebraic surface such that the sum of f−1

∗ B and
all exceptional divisors is a normal crossing divisor, there exists a unique
minimal one in the classical sense.

For a projective algebraic curve C on a smooth algebraic surface X, the
following genus formula holds ([46, Example V.3.9.2]):

(KX · C) + (C2) = 2ḡ − 2 ≥ −2.

Here ḡ is called the virtual genus of C, which is a non-negative integer.
Take g to be the genus of the smooth projective curve Cν obtained from
normalization of C, then ḡ ≥ g. The difference ḡ−g comes from singularities
of C. In particular, the equality holds if and only if C is smooth.

Minimal resolution of singularities is characterized by relative nefness.
This coincide with the definition of minimality in this book:

{min resol property}
Proposition 1.13.8. (1) A projective birational morphism f : Y → X

from a smooth algebraic surface to a normal algebraic surface is the
minimal resolution of singularities if and only if KY is relatively nef.

(2) Let f : Y → X be the minimal resolution of singularities of a normal
algebraic surface. If write f∗KX = KY + C, then C is effective.
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Proof. (1) If there is a (−1)-curve C such that f(C) is a point, then (KY ·
C) = −1 and KY is not relatively nef.

Conversely, if KY is not relatively nef, then there is a curve C such
that (KY · C) < 0 and f(C) is a point. By the Hodge index theorem
(Corollary 1.13.2), (C2) < 0. On the other hand, by the genus formula,
(KY ·C) + (C2) ≥ −2. Hence we have ((KY +C) ·C) = −2 and (KY ·C) =
(C2) = −1. This means that C ∼= P1 and C is a (−1)-curve.

(2) Write C = C+ − C− where C+, C− are effective divisors with no
common components. If C− 6= 0, then (KY ·C−) = −(C+ ·C−)+(C− ·C−) <
0, which contradicts the fact that KY is relatively nef.

For Euler characteristic χ(OX) =
∑

(−1)i dimH i(X,OX) of a smooth
projective algebraic surface X, we have the following Noether’s formula

χ(OX) =
1

12
((K2

X) + c2(X)).

Here c2(X) is the second Chern class of the tangent bundle ofX, and−KX =
c1(X) is the first Chern class.

1.13.3 Finite generation and the classification of algebraic
surfaces

Let us consider the finite generation of canonical rings of smooth projective
algebraic surfaces. The important thing here is that canonical rings are
invariants under contractions of (−1)-curves: f∗ : R(X ′,KX′) ∼= R(X,KX).
Therefore, in the following we consider X to be minimal.

In the classification of minimal models in the classical sense, for a Mori
fiber space in case (2) or (3), its canonical ring is just k, and the finite gen-
eration is trivial. In the following we just consider case (1). The following
is a deep result called the Kodaira–Enriques classification theory for alge-
braic surfaces. In addition, Kodaira also classified (not necessarily algebraic)
compact complex surface, but we will not discuss them here ([10]).

The Kodaira dimension κ(X) takes value among 0, 1, 2. When κ(X) = 0,
there exists a positive integer r such that rKX ∼ 0. If we take r to be
the smallest one with such property, then r = 1, 2, 3, 4, 6. In particular,
R(X,KX) ∼= k[tr].

When κ(X) = 1, there exists a surjective morphism f : X → Y to a
smooth projective algebraic curve such that the generic fiber is an elliptic
curve. The following Kodaira’s canonical bundle formula holds:

KX ∼Q f∗(KY +B).

Moreover, deg(KY + B) > 0. Here B is a Q-divisor on Y determined
by singular fibers of f . Singular fibers are completely classified and the
corresponding coefficients of B are determined. Here coefficients of B are
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not necessarily contained in (0, 1). This is because it includes also a part
induced from the J-function J : Y → P1 coming from the fibers of f .
Anyway, there exists a positive integer r such that rKX ∼ f∗(r(KY + B))
and R(X, rKX) ∼= R(Y, r(KY + B)). The latter one is finitely generated
as r(KY + B) is an ample divisor, which implies that R(X,KX) is finitely
generated. Here note that R(X,KX) is finitely generated if and only if
R(X, rKX) is so.

Consider the case κ(X) = 2. A minimal model X is of general type if
and only if (K2

X) > 0. For m ≥ 2, by a vanishing theorem of Kodaira type,
we have the following plurigenus formula

dimH0(X,mKX) =
1

2
m(m− 1)(K2

X) + χ(OX).

We discuss the canonical models. A curve C onX is called a (−2)-curve if
C ∼= P1 and (C2) = −2. On a minimal surface of general type, a (−2)-curve
is characterized by the condition (KX ·C) = 0. This is because we get (C2) <
0 from the Hodge index theorem (Corollary 1.13.2) and (KX ·C)+(C2) ≥ −2
from the genus formula. According to Artin’s contraction theorem ([7] or
Theorem 1.13.10), we can contract all (−2)-curves by a birational morphism;
there exists a birational morphism g : X → Y to a normal algebraic surface
such that the exceptional set of g coincides with the union of all (−2)-
curves. Y is called the canonical model. The canonical divisor KY of Y is
a Cartier divisor and KX = g∗KY . Therefore there is an isomorphism g∗ :
R(Y,KY ) ∼= R(X,KX). Since all the curves intersecting KX are contracted
by g, we can see that KY is ample, and the canonical ring R(X,KX) is
finitely generated and Y = ProjR(X,KX). This is the proof of the finite
generation of canonical rings in dimension 2 by Mumford ([116]). In more
details, on the canonical model, |5KY | is very ample ([17]).

1.13.4 Rational singularities

For a minimal model X of general type, its canonical model Y has canonical
singularities, because the birational morphism g : X → Y is crepant (KX =
f∗KY ). Canonical singularities in dimension 2 is known to be the same as
rational double points, that is, rational singularities of multiplicity 2. Such
singularities are investigated in many different situations from long ago, they
are also called Du Val singularities, Klein singularities, simple singularities,
ADE singularities. Here we summarize the classification of 2-dimensional
canonical singularities:

Theorem 1.13.9. Let P ∈ X be a canonical singularity in dimension 2.

(1) Take f : Y → X to be the minimal resolution of singularities, then the
exceptional set Exc(f) is a normal crossing divisor whose irreducible
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components are all (−2)-curves and the dual graph defined by their in-
tersections is among Dynkin diagrams of type An, Dn, E6, E7, E8 (see
Figure ??). Conversely, on a smooth algebraic surface, a normal cross-
ing divisor whose irreducible components are all (−2)-curves with dual
graph of type An, Dn, E6, E7, E8 can be contracted to a canonical singu-
larity by a projective birational morphism.

(2) When the base field is C, there exists an analytic neighborhood of P iso-
morphic to the neighborhood of the origin of hypersurface in C3 defined
by one of the following equations:

An : x2 + y2 + zn+1 = 0, n ≥ 1;

Dn : x2 + y2z + zn−1 = 0, n ≥ 4;

E6 : x2 + y3 + z4 = 0;

E7 : x2 + y3 + yz3 = 0;

E8 : x2 + y3 + z5 = 0.

Here, (x, y, z) are coordinates of C3.

(3) When the base field is C, it is analyticaly isomorphic to the singularity
of the origin of the quotient space C2/G for a finite subgroup G of
SL(2,C).

More generally, rational singularities on algebraic surfaces are defined by
Artin [8]. Please refer to the original paper for the proof. The theorem is
characteristic free:

{Artin}
Theorem 1.13.10. Let X be a smooth algebraic surface and Ei (i = 1, . . . , r)
projective curves on X such that the union E =

⋃
Ei is connected. Assume

that the matrix of intersections [(Ei · Ej)] is negative definite. Then the
following statements hold:

(1) There exists a smallest effective integral divisor F =
∑
eiEi 6= 0 satis-

fying the property that (F ·Ei) ≤ 0 for all i. It is called the fundamental
cycle.

(2) Inequality (KX · F ) + (F 2) ≥ −2 holds.

(3) If equality (KX ·F )+(F 2) = −2 holds, there exists a projective birational
morphism f : X → Y to a normal algebraic surface and the exceptional
set Exc(f) coincides with E. In this case, the singularity of Y is called
a rational singularity.

(4) Rational singularities are Q-factorial. Moreover, R1f∗OX = 0. Con-
versely, a normal singularity on an algebraic surface Y with resolution
of singularities f : X → Y satisfying R1f∗OX = 0 is a rational singu-
larity.
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The condition R1f∗OX = 0 is independent of the choice of resolution of
singularities since for g : X ′ → X a blowing up of a smooth algebraic surface
at a point, R1g∗OX′ = 0 and g∗OX′ ∼= OX hold.

Example 1.13.11. (1) On a smooth algebraic surface, a curve satisfying
C ∼= P1 and (C2) = −n can be contracted to a rational singularity.

(2) Dual graphs obtained by taking resolution of singularities of 2-dimensional
DLT pairs (see Figure ??) can be contracted to rational singularities.

Proposition 1.13.12. Let X be a normal algebraic surface with at most
rational singularities and f : Y → X a resolution of singularities. Then
prime divisors in the exceptional set of f are all isomorphic to P1 and the
dual graph is a tree. Here a tree is a graph with all edges having weigh one
and with no cycles.

Proof. Since R1f∗OY = 0, limE H
1(E,OE) = 0 by [46, Theorem III.11.1].

Here the limit is the inverse limit for all subschemes E supported on the
exceptional set of f . Since the exceptional set of f is 1-dimensional, for any
f -exceptional effective divisor E, we have H1(E,OE) = 0. This concludes
the proof.

Remark 1.13.13. According to a theorem of Grauert ([35]), for a smooth
complex analytic surface X and projective curves Ei (i = 1, . . . , r) on X such
that the union E =

⋃
Ei is connected and the matrix of intersections [(Ei ·

Ej)] is negative definite, there always exists a proper birational morphism f :
X → Y to a normal complex analytic surface such that the exceptional set
of f coincides with E. However, Y does not necessarily admit an algebraic
structure and f is not necessarily algebraic.

1.13.5 The classification of DLT surface singularities 1

Numerical geometry becomes easy for normal algebraic surfaces. Even for
non-R-Cartier divisors, intersection numbers and pullback by a morphism
can be well-defined.

Let X be a normal algebraic surface and D an R-divisor on X. Take
a resolution of singularities f : Y → X and denote Ei (i = 1, . . . , r) to be
the exceptional divisors. The Mumford’s numerical pullback f∗D = f−1

∗ D+∑
eiEi is defined as the following ([115]): coefficients ei are the solution

of the equations (f∗D · Ei) = 0 for all i, which is unique since [(Ei · Ej)]
is negative definite. If D is effective, it is easy to see that f∗D is again
effective. For two R-divisors D,D′, their intersection number can be defined
by (D ·D′) = (f∗D · f∗D′).

From now on, we work on the classification of 2-dimensional DLT pairs.
Here all discussions are over a base field of characteristic 0. There is also a
classification in positive characteristics ([54]).
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As the definition of pullback extends to all R-divisors, for a pair (X,B),
we can define the concept such as KLT, DLT without assuming that KX +
B is R-Cartier. Therefore, in the following, this assumption is removed.
However, as will be shown later, it turns out that KX + B automatically
becomes R-Cartier.

Firstly, we generalize the vanishing theorem slightly. For algebraic sur-
faces, the normal crossing condition which is important in Theorem 1.9.7
can be removed:

{surface vanishing}
Proposition 1.13.14. Let X be a smooth projective algebraic surface de-
fined over an algebraically closed field of characteristic 0, f : X → S a
projective morphism to another algebraic variety, and D a relatively nef and
relatively big R-divisor on X. Then R1f∗(OX(KX + pDq)) = 0.

Proof. Take a log resolution g : Y → (X,D). By Theorem 1.9.7, R1(f ◦
g)∗(OY (KY + pg∗Dq)) = R1g∗(OY (KY + pg∗Dq)) = 0. Then, arguing by
spectral sequence, we get R1f∗(g∗(OY (KY + pg∗Dq))) = 0. In the exact
sequence

0→ g∗(OY (KY + pg∗Dq))→ OX(KX + pDq)→ Q→ 0,

the cokernal Q has 0-dimensional support, hence its higher cohomologies
vanish. Therefore the proof is completed.

DLT pairs has rational singularities:

Proposition 1.13.15. Let (X,B) be a 2-dimensional DLT pair defined over
an algebraically closed field of characteristic 0. Then X has rational singu-
larities. If (X,B) is only LC, then X has rational singularities at points in
the support of B.

Proof. Since (X,B) is DLT, (X, 0) is again DLT. Here note that the con-
dition KX + B being R-Cartier is removed in the definition of DLT. As
(X, 0) has no boundary, it is KLT. Take the minimal resolution of singu-
larities f : Y → X and write f∗KX = KY + C. As it is minimal, C is
effective. Since (X, 0) is KLT, p−Cq = 0. Applying Proposition 1.13.14 to
D = −f∗KX , we get R1f∗OY = R1f∗(OY (p−Cq)) = 0.

For the latter statement, when the pair (X,B) is LC, (X, 0) is KLT at
points in the support of B.

Rationality of singularities implies Q-factoriality:

Proposition 1.13.16. Algebraic surfaces defined over the complex number
field with only rational singularities are Q-factorial.
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Proof. Take a resolution of singularities f : Y → X. Consider Y as a
complex analytic variety, consider its sheaves in classical topology instead
of Zariski topology. Then there exists an exponential exact sequence

0→ ZY → OY → O∗Y → 0.

Here the map OY → O∗Y is defined by the exponential function z → e2πiz.
Note that such kind of exact sequence does not exist in Zariski topology.

By the assumption, R1f∗OY = 0, hence the map R1f∗O∗Y → R2f∗ZY is
injective.

For any divisor D on X, its numerical pullback f∗D is a Q-divisor, so
we can take a positive integer m such that mf∗D is integral. Note that
OY (mf∗D) determines an element in R1f∗O∗Y whose image in R2f∗QY is
zero since (mf∗D ·E) = 0 for every f -exceptional curve E. Therefore there
exists a positive integer m′, such that the image of OY (mm′f∗D) in R2f∗ZY
is 0. This induces an isomorphism

OY (mm′f∗D) ∼= OY .

The global section of the left hand side corresponding to 1 of the right hand
side determines a rational function h on Y such that div(h)Y = −mm′f∗D.
Hence div(h)X = −mm′D which means that mm′D is Cartier.

As 2-dimensional DLT pairs are rational singularities, they are Q-factorial,
and hence numerical pullback is actually the same as pullback. For LC pairs
the same holds true on the support of boundaries.

Next we show that KLT or LC property is preserved under taking cov-
ering:

{LC covering}
Lemma 1.13.17. Let f : Y → X be a finite surjective morphism étale
in codimension 1 between normal algebraic varieties defined over an alge-
braically closed field of characteristic 0. Let B be an effective R-divisor on
X such that KX +B is R-Cartier, write f∗(KX +B) = KY +C. Then the
pair (X,B) is LC if and only if so is (Y,C). The same holds true for KLT
pairs.

Proof. As f is étale in codimension 1, C is effective. Take a log resolution
g : X ′ → X of (X,B) and take Y ′ to be the normalization of X ′ in the
function field k(Y ). Denote the induced maps by h : Y ′ → Y and f ′ : Y ′ →
X ′. Write g∗(KX +B) = KX′ +B′, h∗(KY + C) = KY ′ + C ′.

Firstly, we show that (X,B) is LC assuming that (Y,C) is LC. Take an
arbitrary prime divisor D contracted by g and denote its coefficient in B′

by d. Take a prime divisor E on Y ′ such that f ′(E) = D and denote the
ramification index of E with respect to f ′ by r. Then the coefficient of E in
(f ′)∗D and KY ′ − (f ′)∗KX′ are r and r − 1 respectively. Therefore, take e
to be the coefficient of E in C ′, we get the relation

dr = r − 1 + e.
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Since e ≤ 1 by the assumption, we get d ≤ 1. Moreover, if e < 1, then d < 1.

Conversely, we show that (Y,C) is LC assuming that (X,B) is LC. By
using the result we just proved in the first part, we may replace Y by taking
the Galois closure and assume that k(Y )/k(X) is Galois. As the Galois
group G acts on Y , we take h : Y ′ → Y to be a G-equivariant log resolu-
tion. For example, a canonical resolution (Remark 1.6.2(4)) is automatically
G-equivariant. The quotient space X ′ = Y ′/G has quotient singularities.
Denote by g : X ′ → X and f ′ : Y ′ → X ′ the induced maps. Take a prime
divisor E contracted by h, define D, e, d in the same way as the first part.
Although X ′ is not smooth, we still have dr = r− 1 + e. Since d ≤ 1 by the
assumption, we get e ≤ 1. Moreover, if d < 1, then e < 1.

Remark 1.13.18. Here we discuss about topology of algebraic varieties
defined over the complex number field. In general the topology of algebraic
varieties is Zariski topology, but when the base field is the complex number
field, classical Euclid topology is also useful. For example, exponential exact
sequence appeared before makes sense only in the latter topology.

As an open subset in Zariski topology is large, it admits non-trivial
structure itself, on the other hand, classical topology has polydisks as base,
its local structure is trivial. Since there are many open subsets, even the
constant sheaf has non-trivial cohomology groups.

For algebraic varieties defined over the complex number field, many def-
initions and results hold both for Zariski topology and classical topology.
Furthermore, in many cases they can be generalized to non-algebraic com-
plex analytic varieties. For example, definitions of DLT pairs and LC pairs
can be generalized using resolution of complex analytic singularities. The
same is true for DLT pairs being rational singularities. The fact that LC
and KLT are preserved by étale in codimension one covering can be also
generalized since it is a consequence of the ramification formula.

The construction of index 1 cover can be also generalized. For exam-
ple, for an effective divisor D on a complex analytic variety X such that
OX(rD) ∼= OX , take a regular function h such that div(h) = rD, take the
normalization of the subvariety defined by the equation zr = h in the trivial
line bundle X ×C over X, we get the index 1 cover. Here z is the coordi-
nate in the fiber direction. When D is not effective, we can consider similar
construction in X ×P1.

However, as stated in Remark 1.1.2, we should take care of the concept
of normal crossing divisor. We should also take care of Q-factoriality. A
complex analytic variety X is analytically Q-factorial if for any analytic
neighborhood U of any point P ∈ X and any codimension 1 subvariety D
on X, there exists a neighborhood U ′ of P in U , a positive integer r, and a
regular function h on U ′ such that divU ′(h) = r(D ∩ U ′). As the algebraic
Q-factoriality is a condition for globally defined prime divisors, analytical
Q-factoriality is a stronger condition.
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1.13.6 The classification of DLT surface singularities 2

We describe the classification of DLT pairs for algebraic surfaces. The re-
sults are established in a sufficiently small analytic neighborhood near the
singularity.

Firstly, consider the structure near points in the support of boundaries:
{surface DLT classification}

Theorem 1.13.19 ([64]). Let X be an algebraic surface defined over the
complex number field and B a reduced divisor on X. Assume that (X,B) is
DLT. Then for any point P ∈ X in the support of B, there exists an analytic
neighborhood U such that one of the following statements holds:

(1) U is smooth and B|U is a normal crossing divisor in complex analytic
sense.

(2) U has a quotient singularity of type 1
r (1, s) and B|U is irreducible. Here

r, s are coprime positive integers. In more details, there exists a neigh-
borhood U0 of the origin of affine space C2 with coordinates x, y, a group
action by G = Z/(r) as x 7→ ζx, y 7→ ζsy such that the pair (U,B|U )
is analytically isomorphic to (U0/G,B0/G). Here ζ is a primitive r-th
root of 1 and B0 = div(x). In this case, (U,B|U ) is PLT.

Conversely, pairs satisfying (1) or (2) are DLT.

Proof. Take a sufficiently small analytic neighborhood U of P , take an ana-
lytic irreducible component B1 of B ∩ U . We may assume that B1 remains
irreducible when replacing U by smaller neighborhoods. Here note that it
is possible that an (algebraic) irreducible component of B containing B1 is
strictly bigger than B1 when restricting to U .

Since X has rational singularities, it is analytically Q-factorial. Hence
B1 is Q-Cartier. Take r1 to be the smallest positive integer such that r1B1

is Cartier. Then we may assume that OU (r1B1) ∼= OU . Take π1 : Y1 → U
to be the index 1 cover of B1. As π1 is étale in codimension 1, by Lemma
1.13.17, (Y1, π

∗
1B) is LC. If one of the analytic irreducible component of π∗1B

is not Cartier, note that Y1 has again rational singularities, we can construct
an index 1 cover again. Therefore, we can construct a finite cover π : Y → U
étale in codimension 1 such that any analytically irreducible component of
C = π∗B is Cartier. By construction, Q = π−1(P ) is one point.

We will show that Y is smooth. Suppose not, take the minimal resolu-
tion of singularities g : Z → Y . Take Cj to be an analytically irreducible
component of C, as Cj is Cartier, g∗Cj is an integral divisor. Note that the
support of g∗Cj contains the exceptional set of g.

Take s to be the number of such Cj . If s ≥ 2, then any exceptional
divisor of g has coefficients at least 1 in g∗C1, g

∗C2. Since KZ ≤ g∗KY , this
contradicts to the fact that (Y,C) is LC.
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Now s = 1. Take E1, . . . , Er to be the exceptional divisors of g. Since Y
has rational singularities, the dual graph of the exceptional divisors is a tree.
Since (Y,C) is LC, we get g∗C1 = g−1

∗ C1 +
∑
Ei and KZ = g∗KY . Note that

since C1 is analytically irreducible, set-theoretically g−1
∗ C1 intersects the

support of
∑
Ei at one point. If the graph of g−1

∗ C1 +
∑
Ei is not a tree, we

need more blowing ups to get a log resolution of (Y,C), but this procedure
will produce an exceptional divisor with log discrepancy coefficient at least
2, which is a contradiction.

On the other hand, If the graph of g−1
∗ C1 +

∑
Ei is a tree, then there

exists an irreducible component E1 intersecting g−1
∗ C1 +

∑
i 6=1Ei at just

one point. But by (KZ · E1) = 0 we get (E2
1) = −2, which contradicts to

(g∗C1 · E1) = 0.
In summary, we showed that Y is smooth. Note that Y \Q is connected

and simply connected, it coincides with the universal covering of U \ P . In
particular, π : Y → U is a Galois covering. Take G to be the Galois group.

Embed Y into affine space C2 with coordinates x, y such that Q is the
origin. Since (Y,C) is LC and Q is contained in the support of C, we may
assume that the equation of C is xy = 0 or x = 0. By construction, C is
invariant under the action of G.

If the equation of C is x = 0, B∩U is analytically irreducible, and hence
G is the Galois group of an index 1 cover which is isomorphic to Z/(r1).
We get into case (2) by diagonalizing the generator of G. Here if r, s are
not coprime, there is a non-trivial subgroup of G with fixed locus outside
Q, which contradicts to the fact that π : Y → U is étale in codimension 1.

Consider the case that the equation of C is xy = 0. Firstly, consider the
case that every irreducible component of C is invariant under the action of
G. By choosing coordinates properly, the log canonical form dx/x ∧ dy/y
is invariant under the action of G, and determines a log canonical form
θ ∈ H0(U,KU + B) on Y/G ∼= U . Since θ has no zeros, KU + B is Cartier
on U . Suppose that U is not smooth, take h : V → U to be the minimal
resolution of singularities and write h∗(KU + B) = KV + BV , then the
coefficients of BV are integers. Since h∗KU ≥ KV , the coefficients of BV
are at least 1. This contradicts to the fact that (X,B) is DLT. Hence U is
smooth and we get into case (1).

Next, suppose that there exists an element in G exchanging irreducible
components of C. Then B ∩ U is again analytically irreducible. Hence the
DLT pair (U,B) is PLT. Take G′ to be the subgroup of G consisting of all
elements preserving irreducible components of C, then G1 = G/G′ ∼= Z/(2)
and the log canonical divisor KY ′ + C ′ on Y ′ = Y/G′ is Cartier. Here C ′ is
the image of C, which is a reduced divisor with two irreducible components.
If Y ′ is not smooth, take g′ : Z ′ → Y ′ to be the minimal resolution of
singularities and write (g′)∗(KY ′ + C ′) = KZ′ + C ′Z , then the coefficients
of C ′Z all equal to 1. The action of G1 on Y ′ extends to Z ′ and induces a
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birational morphism h : V = Z ′/G1 → U = Y ′/G1. This is not necessarily
the minimal resolution of singularities, but if write h∗(KU +B) = KV +BV ,
then by the ramification formula, the coefficients of BV all equal to 1, which
contradicts to that (U,B) is PLT. Therefore, Y ′ is smooth. Then G′ = {1}
and the action of G1 exchanging irreducible components of C is étale in
codimension 1, which is absurd.

As an application in general dimensions, we can show the subadjunction
formula for DLT pairs (see Theorem 1.11.13):

Corollary 1.13.20. Let (X,B) be a DLT pair and Z an irreducible com-
ponent of xBy. Define the R-divisor BZ on Z by (KX +B)|Z = KZ +BZ .
Take an irreducible component P of BZ with coefficient p. Denote by bi the
coefficients of irreducible components of B containing P . Then there exist
positive integers mi, r such that

p = (r − 1 +
∑

bimi)/r.

Proof. As we can check the coefficient of P on its generic point, we may
assume that dimX = 2 and P is a point. The coefficient remains the same
when X is considered as a complex analytic variety, hence we just need to
consider two cases in Theorem 1.13.19. Case (1) is trivial, we only consider
case (2).

Let Y = C2, W = div(x), G = Z/(r), X = Y/G, Z = W/G. Denote the
projection by π : Y → X. Take the origin Q ∈ Y and denote P = π(Q). In
the DLT pair (X,B), B = Z +

∑
biBi. Take Ci = π∗Bi and mi = (Ci ·W ).

When Bi passes through P , mi is a positive integer.
Since π : Y → X is étale outside the origin, π∗(KX +Z) = KY +W . On

the other hand, π|W : W → Z is ramified over Q with index r, hence π∗P =
rQ, KW = (π|W )∗KZ+(r−1)Q. On Y we have the usual adjunction formula
(KY + W )|W = KW . Then the coefficient of P can be easily computed by
the above relations.

Next we consider points outside the boundary:
{surface DLT classification 2}

Theorem 1.13.21 ([64]). Let X be an algebraic surface defined over the
complex number field. Assume that (X, 0) is DLT. Then any point P ∈ X
is a quotient singularity. That is, there exists an analytic neighborhood U of
P which is analytically isomorphic to the quotient of a neighborhood of the
origin (0, 0) of C2 by the linear action of a finite subgroup G of the general
linear group GL(2,C).

Conversely, if X has quotient singularities, then (X, 0) is DLT.

Proof. Since B = 0, (U, 0) is KLT. Firstly take the index 1 cover π1 : Y1 → U
of KX . Since (Y1, 0) is also KLT and KY1 is Cartier, Y1 has canonical
singularities. Therefore, Y1 = U0/G1 where U0 is a neighborhood of the
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origin of C2 and G1 is a finite subgroup of SL(2,C). Now U0 \ {0} is the
universal cover of U \ {P} and we get the conclusion.

The converse statement follows from the ramification formula and holds
for any dimension.

Birational geometry of algebraic surfaces works for arbitrary characteris-
tics. The classification of minimal models works under certain replacement
([117], [18], [19]). The theory of rational singularities remains true, also the
contraction theorem remains true ([7], [8]). The graph of the resolution of
singularities of a DLT pair is completely classified, which is the same as in
characteristic 0 ([54], Figure ??). However, in characteristic 0 the singular-
ity can be determined by the graph of the resolution of singularities, which
turns out to be a quotient singularity, but in positive characteristics it is
only known to be a rational singularity and the structure of the singularity
is not determined only by the graph of the resolution of singularities, the
classification seems to be more complicated. In addition, [54] is the origin
where the second author was involved in the minimal model theory.

1.13.7 The Zariski decomposition

Finally, we state the Zariski decomposition for divisors on algebraic surfaces:

Theorem 1.13.22. Let D be an integral divisor on a smooth projective
surface X. Assume that there exists a positive integer m such that |mD| 6= ∅.
Then there exists an effective Q-divisor N satisfying the following conditions:

(1) P = D −N is nef;

(2) (P · Ei) = 0 for every i, where E1, . . . , Em are irreducible components
of N ;

(3) the matrix [(Ei · Ej)]i,j is negative-definite.

Moreover, N is uniquely determined by the above conditions.

Such a decomposition D = P +N is called the Zariski decomposition of
D ([153]).

Proposition 1.13.23. Let X a smooth projective surface and f : X → Y
be a morphism to a minimal model in the classical sense. Assume that
KY is nef. Set N = KX − f∗KY , then KY = f∗KY + N is the Zariski
decomposition of KY .

That is, we can say that the Zariski decomposition in fact gives the
minimal model without taking a birational model. This is the reason why
Zariski decomposition has been drawn a lot of attention.
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Example 1.13.24. We give an example of log minimal model in dimension
2. The correspondence between Zariski decompositions and log minimal
models holds in general ([54]).

Consider an irreducible curve B of degree 4 with 3 ordinary cusp sin-
gularities on the projective plane X = P2. Here an ordinary cusp singu-
larity is a singularity analytically equivalent to that given by the equation
x2 − y3 = 0 at the origin. By the genus formula, B is a rational curve, that
is, its normalization is isomorphic to P1. Let f : Y → X be the minimal log
resolution of the pair (X,B), and C0 = f−1

∗ B be the strict transform. Let
Pi (i = 1, 2, 3) be the singularities on B, over each there are 3 exceptional
divisors Eij (i, j = 1, 2, 3) on Y . It is easy to calculate the intersection
numbers (C2

0 ) = −2 and (E2
ij) = −j. C = C0 +

∑
i,j Eij is a normal crossing

divisor with all components isomorphic to P1. The dual graph is shown in
Figure ??.

The Zariski decomposition KY + C = P +N is given by

P = KY + C0 +
∑
i

(
Ei1 +

1

2
Ei2 +

2

3
Ei3

)
, N =

∑
i

(
1

2
Ei2 +

1

3
Ei3

)
.

Here P is nef and big with (P 2) = 1/2.
Denote by g : Y → Z the contraction of 6 curves Ei2, Ei3 (i = 1, 2, 3)

in the support of N and D = g∗C. Then KZ + D is ample and P =
g∗(KZ +D). The pair (Z,D) is a log minimal model of (Y,C) which is also
the log canonical model.

In Section 2.9 “Divisorial Zariski decomposition” of Chapter 2, we gen-
eralize the definition of Zariski decomposition in a weak sense for pseudo-
effective R-divisors in arbitrary dimensions.

1.14 The three-dimensional case

Let us consider the 3-dimensional case. In this situation, results in higher
dimensional algebraic geometry discussed in subsequent chapters are neces-
sary. In fact, higher dimensional algebraic geometry starts from dimension
3. However, there are also special phenomena and results only in dimension
3. We will describe them briefly as comparison to results in dimension up
to 2. This section will not be used in subsequent sections.

The minimal model program, including existence of flips, termination of
flips, and abundance conjecture, is completely understood in dimension 3
even for log version. As a consequence of the minimal model theory, the
following theorem holds:

Theorem 1.14.1. Let X be a smooth projective 3-dimensional algebraic
variety over a field of characteristic 0. Then there exists a projective alge-
braic variety X ′ with at most terminal singularities and a birational map
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f : X 99K X ′ surjective in codimension 1 such that one of the following
statements holds:

(1) X ′ is a minimal model. That is, the canonical divisor KX′ is nef.

(2) X ′ admits a Mori fiber space structure. That is, there exists a surjective
morphism g : X ′ → Y to the third normal algebraic variety Y with
dimY < dimX with connected geometric fibers such that −KX is g-
ample.

Remark 1.14.2. (1) f is not necessarily a morphism and X ′ is not neces-
sarily smooth, this is a feature in dimension 3 and higher.

(2) X ′ has terminal singularities means that the pair (X ′, 0) has terminal
singularities. The concept of terminal singularities was originally defined
by Reid in dimension 3 ([127]). However, log terminal singularities for
algebraic surfaces already appeared before this ([54]). In dimension
2, terminal singularities are impossible to be aware of since they are
automatically smooth.

(3) Any terminal singularity can appear in a minimal model. Terminal sin-
gularities in dimension 3 are isolated singularities and are completely
classified (Theorem 1.14.5). For example, for two coprime positive in-
tegers r, b with b < r, a quotient singularity of type 1

r (1,−1, b) is a
terminal singularity (see Example 1.10.5 for notation). The Cartier in-
dex of a singularity P ∈ X is the minimal positive integer m such that
mKX is Cartier in a neighborhood of P . The Cartier index of a quotient
singularity of type 1

r (1,−1, b) is r. In particular, the Cartier index of a
minimal model can be arbitrarily large.

(4) Existence of flips in dimension 3 was proved by Mori via an almost
complete classification of small contractions ([109]). As will be discussed
later, existence of flips in general dimensions is proved in a completely
different way by induction on dimensions. Here the generalization to
log version is essential.

(5) Termination of flips in dimension 3 was proved by Shokurov ([134]).
Termination of log flips in dimension 3 was proved in [70]. It remains
open in general dimensions.

The abundance theorem holds in dimension 3 ([103], [104], [105], [69]):

Theorem 1.14.3. Let X be a 3-dimensional minimal model. That is, X is a
projective algebraic variety with terminal singularities and KX is nef. Then
there exists a positive integer m such that the pluricanonical system |mKX |
is free. As a consequence, there exists a surjective morphism f : X → Y to a
normal projective algebraic variety with connected geometric fibers such that
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KX ∼Q f∗H for an ample Q-divisor H on Y . By definition, dimY = κ(X).
In particular, the canonical ring is finitely generated.

Remark 1.14.4. (1) The log version of abundance conjecture is also proved
in dimension 3 ([84]).

(2) As can be shown in subsequent chapters, the finite generation of canon-
ical rings is much weaker that the abundance theorem.

Terminal singularities in dimension 3 are completely classified as complex
analytic singularities ([127], [108], [130]):

{classification terminal 3}
Theorem 1.14.5. Let X be a 3-dimensional algebraic variety defined over
the complex number field with terminal singularities and take P ∈ X be a
singular point. Then (X,P ) is an isolated singularity. Take r to be the
Cartier index, then there exists an analytic neighborhood of P isomorphic
to the neighborhood of origin of one of the following singularities:

(1) a quotient singularity of type 1
r (a,−a, 1). Here r, a are coprime positive

integers (see Example 1.10.5 for notation).

(2) general type: the quotient space of the hypersurface in C4 defined by
xy + f(zr, w) = 0 at the origin by the cyclic group Z/(r). In other
words, the prime divisor in 4-dimensional quotient singularity defined
by

{(x, y, z, w) ∈ 1

r
(a,−a, 1, 0) | xy + f(zr, w) = 0}.

Here r, a are coprime positive integers and f has no constant term and
w term.

The following (2), (3) are also prime divisors in 4-dimensional quotient
singularity.

(3) special type:

{(x, y, z, w) ∈1

2
(1, 0, 1, 1) |x2 + y2 + f(z, w) = 0}, f ∈ m4, r = 2;

{(x, y, z, w) ∈1

2
(1, 0, 1, 1) |x2 + f(y, z, w) = 0},

f ∈ m3 \m4, f3 6= y3, r = 2;

{(x, y, z, w) ∈1

3
(0, 1, 2, 2) |x2 + f(y, z, w) = 0},

f ∈ m3, f3 = y3 + z3 + w3, y3 + zw2 or y3 + z3, r = 3;

{(x, y, z, w) ∈1

2
(1, 0, 1, 1) |x2 + y3 + yf(z, w) + g(z, w) = 0},

f ∈ m4, g ∈ m4 \m5, r = 2.

Here m is the maximal ideal of the origin.
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(4) exceptional type:

{(x, y, z, w) ∈ 1

4
(1, 3, 1, 2) |x2 + y2 + f(z2, w) = 0}.

Here f has no constant term and w term.

The exceptional type is different since f is not invariant under group
action.

Example 1.14.6. A terminal singularity appears in a divisorial contraction
from a smooth 3-dimensional algebraic variety is either smooth or among
one of the following cases:

(1) a quotient singularity of type 1
2(1, 1, 1).

(2) the hypersurface defined by xy + zw = 0 in C4.

(3) the hypersurface defined by xy + z2 + w3 = 0 in C4.

In cases (2) and (3), KX is Cartier.
More complicated terminal singularities appear when making divisorial

contractions from singular 3-dimensional algebraic varieties. Conversely,
for the equation of each singularity above, we can construct a divisorial
contraction f : Y → X explicitly by a weighted blowing up of X.

Let X be a minimal projective algebraic variety. When κ(X) = 3, we
want to have a formula for plurigenera. Being of general type for X is
equivalent to (K3

X) > 0 (Theorem 1.5.12). Note that asKX is not necessarily
Cartier, (K3

X) is in general only a rational number.
By the finite generation of canonical rings, we can define the canonical

model Y = ProjR(X,KX). There exists a birational morphism g : X → Y
such that KX = g∗KY which is the same as in dimension 2. Here this equal-
ity is in the following sense: for an integer m, mKX is Cartier if and only
if mKY is Cartier, moreover, in this case mKX = g∗(mKY ). In particular,
|mKX | is free if and only if |mKY | is free.

In order to state the plurigenera formula, we introduce the concept of
baskets of singularities. Take {P1, . . . , Pt} to be the singular points of X.
Each singular point (X,Pi) is associated with a set of couples of integers
{(bij , rij)} which is called the basket. Here rij , bij are coprime positive inte-
gers with bij < rij . For example, when (X,Pi) is a quotient singularity of
type 1

r (1,−1, b), its basket just consists of one couple {(b, r)}, which coin-
cides with the type of the singularity. In general, a 3-dimensional terminal
singularity can be deformed into several quotient singularities, in this case its
basket is the collection of types of those quotient singularities. The Cartier
index ri of (X,Pi) coincides with the least common multiple of rij in its
basket. By considering baskets, terminal singularities can be replaced by a
set of virtual quotient singularities.
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The plurigenera formula for m ≥ 2 is the following:

dimH0(X,mKX) =
1

12
m(m− 1)(2m− 1)(K3

X) + (1− 2m)χ(OX)

+
∑
i,j

m−1∑
k=0

bijk(rij − bijk)

2rij
.

Here bijk denotes the residue of bijk modulo rij ([130]). This formula is a
sum of a polynomial of m and a periodic correction term with respect to m
(see [153]). The correction term runs over baskets of all singularities. As
plurigenera are birational invariants, the left hand side are the same on a
smooth model, but the right hand side can be only computed on a minimal
model with singularities. In other words, when computing plurigenera on
a smooth model, the singularities of its minimal model appear, which is a
surprising phenomenon.

Also we have the following formula ([65])

χ(OX) = − 1

24
(KX · c2(X)) +

∑
i,j

r2
ij − 1

24rij
.

Here as X has only isolated singularities, the intersection number (KX ·
c2(X)) can be defined properly.

Remark 1.14.7. In this book, we will show the finite generation of canon-
ical rings. However, it is impossible to find a bound of the degrees of gen-
erators depending only on the dimension. This can already be observed in
dimension 3. Let P be a singular point on a minimal model X. If m is
not divisible by the Cartier index r of P , then P is a base point of |mKX |.
Hence for arbitrary large m, we can construct examples such that |mKX | is
not free.

For example, if dimX = 3 and P is a quotient singularity of type
1
r (a,−a, 1), then the canonical ring can not be generated by elements of
degree less than r. This is a completely different phenomenon from that
in dimension up tp 2, because singularities appear in minimal models in
dimension 3 and higher.
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Chapter 2

The minimal model program

{Chapter 2}
The purpose of this chapter is to formulate the minimal model program.
The base point free theorem and the cone theorem are two main pillars for
the minimal model program, which are known results at the time of [82].
We will also discuss subsequent developments as effective version of the base
point free theorem, the MMP with scaling, length of extremal rays, divisorial
Zariski decomposition, Shokurov polytopes. Extension theorems obtained
by multiplier ideal sheaves is an important result which leads to the newest
developments of the minimal model program described in the next chapter.

Numerical geometry plays an important role in the minimal model the-
ory. But different from Kleiman’s criterion, the base point free theorem
and the cone theorem do not hold for arbitrary schemes. A feature of the
minimal model theory is that canonical divisor plays an important role.

2.1 The base point free theorem

The base point free theorem is one of the two pillars supporting the minimal
model theory. It is an important consequence of the vanishing theorem of
cohomologies.

For algebraic surfaces, minimal models are obtained by applying Castel-
nuovo’s contraction theorem repeatedly. Contracting topological spaces is
always possible. Also, as in Grauert’s theorem, contraction morphisms in
complex geometry are proved to exist by only assuming numerical condi-
tions. However, as in Artin’s theorem, contraction morphisms in algebraic
geometry are more subtle. In order to construct a contraction morphism in
algebraic geometric, one needs a free linear system. By using the base point
free theorem, one can construct a free linear system in a general setting.

85
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2.1.1 Proof of the base point free theorem
{KLT BPF thm}

Theorem 2.1.1 (Base point free theorem). Let (X,B) be a KLT pair, f :
X → S a projective morphism, and D,E Cartier divisors on X. Assume
the following conditions.

(1) D is relatively nef.

(2) There exists a positive integer m1 such that m1D + E − (KX + B) is
relatively nef and relatively big.

(3) E is effective and there exists a positive integer m2 such that for any in-
teger m ≥ m2, the natural homomorphism f∗(OX(mD))→ f∗(OX(mD+
E)) is an isomorphism.

Then there exists a positive integer m3 such that for any integer m ≥ m3,
mD is relatively free. That is, the natural homomorphism f∗f∗(OX(mD))→
OX(mD) is surjective.

Remark 2.1.2. For a given divisor, assuming its numerical equivalent class
is in the closure of ample cone, that is, assuming it is nef, to show that it is
semi-ample is beyond the limit of Kleiman’s criterion. The base point free
theorem can be generalized in many different directions, but it is not true
if one completely remove the condition on singularities and the condition
about canonical divisor. This reflects the complicated geometry of algebraic
varieties.

Proof. Step 0. As the statement is relative over S, we may assume that S is
affine. Then the statement of the theorem is that the natural homomorphism
H0(X,mD)⊗OX → OX(mD) is surjective, in other words, the linear system
corresponding to H0(X,mD) has no base points. Note that if S is not a
point, H0(X,mD) may be infinite dimensional.

Step 1. We will show that we may assume that m1D + E − (KX +B)
is relatively ample and B is a Q-divisor.

By assumption (2), we can write m1D + E − (KX + B) = A+ B′ for a
relatively ample R-divisor A and an effective R-divisor B′. Then for a real
number ε with 0 < ε ≤ 1, m1D + E − (KX + B + εB′) is relatively ample,
and if ε is sufficiently small, (X,B + εB′) is KLT. We can just replace B by
B + εB′. As ampleness is an open condition, we can adjust the coefficients
of B to become rational numbers.

Step 2. The statement “under the assumption of the theorem, there ex-
ists a positive integerm′3 such that for any integerm ≥ m′3, H0(X,mD) 6= 0”
is a part of the base point free theorem, and is called the non-vanishing theo-
rem independently. According to the historical order, we will give the proof
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of the non-vanishing theorem later, and show the base point free theorem
assuming the non-vanishing theorem in this step.

Fix an integer m ≥ m′3, suppose that the linear system |mD| correspond-
ing to H0(X,mD) has base point. Take a general divisor M ∈ |mD|. Take a
log resolution g : Y → X of (X,B+E+M) in strong sense, denote h = f ◦g
and write g∗(KX + B) = KY + C. We may assume that g∗M = M1 + M2

where |M1| is free and M2 is the fixed part of |g∗M |.
Take an effective Q-divisor C ′ such that Exc(g)∪Supp(C+g∗E+M2) =

Supp(C ′) and −C ′ is g-ample. The construction of C ′ is as following: by the
definition of log resolution in strong sense, we can take an effective Q-divisor
C ′′ such that Exc(g) = Supp(C ′′) and −C ′′ is g-ample, then we can perturb
it to extend the support by openness of ampleness.

We can take a sufficiently small positive rational number ε such that
g∗(m1D + E − (KX +B))− εC ′ is h-ample and p−C − εC ′q = p−Cq ≥ 0.

One key point of the proof is to consider the following threshold:

c = sup{t ∈ R | xtM2 − g∗E + C + εC ′y ≤ 0}.

This is a kind of LC threshold. By definition, the maximal coefficient of
cM2 − g∗E + C + εC ′ is exactly 1. By perturbing coefficients of C ′ while
preserving the ampleness of −C ′, we may assume that there is only one
prime divisor attaining the maximal coefficient 1.

This idea of breaking the balance of coefficients by perturbing coefficients
of Q-divisors is called the tie breaking. This is the advantage of considering
Q-divisors and R-divisors instead of only integral divisors.

Denote Z to be the prime divisor with coefficient 1 in cM2−g∗E+C+εC ′.
As coefficients of C + εC ′ are less than 1, Z is contained in the support of
M2. Hence g(Z) is contained in Bs |mD|. Write

cM2 − g∗E + C + εC ′ = F + Z.

By construction, F does not contain Z and p−Fq ≥ 0.

Let m′ be an integer, as mg∗D ≡S M1 +M2, we get the following equa-
tion:

m′g∗D − F − Z −KY ≡S (m′ − cm)g∗D + cM1 + g∗E − (KY + C + εC ′).

If m′ ≥ m1 + cm, as M1 is free, the right hand side is h-ample. Applying
Theorem 1.9.3, we get

H1(Y,m′g∗D + p−Fq− Z) = 0.

Therefore, the natural homomorphism

H0(Y,m′g∗D + p−Fq)→ H0(Z,m′g∗D|Z + p−Fq|Z)
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is surjective. Here the restriction of F can be defined as F does not contain
Z. Also D can be replaced by a (not necessarily effective) linearly equivalent
divisor which does not contain Z.

On the other hand, as the negative coefficient part of F + g∗E comes
from the negative coefficient part of C, its support is contained in the ex-
ceptional set of g. Therefore, g∗F + E ≥ 0 and there are natural injective
homomorphisms

H0(X,m′D)→ H0(X,m′D + p−g∗Fq)→ H0(X,m′D + E).

Ifm′ ≥ m2, then they become bijective by condition (3). HenceH0(Y,m′g∗D)→
H0(Y,m′g∗D + p−Fq) is bijective.

Define the boundary BZ = (F + p−Fq)|Z on Z, then the pair (Z,BZ) is
KLT. Let us check that the projective morphism h|Z : Z → S, the Cartier
divisors g∗D|Z , p−Fq|Z on Z satisfy conditions of the theorem. Obviously,
(1) holds, and (2) holds since m′g∗D|Z − F |Z − KZ is relatively ample.
Consider the following commutative diagram:

H0(Y,m′g∗D) −−−−→ H0(Y,m′g∗D + p−Fq)y y
H0(Z,m′g∗D|Z) −−−−→ H0(Z,m′g∗D|Z + p−Fq|Z).

If m′ ≥ m2, the top horizontal arrow is bijective. Moreover if m′ ≥ m1 +cm,
the right vertical arrow is surjective. Hence the bottom horizontal arrow is
surjective and (3) holds.

By applying the non-vanishing theorem to Z, there exists a positive
integer m′′3 such that if m′ ≥ m′′3, then H0(Z,m′g∗D|Z) 6= 0. By the above
commutative diagram, this implies that g(Z) is not contained in the base
locus of |m′D|. If m′ is a multiple of m, the we have a strict inclusion of
base loci Bs |m′D| ( Bs |mD|.

Fix a prime number p and take m,m′ to be powers of p. As there is no
strictly decreasing sequence of closed subsets in X, by repeating the above
argument, for any sufficiently large power pt, Bs |ptD| = ∅. This argument
is called the Noetherian induction. For another prime number q, by the
same argument, there exists a sufficiently large positive integer s such that
Bs |qsD| = ∅. As pt and qs are coprime, there exists a positive integer m3,
such that for any integer m ≥ m3 there exist positive integers a, b such
that m = apt + bqs. In this case, Bs |mD| = ∅. Therefore, assuming the
non-vanishing theorem, we proved the base point free theorem.

Step 3. We will show the non-vanishing theorem by induction on dimX.
The method is similar to the proof of the base point free theorem, but we
create base point artificially.

It suffices to show the non-vanishing of a general fiber of f , hence we
may assume that S = Spec k.
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The statement of the non-vanishing theorem is that for all sufficiently
large m, H0(X,mD + E) 6= 0. By Theorem 1.10.8, for any integers p > 0
and m ≥ m1, Hp(X,mD + E) = 0, and hence dimH0(X,mD + E) =
χ(X,mD+E). The latter one is a polynomial, so it suffices to show that it
is not identically 0.

In general proving the existence of global sections is a difficult problem.
In our situation we reduce the problem to a problem for the Euler–Poincaré
characteristic, and prove it as the following.

Firstly, consider the case D ≡ 0. In this case, as E − (KX + B) is nef
and big, by Theorem 1.10.8, for any integers p > 0, Hp(X,E) = 0. Since E
is effective, χ(X,E) = dimH0(X,E) 6= 0, the the proof is finished.

Step 4. Finally we show the non-vanishing theorem in the case D 6≡ 0.

As in Step 1, we may assume that m1D+E− (KX +B) = A is an ample
Q-divisor. Take a positive integer a such that aA is a Cartier divisor.

Since D 6≡ 0, there exists a curve Γ such that (D · Γ) > 0. Denote by
IΓ the ideal sheaf of Γ, replacing a by a sufficiently large multiple, we may
assume thatOX(aA)⊗IΓ is generated by global sections. Denote d = dimX,
by taking intersections of zeros of d−1 general sections of this sheaf, we get
Ad−1 ≡ cΓ + Γ′. Here c > 0 and Γ′ is a linear sum of curves distinct from Γ.
Hence (D · Ad−1) > 0. We can take a sufficiently large integer m such that
(mD + aA)d > ad(d+ 1)d.

By the Serre vanishing theorem, there exists an integer k1 such that
for all integers k ≥ k1 and p > 0, Hp(X, k(mD + aA)) = 0. Therefore,
dimH0(X, k(mD+aA)) = χ(X, k(mD+aA)) is a polynomial in k of degree
d, and the coefficient of the highest degree term is larger than ad(d+ 1)d/d!.

Fix a smooth point P in X not contained in the support of E + B.

Take mP the maximal ideal of OX,P , the length length(OX,P /ma(d+1)k
P ) is a

polynomial in k of degree d, and the coefficient of the highest degree term
is ad(d+ 1)d/d!. Hence for any sufficiently large k,

H0(X,OX(k(mD + aA))⊗m
a(d+1)k
P ) 6= 0.

Therefore we showed that there exists an element M ′ ∈ |k(mD + aA)| such
that multPM

′ ≥ a(d+ 1)k. This is called the concentration method. Denote
M = M ′

k , then M ′ ∼Q mD + aA and multPM
′ ≥ a(d+ 1).

From now on, the proof are the same as that of the base point free
theorem. Take a log resolution g : Y → X of (X,B+E+M) in strong sense
and write g∗(KX +B) = KY +C. Note that here we first take the blowing
up at P , then construct g by further blowing ups. We can take an effective
Q-divisor C ′ such that Exc(g)∪Supp(g∗(B+E+M)) = Supp(C ′) and −C ′
is g-ample. We can take a sufficiently small positive real number ε such that
g∗(m1D+E−(KX+B))−(d+1)εC ′ is ample and p−C−εC ′q = p−Cq ≥ 0.
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Consider the threshold

c = sup{t ∈ R | xtg∗M − g∗E + C + εC ′y ≤ 0}.

By perturbing coefficients of C ′, we may assume that there is only one prime
divisor Z attaining the maximal coefficient 1.

Take C0 to be the strict transform of the exceptional divisor of the first
blowing up. C0 and Z may or may not coincide. The coefficient of C0 in
tg∗M −g∗E+C+ εC ′ is larger than a(d+1)t− (d−1), hence ac < d/(d+1)
by definition. Write

cg∗M − g∗E + C + εC ′ = F + Z.

By construction, F does not contain Z and p−Fq ≥ 0.

Take integer m′ such that m′ ≥ m1 + cm, as 1− ac > 1/(d+ 1) > 0,

m′g∗D − F − Z −KY ≡(m′ −m1 − cm)g∗D

+ (1− ac)(m1g
∗D + g∗E − (KY + C + εC ′/(1− ac)))

is ample. By Theorem 1.10.8,

H1(Y,m′g∗D + p−Fq− Z) = 0,

hence the natural homomorphism

H0(Y,m′g∗D + p−Fq)→ H0(Z,m′g∗D|Z + p−Fq|Z)

is surjective. Also

H0(Y,m′g∗D)→ H0(Y,m′g∗D + p−Fq)→ H0(Y,m′g∗D + g∗E)

are bijective.

Denote BZ = (F + p−Fq)|Z , the pair (Z,BZ) is KLT, Cartier divisors
g∗D|Z , p−Fq|Z on Z satisfy the conditions of the non-vanishing theorem.
Here recall that S is assumed to be a point. By applying the non-vanishing
theorem to Z, there exists a positive integer m′′3 such that if m′ ≥ m′′3,
then H0(Z,m′g∗D|Z) 6= 0. Hence H0(X,m′D) 6= 0. The proof of the the
non-vanishing theorem is finished.

Remark 2.1.3. In the original base point free theorem, E = 0, but the
proof are exactly the same ([82]). As in the proof we take log resolution,
even if E = 0 is assumed in the beginning, F 6= 0 appears naturally af-
ter taking log resolution. Therefore, it is natural to assume that E 6= 0 in
the beginning. Also, in the statement of the non-vanishing theorem, E ap-
pears in the beginning ([134]). In order to apply to the abundance theorem,
according to [29], we showed the general form with E.
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In the former half of the above proof, we apply the vanishing theorem
to linear systems appearing naturally, while in the latter half, we apply
the vanishing theorem to linear systems artificially constructed. The latter
method is called the concentration method of singularities.

The argument of proving the base point free theorem by using the van-
ishing theorem was originally developed in [58]. In dimension 3, the non-
vanishing theorem follows easily from the Riemann-Roch theorem. This
argument was applied by Shokurov [134] to the proof of the non-vanishing
theorem, and hence the base point free theorem was proved in all dimen-
sions. Furthermore, it was shown in [60] that this argument can be applied
to the proof of the cone theorem using the rationality theorem described in a
subsequent section. It was also used in the establishment of the abundance
conjecture [61]. So this argument has been found to have a wide range of
applications, and is known as the X-method.

2.1.2 Paraphrasing and generalization

The following corollary is equivalent statement of the base point free theo-
rem:

{cor BPF equivalent}
Corollary 2.1.4. Let f : (X,B) → S, D, E satisfy the assumptions of
Theorem 2.1.1. Then there exists a projective morphism g : Z → S from a
normal algebraic variety, a surjective projective morphism h : X → Z with
connected geometric fibers such that f = g◦h, and a g-ample Cartier divisor
H such that h∗H ∼ D.

Proof. By the base point free theorem, there exists a positive integerm3 such
that for m ≥ m3, mD is f -free. Denote by φm = h′m ◦ hm : X → Zm → Z ′m
the Stein factorization of the morphism defined by mD over S, and denote
by gm : Zm → S the induced morphism. By construction, there exists a
gm-ample Cartier divisor Hm on Zm such that mD ∼ h∗mHm.

It can be seen that, for a curve C on X such that f(C) is a point in S,
hm(C) is a point in Zm if and only if (D ·C) = 0. By Zariski’s main theorem,
there exists an isomorphism km : Zm → Zm+1 such that km ◦ hm = hm+1.
Take H = k∗mHm+1 −Hm, then h∗mH ∼ D.

{ample thm Q}
Corollary 2.1.5. Let (X,B) be a KLT pair and f : X → S a projective
morphism. Assume that KX + B is f -nef and B is an f -big Q-Cartier
divisor. Then there exists a projective morphism g : Z → S from a normal
algebraic variety, a surjective projective morphism h : X → Z with connected
geometric fibers such that f = g◦h, and a g-ample Q-Cartier divisor H such
that h∗H ∼Q KX +B.

Proof. By Corollary 2.1.4, it is sufficient to show that there exists a positive
integer m3 such that for m ≥ m3, m(KX+B) is f -free. We may assume that
S is affine. There exists a positive integer m1 such that D = m1(KX +B) is
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an f -nef Cartier divisor. As B is f -big, there exists an f -ample Q-Cartier
divisor A and an effective Q-Cartier divisor E such that we can write B =
A+E. For a sufficiently small positive rational number ε, (X, (1−ε)B+εE)
is still KLT. Also D − (KX + (1− ε)B + εE) = (m1 − 1)(KX + B) + εA is
f -ample. We get the conclusion by Theorem 2.1.1.

Remark 2.1.6. The condition the B is a Q-divisor can be removed by using
the cone theorem (Corollary 2.4.13).

The following lemma is useful when generalizing statements for KLT
pairs to DLT pairs.

{KLT to DLT}
Lemma 2.1.7 ([98]). Let (X,B) be a DLT pair, f : X → S a projective
morphism, H a relatively ample divisor on X, and ε a positive real number.
Assume that S is quasi-projective. Then there exists an ample divisor A on
S and an effective R-divisor B′ on X such that B+ ε(H + f∗A) ∼R B′ and
the pair (X,B′) is KLT.

Proof. We can choose an ample divisor A on S such that H + f∗A is ample
on X. Take a log resolution g : (Y,C) → (X,B) in strong sense, denote
h = f ◦ g. By the definition of DLT, we may assume that the coefficients of
exceptional divisors in C are strictly less than 1, note that here we use the
fact that DLT is equivalent to WLT (see Remark 1.11.4). Take a sufficiently
small effective Q-divisor E supported on the exceptional set of g such that
−E is g-ample, xC + Ey = xCy, and g∗(H + f∗A)− E is ample on Y .

Write B =
∑
biBi where Bi are distinct prime divisors, and write

g−1
∗ B =

∑
biB
′
i the strict transform on Y . We can choose a positive integer

m such that for every i, the divisorial sheaf OY (B′i+m(g∗(H+f∗A)−E)) is
generated by global sections. By taking a general global section, we can find
a prime divisor D′i ∼ B′i + m(g∗(H + f∗A) − E). Take a sufficiently small
positive real number δ and take C ′ = C−δ

∑
biB
′
i+δ

∑
biD

′
i+mδ

∑
biE ∼R

C+mδ
∑
bi(g

∗(H+f∗A)). Note that the support of C ′ is a normal crossing
divisor as D′i are general, and the coefficients of C ′ are less than 1 as δ is
sufficiently small. Then we can take B′ = g∗C

′ = (1− δ)B+ δ
∑
big∗D

′
i ∼R

B+m
∑
bi(H + f∗A). Note that KX +B′ is R-Cartier and f∗(KX +B′) =

KY + C ′, which implies that (X,B′) is KLT.

Now we can show the base point free theorem for DLT pairs:
{DLT BPF thm}

Corollary 2.1.8 (Base point free theorem). Let (X,B) be a DLT pair,
f : X → S a projective morphism, and D,E Cartier divisors on X. Assume
the following conditions.

(1) D is relatively nef.

(2) There exists a positive integer m1 such that m1D + E − (KX + B) is
relatively ample.
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(3) E is effective and there exists a positive integer m2 such that for any in-
teger m ≥ m2, the natural homomorphism f∗(OX(mD))→ f∗(OX(mD+
E)) is an isomorphism.

Then there exists a positive integer m3 such that for any integer m ≥ m3,
mD is relatively free. That is, the natural homomorphism f∗f∗(OX(mD))→
OX(mD) is surjective.

Proof. We may assume that S is affine. Take B′ ∼R B + ε(H + f∗A) as
in Lemma 2.1.7 such that (X,B′) is KLT. If ε is sufficiently small, then
m1D + E − (KX + B′) is still relatively ample. The corollary follows from
Theorem 2.1.1.

2.2 The effective base point free theorem

The base point free theorem states that a multiple of a certain Cartier
divisor is free. Its effective version shows how large this multiple can be
taken in practice. The proof is not just a refinement of that of the base
point free theorem, but by assuming the base point free theorem and using
the conclusion of existence of such a morphism.

Theorem 2.2.1 (Effective base point free theorem [91]). Let (X,B) be a
KLT pair consisting of an n-dimensional algebraic variety and an R-divisor,
E an effective Cartier divisor on X, D a Cartier divisor on X, and f : X →
S a projective morphism. Assume the following conditions hold:

(1) D is f -nef and D + E − (KX +B) is f -nef and f -big.

(2) The natural homomorphism

f∗OX(mD)→ f∗OX(mD + E)

is bijective for any positive integer m.

Then for any m ≥ 2n+ 3, |mn+1D| is f -free, that is, the natural homo-
morphism

f∗f∗OX(mn+1D)→ OX(mn+1D)

is bijective. Therefore, there exists a positive integer m0 depending only on
n, such that |mD| is f -free for any m ≥ m0.

Proof. We may assume that S is affine. Note that in this case “ample over
S” or “free over S” is simply the same as “ample” or “free”. By slightly
perturbing the coefficients of B, we may assume that D+E − (KX +B) is
ample.

By Corollary 2.1.4, there exists a normal algebraic variety Y , a surjective
projective morphism g : X → Y over S with connected geometric fibers,
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and a relatively ample Cartier divisor H on Y such that D = g∗H. Denote
h : Y → S to be the morphism such that f = h ◦ g, and d = dimY .
Take Xs, Ys to be the fibers over a general point s in h(Y ) and denote
ds = dimYs ≤ d ≤ n.

Firstly, we show the effective version of the non-vanishing theorem (see
Step 3 of the proof of Theorem 2.1.1). By the vanishing theorem, for m > 0,
h0(Xs,mD) = h0(Xs,mD + E) = χ(Xs,mD + E). By the non-vanishing
theorem, the latter one is a non-zero polynomial of degree ds, and has at
most ds distinct roots.

We claim that for m ≥ 2ds + 2, H0(Xs,mD) 6= 0. For 1 ≤ i ≤ ds + 1,
if H0(Xs,mD) = 0, then either H0(Xs, iD) = 0 or H0(Xs, (m − i)D) = 0.
This means that χ(Xs,mD + E) has at least ds + 1 roots, a contradiction.
Therefore, H0(Xs,mD) 6= 0 for m ≥ 2ds + 2.

The theorem can be reduced to the following lemma:
{lemma ebpf}

Lemma 2.2.2. Fix any m ≥ 2d + 2 and take an irreducible component Z̄
of the base locus

Bs |mH| = Supp(Coker(h∗h∗OY (mH)→ OY (mH))).

Then for any k ≥ 2d+ 2, Z̄ 6⊂ Bs |kmH|.

Let us continue the proof by assuming Lemma 2.2.2. Note that g−1(Bs |mH|) =
Bs |mD|. Fix any m ≥ 2d + 2, Lemma 2.2.2 shows that the dimension of
Bs |mjD| is at most d − j for 1 ≤ j ≤ d + 1, and in particular, the base
locus Bs |md+1D| is empty, which concludes the first statement. The inter-
esting point of this proof is that the above lemma can be applied to every
irreducible component of the base locus at the same time to cut down the
dimension.

Take two distinct prime numbers p, q ≥ 2d+2. Then |pd+1D| and |qd+1D|
are free. There exists a positive integer m0 such that any integer m ≥ m+0
can be expressed as m = apd+1 + bqd+1 (a, b ∈ Z>0) and hence |mD| is free.
This proves the second statement.

Proof of Lemma 2.2.2. Note that h(Z̄) is a subset of h(Y ). Denote Z =
g−1(Z̄). The proof is by applying the argument in the base point free theo-
rem to the neighborhood of the generic point of Z̄.

Firstly, we construct singularities in a neighborhood of Z. Denote d̄ =
dim Z̄. Take d− d̄+ 1 general global sections of OY (mH), say, M̄i (1 ≤ i ≤
d − d̄) and N̄ . Note that the supports of M̄i and N̄ contain Bs |mH|, but
they are free outside Bs |mH|. Take sufficiently small numbers ε, δ > 0 and
take M = (1 − δ)

∑
i g
∗M̄i + εg∗N̄ . We may take a neighborhood Ū of the

generic point of Z̄ such that Ū does not intersect irreducible components
of Bs |mH| other than Z̄ and denote U = g−1(Ū). Here note that Z̄ is not
necessarily contained in Ū .
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Since Z̄ has codimension d− d̄, by Corollary 1.11.8, we may assume that
the pair (X,B+M) is KLT on U \Bs |mD| but not LC on U ∩Z by taking
ε, δ appropriately and shrinking U .

Take a log resolution µ : X ′ → (X,B + M) in strong sense and write
µ∗(KX +B) = KX′ +B′. The coefficients of B′ are all less than 1. Take an
effective divisor F supported on the exceptional set of µ such that −F is µ-
ample. Take a sufficiently small positive number ε′ such that the coefficients
of B′ + ε′F are all less than 1 and µ∗(D + E − (KX +B))− ε′F is ample.

Consider the LC threshold c such that on µ−1(U) the coefficients B′ +
cµ∗M + ε′F are all no greater than 1, and some coefficient is exactly 1. Here
c < 1 as (X,B +M) is not LC on U ∩Z, and note that outside µ−1(U) the
coefficients are not necessarily no greater than 1. Write

µ∗(KX +B + cM) + ε′F = KX′ + Fi0 +B′′.

Here Fi0 is the sum of all irreducible components with coefficient 1 intersect-
ing µ−1(U). By perturbing the coefficients of F and shrinking Ū , we may
assume that Fi0 is irreducible, g ◦ µ(Fi0) = Z̄, and xB′′y ≤ 0 on µ−1(U).

For a natural number m′, consider the following exact sequence

0→ OX′(µ∗(m′D + E)− xB′′y− Fi0)→ OX′(µ∗(m′D + E)− xB′′y)

→ OFi0 ((µ∗(m′D + E)− xB′′y)|Fi0 )→ 0.

If m′ ≥ c((d− d̄)(1− δ) + ε)m+ 1,

µ∗(m′D + E)−B′′ − Fi0 −KX′

≡ (m′ − c((d− d̄)(1− δ) + ε)m− 1)µ∗D + µ∗(D + E − (KX +B))− ε′F

is ample. By the vanishing theorem, higher cohomologies of the first term
vanish, and the natural homomorphism

H0(X ′, µ∗(m′D + E)− xB′′y)→ H0(Fi0 , (µ
∗(m′D + E)− xB′′y)|Fi0 )

is surjective. On the other hand, as the support of (B′′)− is contained in
the exceptional set of µ,

H0(X ′, µ∗(m′D + E)− xB′′y)→ H0(X,m′D + E)

is injective and
H0(Y,m′H)→ H0(X,m′D + E)

is bijective. Therefore, for m′ ≥ (d − d̄ + 1)m, the image of the natural
homomorphism

H0(Y,m′H)→ H0(Z̄,m′H|Z̄)→ H0(Fi0 , µ
∗(m′D + E)|Fi0 )

contains H0(Fi0 , (µ
∗(m′D + E)− xB′′y)|Fi0 ).



96 CHAPTER 2. THE MINIMAL MODEL PROGRAM

Take a general point t in h(Z̄) and denote Fi0,t to be the fiber of Fi0 over
t. By the vanishing theorem, for m′ ≥ (d− d̄+ 1)m,

h0(Fi0,t, (µ
∗(m′D+E)− xB′′y)|Fi0,t) = χ(Fi0,t, (µ

∗(m′D+E)− xB′′y)|Fi0,t).

As H is ample on Y , this is a non-zero polynomial of degree at most d̄, and
hence has at most d̄ zero points.

Note that the image of H0(Y,m′H) → H0(Z̄,m′H|Z̄) is not 0 implies
that Z̄ is not contained in the base locus of |m′H|. Hence

Z̄ ⊂ Bs |(d− d̄+ j)mH|

can be true for at most d̄ values of j ≥ 1. Using similar argument as in the
proof of effective base point free theorem, for k ≥ 2d+ 2,

Z̄ 6⊂ Bs |kmH|.

To be more precise, if

Z̄ ⊂ Bs |kmH|,

then 1 ≤ i ≤ d̄+ 1, either

Z̄ ⊂ Bs |(d− d̄+ i)mH|

or

Z̄ ⊂ Bs |(k − d+ d̄− i)mH|,

a contradiction.

2.3 The rationality theorem

The rationality theorem to be proved in this section is a key point of the
cone theorem in the next section.

The first part of the rationality theorem shows that certain threshold is
a rational number. It concludes the existence of extremal rays in the cone
theorem. The second part of the rationality theorem gives an estimate of the
denominator of the threshold, which concludes the discreteness of extremal
rays. As we will explain later, the discreteness of extremal rays can be
proved alternatively by the estimate of length of extremal rays. The latter
argument uses the theorem on existence of rational curves and algebraic
geometry in positive characteristics.

The proof of the cone theorem uses the argument in the base point free
theorem. It is developed in [60] which completed the formulation of the
minimal model program.
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{rationality theorem}
Theorem 2.3.1 (Rationality theorem [82, Theorem 4.1.1]). Let (X,B) be
a KLT pair where B is a Q-divisor, f : X → S a projective morphism, and
A a relatively nef and relatively big divisor. Assume that KX + B is not
relatively nef. Then the threshold

r = max{t ∈ R | A+ t(KX +B) is relatively nef}

is a rational number. Moreover, denote a to be the minimal positive integer
such that a(KX +B) is Cartier and b the maximal dimension of fibers of f ,
if we write r/a = p/q as irreducible fraction, then

q ≤ a(b+ 1).

Proof. The proof is by explore that of the base point free theorem in more
details. To the contrary, assume that either r is not a rational number, or r
is a rational number but q > a(b+ 1).

Step 1. Clearly r is a positive real number. We may assume that S is
affine. We firstly reduce to the case that A is free.

By Theorem 2.1.1, we can take sufficiently large integers m,n such that
a < mr, (mn, q) = 1 (if r is a rational number), and A′ = n(mA+a(KX+B))
is free. Then the threshold

r′ = max{t ∈ R | A′ + t(KX +B) is relatively nef}

satisfies the relation mnr = an + r′. So r is rational if and only if r′ is so.
Moreover, if r′ is rational and we write r′/a = p′/q′ as irreducible fraction,
then q = q′. So after replacing A by A′, we may assume that A is free.

Step 2. The following lemma plays a similar role as the non-vanishing
theorem in the proof of the base point free theorem. Here our assumption
is weaker than that in [82], and the proof is irrelevant to the non-vanishing
theorem. {rationality thm lemma}
Lemma 2.3.2 ([82, Lemma 4.1.2]). Let (X,B) be a projective KLT pair,
D1, D2, E Cartier divisors on X, d a positive integer, and r′, s positive real
numbers. For integers x, y, denote D(x, y) = xD1 + yD2. Assume the
following conditions:

(1) E is effective.

(2) There exists a positive integer y1 such that D(x, y)+E−(KX+B) is nef
and big and the natural homomorphism H0(X,D(x, y))→ H0(X,D(x, y)+
E) is bijective if x > 0, y ≥ y1, and y − r′x < s.

(3) The polynomial χ(X,D(x, y) + E) in two variables x, y is of degree at
most d and not identically zero.
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(4) r′ is an irrational number, or r′ is a rational number and qs > d + 1
where we write r′ = p/q as irreducible fraction.

Then there exists a positive integer y2 such that H0(X,D(x, y) + E) 6= 0 if
y − r′x < s and y ≥ y2.

Proof. If r′ is irrational, then there are infinitely many couples of positive
integers (x, y) such that 0 < y − r′x < s/(d + 1). If r′ is rational, then as
p, q are coprime, there are infinitely many couples of positive integers (x, y)
such that y − r′x = 1/q < s/(d + 1). So in either case, there are infinitely
many couples of positive integers (x, y) such that 0 < y − r′x < s/(d + 1).
We may assume that y ≥ y1 in each couple.

For any such a couple (x0, y0), consider the polynomial χ(X,D(mx0,my0)+
E) in m. For any integer m such that 1 ≤ m ≤ d+1, my0−mr′x0 < s holds,
and hence D(mx0,my0) + E − (KX + B) is nef and big. By the vanishing
theorem, higher cohomologies vanish and

χ(X,D(mx0,my0) + E) = dimH0(X,D(mx0,my0) + E).

On the other hand, if H0(X,D(mx0,my0)+E) = 0 for all 1 ≤ m ≤ d+1,
then the polynomial χ(X,D(x, y) + E) in x, y is identically 0 on the line
y0x − x0y = 0. By construction, there are infinitely many such lines, and
χ(X,D(x, y) + E) can not be identically 0 on all such lines. Hence there
exists a couple (x′, y′) such that x′ > 0, y′ ≥ y1, 0 < y′ − r′x′ < s, and
H0(X,D(x′, y′) + E) 6= 0.

If such a positive integer y2 in the statement does not exist, then there
are infinitely many couples of positive integers (x′′, y′′) such that y′′ −
r′x′′ < s, x′′ > dx′, y′′ ≥ y1 + dy′, and H0(X,D(x′′, y′′) + E) = 0. Since
H0(X,D(x′, y′)) ∼= H0(X,D(x′, y′)+E) 6= 0, H0(X,D(x′′−mx′, y′′−my′)+
E) = 0 for 0 ≤ m ≤ d and such a couple (x′′, y′′). So χ(X,D(x, y) + E) is
identically 0 on infinitely many lines y′(x − x′′) − x′(y − y”) = 0, a contra-
diction. This concludes the lemma.

Step 3. If r is rational, by the assumption that q > a(b + 1), we may
take a sufficiently small positive real number δ such that q(1−δ) > a(b+1).
If r is irrational, just take any 0 < δ < 1. Take E, d, r′, s to be 0, b, r/a,
(1− δ)/a respectively, and take D(x, y) = xA+ ay(KX +B).

Applying Lemma 2.3.2 to a general fiber of f , we know that there exists
a couple of positive integers (x, y) such that 0 < ay − rx < 1 − δ and
H0(X,D(x, y)) 6= 0. Note that since S is affine, the nonvanishing of H0 on
a general fiber implies the nonvanishing of on X.

Fix such a couple (x, y). As ay − rx > 0, D(x, y) is not relatively nef,
and therefore |D(x, y)| is not free. Take a general element M ∈ |D(x, y)|,
we are going to apply the argument in the base point free theorem to kill
the base locus of M and get a contradiction.
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Take a log resolution g : Y → X of (X,B + M) in strong sense, write
h = f ◦ g, g∗(KX + B) = KY + C. Write g∗M = M1 + M2 where |M1| is
free and M2 is the fixed part of |g∗M |. Take an effective divisor C ′ such
that Exc(g) ∪ Supp(C + M2) = Supp(C ′) and −C ′ is g-ample. Take a
sufficiently small positive real number ε, such that δg∗A − rεC ′ is h-ample
and p−C − εC ′q = p−Cq ≥ 0. Consider the following threshold:

c = sup{t ∈ R | xtM2 + C + εC ′y ≤ 0}.

We may assume that there exists exactly one prime divisor Z attaining the
maximal coefficient 1 in cM2 +C + εC ′ by perturbing the coefficients of C ′.
Note that g(Z) is contained in the base locus Bs |D(x, y)|. Write

cM2 + C + εC ′ = F + Z.

Here the support of F does not contain Z and p−Fq ≥ 0.
For a couple of integers (x′, y′), consider

g∗D(x′, y′)− F − Z −KY

≡ (x′ − cx)g∗A+ (ay′ − acy)g∗(KX +B) + cM1 − (KY + C + εC ′).

This R-divisor is h-ample if x′ > cx, y′ > cy + 1/a, and r(x′ − cx) ≥
a(y′− cy)− 1 + δ. In particular, the last one is satisfied if ay′− rx′ < 1− δ.

By Theorem 1.9.1,

H1(Y, g∗D(x′, y′) + p−Fq− Z) = 0

and the natural homomorphism

H0(Y, g∗D(x′, y′) + p−Fq)→ H0(Z, g∗D(x′, y′)|Z + p−Fq|Z)

is surjective. On the other hand,

H0(Y, g∗D(x′, y′))→ H0(Y, g∗D(x′, y′) + p−Fq)

is surjective. By the commutative diagram

H0(Y, g∗D(x′, y′)) −−−−→ H0(Y, g∗D(x′, y′) + p−Fq)y y
H0(Z, g∗D(x′, y′)|Z) −−−−→ H0(Z, (g∗D(x′, y′) + p−Fq)|Z),

the bottom horizontal arrow is surjective.
Denote BZ = (F + p−Fq)|Z , then (Z,BZ) is KLT. We may apply

Lemma 2.3.2 to the general fiber of h|Z : Z → S. Here we take D1, D2, E
to be the restrictions of g∗A, ag∗(KX +B), p−Fq, and take d, r′, s to be b,
r/a, (1 − δ)/a. It is easy to check that the conditions of Lemma 2.3.2 are
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satisfied, where (3) follows from dim g(Z) ≤ b. So by Lemma 2.3.2, g(Z) is
not contained in Bs |D(x′, y′)| if ay′− rx′ < 1− δ and y′ is sufficiently large.

Now consider a couple (x′, y′) satisfying 0 < ay′ − rx′ < 1− δ defined in
the following way. If r is irrational, take a sufficiently large integer l such
that

x′ = xaly/ry = lx+ xl(ay − rx)/ry, y′ = ly

and ay′ − rx′ < 1− δ; if r is rational, take a sufficiently large integer l and
take

x′ = x+ lq, y′ = y + lp.

Note that A is free and in the latter case l(qA+ ap(KX +B)) is free by the
base point free theorem, hence

Bs |D(x′, y′)| ⊂ Bs |D(x, y)|.

To summarize, we constructed a couple (x′, y′) such that 0 < ay′−rx′ <
1−δ and Bs |D(x′, y′)| ( Bs |D(x, y)|. Applying the Noetherian induction as
in the proof of the base point free theorem, there exists a couple of positive
integers (x′′, y′′) such that 0 < ay′′ − rx′′ < 1 − δ and D(x′′, y′′) is free.
This implies that x′′A + ay′′(KX + B) is relatively nef, which contradicts
the maximality of r.

2.4 The cone theorem

The base point free theorem and the cone theorem are two main pillars
for the minimal model theory. Higher dimensional minimal model theory
started from the introduction of the concept of extremal rays in [107]. Bi-
rational geometry becomes visible by looking at cones and polyhedra in
finite-dimensional real vector spaces.

The cone theorem states that the cone of curves is locally a rational
polyhedral cone in the part with negative value on the canonical divisor.
This statement splits into two parts: existence and discreteness of extremal
rays. The discreteness of extremal rays can be proved by the rationality
theorem proved in the previous section, or the boundedness of length of
extremal rays which will be proved later. We will introduce both arguments,
the former one stays in characteristic 0, while the latter one uses the positive
characteristic method.

2.4.1 The contraction theorem

Generally, a subset C in a finite dimensional vector space V is called a cone
if tC ⊂ C for any t ∈ R∗. It is called convex if for any v, v′ ∈ C and any
t ∈ [0, 1], tv + (1 − t)v′ ∈ C. Consider a convex cone C. A subset F of C is
called a face if there exists u ∈ V ∗ such that C ⊂ Vu≥0 and F = Cu=0. Here
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Vu≥0 = {v ∈ V | (u, v) ≥ 0}, Cu=0 = {v ∈ C | (u, v) = 0}. u is called the
supporting function of F . In particular, a half line which is a face is called
an extremal ray.

Give f : X → S and g : Y → S two projective morphism from normal
algebraic varieties, a projective morphism h : X → Y over S is called a con-
traction morphism if the natural homomorphism OY → h∗OX is bijective.
In other words, it is surjective and with connected geometric fibers. Here h
is a morphism over S means that g ◦h = f . A contraction morphism is also
called an algebraic fiber space. Usually the former one is used for birational
morphisms, and the latter one is mainly used in the case dimY < dimX.
However these can often be handled uniformly.

Consider a face F of the cone of curves NE(X/S) and a contraction
morphism h : X → Y . h is called the contraction morphism associated to F
if the following conditions are satisfied:

• For a curve C on X, f(C) is a point if and only if [C] ∈ F ;

• the smallest closed convex cone containing the equivalence classes of
such curves coincides with F .

In particular, h is not an isomorphism if F 6= 0.

By the Zariski main theorem, the contraction morphism h is determined
by the face F and independent of the choice of the supporting function.

The following contraction theorem is a consequence of the base point
free theorem (Theorem 2.1.1):

{contraction thm}
Theorem 2.4.1 (Contraction theorem). Let (X,B) be a KLT pair, f :
X → S a projective morphism, and F a face of NE(X/S). Assume that
the supporting function u of F is defined over the rational number field and
KX + B takes negative values on F \ {0}. Then the following statements
hold:

(1) The contraction morphism h : X → Y associated to F exists.

(2) The smallest linear subspace containing F coincides with the image of
the injection N1(X/Y )→ N1(X/S), and F coincides with the image of
NE(X/Y ).

(3) −(KX +B) is h-ample.

(4) If a Cartier divisor D on X is identically 0 on N1(X/Y ), then there
exists a Cartier divisor E on Y such that D ∼ h∗E.

(5) ρ(X/S) = ρ(Y/S) + ρ(X/Y ).

Proof. (1) After taking a multiple of u, we may assume that it gives a Cartier
divisor L. L is relatively nef by assumption.



102 CHAPTER 2. THE MINIMAL MODEL PROGRAM

AsKX+B is negative on F \{0}, NE(X/S)KX+B≥0∩F = {0}. So L is ev-
erywhere non-zero on NE(X/S)KX+B≥0\{0} and hence the quotient of func-
tions (KX+B)/L is well-defined on the compact subset (NE(X/S)KX+B≥0\
{0})/R>0 in the (ρ(X/S)−1)-dimensional sphere (N1(X/S)\{0})/R>0. In
particular, (KX + B)/L is bounded on this subset. Therefore there exists
a sufficiently small real number ε such that L − ε(KX + B) is positive on
NE(X/S) \ {0}. By Kleiman’s criterion, L− ε(KX +B) is relatively ample.

Applying the base point free theorem, after replacing L by a multi-
ple, we may assume that the natural homomorphism f∗f∗OX(L)→ OX(L)
is surjective. Correspondingly, we get a projective morphism h̄ : X →
PS(f∗OX(L)) over S. Here the latter one is the projective scheme over S cor-
responding to the coherent sheaf f∗OX(L). By definition, h̄∗OPS(f∗OX(L))(1) ∼=
OX(L).

Take the Stein factorization of h̄, we get a surjective morphism h : X →
Y to a normal algebraic variety and a finite morphism Y → PS(f∗OX(L)).
Take g : Y → S to be the induced map.

We claim that h is the contraction morphism associated to F . Firstly,
a curve C on X, if h(C) is a point, then OX(L) ⊗ OC ∼= OC and hence
(L · C) = 0, which implies that [C] ∈ F .

Secondly, take F ′ to be the closed convex cone spanned by equivalence
classes of curves contracted by h, then F ′ = NE(X/Y ) ⊂ F . Assume, to the
contrary, that F ′ 6= F , then there exists a Cartier divisor L′ on X such that
L is positive on F ′ \ {0} but negative at some point of F . Note that L′ is
h-ample and L = h∗L′′ for some g-ample Cartier divisor L′′. Hence for any
sufficiently large m, L′ + mh∗L′′ is f -ample and hence positive on F \ {0}.
This is a contradiction since h∗L′′ is identically 0 on F \ {0}.

(2), (3) are directly from (1).
(4) Since D is h-nef and D − (KX + B) is h-ample, the base point free

theorem (Theorem 2.1.1) can be applied to D and h, which implies that
there exists a positive integer m1, such that mD is h-free for m ≥ m1. The
corresponding map over Y coincides with h since mD ≡ 0 over Y . That
is, there exists a Cartier divisor Em on Y such that mD ∼ h∗Em. We can
conclude (4) by taking E = Em+1 − Em.

From (4), we get the following exact sequence

0→ N1(Y/S)→ N1(X/S)→ N1(X/Y )→ 0,

which concludes (5).

Remark 2.4.2. The phenomenon in (4) suggests the fibers of a contraction
morphism are special varieties similar to P1. That is because, for example,
on elliptic curves there exist many Cartier divisors which are numerically
trivial but not trivial.

Later in Corollary 2.8.4, we will prove that the fibers of a contraction
morphism is covered by rational curves. However, rational curves with sin-



2.4. THE CONE THEOREM 103

gularities have similar Cartier divisors as in the case of elliptic curves, so we
may expect much stronger statements.

2.4.2 The cone theorem

The shape of the cone of curves NE(X/S) varies, but according to the fol-
lowing cone theorem, if restricted to the part taking negative values on the
canonical divisor, then locally it is generated by finitely many extremal rays.
By the contraction theorem, those extremal rays associates with contraction
morphisms.

{cone thm}
Theorem 2.4.3 (Cone theorem). Let (X,B) be a KLT pair, f : X → S
a projective morphism. Fix a relatively ample divisor A and a positive real
number ε. Then there exist finitely many extremal rays Ri of NE(X/S) ⊂
N1(X/S), such that

NE(X/S) = NE(X/S)KX+B+εA≥0 +
∑

Ri.

This equation means that the smallest convex cone containing all terms on
the right hand side is the left hand side. Moreover, after removing unnec-
essary terms in the sum, for each i, KX + B is negative on Ri \ {0}, and
there exists a contraction morphism hi : X → Yi associated to the extremal
ray Ri.

Proof. We do induction on ρ(X/S) = dimN1(X/S). In the proof, the rela-
tive setting plays an important role.

Step 1. We may assume that ε is a rational number. We will show that
we may also assume that B is a Q-divisor.

We may write KX +B =
∑
riDi where D1, . . . , Dt are Cartier divisors.

We may approximate real numbers ri by rational numbers r′i, such that∑
(ri − r′i)Di + εA/3 is ample.
As B′ =

∑
r′iDi − KX is not necessarily effective, write B′ = (B′)+ −

(B′)−. Here (B′)+, (B′)− are effective Q-divisors with no common compo-
nents. If taking r′i − ri sufficiently small, then the coefficients of (B′)− are
sufficiently small, and there exists an effective Q-divisor B′′ with sufficiently
small coefficients such that εA/3− (B′)− ∼Q B′′.

Also by taking r′i−ri sufficiently small, we may assume that (X, (B′)+ +
B′′) is again KLT. Once we proved the statement for (X, (B′)+ + B′′), the
statement for (X,B) follows from the fact that

NE(X/S)KX+(B′)++B′′+εA/3≥0 ⊂ NE(X/S)KX+B+εA≥0.

Therefore we may assume that B is a Q-divisor.

Step 2. If ρ(X/S) = 1, then there is nothing to prove. So we assume
that ρ(X/S) > 1 in the following. Also we may assume that KX +B is not
relatively nef.
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For any relatively ample Q-divisor H, by the rationality theorem (The-
orem 2.3.1), the threshold

rH = max{t ∈ R | H + t(KX +B) is relatively nef} ∈ Q

determines a Q divisor LH = H + rH(KX + B). By construction, LH is
relatively nef but not relatively ample. We know that

FH = NE(X/S)LH=0

is a face of the cone or curves and satisfies the contraction theorem (Theo-
rem 2.4.1). Denote hH : X → YH to be the corresponding contration.

Step 3. Take C to be the closed convex cone containing NE(X/S)KX+B≥0

and all FH with LH 6≡ 0. We will show that NE(X/S) = C. Note that in
this step there might be infinitely many FH .

To the contrary, assume that C 6= NE(X/S). The there exists a Q-
divisor M such that (M · v) > 0 for all v ∈ C \{0} and (M · v0) < 0 for some
v0 ∈ NE(X/S). Moreover, M can not be a multiple of KX +B.

The dual closed convex cone (NE(X/S)KX+B≥0)∗ of NE(X/S)KX+B≥0

is just the closed convex cone spanned by Amp(X/S) and KX +B, because
the dual of the latter one is NE(X/S)KX+B≥0.

Since M is positive on NE(X/S)KX+B≥0 \ {0}, it is an interior point of
(NE(X/S)KX+B≥0)∗. Therefore, we can write M = H+t(KX +B) for some
relatively ample Q-divisor H and some rational positive number t.

Since M is not relatively nef, rH < t. On the other hand, since LH =
H+rH(KX +B) 6≡ 0, we have FH ⊂ C and hence M is positive on FH \{0}.
This is a contradiction.

Step 4. Take C1 to be the closed convex cone containing NE(X/S)KX+B≥0

and all extremal rays of the form RH = FH . We will show that NE(X/S) =
C1. Note that in this step there might be infinitely many extremal rays RH .

For a face FH with dimFH ≥ 2, we may apply Step 3 to FH = NE(X/YH) ⊂
NE(X/S). Since (FH)KX+B≥0 = {0}, FH is generated by lower dimensional
faces.

Step 5. We will show the discreteness of extremal rays by applying the
estimate of denominators in the rationality theorem, that is, to show that
there are only finitely many extremal rays negative on (KX +B + εA).

For each extremal ray Ri, take the associated contraction morphism
hi : X → Yi. Since −(KX + B) is hi-ample, there is a unique element
vi ∈ Ri with (a(KX +B) · vi) = −1.

Take relatively ample Cartier divisors H1, . . . ,Hρ(X/S)−1 such that to-
gether with a(KX+B) they form a basis of N1(X/S). Since dimN1(X/Yi) =
1, we can define rij such that Hj + rij(KX +B) ≡ 0 over Yi. Applying the
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rationality theorem (Theorem 2.3.1) to hi, we can express rij/a = pij/qij
as irreducible fraction, and qij ≤ a(b + 1). Here a is the minimal positive
integer such that a(KX +B) and b is the maximal dimension of fibers of f .
Therefore, (a(b+ 1))!(Hj · vi) ∈ Z.

Take a sufficiently large number N such that NA−Hj is f -ample for all
j. If we only look at extremal rays Ri such that ((KX + B + εA) · vi) < 0,
then

(Hj · vi) < (NA · vi) < N/aε,

and hence there are only finitely many possible values for (Hj · vi). This
mean that there are only finitely many extremal rays generated by vi.

Step 5’. Let us give another proof of discreteness of extremal rays by
applying the estimate of length of extremal rays instead of the rationality
theorem.

Keep the notation in last step. By Corollary 2.8.4, there exists an hi-
relative curve Ci such that (−(KX + B) · Ci) ≤ 2b. If we only look at
extremal rays Ri such that ((KX +B + εA) · Ci) < 0, then (A · Ci) < 2b/ε.

As the degree of Ci is bounded, there exists a scheme of finite type W
and a closed subscheme V ⊂ X ×W such that Ci’s appear as fibers of the
projection φ : V → W . Therefor there are only finitely many numerical
equivalence classes of those Ci.

Also we can use the following argument. Since (−a(KX +B) ·Ci) ≤ 2ab
and (Hj ·Ci) ∈ Z, we have (2ab)!(Hj ·Ci) ∈ Z. Then we can argue the same
as the end of Step 5.

Remark 2.4.4. (1) The contraction theorem was firstly proved in the case
that X is smooth, B = 0, and dimX ≤ 3 ([107]). The proof is by
completely classifying the contraction morphisms. The classification
shows for the first time that even if we start from a smooth X, the image
of the contraction morphism may have singularities, which is different
from the surface case. The general contraction theorem was proved in a
completely different way as an application of the base point free theorem
([59],[60]).

(2) The contraction theorem was firstly proved in the case that X is smooth
and B = 0 (Mori [107]). The proof efficiently uses Frobenius mor-
phisms in positive characteristics (Theorem 2.7.2 is an application of
this method). However, this method uses deformation theory, which is
difficult to be generalized to algebraic varieties with singularities so it is
limited as in the minimal model theory we can not avoid dealing with
algebraic varieties with singularities. Therefore, a completely different
proof was developed by extending that of the base point free theorem
([60]).
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(3) In Step 5’ of the proof, it might be possible to get a stronger estimate
of length of extremal rays (−(KX +B) ·C) ≤ b+ 1. This is still an open
problem.

(4) When considering an extremal ray R in this book, we always assume
that KX + B is negative on R \ {0}. Such an extremal ray is called a
(KX +B)-negative extremal ray.

{big finite}
Corollary 2.4.5. Keep the assumption of Theorem 2.4.3. Assume that B
is R-Cartier and relatively big. Then there are only finitely many KX +B-
negative extremal rays in NE(X/S).

Proof. Write B = A + E for some relatively ample R-divisor A and some
effective R-divisor E. We may take a sufficiently small positive real number ε
such that (X, (1−ε)B+εE) is KLT. Note thatKX+(1−ε)B+εE+εA = KX+
B. By Theorem 2.4.3, there are only finitely many KX +(1−ε)B+εE+εA-
negative extremal rays.

It is easy to extend the cone theorem to DLT pairs:

Corollary 2.4.6. Let (X,B) be a DLT pair, f : X → S a projective mor-
phism. Fix a relatively ample divisor A and a positive real number ε. Then
there exist finitely many extremal rays Ri of NE(X/S) ⊂ N1(X/S), such
that

NE(X/S) = NE(X/S)KX+B+εA≥0 +
∑

Ri.

Moreover, after removing unnecessary terms in the sum, for each i, KX +B
is negative on Ri \{0}, and there exists a contraction morphism hi : X → Yi
associated to the extremal ray Ri.

Proof. By Lemma 2.1.7, there is B′ ≡S B + 1
2εA such that (X,B′) is KLT.

The corollary can be reduced to the cone theorem.

2.4.3 Contraction morphisms in dimensions 2 and 3

In this section, we describe the contraction morphism associated to an ex-
tremal ray in dimension at most 3. Firstly let us consider the surface case.

{2d contration}
Example 2.4.7. Consider the case that X is smooth, S = Spec(k), B = 0,
and dimX = 2. Here the base field k is algebraically closed of arbitrary
characteristic.

The contraction morphism φ : X → Y associated to an extremal ray R
can be classified as the following ([107]).

(a) There exists a (−1)-curve C ⊂ X such that R = R+[C]. Y is smooth,
φ(C) = P is a point, and φ is the blowup of Y at P . Conversely, a
(−1)-curve always generates an extremal ray.
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(b) φ : X → Y is a P1-bundle over a smooth curve Y , and R = R+[C] for
any fiber C. In this case, X is called a ruled surface. Conversely, if X
admits a P1-bundle structure, its fiber generates an extremal ray.

(c) X ∼= P2, Y = Spec k, and R is generated by the equivalence class of a
line on P2.

It is important that, in each case, the extremal ray is generated by a
curve isomorphic to P1.

As we will see later, the theory of extremal rays can be extended to
algebraically non-closed base field k. Take the base change X̄ = X × Spec k̄
to algebraic closure, the classification can be generalized as the following.

(a’) There exist disjoint (−1)-curves C1, . . . , Ct on X̄ such that a multiple
of their sum C = m

∑
Ci is defined over k, and R = R+[C]. Y is

smooth, φ(C) = P is a point, and φ is the blowup of Y at P . Here
the residue field of P is an extension of k.

(b’) φ : X → Y is a morphism to a smooth curve Y , and R = R+[C] for
any fiber C. In this case, every fiber is isomorphic to a curve of degree
2 in P2, and X is called a conic surface.

(c’) −KX is ample and ρ(X) = 1. Here ρ(X) = dimN1(X) is the Pi-
card number. Generally, a smooth projective surface with ample anti-
canonical divisor is called a del Pezzo surface. There is a classical
classification of del Pezzo surfaces.

The following example shows that there can be infinitely many extremal
rays.

{nagata example}
Example 2.4.8 (Nagata’s example). By the cone theorem, there are only
finitely many KX + B + εA-negative extremal rays, but when taking limit
ε → 0, it is possible to have infinitely many extremal rays. Here the base
field k is algebraically closed of characteristic 0.

Givne two curves C1, C2 of degree 3 on P2 intersecting at 9 distinct
points P1, . . . , P9. The rational function h defined by div(h) = C1 − C2

determines a rational map h̄ : P2 99K P1. The indeterminacy locus of h̄
is {P1, . . . , P9}. The blowup along those points f : X → P2 resolves the
indeterminacy and gives a morphism g = h̄ ◦ f .

For a smooth curve C of degree 3 passing through these 9 points, its
strict transform F = f−1

∗ C becomes a smooth fiber of g, and KX = −F . In
particular, F is an elliptic curve. The exceptional set of f is 9 (−1)-curves
Ei (i = 1, . . . , 9), which are sections of g.

The generic fiber Fη of g is an elliptic curve defined over k(P1). Take
Qi = Ei ∩ Fη. Consider the additive group structure on Fη with Q1 as the
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origin. If C1, C2 are chosen generally, Q2 is not a torsion point, that is,
mQ2 6= Q1 for all positive integer m. Take Gm to be the closure of mQ2 in
X, which is a section of g. Then Gm ∼= P1 and (KX · Gm) = −1. That is,
Gm is a (−1)-curve. In this case, there are infinitely many extremal rays.

Take S = {(P1, . . . , P9) ∈ (P2)9 | Pi 6= Pj (i 6= j)}. The projection
P2 × S → S naturally admits 9 sections. Take f̃ : X → P2 × S to be the
blowup along those sections, then the above constructed X is a fiber of the
smooth morphism π : X → S. That is, π is a deformation family of X.

As (−1)-curves are preserved by small deformations, for each m there
exists a non-empty open set Um and a closed subvariety G̃m of π−1(Um)
such that G̃m ∩X = Gm and on each fiber Xs = π−1(s) (s ∈ Um) G̃m ∩Xs

is a (−1)-curve. In the case that the base field k is the complex number
field, the intersection U =

⋂
Um is not empty, and for each s ∈ U , Xs has

infinitely many extremal rays.

Generally, if there exists a non-empty open set such that a property holds
for each point in this set, then we say that this property holds for general
points; if a property holds for each point in the intersection of countably
infinitely many non-empty open sets, like the above U , then we say that
this property holds for very general points. So a very general fiber of π has
infinitely many extremal rays.

The 3-dimensional case is as the following.
{3d contraction}

Example 2.4.9. Consider the case that X is smooth, S = Spec k, B = 0,
and dimX = 3. The contraction morphism φ : X → Y associated to an
extremal ray R can be classified as the following ([107]). Here the base field
k is algebraically closed of characteristic 0.

(a) The exceptional set of φ is a prime divisor E and φ is the blowup of
Y along φ(E). However, Y is not necessarily smooth. E and φ are
classified as the following.

(a-1) φ(E) = P is a point, E ∼= P2, and OE(E) ∼= OP2(−1). In this
case Y is smooth.

(a-2) φ(E) = P is a point, E ∼= P2, OE(E) ∼= OP2(−2). If k = C,
then (Y, P ) is analytically isomorphic to the quotient singularity
of type 1

2(1, 1, 1).

(a-3) φ(E) = P is a point, E is isomorphic to the quadratic surface in
P3 defined by xy + zw = 0, OE(E) ∼= OE(−1). E is isomorphic
to P1 ×P1. If k = C, then the singularity (Y, P ) is analytically
isomorphic to the hypersurface singularity defined by xy+zw = 0
in C4.

(a-4) φ(E) = P a point, E is isomorphic to the quadratic surface in P3

defined by xy + z2 = 0, OE(E) ∼= OE(−1). If k = C, then the
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singularity (Y, P ) is analytically isomorphic to the hypersurface
singularity defined by xy + z2 + w3 = 0 in C4.

(a-5) φ(E) = C is a smooth projective curve, φ|E : E → C is a P1-
bundle, and (E · F ) = −1 for each fiber F . In this case Y is
smooth.

(b) Y is a smooth projective surface, the geometric generic fiber of φ is
isomorphic to P1. Every fiber of φ is isomorphic to a conic curve in
P2, hence X is called a conic bundle.

(c) Y is a smooth projective curve, the geometric generic fiber of φ is a
del Pezzo surface.

(d) Y is a point, X is a Fano manifold of Picard number ρ(X) = 1.
Generally, a smooth projective algebraic variety X is called a Fano
manifold, if−KX is ample. 3-dimensional Fano manifolds are classified
([50], [51], [110], [111]).

2.4.4 The cone theorem for cone of divisors

Taking the dual of the contraction theorem and the cone theorem, we can
describe them in terms of cones of divisors. The paraphrase is powerful
when considering birational models. For example, when the nef cones of
two birational models adjoin along a face of both cones, the phenomenon of
wall crossing is important, and can be described appropriately in space of
divisors. Here a wall is a face of codimension 1, which is the dual concept
of an extremal ray.

{cone thm for div}
Theorem 2.4.10. Let (X,B) be a KLT pair and f : X → S a projective
morphism. Fix a relatively ample divisor A and a positive real number ε.
Assume that KX + B + εA is not f -nef. Take Ri (i = 1, . . . , N) to be
all (KX + B + εA)-negative extremal rays, and hi : X → Yi contraction
morphism associated to Ri. Fix a non-zero rational point vi ∈ Ri for each
i. Note that vi can be viewed as a linear function on N1(X/S). Then the
following statements hold:

(1) vi is non-negative on Amp(X/S).

(2) Gi = {u ∈ Amp(X/S) | (u · vi) = 0} is a face of codimension 1 in
Amp(X/S) which coincides with h∗iAmp(Yi/S).

(3) Take F to be the face of NE(X/S) generated by several extremal rays
Ri1 , . . . , Rir and h : X → Y the associated contraction morphism. Then

G =

r⋂
j=1

Gij = {u ∈ Amp(X/S) | (u · v) = 0 for all v ∈ F}



110 CHAPTER 2. THE MINIMAL MODEL PROGRAM

is h∗Amp(Y/S).

(4) For any f -ample R-divisor H, take

t0 = min{t | KX +B + εA+ tH is f -nef},

then there exists a face G of the form G =
⋂r
j=1Gij such that [KX +

B + εA + t0H] is a relative interior point of G. In other words, it is
contained in h∗Amp(Y/S).

Proof. (1) This follows from Ri ⊂ NE(X/S).
(2) By the contraction theorem, Gi = h∗iAmp(Yi/S) is of condimension

1.
(3) This is a consequence of the contraction theorem.
(4) By definition, u = [KX + B + εA + t0H] is the supporting function

of a face F of NE(X/S). By the cone theorem, such a face is generated
by extremal rays, say Ri1 , . . . , Rir , which implies that u is contained in
G =

⋂r
j=1Gij . As u is the supporting function of F , u is an interior point

of G.

Remark 2.4.11. In other words, the cone theorem can be explained as
the following: imagine the nef cone as an opaque planet, and [KX + B] ∈
N1(X/S) as a satellite moving around it. Firstly, if [KX +B] ∈ Amp(X/S),
then we can observe nothing and hence the statement is empty. If [KX+B] 6∈
Amp(X/S), then we can observe the front side V of the surface ∂Amp(X/S)
of the nef cone. The back side ∂Amp(X/S) \ V can not be observed.

When we look at the planet from a slightly closer observation point
[KX +B+ εA] ∈ N1(X/S), the surface V looks like a polyhedron consisting
of finitely many faces Gi. If we move the observation point to the limit
[KX +B] as ε→ 0, in the case of infinitely many extremal rays, there turns
out to be infinitely many faces converging to the horizon.

As a corollary, we get the base point free theorem for R-divisors:
{abundance thm R1}

Corollary 2.4.12. Let (X,B) be a KLT pair, f : X → S a projective
morphism, and D an R-Cartier divisor. Assume that D is f -nef, and D −
(KX + B) is f -nef and f -big. Then there exists a projective morphism
g : Z → S from a normal algebraic variety, a projective surjective morphism
h : X → Z with connected geometric fibers such that f = g◦h, and a g-ample
R-Cartier divisor H on Z, such that h∗H ∼R D.

Proof. We may assume that D is not f -ample. Since D−(KX +B) is f -big,
we may write D− (KX +B) = A+E for some f -ample R-Cartier divisor A
and some effective R-Cartier divisor E. Since D − (KX + B) is also f -nef,
for any sufficiently small positive real number ε, L = D− (KX +B)− εE is
f -ample.
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By taking ε sufficiently small, we may assume that (X,B + εE) is KLT.
Since D is not f -ample, KX +B + εE = D − L is not f -nef. Therefore, for
a sufficiently small δ > 0, KX +B + εE + δL is not f -nef. Consider

t0 = min{t | KX +B + εE + δL+ tL is f -nef},

then t0 = 1 − δ and KX + B + εE + δL + t0L = D. Then the conclusion
follows from Theorem 2.4.10(4).

As a corollary of the above corollary, we can show the existence of canon-
ical models when the boundary is big:

{abundance thm R2}
Corollary 2.4.13. Let (X,B) be a KLT pair, f : X → S a projective
morphism. Assume that KX + B is f -nef, and B is an f -big R-Cartier
divisor. Then there exists a projective morphism g : Z → S from a normal
algebraic variety, a projective surjective morphism h : X → Z with connected
geometric fibers such that f = g ◦ h, and a g-ample R-Cartier divisor H on
Z, such that h∗H ∼R KX +B.

Proof. Take D = KX + B. Then D is f -nef. As B is f -big, we may write
B = A + E for some f -ample R-Cartier divisor A and some effective R-
Cartier divisor E. Take a sufficiently small ε > 0, such that (X, (1−ε)B+εE)
is KLT. Then, D− (KX +(1− ε)B+ εE) = εA is f -ample, and we can apply
Corollary 2.4.12.

Also by applying Lemma 2.1.7, we can generalize Corollary 2.4.12 to
DLT pairs. The proof is left to the readers.

{DLT BPF R-div}
Corollary 2.4.14. 2.4.4.1 Let (X,B) be a DLT pair, f : X → S a projective
morphism, and D an R-Cartier divisor. Assume that D is f -nef, and D −
(KX + B) is f -ample. Then there exists a projective morphism g : Z → S
from a normal algebraic variety, a projective surjective morphism h : X → Z
with connected geometric fibers such that f = g◦h, and a g-ample R-Cartier
divisor H on Z, such that h∗H ∼R D.

2.5 Types of contraction morphisms and the min-
imal model program

The minimal model program is an operation to modify a given pair consisting
of a variety and a boundary by applying birational maps repeatedly. The
pair we consider is assumed to be KLT or DLT, and the variety is assumed
to be Q-factorial and projective over the base variety. This condition is
preserved under the operation of the minimal model program.

2.4.4.1Added in translation
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Such an operation is constructed by the contraction morphism associated
to an extremal ray. There are 3 types of contraction morphisms: divisorial
contractions, small contractions, and Mori fiber spaces.

The goal of the minimal model program is to obtain either a minimal
model (a pair with relatively nef log canonical divisor) or a Mori fiber space.

2.5.1 Classification of contraction morphisms

Firstly, consider the case that the contraction morphism associated to an
extremal ray is a birational morphism contracting a divisor:

{divisorial contraction}
Theorem 2.5.1. Let (X,B) be a DLT pair and f : X → S a projective
morphism. Assume that X is Q-factorial. Let R be a (KX + B)-negative
extremal ray of NE(X/S), take h : X → Y to be the contraction morphism
associated to R. Assume that h is birational and its exceptional set contains
a prime divisor. Then the following statements hold:

(1) −(KX +B) is h-ample.

(2) ρ(X/Y ) = 1, ρ(X/S) = ρ(Y/S) + 1.

(3) The exceptional set of h is a prime divisor, say E.

(4) Y is Q-factorial.

(5) We can write KX +B = h∗(KY +BY ) + eE, e > 0. Here BY = h∗B.

(6) (Y,BY ) is DLT. Moreover, if (X,B) is KLT, then (Y,BY ) is KLT.

Proof. (1), (2) follow directly from the contraction theorem.

(3) Let E be a prime divisor contained in the exceptional set of h. Since
X is Q-factorial, E is Q-Cartier. Since E is exceptional, by Lemma 1.6.3,
there exists a curve C contracted by h such that (E · C) < 0. Since C is
a relative curve over Y and ρ(X/Y ) = 1, −E is h-ample. Suppose that E
does not coincide with the exceptional set of h, then there exists a relative
curve C ′ not contained in E. This implies that (E ·C ′) ≥ 0, a contradiction.
Therefore, the exceptional set of h is a prime divisor.

(4) Take any prime divisor F of Y . X is Q-factorial, h−1
∗ F is Q-Cartier.

Since ρ(X/Y ) = 1, there exists a rational number r such that h−1
∗ F+rE ≡ 0

over Y . By the contraction theorem (Theorem 2.4.1), there exists a Q-
Cartier divisor F ′ on Y such that h−1

∗ F +rE ∼Q h∗F ′. Since h is birational,
F ∼Q F ′, which means that F is Q-Cartier.

(5) Write h∗(KY +h∗B) = KX +B− eE, Since −(KX +B) and −E are
h-ample, we know that e < 0.

(6) follows from (5).
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Let (X,B) be a Q-factorial DLT pair and f : X → S a projective mor-
phism. If KX +B is relatively nef, then f : (X,B)→ S is already minimal.
If not, then by the cone theorem, there exists a (KX +B)-negative extremal
ray R in NE(X/S). Take h : X → Y to be the contraction morphism
associated to R. By Theorem 2.5.1, we have the following 3 cases:

(1) Divisorial contraction: h is birational and the exceptional set is a prime
divisor.

(2) Small contraction: h birational and the exceptional set is of codimension
at least 2.

(3) Mori fiber space: dimY < dimX.

If h is a divisorial contraction, then the new pair (Y,BY ) has the same
property as (X,B). If KY + BY is not relatively nef, that is, it is not a
minimal model, then we can continue to consider it contraction morphisms.
Moreover, since ρ(Y/S) = ρ(X/S) − 1, there can not be infinitely many
divisorial contractions in this procedure. So we may expect to get a minimal
model by induction on the Picard number ρ(X/S).

For example, for a pair where X is a smooth projective surface and
B = 0, a divisorial contraction is the contraction of a (−1)-curve (see Ex-
ample 2.4.7). Then after finitely many divisorial contractions, there is no
(−1)-curve, and we reach a minimal model in the classical sense. This model
is either a minimal model in the sense of this book, or admits a further con-
traction. By dimension reason, this contraction is not small, hence a Mori
fiber space, that is, a ruled surface or P2.

However, this is not the case in higher dimensions due to the existence
of small contractions. In dimension 3, small contractions appear only if X
is singular or B 6= 0 (see Example 2.4.9). In dimension 4 or higher, small
contractions can appear even if X is smooth and B = 0 (see [66]).

Although Mori fiber spaces are not birational, but it is interesting to be
able to handle them in a same category of contraction morphisms. A Mori
fiber space is also called a Fano fibration.

In general, an algebraic variety X is called a uniruled variety if it is
covered by a family of rational curves. In other words, this condition means
that there exists an algebraic variety Z with dimZ = dimX − 1 and a
dominant rational map Z ×P1 99K X. Uniruledness is a property invariant
under birational equivalence.

As later described by the length of extremal rays (Section 2.8), each irre-
ducible component of any fiber of a contraction morphism is always uniruled,
unless it is a point. One image of the minimal model program is that ”if
you contract redundant rational curves by contraction morphisms, then you
will get a minimal model”. In particular, an algebraic variety with a Mori
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fiber space structure is a uniruled variety. Moreover, Hacon and McKernan
showed further that the fibers of contraction morphisms are always rationally
connected ([38]).

For Mori fiber spaces we have the following result:

Proposition 2.5.2. Let h : X → Y be a Mori fiber space. Then Y is
Q-factorial.

Proof. We may assume that dimY > 0. Take any prime divisor E on Y and
take a prime divisor D on X such that h(D) = E. Since X is Q-factorial,
there exists a positive integer d such that dD is Cartier. Since ρ(X/Y ) = 1
and there exists a curve C contained in a fiber of h such that D ∩ C = ∅,
we get D ≡Y 0. Apply the contraction theorem to h, there exists a Cartier
divisor E′ on Y and a rational function on X such that dD = h∗E′+div(g).
Since div(g) does not intersect general fibers of h, there exists a rational
function g′ on Y such that g = h∗(g′). Since h(D) = E, we know that
dE = E′ + div(g′) and hence E is Q-Cartier.

2.5.2 Flips

The existence of small contractions is a phenomenon appearing only in di-
mension 3 and higher, which is completely different from the situation of
dimension 2. If X → Y is a small contraction and we consider the pair
(Y, h∗B), then KY +h∗B is not R-Cartier. In fact, if KY +h∗B is R-Cartier,
then we can consider its pullback by h. Since X and Y are isomorphic in
codimension one, h∗(KY + h∗B) = KX + B. On the other hand, take any
curve C contracted by h, then ((KX +B) ·C) < 0, which contradicts to the
projection formula (before Proposition 1.4.3).

By this reason, we need to construct a new pair by an operation called
flip. The new pair obtained by flip has the same properties as the original
pair. Flips and divisorial contractions are completely different operations in
geometry, but they are very similar in the point view of numerical geometry.

Definition 2.5.3. Let (X,B) be a Q-factorial DLT pair and f : X → S
a projective morphism. Assume that g : X → Y is a small contraction
morphism associated to a (KX +B)-negative extremal ray R. Then another
projective birational morphism g+ : X+ → Y is called the flip of g if the
following conditions are satisfied:

(1) g+ is isomorphic in codimension 1.

(2) KX+ +B+ is g+-ample, here B+ is the strict transform of B.

Here note that the positivity of log canonical divisors KX+B and KX+ +B+

are reversed. The birational transform (g+)−1 ◦ g is also called a flip.
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When considering the existence of the flip of a small contraction, as
ampleness is an open condition, it suffices to consider the case that B is
a Q-divisor. In fact, the ampleness of −(KX + B) and KX+ + B+ is not
changed after perturbing B slightly. Similarly, it suffices to consider KLT
pairs instead of DLT pairs.

{flip example}
Example 2.5.4. Let us give two examples of flips. Both examples are flips
of toric varieties [128].

(1) Let us consider the example by Francia ([26]). Here dimX = 3, B = 0,
and X is singular. We denote X = X−. Originally, this example in-
tended to claim that “the minimal model theory is impossible in dimen-
sion 3 or higher”, but later it was included into the development of the
minimal model theory, and become the simplest example of flips (see
Figure ??).

Consider the locally free sheaf F = OP1(−1)⊕OP1(−2) over C+ = P1,
take X+ to be the total space of the corresponding vector bundle, that
is,

X+ = SpecC+(

∞⊕
m=0

SymmF ∗).

X+ is a smooth 3-dimensional algebraic variety which contains C+ as
the 0-section, and the cotangent bundle NC+/X+ is isomorphic to F .
Hence (KX+ · C+) = 1. Set

S = SpecH0(X+,OX+) = Spec(
∞⊕
m=0

H0(C+, SymmF ∗)),

then there is a natural birational morphism f+ : X+ → S. The excep-
tional set of f+ coincides with the 0-section C+, and f+(C+) = P is a
point. Hence KX+ is f+-ample.

Take g+
1 : Y +

1 → X+ to be the blowing up of X+ along C+. The
exceptional set E+

1 of g+
1 is isomorphic to the ruled surface P(F ∗). Take

l+1 to be a fiber of g+
1 |E+

1
and C+

1 the curve with negative intersection on

E+
1 . Note that C+

1 is a section of g+
1 |E+

1
. The cotangent bundle NC+

1 /Y
+
1

is isomorphic to OP1(−1)⊕2.

Take g+
2 : Y → Y +

1 to be the blowing up of Y +
1 along C+

1 . The excep-
tional set E2 of g+

2 is isomorphic to P1 × P1. Take l−2 to be a fiber of
g+

2 |E2 and l−2 the fiber of the other projection of E2. On Y +
1 and Y , g+

1

and g+
2 are divisorial contractions. Denote l1 = (g+

2 )−1
∗ l+1 .

Since dimN1(Y/S) = 3, we have

NE(Y/S) = 〈l1, l+2 , l
−
2 〉.
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Here the symbol 〈 〉 means the convex cone generated by the elements
in there. We have (KY ·l1) = 0, (KY ·l+2 ) = (KY ·l−2 ) = −1. Take R+

2 , R
−
2

to be the extremal rays generated by l+2 , l
−
2 . The contraction morphism

associated to R+
2 is just g+

2 . The contraction morphism g−2 : Y → Y −1
associated to R−2 contracts the exceptional divisor E2 of g+

2 in the other
direction.

Take E1 = (g+
2 )−1
∗ E+

1 . Since ((KY + E1) · l1) = −2, if we consider the
pair (Y,E1), the l1 also generates an extremal ray, so the corresponding
contraction morphism exists and is a divisorial contraction contracting
E1. But we do not consider this contraction morphism here.

Now let us continue to consider g+
2 . E−1 = (g−2 )∗E1 is isomorphic to

P2 and l−1 = (g−2 )∗l1 is a line. As dimN1(Y −1 /S) = 2, NE(Y −1 /S) is
generated by l−1 and C−1 = (g−2 )∗l

+
2 . Here (KY −1

· l−1 ) = −1, (KY ·C−1 ) =

0. Take R−1 to be the extremal ray generated by l−1 , the corresponding
contraction morphism g−1 : Y −1 → X− contracts E−1 to a singular point
Q on X−. As OE−1 (E−1 ) ∼= OP2(−2), the singular point Q is a quotient

singularity of type 1
2(1, 1, 1).

Take C− = (g−1 )∗C
−
1 , then NE(X−/S) is generated by C−. It is easy

to compute (KX− · C−) = −1/2. Here it might seem strange that the
intersection number is a fractional, but this is because that KX− is not
Cartier. In fact, C− passes through the singular point Q, and 2KX−

becomes Cartier near Q.

In the end, −KX− is f−-ample and the morphism f− : X− → S is a
small contraction. The morphism f+ : X+ → S is just the flip of f−.

(2) Let us consider an example in dimension at least 4.

Consider the locally free sheaf F = OE(−1)⊕t+1 of rank t + 1 over
E = Ps, take its total space X = SpecE(

⊕∞
m=0 SymmF ∗). X is a

smooth (s+ t+1)-dimensional algebraic variety which contains E as the
0-section, and the cotangent bundle NE/X is isomorphic to F . Set

S = SpecH0(X,OX) = Spec(
∞⊕
m=0

H0(E,SymmF ∗)),

then there is a natural birational morphism f : X → S. The exceptional
set of f coincides with the 0-section E. View a line C on E as a curve
on X, we have (KX · C) = t− s, and f is a small contraction if s > t.

Take homogenous coordinates x0, . . . , xs on E and coordinates y0, . . . , yt
along the direction of fibers of F , then

∞⊕
m=0

H0(E,SymmF ∗) ∼= k[xiyj ]0≤i≤s,0≤j≤t
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is a symmetric form with respect to xi, yj , so we can make another
construction as the following.

Consider the locally free sheaf F+ = OE+(−1)⊕s+1 of rank s + 1 over
E+ = Pt, take its total space X+ = SpecE+(

⊕∞
m=0 Symm(F+)∗). Then

there is an isomorphism

S ∼= SpecH0(X+,OX+) = Spec(
∞⊕
m=0

H0(E+,Symm(F+)∗))

and a natural birational morphism f+ : X+ → S. The exceptional set
of f+ coincides with the 0-section E+. View a line C+ on E+ as a curve
on X+, we have (KX+ · C+) = s− t. If s > t, then f+ is the flip of f .

If s = t, then KX = f∗KS , KX+ = (f+)∗KS , which is an example of
birational transforms so called flops. In particular, if s = t = 1, then S
is the same as in Example 1.1.4(2), and the flop is called Atiyah’s flop.

The pair obtained by a flip admits the same property as the original one:

Theorem 2.5.5. Let (X,B) be a Q-factorial DLT pair and f : X → S
a projective morphism. Let R be a (KX + B)-negative extremal ray of
NE(X/S), take g : X → Y to be the contraction morphism associated to
R. Assume that g : X → Y is small and the flip g+ : X+ → Y of g exists.
Then X+ is Q-factorial, (X+, B+) is DLT, and ρ(X/S) = ρ(X+/S).

Proof. Take any prime divisor E+ on X+, denote E to be its strict transform
on X. Since X is Q-factorial, E is a Q-Cartier divisor. Since ρ(X/Y ) = 1,
there exists a real number r such that E + r(KX + B) ≡Y 0. As g is a
birational morphism, by the base point free theorem, E0 = g∗(E + r(KX +
B)) is R-Cartier and g∗E0 = E+r(KX +B). Since KX+ +B+ is R-Cartier,
E+ = (g+)∗E0 − r(KX+ +B+) is R-Cartier. Therefore, X+ is Q-factorial.
Then it is easy to see that ρ(X/S) = ρ(X+/S). The fact that (X+, B+) is
DLT can be conclude from Theorem 2.5.6 in the next subsection.

2.5.3 Decrease of canonical divisors

Although flips and divisorial contractions look very different, the following
theorem shows that they are similar in the sense that both are operations
that make canonical divisors smaller.

{coeff decrease}
Theorem 2.5.6 ([82, Proposition 5.1.11]). Let (X,B) be a Q-factorial DLT
pair and f : X → S a projective morphism. Let R be a (KX + B)-negative
extremal ray of NE(X/S), take g : X → Y to be the contraction morphism
associated to R. Consider the following to cases:

(a) h : X → Y is a divisorial contraction.
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(b) h : X → Y a small contraction with flip h+ : X+ → Y .

In each case, take a normal algebraic variety Z with projective morphisms in
the following way: in case (a) take g : Z → X; in case (b) take g : Z → X
and g+ : Z → X+ such that h◦g = h+ ◦g+. For each case, R-divisors C,C ′

on Z can be determined as the following:

(a) g∗(KX +B) = KZ + C, (h ◦ g)∗(KY + h∗B) = KZ + C ′.

(b) g∗(KX +B) = KZ + C, (g+)∗(KX+ +B+) = KZ + C ′.

Then we have C ≥ C ′. Moreover, the support of C − C ′ coincides with
g−1(Exc(h)), the inverse image of the exceptional set of h.

Proof. In case (a), take E to be the exceptional divisor of h, then we can
write KX + B − h∗(KY + h∗B) = eE with e > 0. The statement of the
theorem is clear.

Let us consider case (b). Note that

C − C ′ = g∗(KX +B)− (g+)∗(KX+ +B+)

is g-exceptional and C ′−C is g-nef, hence C−C ′ ≥ 0 by the negativity lemma
(Lemma 1.6.3). Since C − C ′ is exceptional over Y , it is easy to see that
Supp(C − C ′) ⊂ g−1(Exc(h)). To see that Supp(C − C ′) ⊃ g−1(Exc(h)),
it suffices to show that for any curve Γ on X contracted by h, g−1(Γ) ⊂
Supp(C − C ′). For any curve Γ′ on Z such that g(Γ′) = Γ, it is easy to see
that ((C −C ′) ·Γ′) < 0. This shows that Supp(C −C ′)∩ g−1(Exc(h)) is not
empty. Assume, to the contrary that, g−1(Γ) 6⊂ Supp(C − C ′), then there
exists a curve Γ′′ ⊂ g−1(Γ) such that Γ′′ intersects but is not contained in
Supp(C−C ′). This implies that Γ is contracted by g and ((C−C ′) ·Γ′′) ≥ 0,
which contradicts the fact that C ′ − C is g-nef.

2.5.4 Existence and termination of flips

The existence of flips is equivalent to a special case of the finite generation
of canonical rings:

Theorem 2.5.7. Let (X,B) be a Q-factorial DLT pair where B is a Q-
divisor, and f : X → Y a small contraction. Then the following conditions
are equivalent:

(1) The flip f+ : X+ → Y exists.

(2) The graded OY -algebra

R(X/Y,KX +B) =
∞⊕
m=0

f∗(OX(xm(KX +B)y))

is finitely generated.
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Moreover,

X+ ∼= ProjYR(X/Y,KX +B).

In particular, the flip is unique if exists.

Proof. Assume that the flip f+ : X+ → Y exists. Since X and X+ are
isomorphic in codimension 1, we have

R(X/Y,KX +B) ∼=
∞⊕
m=0

f+
∗ (OX+(xm(KX+ +B+)y)).

Since KX+ +B+ is a relatively ample Q-divisor, R(X/Y,KX +B) is finitely
generated and

X+ ∼= ProjYR(X/Y,KX +B).

Assume thatR(X/Y,KX+B) is finitely generated. TakeX+ = ProjYR(X/Y,KX+
B) and the natural projection f+ : X+ → Y . By construction, there exists
a positive integer r and a relatively ample divisor H on X+ such that

f+
∗ (OX+(mH)) ∼= f∗(OX(mr(KX +B)))

for any positive integerm. Since f is isomorphic in codimension 1, f+
∗ (OX+(mH))

is a reflexive sheaf on Y .

We will show that f+ is isomorphic in codimension 1. Assume, to the
contrary, that f+ contracts a prime divisor E, consider the coherent sheaf
F supported on E satisfying the following exact sequence

0→ OX+(mH)→ OX+(mH + E)→ F (mH)→ 0.

Here E is not assumed to be Q-Cartier. Since H is relatively ample, we can
take m sufficiently large such that R1f+

∗ (OX+(mH)) = 0 and f+
∗ (F (mH)) 6=

0. However, as f+(E) is of codimension at least 2 and f+
∗ (OX+(mH)) is

reflexive, f+
∗ OX+(mH) → f+

∗ OX+(mH + E) is an isomorphism. This is a
contradiction.

So f+ is isomorphic in codimension 1. By contraction, KX+ + B+ is
f+-ample and therefore f+ is the flip.

The following theorem is called the “existence of flip” conjecture before
it was finally proved by Hacon and McKernan ([39]).

Theorem 2.5.8 (Existence of flip). Let (X,B) be a Q-factorial DLT pair
and f : X → S a projective morphism. Assume that g : X → Y is a small
contraction morphism associated to a (KX + B)-negative extremal ray R.
Then the flip g+ : X+ → Y always exists.
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The proof is in Chapter 3. This theorem is a special case of the finite
generation theorem of canonical rings, but it is also an essential part in the
proof of the finite generation theorem.

Divisorial contractions decrease Picard numbers by 1, but flips preserve
Picard numbers. Therefore, to make the minimal model program work, we
need the following “termination of flip” conjecture.

Conjecture 2.5.9 (Termination of flips). Let (X,B) be a Q-factorial DLT
pair and f : X → S a projective morphism. Then there does not exists any
infinite sequence of flips:

(X,B) = (X0, B0) 99K (X1, B1) 99K . . .

99K (Xn, Bn) 99K (Xn+1, Bn+1) 99K . . .

Here, αn : (Xn, Bn) 99K (Xn+1, Bn+1) is a flip over S and Bn is the strict
transform of B on Xn.

2.5.5 Minimal models and canonical models
{subsection 2.5.5}

In Section 1.12, we defined when a morphism f : X → S or f : (X,B)→ S
is called minimal. In this section, for a morphism f : X → S or f : (X,B)→
S, we define its minimal model and canonical model:

Definition 2.5.10. (1) Let X be a normal Q-factorial terminal algebraic
variety and f : X → S a projective morphism. Another normal Q-
factorial terminal algebraic variety X ′ with a projective morphism f ′ :
X ′ → S such that there exists a birational map α : X 99K X ′ with
f = f ′ ◦ α is called a minimal model of f : X → S if the following
conditions are satisfied. Sometimes it is also called a terminal model, or
more accurately, a Q-factorial terminal minimal model.

(a) α is surjective in codimension 1. That is, any prime divisor on X ′

is the strict transform of a prime divisor on X.

(b) If we take a normal algebraic variety Z with birational projective
morphisms g : Z → X and g′ : Z → X ′ such that g′ = α ◦ g,
then g∗KX−(g′)∗KX′ is effective, and its support contains all g−1

∗ E
where E is a prime divisor contracted by α.

(c) KX′ is relatively nef.

A normal algebraic variety Y with a projective morphism f ′′ : Y → S
and a projective morphism h : X ′ → Y such that f ′ = f ′′ ◦ h is called
a canonical model or an ample model of f : X → S if the following
conditions are satisfied.

(d) h is surjective with connected geometric fibers.
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(e) There exists an f ′′-ample R-divisor H such that h∗H ≡S KX′ .

(2) Let (X,B) be a Q-factorial DLT pair and f : X → S a projective
morphism. Another Q-factorial DLT pair (X ′, B′) with a projective
morphism f ′ : X ′ → S such that there exists a birational map α :
X 99K X ′ with f = f ′ ◦ α is called a minimal model of f : (X,B) → S
if the following conditions are satisfied. Sometimes it is also called a log
minimal model, or more accurately, a Q-factorial DLT minimal model.

(a) α is surjective in codimension 1, B′ = α∗B.

(b) If we take a normal algebraic variety Z with birational projective
morphisms g : Z → X and g′ : Z → X ′ such that g′ = α ◦ g, then
g∗(KX +B)− (g′)∗(KX′ +B′) is effective, and its support contains
all g−1

∗ E where E is a prime divisor contracted by α.

(c) KX′ +B′ is relatively nef.

A normal algebraic variety Y with a projective morphism f ′′ : Y →
S and a projective morphism h : X ′ → Y such that f ′ = f ′′ ◦ h is
called a canonical model, a log canonical model or an ample model of
f : (X,B)→ S if the following conditions are satisfied.

(d) h is surjective with connected geometric fibers.

(e) There exists an f ′′-ample R-divisor H such that h∗H ≡S KX′+B
′.

Remark 2.5.11. (1) By condition (a), prime divisors contracted by g are
contracted by g′. Hence the support of g∗(KX + B) − (g′)∗(KX′ + B′)
is contracted by g′.

(2) A minimal model defined as above is (log) minimal in the sense of Def-
inition 1.12.1, hence by Proposition 1.12.2 it is easy to see that the
effectivity part in condition (b) above automatically holds.

(3) The latter part of condition (b) tells that we can keep track of the
prime divisors contracted by α by looking at the difference of canonical
divisors.

(4) We say a birational morphism α satisfying (a) and (b) a (KX + B)-
negative contraction, or (KX + B) is negative with respect to α. Note
that a contraction associated to a (KX + B)-negative extremal ray is
always a (KX +B)-negative contraction by Theorem 2.5.6.

(5) The minimal model and canonical model defined in the former part of
the definition are special cases of the log version defined in the latter
part. In fact, if B = 0 and X is terminal in the given pair (X,B), then
Y is also terminal by condition (b). Therefore, when considering the
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existence of minimal models, it suffices to consider the log version. In
this book we will consider the log version in general, and usually the
word “log” will be omitted.

For a given morphism f : (X,B) → S, its minimal model is not neces-
sarily unique. But its canonical model is unique if exists:

{exceptional}
Theorem 2.5.12. Let (X,B) be a Q-factorial DLT pair and f : X → S a
projective morphism. For i = 1, 2, assume that there exist minimal models
f ′i : (X ′i, B

′
i)→ S with birational maps αi : X 99K X ′i, and canonical models

f ′′i : Yi → S with projective morphisms hi : X ′i → Yi. Then the following
statements hold:

(1) The induced birational map β : X ′1 99K X ′2 is isomorphic in codimension
1 and (X ′i, B

′
i) (i = 1, 2) are K-equivalent to each other.

(2) There exists an isomorphism e : Y1 → Y2 such that f ′′1 = f ′′2 ◦ e.

Proof. (1) We can take a smooth algebraic variety Z with a birational pro-
jective morphism g : Z → X such that gi = αi ◦ g is a birational morphism
for i = 1, 2. Denote g∗1(KX′1

+ B′1) − g∗2(KX′2
+ B′2) = E. Assume, to the

contrary, that E 6= 0. Write E = E+ − E− into parts with positive and
negative coefficients. By symmetry, we may assume that E+ 6= 0. Since
g∗(KX +B) ≥ g∗1(KX′1

+B′1) = g∗2(KX′2
+B′2) +E, every component of E+

is contracted by g2. By the negativity lemma (Lemma 1.6.3), there exists a
family of curves C contracted by g2 and covering a component of E+ such
that (E+ · C) < 0. As C is in a covering family, (E− · C) ≥ 0. Hence
(g∗1(KX′1

+ B′1) · C) = (g∗2(KX′2
+ B′2) · C) + (E · C) < 0. This contradicts

to the fact that KX′1
+ B′1 is relatively nef. This shows the K-equivalence.

Moreover, we know that the set of divisors contracted by αi is independent
of i, which implies that β is isomorphic in codimension 1.

(2) By definition, for each i = 1, 2, there exists f ′′i -ample R-divisor Hi,
such that h∗iHi ≡S KX′i

+B′i. Hence a curve C on Z is contracted by hi ◦gi :
Z → Yi if and only if (g∗i h

∗
iHi · C) = 0, which is a condition independent of

i. Hence we get the conclusion by Zariski’s main theorem.

Example 2.5.13. Consider X0 to be the hypersurface defined by x1x2 +
x3x4 = 0 in P4 with homogenous coordinates x0, . . . , x4. X0 is the projective
cone over P1 × P1 ⊂ P3 with vertex P = [1 : 0 : 0 : 0 : 0], and P ∈ X0 is
a terminal singularity. Take B̄ to be a general hypersurface not passing P
and B0 = B̄ ∩ X0. Assume that the degree d = deg(B̄) is at least 3, then
KX0 +B0 = OX0(d− 3) is nef.

Blowing up the ideal (x1, x3) or (x1, x4) on X0, we get two small resolu-
tion gi : Xi → X0 (i = 1, 2). gi is isomorphic outside P and g−1

i (P ) is isomor-
phic to P1. Take Bi to be the strict transform of B0 on Xi. Then (Xi, Bi)
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is a minimal model of (X0, B0). The induced birational map α : X1 99K X2

is the Atiyah flop (see Example 2.5.4(2)).
If one would like to have an example without boundaries Bi, one can

consider the cyclic covering π0 : X ′0 → X0 of degree d ≥ 4 ramified along
B0, and do the similar construction. Here if B0 is defined by the equation
f(x) = 0, the the covering map π0 is given by td = f(x). In this case,
KX′0

= π∗0(KX0 + (d− 1)B0/d) and KX′0
is nef.

2.5.6 The minimal model program

We will introduce the formal definition of minimal model program. Starting
from an arbitrary Q-factorial DLT pair (X,B) and a projective morphism
f : X → S, in order to get a minimal model or a Mori fiber space, we have
the following minimal model program (MMP for short) which is a process
consists of a sequence of birational operations.

(1) Given a Q-factorial DLT pair (X,B) and a projective morphism f :
X → S.

(2) If KX +B is relatively nef, then (X,B) is minimal, and the MMP ends
here.

(3) If KX + B is relatively nef, then there exists a contraction morphism
h : X → Y associated to an extremal ray.

(a) If h is a divisorial contraction, then (Y,BY = h∗B) is again a
Q-factorial DLT pair and ρ(Y/S) = ρ(X/S)− 1. Replace (X,B) by the
new pair (Y,BY ) and go back to (1).

(b) If h is a small contraction, then take the flip h+ : X+ → Y
and (X+, B+) is again a Q-factorial DLT pair. Here B+ is the strict
transform of B and ρ(Y/S) = ρ(X/S). Replace (X,B) by the new pair
(X+, B+) and go back to (1).

(c) If h is a Mori fiber space, the MMP ends.

If the termination of flips is true, then the operations in (3-b) stops after
finitely many times, and eventually we get into case (2) or (3-c).

Example 2.5.14. Let (X,B) be a Q-factorial DLT pair and f : X → S
a projective morphism. Let us consider the case ρ(X/S) = 2. The corre-
sponding MMP is called a 2-ray game.

The cone of curves NE(X/S) is a fan generated by two extremal rays
R1, R2 in N1(X/S). If KX + B is not nef over S, then for at least one
extremal ray, say R1, ((KX +B) ·R1) < 0.

Assume that the corresponding contraction morphism φ : (X,B) → Y
is small, and φ′ : (X ′, B′)→ Y is the flip. Then again we have ρ(X ′/S) = 2
and NE(X ′/S) is a fan generated by two extremal rays R′1, R

′
2. Suppose
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R′2 is the extremal ray generated by curves contracted by φ′, then by the
property of flips, ((KX′ +B′) ·R′2) > 0. If KX′ +B′ is not nef over S, then
((KX′ + B′) · R′1) < 0. Therefore, the choice of the extremal ray is unique,
and we can repeat the same operation.

The 2-ray game can be easily understand using cones of divisors. The nef
cone Amp(X/S) is a fan generated by two extremal rays L1, L2 in N1(X/S).
Take L1 to be the extremal ray corresponding to φ, that is, (L1 ·R1) = 0.

As the induced map X 99K X ′ is isomorphic in codimension 1, we can
identify N1(X/S) ∼= N1(X ′/S). Then after flip the nef cone Amp(X ′/S)
is a fan generated by two extremal rays L′1, L

′
2 in N1(X/S), one of them,

say L′2, is just L1. This is because they all coincides with the pullback of
Amp(Y/S).

Therefore, we can view this flip as moving from one room Amp(X/S) to
another room Amp(X ′/S) by crossing the wall L′2 = L1. The next contrac-
tion corresponds to the wall L′1 on the other side. This is similar to the the
MMP with scaling introduced in the next section.

Remark 2.5.15. In the formulation of MMP, we can make similar argu-
ments by just assuming the pairs are KLT instead of DLT. In fact, as X is
assumed to be Q-factorial, if (X,B) is KLT, then for ε ∈ (0, 1), (X, (1−ε)B)
is KLT. If KX +B is not nef, then KX + (1− ε)B is not nef for a sufficiently
small ε.

2.6 Minimal model program with scaling

In each step of the minimal model program, when there exists more than
one extremal rays, we just choose one of them arbitrarily. The so-called
MMP with scaling or directed MMP proceeds by choosing the extremal ray
in an efficient way. The MMP with scaling goes to the final minimal model
straightly in one direction, and its termination is easier to control. Except
for lower dimensional cases, to proof the termination of flips is an extremely
hard problem, but it is sightly hopeful if we only consider the termination
for MMP with scaling.

Originally the MMP uses convex geometry, but the MMP with scaling is
particularly compatible with convex geometry. The idea of such MMP was
first seen in [129], and it was developed greatly and becomes a basic tool
in [15]. As for the termination of flips, it might not be true for the general
MMP, but it is expected to be true for the MMP with scaling.

Given a Q-factorial KLT pair (X,B) and a projective morphism f : X →
S, a scale is an effective R-divisor H satisfying the following properties:

(1) H is effective and relatively big.

(2) (X,B +H) is LC.
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(3) KX +B +H is relatively nef.

The idea is to use H to control the progress of MMP. Starting from (X,B) =
(X0, B0), we construct the MMP for (X,B) with scaling of H such that in
the n-th step we have a Q-factorial KLT pair (Xn, Bn) such that

(1) Hn is relatively big.

(2) (Xn, Bn + tn−1Hn) is LC.

(3) KXn +Bn + tn−1Hn is relatively nef.

Here Hn the strict transform of H, and tn is defined as the following thresh-
old:

tn = min{t ≥ 0 | KXn +Bn + tHn is relatively nef}.

We denote t−1 = 1. When n = 0, by assumption, t0 ≤ 1. Assume that
KX + B is not relatively nef, then t0 > 0. When n > 0, by construction,
KXn +Bn + tn−1Hn is relatively nef, and hence tn ≤ tn−1.

The inductive construction of the MMP is as the following. Take n ≥ 0.
Assume that we already have (Xn, Bn). If tn = 0, then KXn+Bn is relatively
nef and the MMP ends. If tn > 0, then we proceed to the next step by the
following lemma:

{measure}
Lemma 2.6.1. If tn > 0, then there exists a (KXn +Bn)-negative extremal
ray Rn such that

((KXn +Bn + tnHn) ·Rn) = 0.

Proof. Since Bn+ tnHn is relatively big, for a sufficiently small positive real
number ε, there are only finitely many (KXn + Bn + (tn − ε)Hn)-negative
extremal rays (Corollary 2.4.5). Since KXn + Bn + tnHn is relatively nef,
for 0 < ε′ < ε, a (KXn + Bn + (tn − ε′)Hn)-negative extremal ray is also
a (KXn + Bn + (tn − ε)Hn)-negative extremal ray. So by finiteness, the
threshold tn is determined by one of the extremal rays, that is, there exists
such a ray Rn such that ((KXn +Bn + tnHn) ·Rn) = 0. Note that Rn is also
a (KXn +Bn)-negative extremal ray.

Using the extremal ray Rn in the above Lemma to proceed the MMP, we
get a new Q-factorial KLT pair (Xn+1, Bn+1). Since KXn +Bn+ tnHn is nef
and numerically trivial alongRn, the strict transformKXn+1+Bn+1+tnHn+1

is relatively nef. Also note that (Xn, Bn + tnHn) is LC, which implies that
(Xn+1, Bn+1 + tnHn+1) is LC. In this way, we inductively constructed the
MMP with scaling of H. Note that we get a non-increasing sequence 1 ≥
t0 ≥ t1 ≥ . . . .

The MMP with scaling can be virtualized as in the following Figure ??.
For simplicity, let us assume that the MMP consists of flips. In this case,
N1(Xn/S) can be identified with N1(X/S), and the point corresponding to
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KXn +Bn depends on n. Let us track the changing of nef cones Amp(Xn/S)
in N1(X/S). By the cone theorem, observing from KX + B, the surface of
the nef cone Amp(Xn/S) is locally a polyhedron. Choosing an extremal
ray corresponds to choosing a face, and taking the flip means that passing
through this face and moving from a room Amp(Xn/S) to the other room
Amp(Xn+1/S). Such an operation is usually called wall crossing.

According to the original condition, KX+B+H ∈ Amp(X/S). Consider
the line in N1(X/S) connecting KX +B +H and KX +B. In each step of
the MMP with scaling, we choose the face intersecting L. Note that

KX +B + tnH ∈ Amp(Xn/S) ∩Amp(Xn+1/S) ∩ L

and all rooms line up along the line L. So such an MMP moves from
KX +B+H to KX +B on this line straightly, and the termination is easier.

Remark 2.6.2. Here we assume that (X,B) is KLT and H is relatively
big in order to apply the finiteness of extremal rays (Corollary 2.4.5) in
Lemma 2.6.1. Later we will see that we can replace Lemma 2.6.1 by Corol-
lary 2.10.12, and the MMP with scaling can be generalized to the case that
(X,B) is DLT and H is not relatively big.

Birkar, Cascini, Hacon, McKernan showed the termination of flips in the
following special but very important case. The proof will be in Chapter 3.

Theorem 2.6.3 ([15]). Let (X,B) be a Q-factorial KLT pair and f : X → S
a projective morphism. Assume that B is relatively big. Suppose that H is
an effective R-divisor such that (X,B + H) is KLT and KX + B + H is
relatively nef. Then the MMP with scaling of H terminates.

As a interesting corollary, we can show the existence of minimal models
for varieties of general type, or oppositely the existence of Mori fiber spaces
for varieties with non-pseudo-effective canonical divisors:

Corollary 2.6.4. Let (X,B) be a Q-factorial KLT pair and f : X → S a
projective morphism.

(1) Assume that KX + B is not relatively pseudo-effective over S. Then
there exists a Mori fiber space birational to (X,B).

(2) Assume that KX+B is relatively big over S. Then (X,B) has a minimal
model. Moreover, by the base point free theorem, (X,B) has a canonical
model.

2.7 Existence of rational curves
{section 2.7}

Given an algebraic variety, whether there exists a rational curve, and how
many rational curves there are if exist, are very important questions. We
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will give a proof of Theorem 2.7.2 which states that there are many rational
curves on algebraic varieties with canonical divisors satisfying certain neg-
ativity. For example, P1 is the only smooth projective curve with negative
canonical divisor (−K is ample).

In order to prove this theorem, we first take the reduction of the given
algebraic variety to positive characteristics, and then proceed the discussion
by methods specific in positive characteristics. Applying the Frobenius mor-
phism, there is a method to get a morphism from P1 by deforming a given
morphism and degenerate it by taking a limit. This method was originally
discovered by Mori, and so far is the only method to prove the existence
of rational curves in general situation. Existence of rational curves is also
a very important problem in complex geometry, but this theorem has no
analytic proof. It can be said that this is a theorem of algebraic geometry
only.

2.7.1 Deformation of morphisms

Firstly, in order to construct the space of all deformations of morphism, or
the moduli space of morphisms, we introduce the definition of Hilbert scheme
by Grothendieck ([36]). For details we refers to [92].

Definition 2.7.1. Fix a projective morphism f : X → S between Noethe-
rian schemes and a relatively ample sheaf H. For a closed subscheme Z of
a fiber Xs = f−1(s) of f , the polynomial

PZ(m) = χ(Z,mH) =
∑
p≥0

dimk(s)H
p(Z,mH)

in integer m is called the Hilbert polynomial of Z. Fixing a polynomial P ,
there exists a moduli space for all closed subscheme of fibers of f whose
Hilbert polynomial coincides with P (m). This moduli space is a projective
scheme g : HilbP (X/S)→ S over S and is called the Hilbert scheme. It has
the following universal property.

There exists a closed subscheme Z in the fiber product X×SHilbP (X/S),
which is called the universal family, satisfying the following conditions:

(1) The first projection p1 : Z → X induces an isomorphism on every
fiber p−1

2 (t) of the second projection p2 : Z → HilbP (X/S) to a closed
subscheme of Xg(t), whose Hilbert polynomial is P (m).

(2) For any S-scheme T → S and any closed subscheme ZT of X ×S T
such that the Hilbert polynomial of every fiber of the second projection
ZT → T is P (m), there exists a unique morphism T → HilbP (X/S)
such that Z ×HilbP (X/S) T = ZT .

Note that a family with constant Hilbert polynomial is automatically flat.
By taking disjoint union for all polynomials, we denote Hilb(X/S) =

∐
P HilbP (X/S).
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The moduli space of morphisms is defined to be the moduli space of
graphs of morphisms. Let X → S and Y → S be projective S-scheme such
that X is flat over S, and take G ⊂ Xs × Ys to be the graph of a morphism
between fibers g : Xs → Ys. Fix a relatively ample sheaf H on X×S Y , take
P (m) = χ(G,mH). Consider the Hilbert scheme HilbP (X ×S Y/S), and
take π : Ḡ → HilbP (X ×S Y/S) to be the universal family. Then the set of
points in HilbP (X ×S Y/S) whose fiber in the universal family is a graph of
a morphism between fibers of X and Y is an open subset. In fact, a closed
subscheme G′ of Xs′ × Ys′ is the graph of a morphism Xs′ → Ys′ if and only
if the first projection p1 : G′ → Xs′ is an isomorphism, therefore being a
graph is an open condition. This open subset is denoted by HomP

S (X,Y )
and called the moduli space of morphisms.

The theory of infinitesimal deformation is very useful when studying
the structure of Hilbert schemes. For example, let us assume that X is a
smooth projective algebraic variety over a field k, and Z is a smooth closed
subvariety. Then Z determines a point [Z] ∈ Hilb(X/k) = Hilb(X). Then
the Zariski tangent space THilb(X),[Z] = (m[Z]/m

2
[Z])
∗ of [Z] is isomorphic to

H0(Z,NZ/X), the contangent bundle of Z ⊂ X. Here m[Z] ⊂ OHilb(X),[Z]

is the maximal ideal of the local ring. On the other hand, the obstruction
space is H1(Z,NZ/X). That is, the completion of Hilb(X) along [Z] can
be represented by h1(Z,NZ/X) equations in the completion of h0(Z,NZ/X)-
dimensional affine space along the origin. Therefore we have the inequality

dim[Z] Hilb(X) ≥ h0(Z,NZ/X)− h1(Z,NZ/X).

This can be also applied to moduli spaces of morphisms. Consider the
deformation of a morphism between smooth projective algebraic varieties
g : X → Y , the cotangent bundle G is given by NG/X×Y ∼= p∗2TY . Here
TY is the tangent bundle of Y and p2 : G → Y is the second projection.
Therefore we have the inequality

dim[g] Homk(X,Y ) ≥ h0(X, g∗TY )− h1(X, g∗TY ).

2.7.2 The bend-and-break method
{existence of RC}

Theorem 2.7.2 ([106]). Let X be a normal projective algebraic variety of
dimension n over an algebraically closed field of arbitrary characteristic.
Take C be a curve on X contained in the smooth locus of X, fix a point P
on C and take an ample divisor H on X. Suppose that C is not a rational
curve and (KX ·C) < 0. Then there exists a rational curve L on X passing
through P satisfying

(H · L) ≤ 2n(H · C)

(−KX · C)
.

Here note that C and L might have singularities, and L might pass
though singularities of X.
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Proof. Firstly let us consider the case that the characteristic p of k is pos-
itive. The point is that by using Frobenius morphisms, we can make the
degree of the curve sufficiently high while keep the genus unchanged.

Take the normalization ν : C ′ → C and denote g to be the genus of C ′.
By assumption, g > 0. Take the m-th power of the Frobenius morphism
f ′ : C ′q → C ′ where q = pm. Here f ′ is the morphism defined over k
defined by taking q-th power of coordinates, which exists only in positive
characteristics. The genus of C ′q is again g. Take f : C ′q → X to be the
composition morphism.

Since (KX · C) < 0, we can take q = pm sufficiently large such that the
following inequality holds:

b = x
q(−KX · C)− 1

n
y + 1− g > 0.

Take b distinct points P1, . . . , Pb on C ′q, denote B =
∑b

i=1 Pi. Consider
the deformation of the morphism f : C ′q → X fixing B. As the defor-
mation of f is the deformation of G, by fixing B means that the graph
contains (Pi, f(Pi)) for each i. The moduli space of such deformations
Homk(C

′
q, X;B) is a closed subscheme of Homk(C

′
q, X).

We can compute the dimension of Homk(C
′
q, X;B) by infinitesimal defor-

mation theory. The Zariski tangent space of Homk(C
′
q, X) at [f ] is isomor-

phic to H0(C ′q, f
∗TX), and the Zariski tangent space of its closed subscheme

Homk(C
′
q, X;B) is isomorphic to H0(C ′q, f

∗TX ⊗ OC′q(−B)). The obstruc-

tion space is H1(C ′q, f
∗TX ⊗OC′q(−B)) instead of H1(C ′q, f

∗TX). Therefore,
by dimension counting,

dim[f ] Homk(C
′
q, X;B) ≥ χ(C ′q, f

∗TX ⊗OC′q(−B))

= degC′q(f
∗TX ⊗OC′q(−B)) + n(1− g)

= q(−KX · C)− nb+ n(1− g) ≥ 1.

The first equality is given by the Riemann–Roch formula.

Therefore, there exists a non-trivial deformation family F : C ′q×T → X
of f fixing B parametrizing by a smooth affine algebraic curve T . Here T
has a base point t0 such that F (P, t0) = f(P ) for all P ∈ C ′q, and also
F (Pi, t) = f(Pi) for all 1 ≤ i ≤ b and all t ∈ T . On the other hand, since
g > 0 and b > 0, the morphism C ′q → C has no deformation. Therefore, the
image of F is not contained in C, that is, F (C ′q × T ) 6⊂ C.

Compactify the affine curve T into a smooth projective algebraic curve T̄ .
We can extend F to a birational map C ′q×T̄ 99K X. Resolving this birational
map by a sequence of blowing ups on points of indeterminacy, we can get a
birational morphism µ : Y → C ′q × T̄ and a morphism h = F ◦ µ : Y → X.
Here µ is obtained by repeatedly blowing up points on the smooth projective
surface C ′q × T̄ . In each step of this procedure, if the image of the center of
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the blowing up in C ′q × T̄ is on Ti = Pi × T̄ (i = 1, . . . , b), we denote the
exceptional divisor to be Ēi,j (j = 1, . . . , ni). Denote the total transforms of
all such exceptional divisors on Y to be Ei,j (j = 1, . . . , ni). Take T0 = P×T̄
for a general point P on C ′q and take T ′i (i = 0, . . . , b) to be the strict
transform of Ti on Y . Since P is general, µ is isomorphic over T0, and we
have the linear equivalence

T ′i ∼ T0 −
ni∑
j=1

εi,jEi,j

for i = 1, . . . , b. Here εi,j = 1 or 0 depending on whether Ēi,j intersects the
strict transform of Ti or not.

Take C0 = C ′q × t0 ⊂ Y , since the morphism C0 → C is of degree q,

(h∗H · C0) = q(H · C).

Also (T0 · C0) = 1. Since NS(Y ) is generated by C0, T0 and exceptional
divisors of µ, there exist integers c and ei,j such that

h∗H ≡ cC0 + q(H · C)T0 −
∑
i,j

ei,jEi,j + E.

Here the support of E consists of exceptional divisors whose image is not on
Ti. Since h∗H is nef, c ≥ 0 and ei,j ≥ 0.

Since dimh(Y ) = 2, (h∗H)2 > 0. Note that

(h∗H)2 = 2cq(H · C) +
∑
i,j

e2
i,j(Ei,j)

2 + E2.

Since (E2) ≤ 0,

2cq(H · C)−
∑
i,j

ε2i,je
2
i,j ≥ 2cq(H · C)−

∑
i,j

e2
i,j > 0.

Also for every i,

c−
ni∑
j=1

εi,jei,j = (h∗H · T ′i ) = 0.

Therefore,

2q(H · C)
∑
i,j

εi,jei,j > b
∑
i,j

ε2i,je
2
i,j .

This implies that there exists i0 and j0 such that εi0,j0 = 1 and

2q(H · C) > bεi0,j0ei0,j0 > 0,

which means that

0 < (h∗H · Ei0,j0) = ei0,j0 <
2q(H · C)

b
.
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Hence there exists an irreducible component L′ of Ei0,j0 , such that L = h(L′)
is a rational curve, Pi0 ∈ L, and

(H · L) <
2q(H · C)

b
.

Recall that q = pm, and by the definition of b, we have

lim
m→∞

2q(H · C)

b
=

2n(H · C)

(−KX · C)
,

so by taking m sufficiently large, we have

(H · L) ≤ 2n(H · C)

(−KX · C)
.

Here note that the left hand side is always an integer.
We have shown that for the images of any b points on C ′q, there exists

a rational curve L passing though one of them and (H · L) satisfies the
required inequality. Next we use this to show that for any point P ∈ C,
there exists a rational curve L such that P ∈ L and (H · L) satisfies the
required inequality.

In the Hilbert scheme Hilb(X), the set of points corresponding to all
rational curves is a locally closed subset. This is because for a family of
curves, genus is lower semicontinuous. Moreover, if we only consider all
rational curves of degree (i.e. the intersection number with H) bounded
from above by a constant number, then the set is a closed subset of finite
type. What we proved is that there exists an irreducible locally closed
subset Z ⊂ Hilb(X), such that if we take UZ ⊂ X × Z to be the restriction
of the universal family U ⊂ X×Hilb(X) on Z, then the fibers of the second
projection p2 : UZ → Z are rational curves on X of degree bounded by
2n(H · C)/(−KX · C), and the image of the first projection p1(UZ) contains
a non-empty open subset of C. Take Z̄ to be the closure of Z in Hilb(X),
and take UZ̄ ⊂ X × Z̄ to be the restriction of the universal family. Then all
irreducible components of the fibers of the second projection p2 : UZ̄ → Z̄
are rational curves, and the image of the first projection p1(UZ̄) contains C.
Therefore, there exists a rational curve passing though any fixed point on
C with degree bounded by 2n(H · C)/(−KX · C).

We can construct rational curves on algebraic varieties defined over a
field of characteristic 0 by lift the above result to characteristic 0. The proof
essentially uses the property of Hilbert schemes again.

All given data as X, H, C can be described by finitely many polynomials
in finitely many invariables with finitely many coefficients in k. By adding
those coefficients to Z, we can construct a finitely generated Z-algebra R
satisfying the following conditions.
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(1) There exists a projective morphism XR → SpecR such that all the
geometric fibers Xt are normal, and the generic geometric fiber Xη̄ is
isomorphic to X. Here for a geometric point t of SpecR, we denote Xt

to be the fiber over t.

(2) There exists an ample Cartier divisor HR on XR whose restriction on
Xη̄ is H.

(3) There exists a closed subscheme CR of XR such that for any geometric
point t of SpecR, the fiber Ct is an irreducible algebraic curve on Xt

contained in the smooth locus of Xt and not a rational curve.

Here note that all conditions on fibers are open conditions, so we can
make localization to remove bad fibers.

Consider the universal family on the Hilbert scheme

U ⊂ XR ×SpecR Hilb(XR/SpecR).

Then there exists a locally closed subset of finite type ZR ⊂ Hilb(XR/SpecR)
satisfying the following: for any geometric point t of SpecR, the set of points
in Hilb(XR/SpecR) corresponding to rational curves L on Xt such that

(Ht · L) ≤ 2n(H · C)

(−KX · C)

coincides with Zt. As the right hand side is a constant, the degree of L is
bounded from above uniformly.

Take the closure Z̄R in Hilb(XR/SpecR) and take the restriction of the
universal family UZ̄R ⊂ XR ×SpecR Z̄R. The any irreducible component of
any geometric fiber of the second projection p2 : UZ̄R → Z̄R is a rational
curve with degree bounded from above.

As the residue field of a geometric point is of positive characteristic,
the image of the first projection p1(UZ̄t) contains Ct. Since Z̄R is a closed
subscheme of finite type, it follows that CR ⊂ p1(UZ̄R). In particular, Cη̄ ⊂
p1(UZ̄η̄). This finishes the proof.

The argument in the proof is by deforming the curve until its limit breaks
up with a piece (irreducible component) of rational curve, which is called
the bend and break method.

2.8 Length of extremal rays
{section 2.8}

In this section we define the “length” of an extremal ray, and shows that it
is bounded by a constant depending only on the dimension. This theorem
also contains the claim that extremal rays are generated by rational curves,
which is essential for many boundedness results and termination results.
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As the proof uses the existence theorem of rational curves proved in the
previous section, it is based on algebraic geometry in positive characteris-
tics. In addition to this, we use the vanishing theorem which is specific in
characteristic 0. This theorem was also used to prove the discreteness of
extremal rays in the cone theorem (Step 5’).

For an extremal ray R of a morphism f : (X,B)→ S, the minimal value
of the intersection numbers −((KX + B) · C) for all irreducible curves C
whose classes are contained in R is called the length of R.

Firstly, we begin with generalizing the vanishing theorem for complex
analytic varieties.

{vanishing complex version}
Theorem 2.8.1 ([122, Theorem 3.7]). Let f : X → S be a projective surjec-
tive morphism from a complex manifold to a complex variety, B an R-divisor
with normal crossing support and coefficients in (0, 1), and D a Cartier di-
visor on X. Assume that D − (KX +B) is relatively nef and relatively big.
Then Rpf∗(OX(D)) = 0 for any p > 0.

The theorem is proved by generalize the Kodaira vainshing for compact
complex manifolds to weakly 1-complete complex manifolds. A complex
manifold is said to be weakly 1-complete if there exists a plurisubharmonic
C∞-function φ such that Xc = {x ∈ X | φ(x) ≤ c} is compact for all c ∈ R.
For a positive line bundle L on a weakly 1-complete complex manifold X,
Hp(X,KX + L) = 0 for all p > 0 ([119], [120]), the same as the Kodaira
vanishing theorem.

{thm exceptional RC}
Theorem 2.8.2. Let (X,B) be a KLT pair and f : X → Y be a projective
birational morphism to a normal algebraic variety. Assume that −(KX +B)
is f -ample. Take E to be any irreducible component of Exc(f), denote n =
dimE − dim f(E). Then the set {Ct} of all rational curves Ct, such that
Ct is contracted by f and 0 > ((KX + B) · Ct) > −2n, covers E, that is,⋃
tCt = E.

Proof. For a flat family of curves whose general fibers are rational curves,
any irreducible component of its special fiber is again a rational curve.
Therefore it suffices to show that, passing though a general point of E, there
exists a rational curve contracted by f and satisfies the required inequality.
Replacing Y by an affine open subset intersecting f(E) and cutting Y by
general hyperplanes, we may assume that f(E) is a point.

We need the following lemma.

Lemma 2.8.3. Take ν : E′ → E to be the normalization and take an f -
ample divisor H on X. Then

(Hn−1 · (KX +B) · E) > ((ν∗H)n−1 ·KE′).

Proof. We may assume that H is very ample. Cutting by hyperplanes in
|H| for n − 1 times, we get C ⊂ X0 from the restriction of E ⊂ X. Since
dimE = n, dimC = 1. Denote B0 = B|X0 and ν−1(C) = C ′.
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Since KX0 = (KX + (n− 1)H)|X0 and KC′ = (KE′ + (n− 1)ν∗H)|C′ , if
the required inequality fails, then ((KX0 +B0) ·C) ≤ degKC′ . Then we can
take a Cartier divisor A0 on C, such that ((KX0 + B0) · C) ≤ degA0 and
H0(C ′,KC′ − ν∗A0) 6= 0. By the trace map we have H0(C,ωC(−A0)) 6= 0.
Here ωC is the canonical sheaf of C.

On the other hand, since C is 1-dimensional, we can take a sufficiently
small analytic neighborhood V ⊂ Y of f(C) and denote U = f−1(V ) ∩X0,
such that there exists a Cartier divisor A on U where A0 = A|C and the
support of A does not intersect with irreducible components of Exc(f |U )
other than C. Since ((KX0 +B0) ·C) ≤ degA0, A− (KX0 +B0) is relatively
nef for f : U → V .

By Theorem 2.8.1, R1f∗(OU (A)) = 0. Therefore H1(C,A0) = 0, and
H0(C,ωC(−A0)) = 0 by the Serre duality, which is a contradiction.

Go back to the proof of the theorem. If n = 1, then by degKE′ < ((KX+
B)·E) < 0, it is easy to see that E′ ∼= P1 and−2 < ((KX+B)·E). Moreover,
by the vanishing theorem, R1f∗OX = 0, which implies that E ∼= P1.

Suppose that n > 1. By taking the degree of H sufficiently large, we
may assume that C is not a rational curve. By the lemma, (KE′ · C ′) <
((KX + B) · C) < 0, we can apply Theorem 2.7.2 to C ′ ⊂ E′. Note that
M = −ν∗(KX + B) is ample on E′, so by Theorem 2.7.2, passing through
any point on C ′, there exists a rational curve L′ satisfying (M ·L′) ≤ 2n(M ·
C ′)/(−KE′ ·C ′) < 2n. L = ν(L′) is the rational curve we are looking for.

{length of extremal rays}
Corollary 2.8.4. Let (X,B) be a Q-factorial KLT pair, f : X → S a
projective morphism. Take a (KX+B)-negative extremal ray R in NE(X/S).
Take E to be the exceptional set of the corresponding contraction morphism
h and denote n = dimE−dimh(E). Here E = X if h is a Mori fiber space.
Then E is covered by rational curves L such that L are contracted by h and
−((KX +B) · L) < 2n (resp. ≤ 2n) if E 6= X (resp. E = X).

Proof. If E 6= X, this is Theorem 2.8.2. If E = X, this is by Theorem 2.7.2.

2.9 Divisorial Zariski decomposition
{section DZD}

In algebraic surface theory, the intersection theory of divisors is a very pow-
erful tool. Since the intersection number is a symmetric bi-linear form, the
Zariski decomposition theory can be developed in a strong form. In higher
dimensional algebraic geometry, it is difficult or impossible to develop a
strong Zariski decomposition theory, but if restricted to codimension 1, the
“divisorial Zariski decomposition” can be easily constructed, and is suffi-
ciently useful.
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Definition 2.9.1. Let f : X → S be a projective morphism from a Q-
factorial normal algebraic variety to a quasi-porjective algebraic variety, D
a relatively pseudo-effective R-divisor, and H a relatively ample divisor. If

N = lim
t↓0

inf{D′ | D + tH ≡S D′ ≥ 0}

is a well-defined R-divisor2.9.0.1, then we can define the relative divisorial
Zariski decomposition D = P +N of D over S by taking P = D −N . Here
P is called the numerically movable part, and N is called the numerically
fixed part.

If D = P , then D is called numerically movable. The cone consisting
of numerical equivalence classes of all numerically movable R-divisors is
denoted by Mov(X/S) ⊂ N1(X/S), and called the numerically movable
cone.

Let us give more explanation about the definition. Fixing H and a posi-
tive number t, since [D+ tH] ∈ Big(X/S), D+ tH is numerically equivalent
to an effective R. Therefore, the effective R-divisor

Nt = inf{D′ | D + tH ≡S D′ ≥ 0}

can be defined. Here the inf of R-divisors is defined by taking the inf of
coefficients of each component. Since H is numerically free, we know that
Nt′ ≥ Nt if t′ ≤ t. But here we should be careful that by taking limit
N = limt↓0Nt, the coefficients of N may go to infinity. An example given
by Lesieutre [101] shows that this could happen. Therefore the the relative
divisorial Zariski decomposition can be defined only if N is an R-divisor,
that is, non of its coefficients is infinity. But nevertheless we know the
existence of the relative divisorial Zariski decomposition in the following
cases:

Lemma 2.9.2 ([123, Lemma III.4.3]). The relative divisorial Zariski de-
composition of a relatively pseudo-effective R-divisor D exists if one of the
following holds:

(1) S = Spec k is a point.

(2) D is relatively numerically equivalent to an effective R-divisor.

(3) Supp(D) does not dominates S.

(4) codim f(V ) < 2 for every component V of Supp(D).

If dimX = 2, the divisorial Zariski decomposition and the classical
Zariski decomposition coincide ([64]).

2.9.0.1I added more details here, because the relative divisorial Zariski decomposition does
not always exist
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Lemma 2.9.3. Assume that the relative divisorial Zariski decomposition
D = P +N exists. Then

(1) The number of irreducible components of N is bounded by ρ(X/S).

(2) P is relatively pseudo-effective.

(3) N and P is independent of the choice of the relatively ample divisor H.

Proof. (1) The number of irreducible components of Nt is bounded by the
number of numerically linearly independent R-divisors, which is ρ(X/S).

(2) P is relatively pseudo-effective just because

P = lim
t→0

(D + tH −Nt),

where D + tH −Nt is relatively pseudo-effective.

(3) For another relatively ample divisor H ′, there exist positive integers
m,m′ such that mH −H ′ and m′H ′ −H are both relatively ample. Then
it is easy to show that N is independent of the choice of H.

Lemma 2.9.4. (1) The numerically movable cone Mov(X/S) is a closed
cone, and we have the following inclusions

Amp(X/S) ⊂ Mov(X/S) ⊂ Eff(X/S).

(2) Let α : X 99K Y be a birational map between Q-factorial normal alge-
braic varieties over a quasi-porjective algebraic variety S. Assume that α
is isomorphic in codimension 1, then the natural map α∗ : N1(X/S)→
N1(Y/S) induces a bijective map α∗(Mov(X/S)) = Mov(Y/S).

Proof. (1) LetD be a relatively pseudo-effective R-divisor andH a relatively
ample divisor. If for any t > 0 D + tH ∈ Mov(X/S), then it is easy to see
that Nt = 0 for any t > 0, which implies that D ∈ Mov(X/S). So the
numerically movable cone is closed.

If D is relatively nef, then D+ tH is relatively ample and hence the nef
cone is contained in the numerically movable cone.

(2) Take projective birational morphisms p : Z → X and q : Z → Y
from a common normal algebraic variety Z such that α = q ◦ p−1. For any
R-divisors D,D′ on X, if D ≡S D′, then q∗p

∗D ≡S q∗p
∗D′. Note that

α∗ = q∗ ◦ p∗.
Take relatively ample divisors HX and HY on X and Y such that HY −

α∗HX is relatively ample. It is easy to see that if inf{D′ | D+ tHX ≡S D′ ≥
0} = 0, then inf{D′′ | α∗D + tHY ≡S D′′ ≥ 0} = 0, which means that the
image of a numerically movable divisor is numerically movable.
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Remark 2.9.5. If dimX = 2, then being numerically movable is equivalent
to being nef. Hence in this case the numerically movable cone coincides with
the nef cone, and the divisorial Zariski decomposition is the classical Zariski
decomposition.

For a pair (X,B), the divisors that should be contracted in order to get
a minimal model can be determined by the divisorial Zariski decomposition
of KX +B:

{thm E in N}
Theorem 2.9.6. Let (X,B) be a Q-factorial DLT pair and f : X → S a
projective morphism to a quasi-projective variety. Assume that there exists
a minimal model α : (X,B) 99K (Y,C) with induced projective morphism
g : Y → S. Then the divisorial Zariski decomposition KX + B = P + N
over S exists. Moreover, let E be a prime divisor on X, then E is contracted
by α (that is, α∗E = 0) if and only if E is a component of N .

Proof. Note that KX+B is relatively pseudo-effective since it has a minimal
model, hence we can consider the divisorial Zariski decomposition.

Take projective birational morphisms p : Z → X and q : Z → Y from
a common normal algebraic variety Z such that α = q ◦ p−1. By assump-
tion, the discrepancy G = p∗(KX + B) − q∗(KY + C) is effective, and E is
contracted by α if and only if p−1

∗ E is a component of G.
Take a relatively ample divisor H ′ on Y , and a relatively ample divisor

H on X such that H − p∗q∗H ′ is relatively ample. For any t > 0, since
KY + C + tH ′ is relatively ample and

KX +B + tH = p∗q
∗(KY + C + tH ′) + t(H − p∗q∗H ′) + p∗G,

we have
inf{D′ | KX +B + tH ≡S D′ ≥ 0} ≤ p∗G.

Therefore, N is well-defined and N ≤ p∗G.
To finish the proof, we will show that N ≥ p∗G.
If KX +B + tH ≡S D′ ≥ 0, then α∗D

′ ≡S KY + C + tα∗H, and

p∗D′ − q∗α∗D′ ≡S p∗(KX +B + tH)− q∗(KY + C + tα∗H)

= G+ t(p∗(H)− q∗(α∗H)).

Note that both sides are exceptional divisors over Y , so they are actually
equal by the negativity lemma. Therefore,

p∗D′ ≥ G+ t(p∗(H)− q∗(α∗H)).

Taking the limit when t→ 0, we can see that N ≥ p∗G.

Remark 2.9.7. (1) If dimX = 2, contracting all those divisors in N , or in
other words contracting all (−1)-curves will produce a minimal model. If
dimX ≥ 3, then the situation becomes much more complicated because
the geometry in codimension 2 or higher is involved.
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(2) The Zariski decomposition of a divisor D on an algebraic surface is dis-
covered by Zariski [153] during the study of the section ring

⊕∞
m=0H

0(X,mD)
of D. In particular, if we consider the Zariski decomposition of the
canonical divisor, then the numerically movable part coincides with the
pullback of the canonical divisor on the minimal model. In this sense, we
can say that the Zariski decomposition of canonical divisors is equivalent
to the minimal model theory.

Generalizing this idea, the log version of existence of minimal models in
dimension 2 can be proved as an application of the Zariski decomposition
([54]). Moreover, [31] generalized the Zariski decomposition to pseudo-
effective divisors.

In dimension 2, the intersection theory of divisors is available so that
we can use the general theory of symmetric bilinear forms to define the
Zariski decomposition, but this is not the case in dimension 3 and higher.
So in [64], the divisorial Zariski decomposition was defined only for big
divisors using the limit of linear systems. [123] pushed this forward and
generalized the definition to pseudo-effective divisors. In [15], the fixed
part was defined using R-linear equivalence. Here the definition was
simplified by replacing numerical equivalence with R-linear equivalence.

Similar to the case of dimension 2, if the numerically movable part is
nef, then in fact we can get a minimal model. In order to deal with
problems caused by subsets of dimension 2 or higher, we need to replace
X by blowing ups. Although this approach to the minimal models is
not successful, it might be helpful for understanding the problem. In
this book, we use flips instead of blowing ups to deal with subsets of
dimension 2 or higher.

In addition, there is also an analytical approach to the analytical Zariski
decomposition, which has played a certain role ([147]).

If the numerically movable part is not 0, then we can make many global
sections by adding a little positivity:

{Nakayama-Zariski}
Theorem 2.9.8 (Nakayama [123]). Let D be a pseudo-effective R-divisor
on a normal projective Q-factorial algebraic variety X. Take D = P +N to
be the divisorial Zariski decomposition. If P 6≡ 0, then there exists an ample
divisor H, such that the function in positive integer m satisfies

lim
m→∞

dimH0(X, xmDy +H) =∞.

Proof. Since N is effective, we may assume that D = P . Consider the
numerical base locus

NBs(D) = lim
t↓0

(
⋂
{Supp(D′) | D + tH ≡ D′ ≥ 0}).
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Since N = 0, NBs(D) has no components of codimension 1. Also, since
this is a limit of an increasing sequence of closed subsets, it is a union of at
most countably many subvarieties of codimension at least 2. Therefore, we
may take a very general smooth curve C ⊂ X by cutting by very general
hyperplanes such that C ∩NBs(D) = ∅. Since D 6≡ 0, (D · C) > 0.

Fix an ample divisor H, take Lm = xmDy+H. Note that degCxmDy =
(mD ·C)−((mD−xmDy)·C can be arbitrarily large if m is sufficiently large,
since (D · C) > 0 and ((mD − xmDy) · C is bounded. Hence H0(C,Lm|C)
can be arbitrarily large. We will show that if m is sufficiently large, then
the natural map H0(X,Lm)→ H0(C,Lm|C) is surjective.

Note that C is contained in the smooth locus of X, consider g : Y → X
to be the blowing up along C, and denote E to be the exceptional divisor.
For any t > 0, there exists an effective R-divisor Dm ≡ mD+ tH such that
its support does not contain C, and (Y, g∗Dm) is KLT in a neighborhood of
E.

Note that

g∗Lm − E − (KY + g∗Dm)

= g∗(xmDy +H − (KX +Dm))− (n− 1)E

≡ g∗((1− t)H − (mD − xmDy)−KX)− (n− 1)E.

Here, n = dimX. Note that we may take H sufficiently large comparing to
components of KX , E, D, and t sufficiently small, such that this divisor is
ample.

By the Nadal vanishing theorem,

H1(Y, I(Y, g∗Dm)⊗OY (g∗Lm − E)) = 0.

By assumption,
E ∩ Supp(OY /I(Y, g∗Dm)) = ∅,

hence the natural map

H0(Y, g∗Lm)→ H0(E, (g∗Lm)|E)

is surjective. This proves the claim.

Conversely, if the function dimH0(X, xmDy + H) of positive integer
m is bounded, then we say that the numerical Kodaira dimension of D is
0, which is denoted by ν(X,D) = 0. In general, we define the numerical
Kodaira dimension as the following:

Definition 2.9.9. The numerical Kodaira dimension ν(X,D) of an R-
divisor D is defined to be the minimal integer ν satisfying the following
property ([123]): for any fixed H, there exists a positive real number c, such
that for any positive integer m,

dimH0(X, xmDy +H) ≤ cmν .

If D is not pseudo-effective, then we denote ν(X,D) = −∞.
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This definition corresponds to the definition of the Kodaira dimension
κ(X,D), which is just the minimal integer κ satisfying that there exists a
positive real number c, such that for any positive integer m

dimH0(X, xmDy) ≤ cmκ.

2.10 Polyhedral decomposition of cone of divisors

A polytope in a real vector space is the convex closure of finitely many points.
It is called a rational polytope if all the vertices are points with rational num-
bers as coordinates (rational points). In this section, we consider polyhedral
decompositions of cone of divisors with respect to minimal models or canon-
ical models and their applications. A line is an important example of a
polytope, and the MMP with scaling is related to the decomposition of this
polytope.

When changing the coefficients bi in the log canonical divisor KX +∑
i biBi, the corresponding canonical model changes. This phenomenon

is the similar to that quotient spaces change according to polarizations in
geometric invariant theory (= GIT).

2.10.1 Rationality of sections of nef cones

Applying the length of extremal rays, we can show that the sections of nef
cones are rational polytopes:

{Shokurov letterVII}
Theorem 2.10.1 (Shokurov [136]). Let X be a Q-factorial normal algebraic
variety, f : X → S a projective morphism, and B1, . . . , Bt effective Q-
divisors. Assume that (X,Bi) is KLT for all i. Take P be the smallest
convex closed subset containing all Bi in the real vector space of R-divisors
on X, denote N = {B′ ∈ P | KX + B′ is relatively nef}. Take {Rj} to be
the set of all extremal rays R such that there exists a point B′ ∈ P such that
((KX + B′) · R) < 0. Take Hj = {B′′ ∈ P | ((KX + B′′) · Rj) = 0} to be
the rational hyperplane section of P determined by Rj. The the following
statements hold:

(1) For any interior point x in P , take U to be a sufficiently small neigh-
borhood, then it intersects only finitely many rational hyperplanes Hj.

(2) N is a rational polytope.

Proof. (1) Assume, to the contrary, that any neighborhood U of x intersects
infinitely many distinct Hj . Then there exists a rational line in the smallest
real linear space containing P passing through a sufficiently small neighbor-
hood U of x with the following property: L ∩ U is an open subset of the
rational closed interval L ∩ P = [B,C] intersecting infinitely many Hj at
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distinct points. Denote L ∩Hj = (1 − tj)B + tjC and take t0 ∈ (0, 1) be a
limit point of {tj}.

By construction, either ((KX +B) ·Rj) < 0 or ((KX +C) ·Rj) < 0 holds.
By the length of extremal rays, we can take a rational curve lj generating
Rj such that either

0 < (−(KX +B) · lj) ≤ 2b

or
0 < (−(KX + C) · lj) ≤ 2b.

Here b is the maximal dimension of fibers of f .
Applying the Diophantine approximation theorem to t0, there is a suf-

ficiently large positive integer q and a rational number p/q such that |t0 −
p/q| < 1/q2. Here we allow t0 = p/q. On the other hand, there exists a
positive integer m such that m(KX +B) and m(KX +C) are both Cartier.
Therefore, the absolute value |((KX + (1 − p/q)B + p/qC) · lj)| is either 0
or at least 1/mq.

If p/q 6= tj for some j, then ((KX+(1−p/q)B+p/qC)·lj) 6= 0, otherwise
by ((KX+(1−tj)B+tjC)·lj) = 0, we have ((KX+B)·lj) = ((KX+C)·lj) =
0, a contradiction. Hence |((KX+(1−p/q)B+p/qC)·lj)| ≥ 1/mq. Moreover,
we can take j sufficiently large such that |tj−p/q| < 2/q2, then the absolute
value of the slope of the function ((KX + (1 − x)B + xC) · lj) is at least
q/2m. This contradicts the fact that (−(KX + B) · lj) or (−(KX + C) · lj)
is bounded.

(2) By the cone theorem, the nef cone N is the intersection of inner sides
of hyperplanes Hj . Therefore, by (1), N is a rational polytope in the interior
of P . We only need to investigate the neighborhood of the boundary of P .

Take L to be any rational linear subspace contained in the smallest real
linear space containing P , we will prove that N ∩ L is a rational polytope
by induction on dimL. If P ⊂ L, then this is the statement of the theorem.
Take PL to be the smallest face of P containing L ∩ P . We may replace P
by PL and assume that P = PL, that is, L contains an interior point of P .

If dimL = 1, then N ∩ L is a point or a closed interval. Every endpoint
is a rational point: this is clear if it is on the boundary of P , and by (1) if
it is an interior point of P .

Now assume that dimL > 1. For any face P ′ of P , N ∩ P ′ ∩ L is a
rational polytope by induction hypothesis. Since N is locally a rational
polytope near interior points of P , it suffices to show that N ∩ L is locally
a rational polytope near every vertex B of N ∩ P ′ ∩ L.

Take any rational line L′ ⊂ L passing though B and containing an
interior point of P , write P ∩L′ = [B,C]. Then N∩L′ = [B, (1−t0)B+t0C]
for some t0 ∈ [0, 1]. Here t0 is a rational number by (1). If t0 6= 0, 1, then
(1−t0)B+t0C is an interior point of P , and there exists an index j such that
L′∩Hj = {(1−t0)B+t0C}. Take a positive integer m such that m(KX+B)
is Cartier. Since (m(KX +B) · lj) > 0 and it is an integer, by the argument
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of (1), there exists a constant c > 0 depending only on B but not L′ such
that t0 ≥ c. Therefore, there exists a sufficiently small neighborhood U of
B such that N ∩ L ∩ U is a cone with vertex B.

Take a general rational hyperplane M sufficiently near to B, then N ∩
L∩M is a rational polytope by induction hypothesis, hence N ∩U is a cone
over a rational polytope. This finishes the proof.

Remark 2.10.2. In this theorem, the section of the nef cone is a rational
polytope since finitely many divisors are fixed in the beginning. In general
this statement is not true for N1(X/S) since there are infinitely many di-
visors. For example, the surface of the nef cone of an Abelian variety is
defined by (Dn) = 0, which is not linear.

2.10.2 Polyhedral decomposition according to canonical mod-
els

For a given pair (X,B), its minimal model is not unique in general, but its
canonical model is unique. Therefore, we first consider the decomposition
according to canonical models:

{poly decomposition 1}
Theorem 2.10.3 (Polyhedral decomposition 1 ([136], [79])). Let X be a
Q-factorial normal algebraic variety, f : X → S a projective morphism
to a quasi-projective variety, and B1, . . . , Bt effective R-divisors such that
(X,Bi) is KLT for all i. Take V to be the affine subspace generated by all
Bi in the real vector space of divisors. Take P ′ to be the polytope generated
by all Bi. Consider the following convex closed subset of P ′:

P = {B =
∑
i

biBi ∈ P ′ | [KX +B] ∈ Eff(X/S)}.

Assume the following conditions:

• For each point B ∈ P , there exists a minimal model α : (X,B) 99K
(Y,C) and a canonical model g : Y → Z of f : (X,B)→ S.

• For each point B ∈ P , there exists a polytope P ′B ⊂ V containing B
as an interior point in the topology of V , such that if denote

PB = {B′ ∈ P ′B ∩ P ′ | [KY + α∗B
′] ∈ Eff(Y/Z)},

then for any B′ ∈ PB, the morphism g : (Y, α∗B
′) → Z admits a

minimal model and a canonical model.

Then there exists a finite disjoint decomposition

P =

s∐
j=1

Pj

and rational maps βj : X 99K Zj satisfying the following properties:
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(1) B ∈ Pj if and only if βj gives the canonical model of f : (X,B)→ S.

(2) The closures P̄j of Pj are unions of polytopes. In particular, P is a
polytope.

(3) If Pj ∩ P̄j′ 6= ∅, then there exists a morphism fjj′ : Zj′ → Zj such that
βj = fjj′ ◦ βj′.

Here note that Pj is not necessarily connected.

Proof. Firstly, note that (X,B) is KLT for any B ∈ P ′, therefore we can
use the framework of the minimal model theory. We prove the theorem by
induction on dimV . If dimV = 0, then the statement is trivial. Assume
that dimV ≥ 1. Fix any point B ∈ P . Take the minimal model α :
(X,B) 99K (Y,C) and the canonical model g : (Y,C)→ Z. There exists an
R-Cartier divisor H on Z relatively ample over S such that KY +C = g∗H.
We can take P ′B sufficiently small, such that for any B′ ∈ P ′B ∩ P , KX +B′

is negative with respect to α.

For any B′ ∈ PB, take a minimal model α′ : (Y, α∗B
′) 99K (Y ′, C ′)

and the canonical model g′ : (Y ′, C ′) → Z ′ of g : (Y, α∗B
′) → Z. Take

h : Z ′ → Z to be the natural morphism. There exists an R-Cartier divisor
H ′ on Z relatively ample over Z such that KY ′ + C ′ = (g′)∗H ′. Take a
sufficiently small real number δ such that (1 − δ)h∗H + δH ′ is relatively
ample over S. Take B′′ = (1− δ)B + δB′ and C ′′ = (1− δ)α∗C + δC ′, then
the negativity still holds, so α′ ◦α : (X,B′′) 99K (Y ′, C ′′) is a minimal model
of f : (X,B′′)→ S and g′ : (Y ′, C ′′)→ Z ′ is the canonical model.

We remark that such δ does not depend on B′, but only depends only on
B (and H). Since H is ample over Z, we may take a sufficiently small ε > 0
such that (H · ΓZ) > ε for any relative curve ΓZ on Z. Then we may take
δ = ε/(2ε+ 4 dimX). In fact, we will show that KY ′ + (1− 2δ)α∗C + 2δC ′

is relatively nef over S, which implies that (1− 2δ)h∗H + 2δH ′ is relatively
nef over S, and therefore (1 − δ)h∗H + δH ′ is relatively ample over S.
Assume, to the contrary, that KY ′ + (1 − 2δ)α∗C + 2δC ′ is not relatively
nef over S, then there exists a negative extremal ray R, which is also a
(KY ′ + C ′)-negative extremal ray since KY ′ + α∗C is relatively nef over S.
By the length of extremal ray, R is generated by a rational curve Γ such
that ((KY ′ + C ′) · Γ) ≥ −2 dimX. Note that C is not contacted over Z as
KY ′ + C ′ is nef over Z, therefore it is easy to compute that

((KY ′ + (1− 2δ)α∗C + 2δC ′) · Γ) ≥ 0,

a contradiction.

Therefore, to summarize, if we take P ′B sufficiently small, the for any
B′ ∈ PB, (Y ′, C ′′) and Z ′ are minimal model and canonical model for both
f : (X,B′) → S and g : (Y, α∗B

′) → Z. In particular, PB = P ′B ∩ P .



144 CHAPTER 2. THE MINIMAL MODEL PROGRAM

Also we can see that they are minimal model and canonical model for f :
(X, (1− t)B + tB′)→ S for any 0 < t ≤ 1.

The boundary ∂(P ′B ∩P ′) of P ′B ∩P ′ (as a subset of V ) is a finite union
of (dimV − 1)-dimensional polytopes (∂(P ′B ∩ P ′))k. Note that KY + C
is relatively numerically trivial over Z, hence ∂PB ⊂ ∂(P ′B ∩ P ′). We can
apply induction hypothesis to (∂(P ′B ∩ P ′))k and (Y,C)→ Z, here to check
the second condition, we use the second condition on X and the fact that
X and Y have the same minimal model and canonical model for divisors
in PB. Then this implies that there is a decomposition of ∂PB into finitely
many polytopes corresponding to canonical models of (Y, α∗B

′) → Z for
B′ ∈ ∂PB. Therefore, PB is decomposed into cones over these polytopes
with vertex at B, which correspond to canonical models of (Y, α∗B

′) → Z
for B′ ∈ PB. Since P ′ is compact, it can be covered by finitely many such
P ′B, and the first two statement are proved. For the third conclusion, just
take B ∈ Pj ∩ P̄j′ and it is clear from the above argument.

2.10.3 Polyhedral decomposition according to minimal mod-
els

Next we consider the decomposition according to minimal models:
{poly decomposition 2}

Theorem 2.10.4 (Polyhedral decomposition 2 ([136], [79])). Keep the as-
sumption in Theorem 2.10.3. Then for each Pj, there is finite disjoint de-
composition

Pj =
t∐

k=1

Qj,k

satisfying the following properties: fix a birational map α : X 99K Y such
that

Q = {B ∈ P | α is a minimal model of f : (X,B)→ S}

is non-empty, then

(1) Q is locally closed, whose closure is a polytope.

(2) There exists an index j such that Q ⊂ P̄j.

(3) If Q ∩ Pj 6= ∅ for some j, then there exists k such that Q ∩ Pj = Qj,k.

(4) The closure of Q̄j,k is a polytope for any j, k.

{remark mm no unique}
Remark 2.10.5. For any fixed j, k, it is possible that there are infinitely
many α such that Q ∩ Pj = Qj,k. For example, for a pair (X,B) satisfying
KX +B ≡S 0, there might be infinitely birational maps α inducing minimal
models (Example 2.10.7).
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Proof. (1)Q is determined by cutting the pullback of the nef cone Amp(Y/S)
by finitely many linear inequalities given by negativity of log canonical di-
visors. The nef cone is a closed polytope, and the inequalities are open
conditions, hence we get the conclusion.

(2) It is easy to see that if B,B′ ∈ Q, then tB + (1 − t)B′ ∈ Q for
any t ∈ [0, 1]. Hence Q is a convex set. Take a relative interior point
B ∈ Q, take g : Y → Z to be the canonical model of (Y, α∗B). Then
[α∗(KX +B)] ∈ g∗Amp(Z/S) and g∗Amp(Z/S) is a face of Amp(Y/S). For
any B′ ∈ Q, since [α∗(KX + B′)] ∈ Amp(Y/S) and Q is convex, we have
[α∗(KX + B′)] ∈ g∗Amp(Z/S). Moreover, if B′ is another relative interior
point, then [α∗(KX + B′)] ∈ g∗Amp(Z/S). Hence if we take Pj to be the
subset corresponding to the canonical model g ◦ α, then Q ⊂ P̄j .

(3) Given two birational maps αi : X 99K Yi (i = 1, 2) with corresponding
subsets ∅ 6= Qi ⊂ P . Assume that there exist morphisms gi : Yi → Z such
that β = g1 ◦ α1 = g2 ◦ α2 corresponds to some Pj . Consider the birational
map γ : Y1 99K Y2 determined by α2 = γ ◦ α1. We claim that if γ is
isomorphic in codimension 1, then Q1 ∩ Pj = Q2 ∩ Pj . In fact, take a point
B ∈ Q1 ∩ Pj , we can write KY1 + α1∗B ≡ g∗1H for a relatively ample R-
divisor H on Z. Since γ is isomorphic in codimension 1, KY2 +α2∗B ≡ g∗2H.
Therefore B ∈ Q2 ∩ Pj . In particular, if Q1 ∩ Q2 ∩ Pj 6= ∅, then the
minimal models corresponding to a point B ∈ Q1 ∩Q2 ∩ Pj are isomorphic
in codimension 1, and therefore Q1 ∩ Pj = Q2 ∩ Pj .

Hence by the above argument, we get a disjoint decomposition

Pj =
∐
α

(Q ∩ Pj)

where α runs over all birational contractions α : X 99K Y , and Q ∩ Pj
depends only on divisors contracted by α.

Take Bj,l to be vertices of P̄j and take {Em} to be the set of prime
divisors appearing in the numerical fixed part of some KX +Bj,l (note that
the divisorial Zariski decompositions over S exist due to the existence of
canonical models). Note that {Em} is a finite set and contains all prime
divisors appearing in the numerical fixed part of KX +B for any B ∈ Pj . So
by Theorem 2.9.6, there are finitely many possibilities for the set of prime
divisors contracted by α, and hence the decomposition of Pj is finite.

(4) Since P̄j is a union of polytopes and Q̄ is a polytope, Q̄j,k is a
polytope. Here we remark that Qj,k and Q̄j,k are convex.

Corollary 2.10.6. In Theorems 2.10.3 and 2.10.4, if all Bi are Q-divisors,
then P , P ′, Q̄j,k are all rational polytopes, and P̄j is a union of rational
polytopes.
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Proof. As in the proof, Q̄ is determined by cutting the pullback of the nef
cone of the minimal model by finitely many linear inequalities with rational
coefficients. As the nef cone is a rational polytope, Q̄ is also a rational
polytope.

Fix a Pj , denote P ′j to be the set of interior points of Pj as a subset of V .

Then a point in P ′j is contained in some Q ⊂ P̄j and hence P̄ ′j is the union of

such Q̄, which is a union of rational polytopes. On the other hand, Pj \ P̄ ′j
is contained in a union of faces of rational polytopes, so we may replace P
by those faces and show that the closure of Pj \ P̄ ′j is a union of rational

polytopes. Therefore, P̄j is a union of rational polytopes and P is a rational
polytope.

Q̄j,k is the intersection of a rational polytope and a union of rational
polytopes, hence is a rational polytope.

{223}
Example 2.10.7. Consider a general hypersurface X in P2 × P1 × P1 of
type (3, 2, 2). X is a smooth projective 3-dimensional algebraic variety with
KX ∼ 0. We consider the polyhedral decomposition of pseudo-effective cone
of this example, in which there are infinitely many rational polytopes. This
is also an example such that the quotient of birational automorphism group
by the biregular automorphism group Bir(X)/Aut(X) is an infinite group.

Denote P1, P2, P3 by the projective spaces in the fiber product, take
Li to be the pullback of hyperplanes Hi by the projection pi : X → Pi
(i = 1, 2, 3). L1, L2, L3 is a basis of N1(X). The nef cone Amp(X) is the
simple cone generated by L1, L2, L3.

The projection pi : X → Pi corresponds to the extremal ray 〈Li〉. Here
〈〉 means the generated cone. A general fiber of p1 is an elliptic curve, and
that of p2, p3 is a K3 surface. The projection pij : X → Pi×Pj corresponds
to the face 〈Li, Lj〉. A general fiber of p23 is an elliptic curve, and that of
p12, p13 is a set of 2 points. Taking a stein factorization, q12, q13 are small
contractions.

Express the equation of X by f(x, y)z2
0 + g(x, y)z0z1 + h(x, y)z2

1 = 0.
Here, [x0 : x1 : x2], [y0 : y1], [z0 : z1] are homogeneous coordinates of
P1, P2.P3, f, g, h are homogenous polynomials of degree 3 for x0, x1, x2 and
of degree 2 for y0, y1. The exceptional locus of q12 : X → Y12 is defined by
f = y = h = 0, which consists of 54 P1.

As p12 : X → P1 × P2 gives a degree 2 extension of function fields, X
as a birational automorphism induced by the Galois group Z/(2), which is
a birational map α : X 99K X exchanging 2 points in general fibers of p12,
and given by (x, y, [z0 : z1]) 7→ (x, y, [hz1 : fz0]). This birational map is
non-trivial but preserves the equation of X and q12. Note that

α∗L1 = L1,

α∗L2 = L2,

α∗L3 = 3L1 + 2L2 − L3.
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Here to distinguish with X, we denote α : X0 99K X1. We consider (X1, 0)
as a non-trivial minimal model of (X0, 0).

For p13 : X → P1 × P3, we can similarly define β : X0 99K X−1. Note
that β∗L1 = L1, β∗L2 = 3L1 − L2 + 2L3, β∗L3 = L3.

Note that α2 and β2 are identity, α and β are not commutative. For each
n ∈ Z, we inductively define birational maps αn : X0 99K Xn by α ◦ αn =
α−n+1, β ◦ αn = α−n−1. If we take Mk = 3

2(k2 + k)L1 + (k + 1)L2 − kL3,
then

α∗nL1 = L1,

α∗nL2 =

{
M2m n = 2m;

M2m n = 2m+ 1,

α∗nL3 =

{
M2m−1 n = 2m;

M2m+1 n = 2m+ 1.

So the image of the nef cone α∗nAmp(Xn) is generated by L1,Mn−1,Mn,
which is different from each other for each n. So we get a subgroup Z/(2) ∗
Z/(2) ⊂ Bir(X) of the birational automorphism group.

The pseudo-effective cone are decomposed into nef cones:

Eff(X) =
⋃
n∈Z

α∗nAmp(Xn).

In fact, the right hand side is generated by L1 and Mk, and note that the
limit of the ray generated by Mk is L1 as |k| → ∞, so it is easy to see
that any divisor D outside this cone, we can find a big divisor D′ such
that the segment [D,D′] interests the face generated by Mn−1,Mn for some
n, but divisors on this face is not big, which implies that D can not be
pseudo-effective. Moreover, since L1 and Mk are all effective, we know that
Eff(X) = Eff(X).

This cone is decomposed into infinitely many rational polytopes, and
each of them corresponds to a minimal model of X. The reason that in-
finitely many cones appear is because the finite-dimensional space of divisor
classes is the projection of the space of all divisors, which is of infinite di-
mension.

2.10.4 Applications of polyhedral decompositions

The polyhedral decomposition theorem plays an important role in the proof
of the existence of the minimal models in the next chapter. Here we in-
troduce other applications as the finiteness of crepant blowing ups, the ter-
mination of MMP with scaling, the fact that birational minimal models
are connected by flops, and the generalization of MMP with scaling under
weaker conditions.
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For a KLT pair (X,B), a crepant blowing up of (X,B) is a projective
birational morphism g : (Y,C) → (X,B) from a Q-factorial KLT pair such
that g∗(KX + B) = KY + C. In particular, if (Y,C) admits no crepant
blowing up other than automorphisms, then it is called a maximal crepant
blowing up.

As an application of [15], we can get the following corollary by the ar-
gument in [64]:

{cbu}
Corollary 2.10.8 (Crepant blowing up). For a KLT pair (X,B), there
exists a maximal crepant blowing up for (X,B). Moreover, the set of crepant
blowing ups of (X,B) is finite up to isomorphisms.

Proof. Take a very log resolution f : Ỹ → (X,B), write f∗(KX + B) =
KỸ + C̃. Write C̃ = C̃+ − C̃− into positive part and negative part. Take a

minimal model g : (Y,C)→ (X,B) of f : (Ỹ , C̃+)→ X. Since [KỸ + C̃+] =

C̃− ∈ N1(Y/X), all irreducible components of C̃− are contracted by f , and
the set of divisors contracted by α : Ỹ 99K Y induced by the minimal model
coincides with the support of C̃−. That is, the set of exceptional divisors
of g coincides with the set of exceptional divisors of f with non-negative
coefficients in C̃. As f is a very log resolution, any blowing up of Ỹ does
not create new prime divisors in the latter set, hence g is a maximal crepant
blowing up.

Since g is birational, for any divisor D on Y , there exists an effective
divisor D′ on Y such that D ≡X D′. For any sufficiently small ε > 0,
(Y,C + εD′) is KLT. By [15], there exists a minimal model over X, and the
canonical model exists by the base point free theorem. Hence by the polyhe-
dral decomposition theorem, there exists a decomposition in a neighborhood
of origin of N1(Y/X) corresponding to the canonical models. Taking cones
of those polyhedrons, we get a decomposition of N1(Y/X) into polyhedral
cones.

For any maximal maximal crepant blowing upg′ : (Y ′, C ′)→ X, the set
of exceptional divisors of g′ coincides with the set of exceptional divisors
of f with non-negative coefficients in C̃ as discrete valuations on k(X). In
fact, if this is not the case, we can take a common very log resolution and
a minimal model over Y ′ as above to create a non-trivial crepant blowing
up of Y ′. Therefore, Y and Y ′ are isomorphic in codimension 1. The
image of Amp(Y ′/X) under N1(Y ′/X) → N1(Y/X) coincides with one of
the above polyhedral cones. Hence there are only finitely many maximal
crepant blowing ups.

For a crepant blowing up g′′ : (Y ′′, C ′′) → X, we can take a maximal
crepant blowing up (Y ′, C ′) of (Y ′′, C ′′), which is also a maximal crepant
blowing up (Y ′, C ′) of (X,B), and the nef cone Amp(Y ′′/X ′′) corresponds
to a face of Amp(Y ′/X ′). Hence crepant blowing ups are finite.

Assuming the existence of minimal models and canonical models, we can
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show the termination of flips in MMP with scaling. Note that if there exists
a sequence of flips that terminates, then it implies the existence of minimal
models, but be aware that this is different with that any sequence of flips
terminates.

{termination of MMP with scaling}
Corollary 2.10.9 (Termination of MMP with scaling). Let f : (X,B) →
S be a projective morphism from a Q-factorial KLT pair. Consider the
MMP with scaling of H. Here (X,B + H) is KLT, [KX + B] ∈ Eff(X/S),
and [KX + B + H] ∈ Big(X/S) ∩ Amp(X/S). Assume that there exists a
minimal model and canonical model for (X,B). Then this MMP with scaling
terminates.

Proof. Take X = X0 and denote αi : Xi 99K Xi+1 to be each step of
the MMP. Since there are only finitely many divisorial contractions, after
removing finitely many steps, we may assume that αi are all flips.

Since KX + B + H is relatively big and KX + B is relatively pseudo-
effective, for any 1 ≥ t > 0, KXi +B+tH is relatively big, hence its minimal
model exists, by the existence of minimal models. Moreover, by the base
point free theorem, its canonical model exists. By assumption, minimal
model and canonical model exist if t = 0. We may apply the polyhedral
decomposition theorem to the segment [B,B+H], and get a decomposition
of finitely many interval Pj . To simplify the notation, we denote B+ tH by
t and consider the decomposition on [0, 1]. Take

ti = min{t ∈ R | KXi +B + tH is relatively nef},
t′i = max{t ∈ R | KXi +B + tH is relatively nef}.

In other words, the interval Qi in which X 99K Xi gives a minimal model
is just [ti, t

′
i]. Recall that for the extremal ray corresponding to αi, we have

((KXi + B) · R) < 0, ((KXi+1 + B) · R) > 0, ((KXi + B + tiH) · R) =
((KXi+1 +B + tiH) ·R) = 0. In particular, ti = t′i+1.

Assume that there are infinitely many distinct intervals Qi, then there
exists an interval Pj in which ti is an interior point, take β : X 99K Y to
be the corresponding canonical model. We can find a Qi′ (i′ ≤ i) such that
there exists t > ti in Pj ∩ Qi and a Qi′′ (i′′ > i) such that there exists
t′ < ti in Pj ∩ Qi′′ . In this case, there exist morphisms gi′ : Xi′ → Y and
gi′′ : Xi′′ → Y . By construction, there exists a R-divisor H on Y such that
KXi +B+tH = g∗iH, KXi′ +B+tH = g∗i′H, but the former one is relatively
nef while the latter one is not, a contradiction. Therefore, there are only
finitely many distinct intervals Qi.

Then we consider the case ti = ti+1 > 0. In this case, take (Y,C) to be
the common canonical model of (Xi, B + tiH) and (Xi+1, B + tiH). Since
KXi+B+tiH is relatively nef and relatively big over S, gi : (Xi, B+tiH)→
(Y,C) is a crepant blowing up. Then by Corollary 2.10.8, such gi is finite,
that is, there exists no infinite sequence 0 < ti = ti+1 = ti+2 = · · · . In
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summary, there exists some n such that tn = 0, which means that the MMP
terminates.

For a given pair, minimal models, if exist, are not unique in general.
However, we can show that minimal models are connected by elementary
birational maps so-called “flops”.

A birational map α : (X,B) 99K (Y,C) between two Q-factorial DLT
pairs is called a flop if there exists projective birational morphisms f :
(X,B) → (Z,D), g : (Y,C) → (Z,D) to a third pair satisfying the fol-
lowing:

(1) α = g−1 ◦ f .

(2) f, g are isomorphic in codimension 1.

(3) ρ(X/Z) = ρ(Y/Z) = 1.

(4) f∗(KZ +D) = KX +B, g∗(KZ +D) = KY + C.

The definition is the same as flips except for condition (4). Different
from a flip, we require that the levels of canonical divisors are preserved.

{flop decomposition}
Corollary 2.10.10 (Flop decomposition). Let f : (X,B) → S be a projec-
tive morphism from a KLT pair. Assume that it admits a minimal model and
a canonical model. Then any two minimal models αi : (X,B) 99K (Yi, Ci)
(i = 1, 2) are connected by a sequence of flops.

Proof. By Lemma 2.5.12, Yi are isomorphic in codimension 1, and has the
same canonical model. Take gi : Yi → Z to be the morphism to the canonical
model. Take a general ample effective Q-divisor Hi on Yi. After replacing Hi

by εHi for some sufficiently small ε > 0, we may assume that (Y1, C1 +H2) is
KLT. Here we use the same notation for strict transforms of divisors. Then
we can run a (KY1 +C1 +H2)-MMP over Z with scaling of an ample divisor,
and reach a canonical model Y ′ such that KY ′ + C1 +H2 is ample over Z.
As KY2 +C2 +H2 is ample over Z since KYi +Ci is numerically trivial over
Z, it is clear that Y ′ = Y2. As Yi are isomorphic in codimension 1 and Y2

is Q-factorial, Y2 is also a minimal model of (Y1, C1 + H2) over Z, and the
MMP is a sequence of flips, which is also a sequence of flops with respect to
(Y1, C1).

Remark 2.10.11. In [78], the same result is proved without assuming the
existence of canonical models.

Applying the polyhedral decomposition theorem, we can generalized the
MMP with scaling under weaker assumption:
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{Birkar measure}
Corollary 2.10.12 ([13]). Let f : X → S be a projective morphism from a
Q-factorial normal algebraic variety, B,C two effective R-divisors. Assume
that (X,B + C) is KLT and KX + B + C is relatively nef, and KX + B is
not relatively nef. Take

t0 = min{t | KX +B + tC is relatively nef}.

Then then there exists a (KX+B)-negative extremal ray R such that ((KX+
B + t0C) ·R) = 0.

Proof. Take effective Q-divisors B1, . . . , Bs such that (X,Bi) is KLT and
the spanned rational polytope P contains B,B + C. By Theorem 2.10.1,
N = {B′ ∈ P | KX +B′ is relatively nef} is a rational polytope.

Consider all (KX + B)-negative extremal rays Rk, and take lk to be a
curve generating Rk with ((KX + B) · lk) ≥ −2 dimX. Take real number
tk determined by ((KX + B + tkC) · Rk) = 0, then supk tk = t0. Assume,
to the contrary that tk < t0 for all k, we will show that there is no infinite
sequence {tk} converging to t0.

Note that we may take rational points B′i in P and real numbers bi > 0
(i = 1, . . . , u), such that

∑
bi = 1 and B =

∑
biB
′
i. Moreover, (X,B′i) is

KLT and ((KX + B′i) · lk) ≥ −2 dimX for all i, k. Since N is a rational
polytope, there exist rational points Cj in N and real numbers cj > 0
(j = 1, . . . , v) such that

∑
cj = 1 and B + t0C =

∑
cjCj .

Take a positive integer m such that mKX , mB′i and mCj are all Cartier.
Then we have integers mik, njk as the following

mik = (m(KX +B′i) · lk) ≥ −2m dimX;

njk = (m(KX + Cj) · lk) ≥ 0.

Moreover, since
∑
mikbi < 0, the possible values of mik are finite.

Since KX +B + tkC = (1− tk/t0)(KX +B) + tk/t0(KX +B + t0C), we
have (1− tk/t0)

∑
i bimik + tk/t0

∑
j cjnjk = 0. Therefore

1− t0/tk =

∑
j cjnjk∑
i bimik

which is in a discrete set in R, and the conclusion is proved.

2.11 Multiplier ideal sheaves
{section mis}

In this section, we give the algebraic definition of a multiplier ideal sheaf
and introduce the Nadel vanishing theorem. The theory of multiplier ideal
sheaves is a basic tool in the L2-theory in complex analysis and multiplier
ideal sheaves are defined for line bundles with metrics. Here we only consider
the case when metrics are defined algebraically. Also we consider the so-
called adjoint ideal sheaf which is the log version of the multiplier ideal
sheaf.
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2.11.1 Multiplier ideal sheaves

It is classical in complex analysis to investigate functions which are not L2

by multiplying functions to make them L2, but it has been found in recent
years that the multiplier ideal sheaf consisting of all multiplier functions is
very useful in algebraic geometry.

Definition 2.11.1. Let X be a normal algebraic variety and B an effective
R-divisor. Assume that KX +B is R-Cartier, then the multiplier ideal sheaf
I(X,B) is defined as the following. Take a log resolution f : Y → (X,B),
write f∗(KX +B) = KY + C, then

I(X,B) = f∗(OY (p−Cq)).

{prop mis}
Proposition 2.11.2. (1) The multiplier ideal sheaf I(X,B) is a non-zero

coherent ideal sheaf, and it does not depend on the choice of log resolu-
tions.

(2) Rpf∗(OY (p−Cq)) = 0 for any p > 0.

(3) The cosupport of I(X,B), or the support of OX/I(X,B), coincides with
the non-KLT locus of (X,B). Therefore, I(X,B) = OX if and only if
(X,B) is KLT.

Proof. (1) Since the irreducible components of C with negative coefficients
are contracted by f , I(X,B) is a coherent subsheaf of OX .

Take f1 : Y1 → X to be another log resolution. By the desingularization
theorem, there exists a log resolution dominating both f and f1. So we
only need to consider the case that f1 dominates f , that is, there exists a
morphism g : Y1 → Y such that f1 = f ◦ g. Write f∗1 (KX +B) = KY1 +C1.
Moreover, we may assume that g is a permissible blowing up. It suffices to
show that

g∗OY1(p−C1q) = OY (p−Cq),

which is easy to check for a permissible blowing up.
(2) As −C −KY is relatively numerically trivial over X and f is bira-

tional, −C − KY is relatively nef and relatively big over X. Then we can
apply the vanishing theorem to get the conclusion.

(3) Write C = C+ − C− where C+, C− are effective R-divisors with no
common components. Then as in the proof of Lemma 1.11.9, by (2) we
know that the natural map

OX ' f∗OY → f∗(OxC+y(pC
−q))

is surjective. Hence f∗OxC+y ' f∗(OxC+y(pC
−q)). On the other hand,

OX/I(X,B) ' f∗(OxC+y(pC
−q)) and the support of f∗OxC+y is exactly the

non-KLT locus of (X,B).
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The fact (2) in the above proposition seems to be a reason why multiplier
ideal sheaves are useful.

Example 2.11.3. If X is smooth and the support of B is normal crossing,
then I(X,B) = OX(p−Bq).

We will need the following lemma in the next section:
{global section mis}

Lemma 2.11.4. Let (X,B) be a KLT pair, B′ an effective R-Cartier di-
visor, L a line bundle, and s a global section of L. Assume that KX is
Q-Cartier and

B′ −B ≤ div(s).

Then
s ∈ H0(X,L⊗ I(X,B′)).

Proof. Take a log resolution f : Y → (X,B+B′), and write f∗(KX +B) =
KY + C, f∗(KX +B′) = KY + C ′. Note that

C ′ − C = f∗(B′ −B) ≤ f∗div(s).

Then

I(X,B′) = f∗OY (p−C ′q) ⊃ f∗OY (p−Cq + f∗div(s)) = OX(−div(s)).

Here we used the projection formula and the fact that I(X,B) = OX .

The Nadel vanishing theorem is a basic tool in the proof of the extension
theorem in the next section. Here, if we only consider algebraic multiplier
ideal sheaves, then the Nadel vanishing theorem is an easy consequence of
the Kawamata–Viehweg vanishing theorem:

{Nadel}
Theorem 2.11.5 (Nadel vanishing theorem). Let X be a normal algebraic
variety and B an effective R-divisor, such that KX + B is R-Cartier. Let
f : X → S be a projective morphism and D a Cartier divisor. Assume that
D − (KX +B) is relatively nef and relatively big over S. Then

Rpf∗(OX(D)⊗ I(X,B)) = 0

for any p > 0.

Proof. Take a log resolution g : (Y,C) → (X,B), then g∗D − C − KY is
relatively nef and relatively big over X and over S. Therefore

Rpg∗(OY (g∗D + p−Cq)) = 0,

Rp(f ◦ g)∗(OY (g∗D + p−Cq)) = 0

for any p > 0. The conclusion follows from the spectral sequence

Ep,q2 = Rpf∗R
qg∗(OY (g∗D + p−Cq))⇒ Rp+q(f ◦ g)∗(OY (g∗D + p−Cq))

and
g∗(OY (g∗D + p−Cq)) = OX(D)⊗ I(X,B).
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Here we remark that it is important to assume that D is Cartier in the
theorem.

For reference, we define analytic multiplier ideal sheaves. Let X be a
smooth complex manifold and L a line bundle on X. A singular Hermitian
metric h on L is a Hermitian metric of the form h = h0e

−φ where φ is a
locally L1 function and h0 is a C∞ Hermitian metric. The curvature of h
can be defined similarly as curvature of usual Hermitian metrics and it is
a real current of type (1, 1). The the multiplier ideal sheaf I = I(L, h) is
defined by

Γ(U, I) = {p ∈ Γ(U,OX) | pe−φ is locally L2}.

As h is singular, regular functions are not necessarily L2 integrable. The
name “multiplier” is clear from the definition. It can be shown that I is an
analytic coherent ideal sheaf.

Example 2.11.6. Let gi (i = 1, . . . , r) be regular functions on a complex
manifold X, take divisors Bi = div(gi). Take an R-divisor B =

∑
i biBi

where bi are positive real numbers. Define a singular Hermitian metric h on
the trivial line bundle OX as

h =
∑
i

|gi|−2bi .

In this case, the algebraic multiplier ideal sheaf coincides with the analytic
multiplier ideal sheaf: I(X,B) = I(OX , h).

Of course, analytic multiplier ideal sheaves are more general than alge-
braic multiplier ideal sheaves considered in this book. For example, singular
Hermitian metrics appearing in (algebraic) Hodge theory are known to be
different from algebraic ones2.11.1.1.

The following theorem is the original form of the Nadel vanishing the-
orem. As the metric h is not necessarily induced by a divisor, it is more
general than the algebro-geometric version.

Theorem 2.11.7. Let X be a compact complex smooth manifold and L
a line bundle admitting a singular Hermitian metric h. Denote I to be the
corresponding multiplier ideal sheaf. Assume that the curvature of h is semi-
positive and strictly positive at some point of X2.11.1.2. Then Hp(X,OX(KX+
L)⊗ I) = 0 for any p > 0.

2.11.2 Adjoint ideal sheaves

Next we define adjoint ideal sheaves as a variant of multiplier ideal sheaves.
Adjoint ideal sheaves are defined in algebraic geometry, and there is no

2.11.1.1this sentence needs to be corrected
2.11.1.2Any reference?
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natural analogue in complex analysis. The reason is that the logarithmic
differential form dz/z is not L2. This definition is natural when considering
residue map and doing induction on dimensions.

Definition 2.11.8. Let X be a normal algebraic variety and B an effective
R-divisor. Assume that KX +B is R-Cartier. Assume that there exists an
irreducible component Z in B with coefficient 1. Then the adjoint ideal sheaf
IZ(X,B) is defined as the following. Take a log resolution f : Y → (X,B),
write f∗(KX +B) = KY + C and W = f−1

∗ Z, then

IZ(X,B) = f∗(OY (p−Cq +W )).

The adjoint ideal sheaf measures how far the pair (X,B) is from being
PLT. Fix an irreducible component Z in B with coefficient 1, then the set
of points on Z, in a neighborhood of which (X,B) is PLT, is a closed subset
of Z. It is called the non-PLT locus of (X,B) with respect to Z.

{prop ais}
Proposition 2.11.9. (1) The adjoint ideal sheaf IZ(X,B) is a non-zero

coherent ideal sheaf, and it does not depend on the choice of log resolu-
tions.

(2) Rpf∗(OY (p−Cq +W )) = 0 for any p > 0.

(3) The intersection of Z and the support of OX/IZ(X,B) coincides with
the non-PLT locus of (X,B) with respect to Z. In particular, IZ(X,B) =
OX in a neighborhood Z if and only if (X,B) is PLT in a neighborhood
Z.

Proof. The proof is the same as that of Proposition 2.11.2.

(1) Given another log resolution f1 : Y1 → X, we may assume that there
exists a morphism g : Y1 → Y such that f1 = f ◦ g. Write f∗1 (KX + B) =
KY1 + C1 and W1 = f−1

1∗ Z. It suffices to show that

g∗OY1(p−C1q +W1) = OY (p−Cq +W ).

This is easy to check.

(2) Note that −C + W − (KY + W ) is relatively nef and relatively big
over X, and its restriction to W is again relatively nef and relatively big
over Z.

(3) Note that, in a neighborhood Z, the intersection of Z with the image
of the negative part of p−Cq is exactly the non-PLT locus of (X,B) with
respect to Z.

The relation of multiplier ideal sheaves and adjoint ideal sheaves is as
the following:
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{mis and ais}
Lemma 2.11.10. Let X be a normal algebraic variety and B an effective
R-divisor. Assume that KX +B is R-Cartier. Assume that there exists an
irreducible component Z in B with coefficient 1. Assume that Z is normal
and write (KX +B)|Z = KZ +BZ . Then there is a short exact sequence:

0→ I(X,B)→ IZ(X,B)→ I(Z,BZ)→ 0.

Therefore, IZ(X,B)OZ = I(Z,BZ).

Proof. Write (KY + C)|W = KW + CW where CW = (C −W )|W . Denote
fZ = f |Z , then f∗Z(KZ +BZ) = KW +CW . We get the short exact sequence
from the exact sequence

0→ OY (p−Cq)→ OY (p−Cq +W )→ OW (p−CW q)→ 0

and R1f∗OY (p−Cq) = 0. The last statement follows from I(X,B) ⊂
OX(−Z).

We can extend the Nadel vanishing theorem to adjoint ideal sheaves:

Theorem 2.11.11. Let X be a normal algebraic variety and B an effective
R-divisor. Assume that KX + B is R-Cartier. Assume that there exists
an irreducible component Z in B with coefficient 1. Let f : X → S be a
projective morphism and D a Cartier divisor. Assume that D − (KX + B)
is relatively nef and relatively big over S and (D− (KX +B))|Z is relatively
nef and relatively big over f(Z). Then

Rpf∗(OX(D)⊗ IZ(X,B)) = 0

for any p > 0.

Proof. The proof is similar to that of Theorem 2.11.5. If Z is normal, then
this is a consequence of Theorem 2.11.5 by using the exact sequence in
Lemma 2.11.10.

Let us define a special case of logarithmic multiplier ideal sheaf, which
is a general version of adjoint ideal sheaf:

Definition 2.11.12. Let (X,B) be a DLT pair consisting of a normal alge-
braic varietyX and an R-divisorB onX. Let L be a linear system of divisors
and m a positive integer. Take Z = xBy, which is not necessarily irreducible.
Take a general element G ∈ L, assume that it does not contain LC centers
of (X,B). Then the logarithmic multiplier ideal sheaf IZ(X,B + L/m) is
defined as the following. Take a log resolution f : Y → X of (X,B +G) in
strong sense, which is isomorphic over the generic point of each LC center
of (X,B) and resolves the base locus of L. Write f∗(KX + B) = KY + C,
f∗G = P +N , W = f−1

∗ Z. Here P is a general element of the movable part
of f∗L and N is the fixed part. By construction, P is free. Then we define

IZ(X,B + L/m) = f∗(OY (p−C −N/mq +W )).
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{mis3}
Lemma 2.11.13. (1) The logarithmic adjoint ideal sheaf IZ(X,B + L/m)

is a non-zero coherent ideal sheaf, and it does not depend on the choice
of log resolutions.

(2) Rpf∗(OY (p−C −N/mq +W )) = 0 for any p > 0.

Proof. (1) Given another log resolution f1 : Y1 → X, we may assume that
there exists a morphism g : Y1 → Y such that f1 = f◦g. Write f∗1 (KX+B) =
KY1 + C1, f∗1D = P1 +N1, W1 = f−1

1∗ Z. It suffices to show that

g∗(OY1(p−C1 −N1/mq +W1)) = OY (p−C −N/mq +W ),

which is easy to check.
(2) Note that −C − N/m + W − (KY + W ) ≡X P/m is relatively nef

and relatively big over X, also its restriction on each LC center of (Y,W ) is
again relatively nef and relatively big. The conclusion follows from applying
the vanishing theorem inductively.

We can prove the Nadel vanishing theorem for logarithmic adjoint ideal
sheaves: {Nadel I_Z}
Theorem 2.11.14. Let (X,B) be a DLT pair, L a linear system of divisors,
m a positive integer, D a Cartier divisor, and f : X → S a projective
morphism to an affine variety. Take Z = xBy Assume the following:

(1) A general element G ∈ L does not contain LC centers of (X,B).

(2) D−(KX +B+G/m) and its restriction to each LC center are relatively
nef and relatively big over S or the image of the center in S, respectively.

Then
Hp(X, IZ(X,B + L/m)⊗OX(D)) = 0

for any p > 0.

Proof. The proof is similar to that of Theorem 2.11.5. We leave the details
to the readers for exercise.

In order to simultaneously investigate linear systems induced by multi-
ples of a divisor, we define asymptotic multiplier ideal sheaves. They play
important roles in the proof of extension theorems.

Definition 2.11.15. Let (X,B) be a DLT pair. Let Lm (m ∈ Z>0) be a
sequence of linear systems of divisors satisfying Lm +Lm′ ⊂ Lm+m′ , that is,
D +D′ ∈ Lm+m′ if D ∈ Lm, D′ ∈ Lm′ . Take Z = xBy. Assume that there
exists m such that a general element D ∈ Lm does not contain LC centers
of (X,B). Then define the asymptotic multiplier ideal sheaf to be

IZ(X,B + {Lm/m}) =
⋃
m>0

IZ(X,B + Lm/m).
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Remark 2.11.16. By assumption, IZ(X,B+Lm/m) ⊂ IZ(X,B+Lm′/m
′)

if if m|m′. By the Noetherian property, the right hand side which is a union
of infinitely many ideals is actually obtained by a sufficiently large and
sufficiently divisible m. However such m can not be determined priorly.
This is one advantage of asymptotic multiplier ideal sheaves.

The following lemma uses the vanishing theorem to show global genera-
tion of sheaves, which gives a corollary we will use in the next section. For
ample sheaves the same statement is difficult to prove, but for very ample
sheaves it is easy. We use the so-called Castelnuovo–Mumford regularity
method:

{F globally generated}
Lemma 2.11.17. Let X be an n-dimensional quasi-projective algebraic va-
riety, OX(1) a very ample invertible sheaf, and F a coherent sheaf. Assume
that

Hp(X,F ⊗OX(m)) = 0

for any m ∈ Z≥0 and any p ∈ Z>0. Then F ⊗OX(n) is generated by global
sections.

Proof. The proof is by induction on n. We may assume that n > 0. Fix
any point x ∈ X. Take F0 = H0

{x}(F) to be the subsheaf of F containing

all local sections whose supports are x, then the quotient sheaf F1 = F/F0

has no local section whose support is x. Consider the exact sequence

0→ F0 → F → F1 → 0.

Since H1(F0) = 0 by dimension reason, H0(F) → H0(F1) is surjective.
Therefore, if F1 ⊗ OX(n) is generated by global sections at x, then so is
F ⊗OX(n). So we may assume in the beginning that F has no local section
whose support is x.

Take a general global section s of OX(1) that vanishes at x. Take X ′

to be the corresponding hyperplane passing through x. Take OX′(1) =
OX(1) ⊗ OX′ , F ′ = F ⊗ OX′(1). Since 0 is the only section of F that
becomes 0 after multiplying s, we get an exact sequence

0→ F → F ⊗OX(1)→ F ′ → 0.

Hence

Hp(X ′,F ′ ⊗OX′(m)) = 0

for any m ≥ 0 and any p > 0. By induction hypothesis, F ′ ⊗OX′(n− 1) is
generated by global sections. Since H1(X,F ⊗OX(n− 1)) = 0, H0(X,F ⊗
OX(n)) → H0(X,F ′ ⊗ OX′(n − 1)) is surjective, and hence F ⊗ OX(n) is
generated by global sections at x.
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{generated}
Corollary 2.11.18. Keep the assumptions in Theorem 2.11.14. Take a
very ample divisor H on X and denote dimX = n. Then

IZ(X,B + L/m)⊗OX(D + nH)

is generated by global sections.

Proof. This follows directly from Theorem 2.11.14 and Lemma 2.11.17.

2.12 Extension theorems

In this section, we prove extension theorems for pluri-log-canonical forms.

2.12.1 Extension theorems 1

There are many variants of extension theorems. The following form due to
Hacon–McKernan and Takayama is a key point in the proof of existence of
flips.

{ext thm 1}
Theorem 2.12.1 (Extension theorem 1, [37], [146]). Let (X,B) be a PLT
pair where X is a smooth algebraic variety and B is a Q-divisor with normal
crossing support. Let f : X → S be a projective morphism to an affine
algebraic variety. Fix a positive integer m0 such that D = m0(KX + B)
is an integral divisor. Assume that Y = xBy is irreducible. Assume the
following conditions.

(1) There exists an ample Q-divisor A2.12.1.1 and an effective Q-divisor E
whose support does not contain Y , such that

B = A+ E + Y.

(2) There exists a positive integer m1 such that the support of a general
element G ∈ |m1D| does not contain any LC center of (X, pBq), that is,
does not contain any irreducible component of intersections of irreducible
components of B.

Then the restriction map

H0(X,mD)→ H0(Y,mD|Y )

is surjective for any positive integer m.

Remark 2.12.2. (1) In condition (1), it is an equation of Q-divisors, not
just an equivalence.2.12.1.2

2.12.1.1here no need to assume A is effective
2.12.1.2this sentence should be removed as A is not effective, equivalence is ok.
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(2) The proof of the extension theorem described below is extremely tech-
nical, which is not just something that can be reached by calculating
carefully.

(3) Trying to relaxing the assumptions of this theorem is an important
question which may have many interesting applications.

Proof. The proof follows by the following Propositions 2.12.3 and 2.12.7.

Firstly, we use the usual multiplier ideal sheaves to reduce the problem
to the extension problem for a sequence of slightly bigger divisors:

{Step 1}
Proposition 2.12.3. Under condition (1) of Theorem 2.12.1, assume fur-
ther that there exists an effective divisor F whose support does not contain
Y such that for any sufficiently large positive integer l, the image of the
natural homomorphism

H0(X, lD + F )→ H0(Y, (lD + F )|Y )

contains the image of

H0(Y, lD|Y )→ H0(Y, (lD + F )|Y ).

Then
H0(X,D)→ H0(Y,D|Y )

is surjective.

Proof. Take a sufficiently small positive rational number ε, take E′ = (1 −
ε)(B − Y ) + εE, we may assume that (X,Y + E′) is PLT since (X,B) is
PLT. Note that we can write B − Y = εA+E′, hence we may assume that
(X,Y + E) is PLT in the beginning after replacing E by E′.

Take any s ∈ H0(Y,D|Y ), take D′ = div(s). By assumption, for a
sufficiently large and sufficiently divisible positive integer l, there exists Gl ∈
H0(X, lD + F ) such that

Gl|Y = lD′ + F |Y .

Here note that this is an equality of divisors, not just a linear equivalence.
Take

B′ =
m0 − 1

lm0
Gl + Y + E,

and consider the multiplier ideal sheaf I = I(X,B′). Note that

D −KX −B′

= m0(KX +B)−KX −B′

∼Q (m0 − 1)(KX +B) +B − m0 − 1

m0
D − m0 − 1

lm0
F − Y − E

= A− m0 − 1

lm0
F
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is ample if l is sufficiently large. Therefore, by the Nadel vanishing theorem,

H1(X, I(X,B′)⊗OX(D)) = 0.

Take

C ′ = (B′ − Y )|Y =
m0 − 1

m0
D′ +

m0 − 1

lm0
F |Y + E|Y ,

then we have the following exact sequence

0→ I(X,B′)→ IY (X,B′)→ I(Y,C ′)→ 0.

Hence the restriction map

H0(X, IY (X,B′)⊗OX(D))→ H0(Y, I(Y,C ′)⊗OY (D|Y ))

is surjective. On the other hand, (X,Y + E) is PLT, hence

(Y,
m0 − 1

lm0
F |Y + E|Y )

is KLT if l is sufficiently large. Note that

C ′ − m0 − 1

lm0
F |Y − E|Y ≤ D′.

Hence by Lemma 2.11.4,

s ∈ H0(Y, I(Y,C ′)⊗OY (D|Y )).

Therefore s can be extend to a global section of H0(X,D).

Let us forget the situation of the theorem for a moment and use the
following notation in the following two lemmas. Let X be a smooth algebraic
variety, B a normal crossing divisor, Y an irreducible component of B, and
D another divisor. Let f : X → S be a projective morphism to an affine
algebraic variety. Here all coefficients of B are taken to be 1 (in the situation
of the theorem pBq corresponds to B here). Take C = (B − Y )|Y . Assume
that there exists a positive integer m1 such that the support of a general
element G ∈ |m1D| does not contain any LC center of (X,B).

Consider the following two series of linear systems on Y :

L0
m = |H0(Y,mD|Y )|,

L1
m = |Im(H0(X,mD)→ H0(Y,mD|Y ))|.

Here | | denotes the linear system of the corresponding linear space. Then
we can define the corresponding asymptotic multiplier ideal sheaves

J0
C(Y,D|Y ) = IC(Y,C + {L0

m/m}),
J1
C(Y,D|Y ) = IC(Y,C + {L1

m/m}).
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As L1
m ⊂ L0

m, J1
C(Y,D|Y ) ⊂ J0

C(Y,D|Y ). In the case C = 0, we simply write
J0(Y,D|Y ), J1(Y,D|Y ).

We compare the set of global sections and the set of extendable global
sections as m goes to infinity. The next two lemmas prove inclusion relations
in two directions.

{inclusion 1}
Lemma 2.12.4.

H0(Y,D|Y ) = H0(Y, J0
C(Y,D|Y )⊗OY (D|Y ));

Im(H0(X,D)→ H0(Y,D|Y )) ⊂ H0(Y, J1
C(Y,D|Y )⊗OY (D|Y )).

Proof. We only show the second one. The first one is similar but easier.
Take a general element G ∈ |m1D| whose support does not contain any
LC center of (X,B). Take a log resolution g : X ′ → (X,B + G), write
g∗(KX + B) = KX′ + B′, Y ′ = g−1

∗ Y , (KX′ + B′)|Y ′ = KY ′ + C ′, g∗G =
P + N . Here we may assume that P is free and N is the fixed part, and
(B′)+ = g−1

∗ B. Then

Im(H0(X,D)→ H0(Y,D|Y ))

⊂ H0(Y ′,OY ′(g∗D|Y + x−N/m1|Y y))

⊂ H0(Y ′,OY ′(g∗D|Y + p−C ′ −N/m1|Y q + (C ′)+))

⊂ H0(Y, J1
C(Y,D|Y )⊗OY (D|Y )).

Here the first inclusion is by the fact that Fix|g∗D| ≥ pN/m1q. All spaces
are viewed as subspaces of H0(Y,D|Y ) under certain maps.

{inclusion 2}
Lemma 2.12.5. Assume the following conditions:

(1) There exists an ample Q-divisor A′ and an effective Q-divisor E′ such
that D = A′ + E′.

(2) Assume that there exists a positive integer m′1 such that the support of a
general element G′ ∈ |m′1E′| does not contain any LC center of (X,B).

Then

H0(Y, J1
C(Y,D|Y )⊗OY (D|Y +KY + C))

⊂ Im(H0(X,D +KX +B)→ H0(Y,D|Y +KY + C)).

Proof. Take a sufficiently large and sufficiently divisible m which obtains
J1
C(Y,D|Y ), that is, J1

C(Y,D|Y ) = IC(Y,C +L1
m/m). For a general element

Dm ∈ |mD|, take a log resolution g : X ′ → (X,B + Dm + G′) in strong
sense, write g∗(KX + B) = KX′ + B′, Y ′ = g−1

∗ Y , (KX′ + B′)|Y ′ = KY ′ +
C ′, g∗Dm = P + N . Here we may assume that P is free and N is the
fixed part, and (B′)+ = g−1

∗ B. Then (B′)+ has no common component
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with exceptional divisors of g, N , and g∗E′. Take an effective Q-divisor F
supported on exceptional divisors of g such that g∗A′ − F is ample. Then
for any sufficiently small positive number ε,

g∗D − (1− ε)N/m− ε(g∗E′ + F ) ∼Q (1− ε)P/m+ ε(g∗A′ − F )

is ample. Since A′ is ample, N/m ≤ g∗E′ for any sufficiently divisible m.
Therefore, for a sufficiently small ε,

pg∗D − (1− ε)N/m− ε(g∗E′ + F )q = g∗D − xN/my.

By the vanishing theorem,

H1(X ′,KX′ + (B′)+ − Y ′ + g∗D − xN/my) = 0.

Hence

H0(X ′,KX′ + (B′)+ + g∗D − xN/my)

→ H0(Y ′,KY ′ + (C ′)+ + g∗D|Y ′ − xN/m|Y ′y)

is surjective. On the other hand,

H0(X ′,KX′ + (B′)+ + g∗D − xN/my) ⊂ H0(X,D +KX +B)

and

H0(Y ′,KY ′ + (C ′)+ + g∗D|Y ′ − xN/m|Y ′y)

= H0(Y, J1
C(Y,D|Y )⊗OY (KY + C +D|Y )),

this proves the conclusion.

The following lemma is the key of the proof of the extension theorem:
{inclusion 3}

Lemma 2.12.6. Let (X,B) be a PLT pair where X is a smooth algebraic
variety of dimension n and B is a Q-divisor with normal crossing support.
Let f : X → S be a projective morphism to an affine algebraic variety. Fix
a positive integer m0 such that D = m0(KX +B) is an integral divisor. Fix
a very ample divisor H on X and take M = nH. Assume the following
conditions:

(1) H is sufficiently ample comparing to B and D (this condition will be
clarified in the proof).

(2) There exists a positive integer m1 such that the support of a general
element G ∈ |m1D| does not contain any LC center of (X, pBq).

Then
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(1) The inclusion

J0(Y, (mD +H)|Y ) ⊂ J1
pCq(Y, (mD +H +M)|Y )

holds for any non-negative integer m.

(2) The inclusion

H0(Y, J0(Y, (mD +H)|Y )⊗OY ((mD +H +M)|Y ))

⊂ Im(H0(X,mD +H +M)→ H0(Y, (mD +H +M)|Y ))

holds for any non-negative integer m.

Proof. (1) We will prove by induction on m. If m = 0, then both sides are
OY . Let us prove the conclusion for the case m+ 1 assuming the case m.

Define the increasing sequence of integral divisors

Y ≤ B[1] ≤ · · · ≤ B[m0] = pBq

by
m0∑
k=1

B[k] = m0B.

Take Dk = KX + B[k], D≤k =
∑k

s=1Ds, C
[k] = (B[k] − Y )|Y . Also denote

D≤0 = 0, B[m0+1] = pBq. Note that D = D≤m0 .
Here we clarify the assumption on H: for any 0 ≤ k ≤ m0, (1-a) D≤k +

H +M is free, (1-b) D≤k +H −KX −Y is ample. Note that such condition
does not depend on m.

We will prove the claim that

J0(Y, (mD +H)|Y ) ⊂ J1
C[k+1](Y, (mD +D≤k +H +M)|Y )

by induction on 0 ≤ k ≤ m0. Note that the right hand side is well-defined
by assumption (1-a) on H.

Once the claim is proves, take k = m0, then

J0(Y, ((m+ 1)D +H)|Y ) ⊂ J0(Y, (mD +H)|Y )

⊂ J1
pCq(Y, ((m+ 1)D +H +M)|Y ),

which proves the conclusion for the case m+ 1 and finishes the proof of (1).
If k = 0, by induction hypothesis,

J0(Y, (mD+H)|Y ) ⊂ J1
pCq(Y, (mD+H+M)|Y ) ⊂ J1

C[1](Y, (mD+H+M)|Y ).

Assume that the claim holds for k − 1, then we have the following 3
inclusions:

H0(Y, J0(Y, (mD +H)|Y )⊗OY ((mD +D≤k +H +M)|Y ))

⊂ H0(Y, J1
C[k](Y, (mD +D≤k−1 +H +M)|Y )⊗OY ((mD +D≤k +H +M)|Y ))

⊂ Im(H0(X,mD +D≤k +H +M)→ H0(Y, (mD +D≤k +H +M)|Y ))

⊂ H0(Y, J1
C[k+1](Y, (mD +D≤k +H +M)|Y )⊗OY ((mD +D≤k +H +M)|Y )).
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Here the first inclusion is by induction hypothesis, the second is by Lemma 2.12.5,
and the third is by Lemma 2.12.4. Note that

mD +D≤k +H − (KY + (mD +H)|Y ) = (D≤k +H −KX − Y )|Y

is ample by assumption (1-b) on H, hence by Corollary 2.11.18,

J0(Y, (mD +H)|Y )⊗OY ((mD +D≤k +H +M)|Y )

is generated by global sections. To summarize, we showed that

J0(Y, (mD +H)|Y ) ⊂ J1
C[k+1](Y, (mD +D≤k +H +M)|Y ).

(2) When m = 0 this is clear. For m > 0, using above inclusions for
m− 1 and k = m0, we have

H0(Y, J0(Y, (mD +H)|Y )⊗OY ((mD +H +M)|Y ))

⊂ H0(Y, J0(Y, ((m− 1)D +H)|Y )⊗OY ((mD +H +M)|Y ))

⊂ Im(H0(X,mD +H +M)→ H0(Y, (mD +H +M)|Y )).

{Step 2}
Proposition 2.12.7. Under condition (2) of Theorem 2.12.1, there exists
a very ample divisor F , such that for any sufficiently large positive integer
m, the image of the restriction map

H0(X,mD + F )→ H0(Y, (mD + F )|Y )

contains the image of H0(Y,mD|Y ).

Proof. By Lemma 2.12.6

H0(Y,mD|Y ) ⊂ H0(Y, (mD +H)|Y )

= H0(J0(Y, (mD +H)|Y )⊗OY ((mD +H)|Y ))

⊂ H0(J0(Y, (mD +H)|Y )⊗OY ((mD +H +M)|Y ))

⊂ Im(H0(X,mD +H +M)→ H0(Y, (mD +H +M)|Y )).

So we may just take F = H +M .

2.12.2 Extension theorems 2

There are various versions of the extension theorem. The following theorem
is close to the original form of the extension theorem. This theorem has many
important corollaries such as the deformation invariance of plurigenera and
canonical singularities, but will not be used in subsequent sections.
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{ext thm 2}
Theorem 2.12.8 (Extension theorem 2). Let (X,B) be a PLT pair where
X is a smooth algebraic variety and B is a Q-divisor with normal crossing
support. Let f : X → S be a projective morphism to an affine algebraic vari-
ety. Fix an integer m0 ≥ 2 such that D = m0(KX+B) is an integral divisor.
Assume that Y = xBy is irreducible. Assume the following conditions.

(1) There exists an ample Q-divisor A and an effective Q-divisor E whose
support does not contain Y , such that

KX +B = A+ E.

(2) There exists a positive integer m1 such that the support of a general
element G ∈ |m1D| does not contain any LC center of (X, pBq).

Then the homomorphism

H0(X,mD)→ H0(Y,mD|Y )

is surjective for any positive integer m.

Remark 2.12.9. (1) If taking B = Y in Theorem 2.12.8, then it is a the-
orem in [77]. Theorem 2.12.1 is a generalization of this theorem.

(2) For a sufficiently large and sufficiently divisible positive integer m and
a general element G ∈ |m(KX + B)|, replacing B by B′ = B + εG for
a sufficiently small ε and taking a log resolution, we are in a similar
situation as Theorem 2.12.1. But it is easy to see that the conditions
of Theorem 2.12.1 are not satisfied, because pB′q has more irreducible
components than pBq. So Theorem 2.12.8 is not a corollary of Theo-
rem 2.12.1.

Proof. The proof as basically the same as that of Theorem 2.12.1. Just
modify Proposition 2.12.3 by taking

B′ =
m0 − 1− ε

lm0
Gl +B + εE

for some sufficiently small ε. We omit the details.

An important corollary of Theorem 2.12.8 is the following theorem on
deformation invariance of plurigenera:

Corollary 2.12.10 (Siu [141]). Let f : X → S be a smooth projective
morphism between smooth algebraic varieties. Assume that the fiber Xη =
f−1(η) over the generic point η ∈ S is of general type. Then for any posi-
tive integer m, the plurigenus dimH0(Xs,mKXs) of a fiber Xs = f−1(s) is
independent of the choice of s ∈ S.
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Proof. Note that the case m = 1 is classical. We may assume that S is a
smooth affine curve. Fix any point s ∈ S. Fix an effective ample divisor
A on X and take Aη = A|Xη . Since Xη is of general type, there exists a
sufficiently large positive integer m1 and an effective divisor Eη such that
m1KXη ∼ Aη + Eη. Taking the closure, there exists an effective divisor E
which does not contain Xs such that m1KX ∼ A+ E.

Applying Theorem 2.12.8 to B = Y = Xs, for any integer m ≥ 2,

H0(X,m(KX +Xs))→ H0(Xs,mKXs)

is surjective. Then the conclusion follows from upper semicontinuity.

The following theorem stating that flat deformations of canonical singu-
larities are again canonical singularities is important in the study of moduli
spaces of algebraic varieties:

Corollary 2.12.11 ([76]). Let f : X → S be a flat morphism from an
algebraic variety X to a smooth affine curve. Fix x ∈ X, s = f(x) ∈ S.
Assume that the fiber Xs = f−1(s) over s has at worst canonical singularities
at x. Then X has at worst canonical singularities at x. In particular, there
exists a neighborhood U ⊂ X of x such that for any s′ ∈ S, Xs′ ∩ U has at
worst canonical singularities.

Proof. Replacing X by a sufficiently small affine neighborhood of x, we may
assume that Xs has at worst canonical singularities. Take a log resolution
g : X ′ → (X,Xs), denote B = Y to be the strict transform of Xs. Since Xs

is normal, we may assume that X is also normal if X is sufficiently small.
Since Xs has at worst canonical singularities, there exists a positive integer
m such that mKXs is Cartier and the natural map

H0(Y,mKY )→ H0(Xs,mKXs)

is isomorphic. Applying Theorem 2.12.8 to g, we have

H0(X ′,m(KX′ + Y ))→ H0(Y,mKY )

is surjective. Therefore,

H0(X ′,m(KX′ + Y ))→ H0(X,m(KX +Xs))→ H0(Xs,mKXs)

is surjective. So if X is sufficiently small, a nowhere vanishing section of
mKXs extends to a nowhere vanishing section of m(KX +Xs) and a global
section of m(KX′ + Y ). This implies that m(KX + Xs) is Cartier and
m(KX′+Y ) ≥ g∗(m(KX +Xs)). Since Y ≤ g∗Xs, X has at worst canonical
singularities.
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Remark 2.12.12. The technique in the proof of the extension theorem was
originally developed by Siu in the proof of the deformation invariance of
plurigenera ([141]). Later [76] proved the deformation invariance of canon-
ical singularities by an algebraic interpretation of Sius argument (see also
[77], [123]). Here instead of considering limits of metrics in complex analy-
sis, asymptotic multiplier ideal sheaves are introduced. By the Noetherian
property, an asymptotic multiplier ideal sheaf is actually obtained at a fi-
nite stage, but we can not tell at which stage it will be obtained, so it is
helpful for proving certain finiteness theorem. However this method also
has its limitation as it can not reflect infinite limits as analytic multiplier
ideal sheaves. The extension theorem introduced in this section was proved
by the log version of this method ([37], [146]). After this, Siu proved the
deformation invariance of plurigenera without assuming bigness of canonical
divisors ([142]). The algebraic interpretation of this result is still not known.
It seems that an algebraic interpretation of infinite limits is necessary.



Chapter 3

The finite generation
theorem

{Chapter 3}
In this chapter we prove the finite generation of canonical rings. Firstly, for
algebraic varieties of general type, we prove the existence of minimal models
by induction on dimensions, then we use the semi-positivity theorem for
algebraic fiber spaces to reduce the problem to algebraic varieties of general
type.

3.1 Setting of the inductive proof

In BCHM [15], it turns out that for MMP with scaling, the induction on
dimensions goes well under the assumption that the boundary contains an
ample divisor. To be more precise, we should put the following conditions
on (X,B) and f . We will simply call it the BCHM condition in this book.

(1) X is an n-dimensional Q-factorial normal algebraic variety, B is an
effective R-divisor on X, f : X → S is a projective morphism to a
quasi-projective variety.

(2) (X,B) is DLT.

(3) There exists a relatively ample effective R-divisor A3.1.0.1 over S and an
effective R-divisor E, such that B = A+ E + xBy.

For f : (X,B) → S satisfying the BCHM condition, we will show the
following theorems:

• (Existence of flips) For any small contraction of KX+B, the flip exists.

• (Existence of PL flips) For any small contraction of KX + B with
respect to which −xBy is relatively ample, the flip exists.

3.1.0.1here A need to be effective

169



170 CHAPTER 3. THE FINITE GENERATION THEOREM

• (Existence of minimal models) If KX +B is relatively pseudo-effective,
then there exists a minimal model of f : (X,B)→ S.

• (Finiteness of minimal models) Suppose that P is a polytope spanned
by effective R-divisors such that for any B′ ∈ P , f : (X,B′) → S
satisfies the BCHM condition. Then there exist finitely many rational
maps gk : X 99K Yk, such that for any B′ ∈ P with KX +B relatively
pseudo-effective, there exists a minimal model of f : (X,B′)→ S, and
any minimal model of f : (X,B′)→ S coincides with one of gk.

• (Termination of MMP with scaling) Assume further that f : (X,B′)→
S satisfies the BCHM condition for some B′ ≥ B and assume that
KX + B′ is relatively nef. Then the MMP on f : (X,B) → S with
scaling of B′ −B terminates at finitely many steps.

• (Special termination of MMP with scaling) Assume further that f :
(X,B′) → S satisfies the BCHM condition for some B′ ≥ B and
assume that KX+B′ is relatively nef. Then the MMP on f : (X,B)→
S with scaling of B′−B is isomorphic in a neighborhood of xBy after
finitely many steps.

• (Non-vanishing theorem) If KX +B is relatively pseudo-effective, then
there exists an effective R-divisor D such that D ≡S KX +B.

Remark 3.1.1. (1) The existence of PL flips and the special termination
of MMP with scaling are special cases of the existence of flips and the
termination of MMP with scaling.

(2) The existence of flips is a special case of the existence of minimal models.
In fact, a flip is the relative canonical model of a relative minimal model.

(3) The statement of the finiteness of minimal models includes the existence
of minimal models.

Remark 3.1.2. The finite generation theorem, which is the main purpose of
this book, is obtained by showing the existence of minimal models for KLT
pairs with KX +B big. However, the bigness of KX +B is not preserved if
restricted on the boundary. On the other hand, the BCHM condition, con-
sidering DLT pairs with boundaries containing ample divisors, is preserved
if restricted on the boundary. If (X,B) is KLT and KX + B is big, after
replacing B, we may assume that B contains an ample divisor. This con-
dition is preserved in the process of MMP, so the induction on dimensions
works well in this situation.

Firstly, we modify the BCHM condition for KLT pairs, and show that
the DLT version and the KLT version can be used appropriately according
to the situations. The KTL version BCHM condition is the following:
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(1) X is an n-dimensional Q-factorial normal algebraic variety, B is an
effective R-divisor on X, f : X → S is a projective morphism to a
quasi-projective variety.

(2) (X,B) is KLT.

(3) B is relatively big over S.

Lemma 3.1.3. For each statement of the existence of flips, the existence of
minimal models, the finiteness of minimal models, the termination of MMP
with scaling, and the non-vanishing theorem, the DLT version holds if and
only if the KLT version holds.

Proof. Let us explain how to exchange DLT and KLT conditions.

Let f : (X,B) → S be a morphism satisfying the DLT version BCHM
condition. Then there exists a sufficiently small positive real number t such
that A+ txBy is relatively ample. Take a general effective relatively ample
R-divisor A1 ≡ A + tZ, denote B′ = A1 + E + (1 − t)xBy, then (X,B′) is
KLT. So B ≡ B′ and it satisfies the KLT version BCHM condition.

Conversely, let f : (X,B)→ S be a morphism satisfying the KLT version
BCHM condition. As B is relatively big, there exists an effective relatively
ample R-divisor A and an effective R-divisor E such that B ≡ A+ E. For
a sufficiently small positive real number t, denote B′ = (1− t)B + tA+ tE,
then (X, (1 − t)B + tA + tE) is KLT. So B ≡ B′ and it satisfies the DLT
version BCHM condition.

Remark 3.1.4. Another advantage of the BCHM condition is that it is
preserved by MMP in the following sense. For the KLT version, this is
simply because that KLT condition and the bigness of B are both preserved
by MMP. For the DLT version, consider a pair (X,A+E + xBy) satisfying
the BCHM condition, suppose that α : X 99K X ′ is obtained by several steps
of MMP and (X ′, A′+E′+xB′y) is the induced pair. Pick a general relatively
ample effective R-divisor A′1 on X ′ and take a sufficiently small positive real
number ε such that (X,A+ εα−1

∗ A′1 +E+xBy) is still DLT and A− εα−1
∗ A′

is relatively ample. Take a general effective R-divisor A2 ∼R A − εα−1
∗ A′

such that (X,A2 +εα−1
∗ A′1 +E+xBy) is DLT, then (X ′, B′1 := εA′1 +α∗A2 +

E′ + xB′y) is DLT and satisfies the BCHM condition. On the other hand,
B′1 ∼R B′, hence it suffices to consider (X ′, B′1) instead.

Remark 3.1.5. For the existence of PL flips and the special termination
of MMP with scaling, the KLT version makes no sense. It is natural to run
MMP within the KLT category, but the point to extend to the DLT category
is that, for DLT pairs we can consider the restriction on the integral part
xBy, which opens the gate of induction on dimensions.
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We are going to prove the following claims under the DLT version BCHM
condition. Combining all these claims, all theorems are proved by induction
on dimensions.

(a) (Theorem 3.3.1) The existence of flips in dimension n − 1 and the ter-
mination of MMP with scaling in dimension n − 1 imply the special
termination of MMP with scaling in dimension n.

(b) (Theorem 3.4.1) The existence of PL flips in dimension n, the special
termination of MMP with scaling in dimension n, and the non-vanishing
theorem for a pair (X,B) in dimension n imply the existence of minimal
models for the (X,B) in dimension n.

(c) (Theorem 3.4.1, see also Theorem 3.6.5) The existence of PL flips in
dimension n and the special termination of MMP with scaling in di-
mension n imply the existence of flips in dimension n.

(d) (Theorem 3.2.1) The existence and finiteness of minimal models in di-
mension n− 1 imply the existence of PL flips in dimension n.

(e) (Theorem 3.4.63.1.0.2) The existence of minimal models in dimension n
implies the finiteness of minimal models in dimension n.

(f) (Corollary 2.10.9) The finiteness of minimal models in dimension n im-
plies the termination of MMP with scaling in dimension n.

(g) (Theorem 3.5.1) The existence of PL flips in dimension n, the special
termination of MMP with scaling in dimension n, the existence and
finiteness of minimal models for pairs (X,B) with KX +B relatively big
in dimension n imply the non-vanishing theorem in dimension n.

Remark 3.1.6. If KX + B is relatively big, then the non-vanishing the-
orem automatically holds. Therefore, (c) is a special case of (b). (c) is
originally proved by Shokurov, which is the origin of the induction method
on dimensions.

In (d), Hacon and McKernan showed the existence of flips in all dimen-
sions by induction on dimensions. Before that, the only proof of existence of
flips used classification of singularities, which is only available in dimension
3. The proof of (d) needs the extension theorem of pluri-canonical forms.
The base point free theorem is also an extension theorem for pluri-canonical
forms, but here we need to use a much more powerful extension theorem.

3.1.0.2this theorem for (e) is added in translation
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3.2 PL flips

In this section, we introduce the proof of the existence of PL flips due to
Hacon and McKernan ([40]). Recall that a PL contraction f : (X,B) → S
is a small contraction from a Q-factorial DLT pair, such that −P is f -ample
for some irreducible component P of xBy.

{PL flip exists}
Theorem 3.2.1 (The existence of PL flips). Let f : (X,B) → S be an
n-dimensional PL contraction. Suppose that, under the BCHM condition,
the existence and finiteness of minimal models in dimension n−1 hold, then
the flip of f exists.

This theorem is a pillar and an opportunity for recent great redevelop-
ment of the minimal model theory.

The existence of flips is a special case of the finite generation of canonical
rings, but we need to prove it first in order to establish the minimal model
program, and then prove the finite generation theorem.

Let us describe the sketch of the proof. A PL flip is the flip of a PL
contraction f : (X,B)→ S. We may assume that S is affine, (X,B) is PLT,
and Y = xBy is irreducible. We may assume that B is a Q-divisor after
perturbing the coefficients.

Since f is small, the restriction f |Y is also a birational morphism, and
the BCHM condition holds on Y .

In order to show the existence of the flip, it suffices to show thatR(X/S,KX+
B) is finitely generated. By the sub-adjunction formular, (KX + B)|Y =
KY + BY and (Y,BY ) is KLT. Since dimY = n − 1, R(Y/S,KY + BY ) is
finitely generated by induction hypothesis.

If the natural homomorphism R(X/S,KX +B)→ R(Y/S,KY +BY ) is
surjective, then we can finish the proof. However, as KX + B is negative
with respect to f , we cannot establish the vanishing of higher cohomologies,
so this is in general not surjective. In other words, pluri-canonical forms on
Y are not necessarily extendable to X. Therefore, a key point in the proof
is to determine the set of pluri-canonical forms on Y that are extendable to
X. In order to do this, we will make full use of (n − 1)-dimensional MMP
and the vanishing theorem for multiplier ideal sheaves.

Fix a positive integer m0 such that m0B is an integral divisor. Denote
(KX +B)|Y = KY +BY . For a positive integer m, the restriction map

H0(X,mm0(KX +B))→ H0(Y,mm0(KY +BY ))

is not surjective in general.

Applying the extension theorem, we can identify the image of this map
with the space of pluri-canonical maps H0(Y ′,m(KY ′ +BY ′,m)) of another
pair (Y ′, BY ′,m) different from (Y,BY ). Here the point is that the new
variety Y ′ can be chosen independently of m by the extension theorem.
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By blowing up X, we can resolve the base locus of |mm0(KX + B)|.
However, this cannot be done independently of m, so as m increases, we
get a tower of blowing ups over X, that is, an inverse system of algebraic
varieties. This inverse system is equivalent to Shokurov’s b-divisor ([137]) in
the divisor level, which is hard to handle. This concept is similar to Zariski’s
Riemann surface.

However, by applying the extension theorem, b-divisors are not needed.
Instead of an infinite tower of varieties, we consider an infinite sequence of
Q-divisors BY ′,m on a fixed variety Y ′. In general the limit BY ′ of BY ′,m
is an R-divisor, this is one reason that we must formulate the MMP for
R-divisors.

If applying MMP to divisors on Y ′ and using the existence and finiteness
of minimal models, this limit can be obtained within finite steps, and there
exists a positive integer m such that BY ′ = BY ′,m.

3.2.1 Restriction of canonical rings to divisors

Firstly we show the following lemma.
{bourbaki}

Lemma 3.2.2. Let R =
⊕∞

m=0Rm be a sheaf of graded OS-rings such that
R0 = OS.

(1) R is a finitely generated graded OS-algebra if and only if the ideal R+ =⊕
m>0Rm is a finitely generated R-module.

(2) If R is a finitely generated graded OS-algebra, then the sub-algebra

R(m1) =

∞⊕
m=0

Rmm1

is a finitely generated graded OY -algebra. Here m1 is any fixed positive
integer. Moreover, the converse holds if R is a domain.

Proof. (1) The homogenous generators of graded OS-algebra R are the same
with the homogenous generators of the ideal R+.

(2) Suppose that R is finitely generated, and take x1, . . . , xt to be ho-
mogenous generators. Then R is generated by

∏t
i=1 x

di
i (0 ≤ di < m1) as an

R(m1)-module. Therefore, R is a finitely generated R(m1)-module. Since R+

is a direct sum of R(m1)-modules Mj =
⊕∞

m=0Rj+mm1 (1 ≤ j ≤ m1) and
is a finitely generated R-module, it is a finitely generated R(m1)-module. In

particular, R
(m1)
+ = Mm1 is a finitely generated R(m1)-module. Hence R(m1)

is a finitely generated graded OS-algebra.
Conversely, suppose that R(m1) is finitely generated and R is a domain.

Then R
(m1)
+ is a finitely generated R(m1)-module where R(m1) is a Noetherian

ring. If for some j, Mj 6= 0, then xm1−1 : Mj → R
(m1)
+ is injective for
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0 6= x ∈ Mj , which implies that Mj is a finitely generated R(m1)-module.
Therefore, R+ is a finitely generated R(m1)-module, which is also a finitely
generated R-module.

For a PL contraction f : (X,B)→ S, the flip exists is equivalent to that

R =
∞⊕
m=0

f∗OX(xm(KX +B)y)

is finitely generated over OS . Fix a positive integer m0 such that m0B is an
integral divisor, the latter is equivalent to the finite generation of

R(m0) =
∞⊕
m=0

f∗OX(mm0(KX +B)).

Since−Y is f -ample, it is proportional to−(KX+B), hence this is equivalent
to the finite generation of

R′ =

∞⊕
m=0

f∗OX(mY ).

Lemma 3.2.3. For any positive integer m, the reflexive sheaves OX(mY )
and OY (mY ) on X and Y are well-defined, and satisfy the exact sequence

0→ OX((m− 1)Y )→ OX(mY )→ OY (mY )→ 0.

Proof. Note that Y is just Q-Cartier, so these sheaves are not invertible in
general. For any point x ∈ X, take a sufficiently small neighborhood Xx,
and take the index 1 cover πx : X̃x → Xx of Y . Then Ỹx = π−1

x (Y ) is Cartier
and we can define invertible sheaves OX̃x(mỸx) and OỸx(mỸx) satisfying the
exact sequence

0→ OX̃x((m− 1)Ỹx)→ OX̃x(mỸx)→ OỸx(mỸx)→ 0.

Here the first homomorphism is defined by multiplying s ∈ Γ(X̃x,OX̃x(Ỹx)).

Take the invariant parts with respect to Gal(X̃x/Xx), we get the required
exact sequence.

Since −Y is f -ample, in the exact sequence

0→ f∗OX((m− 1)Y )→ f∗OX(mY )→ f∗OY (mY ),

the last homomorphism is not surjective in general.

Lemma 3.2.4. If the restriction algebra

R′Y =

∞⊕
m=0

Im(f∗OX(mY )→ f∗OY (mY )).

is finitely generated, then R′ is finitely generated.
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Proof. Take s1, . . . , sk ∈ R′ to be the generators of R′Y on X, then R′ is
generated by s, s1, . . . , sk.

Applying Lemma 3.2.2 again, we can reduce the problem to the finite
generation of

RY =
∞⊕
m=0

Im(f∗OX(mm0(KX +B))→ f∗OY (mm0(KY +BY ))).

Here KY +BY = (KX +B)|Y . The restriction map

H0(X,mm0(KX +B))→ H0(Y,mm0(KY +BY ))

is not surjective. The idea is to replace this image by the space of pluri-
canonical forms with respect to a new boundary smaller than BY .

Firstly we construct a tower of log resolutions:
{restricted1}

Proposition 3.2.5 ([40, Lemma 6.4]). Let f : (X,B) → S be a small
contraction from a Q-factorial PLT pair. Assume that S is affine, Y = xBy
is irreducible, −Y is f -ample, and B is a Q-divisor. Take a positive integer
m0 such that m0B is an integral divisor. Then for any positive integer m,
there exists a log resolution µm : Xm → X and a Q-divisor B′m on Xm

satisfying the following conditions:

(1) Write µ∗m(KX + B) = KXm + Bm, Ym = µ−1
m∗Y , then the irreducible

components of B+
m − Ym are disjoint. Here B+

m is the positive part of
Bm, that is, we can write Bm = B+

m − B−m where B+
m, B

−
m are effective

divisors without common components.

(2) mm0B
′
m is an integral divisor with Ym ≤ B′m ≤ B+

m.

(3) A general element in |mm0(KXm + B′m)| does not contain LC centers
of (Xm, pB′mq).

(4) The natural map

H0(Xm,mm0(KXm +B′m))→ H0(Xm,mm0(KXm +B+
m))

∼= H0(X,mm0(KX +B))

is bijective.

(5) Ym is isomorphic to a fixed variety Y ′, and µm induces a fixed morphism
µY : Y ′ → Y .

(6) Write (KXm +B′m)|Ym = KY ′ +BY ′,m, then BY ′,m satisfy the following
convexity on m:

m1BY ′,m1 +m2BY ′,m2 ≤ (m1 +m2)BY ′,m1+m2 .
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(7) The limit BY ′ = limm→∞BY ′,m exists as an R-divisor, and (Y ′, BY ′)
is KLT.

Proof. Take a log resolution µ : (X ′, B′) → (X,B), write µ∗(KX + B) =
KX′ + B′, Y ′ = µ−1

∗ Y , we may assume that the irreducible components of
(B′)+ − Y ′ are disjoint. We will construct µm by blowing up X ′. To make
the notation simpler, we use the same notation as X ′ to denote the variety
after blowing up.

Fix m and a general element D ∈ |mm0(KX + B)|. As f |Y is bira-
tional, D does not contain Y . D induces an element D′ ∈ |mm0(KX′ +
(B′)+)|. If D′ and (B′)+ have common components, we replace them by
D′ − min{D′,mm0(B′)+} and (B′)+ − min{D′/mm0, (B

′)+}. Here note
that min{D′,mm0(B′)+} is contained in the fixed part of the linear system,
hence D′ ∈ |mm0(KX′ + (B′)+)| is preserved. The new D′ and (B′)+ have
no common components.

Next we show that, after replacing X ′ by blowing ups and replace D′,
we may assume that D′ contains no LC centers of (X ′, p(B′)+q). By the
construction of µ, LC centers of (X ′, p(B′)+q) are irreducible components of
(B′)+ and irreducible components of Y ′ ∩ ((B′)+ − Y ′). The former are al-
ready handled, consider the case that D′ contains an irreducible component
Z of Y ′∩((B′)+−Y ′). In this case we blow up X ′ along Z, and keep blowing
up X ′ until the irreducible components of (B′)+− Y ′ are disjoint. Subtract
the common part of new D′ and (B′)+ as above. Note that in this process
we only blowing up prime divisors on Y ′, hence Y ′ is not changed. On the
other hand, in this process, at least one coefficient of ((B′)+ − Y ′)|Y ′ de-
creases. Hence repeating this process finitely times, eventually D′ contains
no irreducible components of Y ′ ∩ ((B′)+ − Y ′).

In this way we constructed a very log resolution µm : Xm → X. Take
B′m = (B′)+. Here recall that (B′)+ is obtained by subtracting redundant
irreducible components. From the construction, (1), (2), (3) directly follow.
(4) follows as we only subtract fixed part of D′ from B+

m and B−m is µm-
exceptional. (5) follows since in the beginning µ : X ′ → X does not depend
on m and Y ′ keeps unchanged. (6) follows from the natural homomorphism

H0(X,m0m1(KX +B))⊗H0(X,m0m2(KX +B))

→ H0(X,m0(m1 +m2)(KX +B)).

(7) follows since BY ′,m ≤ (B+
m − Ym)|Ym and (Ym, (B

+
m − Ym)|Ym) is KLT,

where (B+
m − Ym)|Ym is a divisor on Y ′ indenpendent of m.

Next we apply the extension theorem:
{restricted2}

Theorem 3.2.6. Under the setting of Proposition 3.2.5, the restriction map

H0(Xm, lmm0(KXm +B′m))→ H0(Y ′, lmm0(KY ′ +BY ′,m))

is surjective for any positive integer l.
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Proof. Let us check the conditions of the extension theorem. Firstly, xB′my =
Y ′ and (Xm, B

′
m) is PLT.

1. Since f ◦ µ is an isomorphism on the generic points of Xm and Y ′,
we can write B′m − Y ′ = A+E where A is an ample Q-divisor and E is an
effective Q-divisor whose support does not contain Y .

2. Dm does not contain LC centers of (Xm, pB′mq).

3.2.2 The existence of PL flips

In this subsection, we prove the the existence of PL flips.
Let us recall some symbols. For a divisor D on a normal algebraic

variety X, its fixed part Fix(D) and movable part Mov(D) are defined as the
following:

|D| = {D′ | D ∼ D′ ≥ 0},
Fix(D) = inf |D|,
Mov(D) = D − Fix(D).

Here the infimum of divisors is defined by taking infimum of coefficients
of each component. Note that if X is not projective, then the complete
linear system |D| is not necessarily finite dimensional, but the fixed part is
well-defined as a divisor.

Proof of Theorem 3.2.1. By the finiteness of minimal models, for sufficiently
large m, pairs (Y ′, BY ′,m) and (Y,BY ′) have the same canonical model Z.
Here f |Y ′ : Y ′ → S is birational to its image, so the KLT version BCHM
condition automatically holds.

By a log resolution ν : Y ′′ → (Y ′, BY ′), we may assume that the induced
map ν : Y ′′ → Z is a morphism over S. We may replace Y ′ by Y ′′ in the
following.

For positive integers m, l, denote

P̃m = Mov(mm0(KXm +B+
m)) = Mov(mm0(KXm +B′m)),

Pm = P̃m|Y ′ = Mov(mm0(KY ′ +BY ′,m)),

P̃l,m = Mov(lmm0(KXm +B′m)),

Pl,m = P̃l,m|Y ′ = Mov(lmm0(KY ′ +BY ′,m)),

according to Theorem 3.2.6.
Since Y ′ dominates Z which is the canonical model of (Y ′, BY ′m), there

exists a positive integer lm such that Plm,m is free. Since P̃1,m = P̃m, P1,m =
Pm. We have

lmPm = lmP1,m ≤ Plm,m ≤ Plmm.

Since
(KXm +Bm)|Y ′ = KY ′ + B̃Y ′ = µ∗Y (KY +BY ),
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we get
Pm1 + Pm2 ≤ Pm1+m2 ≤ (m1 +m2)(KY ′ + (B̃Y ′)

+)

hence the limit P = limm→∞ Pm/m defines an R-divisor on Y ′. Note that
Plm,m/lmm is the pullback of the log canonical divisor of the canonical model
of (Y ′, BY ′m) and

lim
m→∞

Pm
m

= lim
m→∞

Plm,m
lmm

,

hence P is the pullback of the log canonical divisor of the canonical model
of (Y ′, BY ′). Therefore P is semi-ample, that is, it is a sum of free divisors
with positive real number coefficients.

In the following, we will show that there exists a positive integer m1 such
that P = Pm1/m1 and Pm1 is free. If this is proved, then for any positive
integer l, lPm1 = Plm1 , hence⊕

l≥0

H0(Y ′, lPm1)

∼=
⊕
l≥0

Im(H0(X, lm0m1(KX +B))→ H0(Y, lm0m1(KY +BY )))

is finitely generated, and the proof is finished.

Lemma 3.2.7. For any positive integers m,m′,

Mov(p
m′Plm,m
lmm

− B̃Y ′q) ≤ Pm′ .

Therefore, after taking limit,

Mov(pm′P − B̃Y ′q) ≤ Pm′ .

Proof. Take a general effective Q-divisor D ≡ m′P̃lm,m/lmm. That is, take a
sufficiently large and sufficiently divisible positive integer N , take a general
element in |Nm′P̃lm,m/lmm|, and divide it by N to get D. Also take a
general effective Q-divisor

D′ ≡ p
m′P̃lm,m
lmm

−Bmq− (
m′P̃lm,m
lmm

−Bm).

Take J to be the multiplier ideal sheaf of (Xm, D + D′). Since Plm,m =
P̃lm,m|Ym is free, Ym does not intersect the support of OXm/J . As

p
m′P̃lm,m
lmm

−Bmq− (KXm +D +D′) ≡ −µ∗(KX +B)

is relatively nef and relatively big,

H1(Xm, J(p
m′P̃lm,m
lmm

−Bmq)). = 0
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Hence

H0(Xm, p
m′P̃lm,m
lmm

− (Bm − Ym)q)→ H0(Y ′, p
m′Plm,m
lmm

− B̃Y ′q)

is surjective. On the other hand, since

µm∗(p
m′P̃lm,m
lmm

− (Bm − Ym)q) ≤ m′m0(KX +B),

we get

Mov(p
m′P̃lm,m
lmm

− (Bm − Ym)q) ≤ P̃m′ .

This proves the former statement. For the latter one, just take the limit.

Now go back to the proof of the existence of PL flips. Firstly suppose
that P is a Q-divisor. In this case, there exists a positive integer m1 such
that m1P is Cartier and free. Then

m1P ≤ Mov(pm1P − B̃Y ′q) ≤ Pm1 ≤ m1P.

Here the first equality follows as p−B̃Y ′q ≥ 0. Hence m1P = Pm1 .

Finally, suppose that P is not a Q-divisor. We can use positive real
numbers pj and free Cartier divisors Lj to express P =

∑
j pjLj . Take

an effective divisor M containing supports of all Lj , and take a sufficiently
small real number ε > 0 such that xB̃Y ′ + εMy ≤ 0. Suppose that at least
one pj is not rational, the there exists a positive integer m and a free Cartier
divisor L such that

mP − εM < L < mP + εM

and L 6≤ mP . Then

L ≤ pmP + εM − B̃Y ′ − εMq,

which implies that

L ≤ Mov(pmP − B̃Y ′q) ≤ Pm ≤ mP,

a contradiction.

Remark 3.2.8. (1) In this way, the existence of flips can be proved in any
dimension. One should be reminded that the proof of the existence of
flips in dimension 3 was very difficult [109]. So this is a big success of the
formulation using log pairs. It can be seen that in the above argument,
the base point free theorem plays an important role in the background.
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(2) P is equivalent to the positive part of the Zariski decomposition. In [63],
assuming the existence of Zariski decomposition in the sense that the
positive part is nef, even if the positive part might be an R-divisor, it can
be shown that the canonical ring is finitely generated and the positive
part is in fact a Q-divisor. The technique in that proof might be applied
here, but the proof introduced here uses the idea of “saturation” due to
Shokurov ([137]).

3.3 The special termination

The special termination is a key point for the induction on dimensions.

DLT pairs are suitable for inductive argument on dimensions, as an ir-
reducible component in the boundary with coefficient 1 determines a DLT
pair of one dimension lower. The special termination theorem by Shokurov
is basic in the discussion of the termination of MMP by induction on di-
mensions. In this section, we show the special termination of MMP with
scaling.

The log version, as the generalization of the non-log version, should be
more complicated originally. For example, log terminal singularities are
more complicated than terminal singularities. On the other hand, the log
version has more freedom. We can perturb coefficients. Also if there is an
irreducible component in the boundary with coefficient 1, we can use the sub-
adjunction formula to get a DLT pair of one dimension lower. In addition,
for a fixed algebraic variety X, if the coefficients of B increases, then the
condition that (X,B) is log terminal gets stronger, and the singularities of
X gets better.

Firstly let us recall the statement of the special termination of MMP
with scaling: Suppose that f : (X,B) → S and f : (X,B′) → S satisfy
the BCHM condition. Assume that B′ ≥ B and KX + B′ is relatively
nef. Run MMP on f : (X,B) → S with scaling of B′ − B, starting from
(X0, B0) = (X,B), we get an infinite sequence of flips

αm : (Xm, Bm) 99K (Xm+1, Bm+1), m = 0, 1, 2, . . . .

Here Bm+1 = αm∗Bm. Then there exists a positive integer m0, such that
for any m ≥ m0, αm is isomorphic in a neighborhood of xBmy. That is,

Exc(αm) ∩ Supp xBmy = ∅.
{special termination thm}

Theorem 3.3.1 (Special termination theorem). Under the BCHM condi-
tion, suppose that the existence of flips in dimension n − 1 and the ter-
mination of MMP with scaling in dimension n − 1 hold, then the special
termination of MMP with scaling in dimension n holds.
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Remark 3.3.2. (1) The special termination was originally proved by Shokurov
[135]. It opened the gate of proving the existence of minimal models by
induction on dimensions.

(2) As we will discuss later, the assumption above implies the existence of
Q-factorialization of KLT pairs in dimension n−1 (see Corollary 3.6.9).
In fact, a Q-factorialization is a minimal model of certain birational
morphism. Assuming the existence of flips in dimension n − 1 and the
termination of MMP with scaling in dimension n − 1, the existence of
minimal models in dimension n− 1 follows.

Proof. Fix any irreducible component Z1 of Z = xBy. Given an MMP with
scaling consisting of flips, it suffices to show that the MMP is isomorphic in
a neighborhood of Z1 after finitely many steps.

Recall that we can write B = A + E + Z and B′ = A + E′ + Z ′ where
Z ′ = xB′y. Here we can pick the same A since B ≤ B′. Take a sufficiently
small real number t such that A + t(Z − Z1) is relatively ample. Take a
sufficiently general effective R-divisor A1 ≡ A+ t(Z − Z1). Then (X,A1 +
E+ (1− t)(Z −Z1) +Z1) is PLT and (X,A′1 +E′+Z ′− t(Z −Z1)) is DLT.
As B ≡ A1 +E+ (1− t)(Z−Z1) +Z1, B′ ≡ A′1 +E′+Z ′− t(Z−Z1), After
replacing B and B′, we may assume that (X,B) is PLT in the beginning.
Denote Zm = xBmy.

The sequence of flips of (X,B) induces birational maps α′m : Zm 99K
Zm+1. Note that α′m can contract divisors on Zm and also extract new
divisors on Zm+1.

The set of coefficients ofB is a finite set Coeff(B) ⊂ [0, 1]. So Coeff(Bm) =
Coeff(B) is a fixed set. On the other hand, by the sub-adjunction formula
(KXm + Bm)|Zm = KZm + BZm we get an R-divisor BZm on Zm, the set
Coeff(BZm) might depend on m.

Define the set Σ ⊂ [0, 1] as the following:

Σ = {x ∈ [0, 1] | x = 1− 1

r
+
∑
i

ribi
r
, bi ∈ Coeff(B), r ∈ Z>0, ri ∈ Z≥0}.

Then by the sub-adjunction formula, Coeff(BZm) ⊂ Σ for any m.

Lemma 3.3.3. For any ε > 0, The set Σ ∩ [0, 1− ε] is finite.

Proof. Consider x = 1 − 1
r +

∑
i
ribi
r ∈ Σ. Since b1 is in a finite set, if

x ≤ 1 − ε, then it is easy to see that there are only finitely many possible
values for r and ri.

For any positive number m, take a common resolution g : Y → Xm

and g′ : Y → Xm+1 of (Xm, Bm) and (Xm+1, Bm+1) in strong sense. Write
KY + C = g∗(KXm + Bm) and KY + C ′ = (g′)∗(KXm+1 + Bm+1). Write
C =

∑
ciCi, C

′ =
∑
c′iCi into prime divisors, then ci ≥ c′i for all Ci, and
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ci > c′i for divisors supported over the exceptional locus of Xm 99K Xm+1

(cf. Theorem 2.5.6).

Take Z ′ ⊂ Y to be the common strict transform of Zm and Zm+1, take
C̄i = Ci ∩ Z ′, then KZm + BZm = g∗(KZ′ +

∑
ciC̄i), KZm+1 + BZm+1 =

g′∗(KZ′ +
∑
c′iC̄i). Here the sum runs over all Ci 6= Z ′. As (Zm, BZm) and

Zm+1, BZm+1) are KLT, we may assume that g is a very log resolution of
(Zm, BZm) and (Zm+1, BZm+1).

For each m, consider the number

dm =
∑
a∈Σ

#{ci | ci > a}.

Here we consider all coefficients appearing in
∑
ciC̄i. Note that dm is a well-

defined non-negative number since the sum only considers finitely many a
as ci < 1, and does not depend on the choice of very log resolutions since we
only consider non-negative coefficients. As ci ≥ c′i, we know that dm ≥ dm+1.
If Zm+1 contains a divisor P which is not a divisor on Zm, then P comes from
some C̄i where Ci is supported over the exceptional locus of Xm 99K Xm+1.
So this means that ci > c′i ∈ Σ, and in this case we have dm > dm+1.

In this way, we can see that α′m : Zm 99K Zm+1 is surjective in codi-
mension one after deleting finitely many steps, hence it is isomorphic in
codimension one after deleting finitely many steps.

By the sub-adjunction formula, (KX+B)|Z = KZ+BZ . As A is general,
the pair (Z,BZ) is KLT and BZ ≥ A|Z . However Z is not necessarily Q-
factorial. So we take h : Z̃ → Z to be a Q-factorialization.

We will show that if pulling backing the original MMP on f : (X,B)→ S
to Z̃, then we get an MMP on Z̃, and hence the original MMP terminates
in a neighborhood of Z. However, each step of the MMP on f : (X,B)→ S
corresponds to a composition of several steps of the MMP on Z̃, so we need
to explain this in more details.

Suppose that the flip αm : (Xm, Bm) 99K (Xm+1, Bm+1) is the com-
position of small birational maps φm : Xm → Sm and φ+

m : Xm+1 →
Sm, denote tm = min{t | KXm + Bm + tm(B′m − Bm) is nef over S}, then
KXm +Bm + tm(B′m −Bm) is numerically trivial over Sm.

Consider the induced map α′m : Zm 99K Zm+1, suppose that we have
a birational modification hm : Z̃m → Zm such that Z̃m is Q-factorial and
KZ̃m

+ B̃Z,m = h∗m(KZm + BZm), where B̃Z,m ≥ 0. Then (Z̃m, B̃Z,m) is

Q-factorial and KLT, and φm ◦ hm : (Z̃m, B̃Z,m)→ Sm satisfies the BCHM
condition as Z̃m is birational to its image on Sm. So, by induction hypoth-
esis, we can run an MMP on φm ◦ hm : (Z̃m, B̃Z,m) → Sm with scaling
of a general relatively ample divisor, which terminates to a minimal model
(Z̃m+1, B̃Z,m+1) → Sm. Since KZm+1 + BZ,m+1 is ample over Sm, it is the

canonical model of Z̃m+1 and induces hm+1 : Z̃m+1 → Zm+1.

In this way, for each m, we can inductively construct a sequence of MMP
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on (Z̃m, B̃Z,m) over Sm:

Z̃m = Zm,0 99K Zm,1 99K · · · 99K Zm,l = Z̃m+1.

Since KXm + Bm + tm(B′m − Bm) is numerically trivial over Sm, the
induced divisors KZm,i + Bm,i + tm(B′m,i − Bm,i) are all numerically trivial
over Sm. Hence it is easy to check that the sequence

Z̃ = Z̃0 = Z0,0 99K Z0,1 99K · · · 99K Z0,l = Z̃1 = Z1,0 99K Z1,1 99K . . .

is in fact an MMP on f̃ : (Z̃, B̃)→ S with scaling of B̃′−B̃, where f̃ = f ◦h,
B̃ = h−1

∗ (B−Z)|Z , B̃′ = h−1
∗ (B′−Z)|Z . HereBm,i, B

′
m,i are strict transforms

of B̃, B̃′. By inductive hypothesis, this MMP terminates. This means that,
after finitely many steps, Z̃m does not change, which means that KZ̃m

+B̃Z,m
is nef over Sm, and then KZm + BZm is nef over Sm. On the other hand,
−(KZm +BZm) is ample over Sm, so Zm → Sm does not contract any curve
on Zm. Similarly, Zm+1 → Sm does not contract any curve on Zm+1. If Zm
intersects Excαm, then Zm, as a divisor on Xm, is ample over Sm. Hence
−Zm+1 is ample over Sm, which contradicts to the fact that Zm+1 → Sm
does not contract any curve on Zm+1. This implies that the original MMP
terminates in a neighborhood of Z.

{general special termination}
Remark 3.3.4. Without assuming the BCHM condition, we have the fol-
lowing special termination: “suppose that the existence of flips in dimension
n−1 and the termination of MMP in dimension n−1 hold, then the special
termination in dimension n holds.” That is, given a projective morphism
f : (X,B) → S from a DLT pair, for an infinite sequence of flips over S
starting from (X0, B0) = (X,B):

αm : (Xm, Bm) 99K (Xm+1, Bm+1), m = 0, 1, 2, . . .

where Bm+1 = αm∗Bm, there exists a positive integer m0 such that for any
m ≥ m0, αm is isomorphic in a neighborhood of xBmy. We will not use this
fact in this book, please refer to [28].

3.4 The existence and the finiteness of minimal
models

In this section, we show the existence of minimal models by induction on
dimensions.

{existence of mm}
Theorem 3.4.1 (Existence of minimal models). Under the BCHM condi-
tion, suppose that the existence of PL flips in dimension n, the special termi-
nation of MMP with scaling in dimension n, and the non-vanishing theorem
in dimension n hold, then the existence of minimal models in dimension n
holds.
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{existence and nv}
Remark 3.4.2. As can be seen below, the BCHM condition is not essential
in this proof. To be more precise, we can prove the following claim:

Let (X,B) be a KLT pair consisting of an n-dimensional Q-factorial al-
gebraic variety and an effective R-divisor, f : X → S a projective morphism
to a quasi-projective algebraic variety. Assume the following:

1. (Existence of PL flips) For any n-dimensional Q-factorial pair (X ′, B′)
with a PL contraction, the flip always exists.

2. (Special termination) Any MMP with scaling starting from an n-
dimensional Q-factorial pair (X ′, B′) is isomorphic in neighborhoods
of strict transforms of xB′y.

3. (Non-vanishing theorem) For the given pair (X,B), there exists an
effective R-divisor D such that KX +B ≡S D.

The there exists a minimal model of the given morphism f : (X,B)→ S.
The existence of PL flips holds as a result of this chapter, the special

termination can be proved assuming lower dimensional minimal model the-
ory (Remark 3.3.4). Therefore, if one want to try to prove the existence of
minimal models without the BCHM condition, the non-vanishing theorem
is a key point.

Here we will follow the proof of Birkar [13] which modifies that of [15].
Firstly recall the definition of minimal models:

Definition 3.4.3. Let (X,B) be a Q-factorial DLT pair and f : X → S
a projective morphism to a quasi-projective algebraic variety. A minimal
model of f : (X,B) → S is given by another Q-factorial DLT pair (Y,C)
over S with a birational map α : (X,B) 99K (Y,C) satisfying the following:

(1) α is surjective in codimension 1, C = α∗B.

(2) KY + C is relatively nef over S.

(3) If we take a normal algebraic variety Z with birational projective mor-
phisms p : Z → X, q : Z → Y such that α = q◦p−1, then the discrepancy
divisor G = p∗(KX + B) − q∗(KY + C) is effective, and the support of
p∗G contains all prime divisors contracted by α.

If in the third condition we only assume G ≥ 0, then it is called a weak
minimal model.

Remark 3.4.4. Minimal models obtained by MMP satisfy the following
condition stronger than (3): denote Exc(α) to be the exceptional set of
α, that is, the complement of the maximal open subset on which α is an
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isomorphism, then the support of G coincides with p−1(Exc(α)). Condition
(3) only focuses on the phenomenon in codimension 1, but it is in fact
sufficient.

Proof. Since we only assume the existence of PL flips, we need to be care-
ful on running MMP, that is, we can run the MMP as long as each small
contraction is a PL contraction. On the other hand, in order to show the
termination of certain MMP, the idea is to adjust the boundary B and apply
the special termination. Therefore, it is necessary to consider DLT pairs by
increasing the boundary B, instead of KLT pairs.

By assumption, KX +B ≡S D for some effective R-divisor D.

Step 0. We reduce to the case that X is smooth and the support of
B +D is of normal crossing.

After replacing B, we may assume that (X,B) is KLT and satisfies the
BCHM condition and B ≥ A where A is a general effective relatively ample
R-divisor. Take a log resolution g : X ′ → (X,B + D), we can construct
an effective R-divisor B′ such that (X ′, B′) is KLT and satisfies the BCHM
condition,

E = KX′ +B′ − g∗(KX +B)

is effective and its support coincides with the support of the exceptional set
of g. Then a minimal model of f ◦ g : (X ′, B′)→ S is also a minimal model
of f : (X,B)→ S.

In fact, take α : (X ′, B′) 99K (X ′′, B′′) to be a minimal model, since E is
contained in the numerically fixed part of KX′ +B′ over S, it is contracted
by α by Theorem 2.9.6, that is α∗E = 0. Hence α ◦ g−1 : X 99K X ′′ is
surjective in codimension 1, and the negativity can be checked easily. So it
is a minimal model of f : (X,B)→ S.

Also, note that B′ ≥ g−1
∗ A is still relatively big as A is general. Hence

f ◦ g : (X ′, B′) → S satisfies the KLT version BCHM condition. After
replacing f : (X,B) → S by f ◦ g : (X ′, B′) → S, we may assume that X
is smooth and the support of B +D is of normal crossing in the beginning.
Note that we do not assume that (X,B) is KLT, but we assume that f :
(X,B) → S satisfies the BCHM condition, and B ≥ A a general effective
relatively ample R-divisor, in particular, A has no common component with
D.

Step 1. Write B =
∑
biDi and D =

∑
diDi by distinct prime divisors

Di. We will do induction on

θ = θ(X,B,D) = #{i | bi 6= 1, di 6= 0}.

If D = 0, then f : (X,B)→ S is already minimal, hence we assume that
D 6= 0.
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Suppose that θ = 0. Take a general effective relatively ample R-divisor
H such that KX + B +H is relatively nef and (X,B +H) is DLT, we can
run an MMP with scaling of H. Here since θ = 0, the support of D is
contained in xBy, hence in each step the contracted curves are contained in
the support of D and each small contraction is a PL contraction. By the
existence of PL flips and the special termination of MMP with scaling, this
MMP works and terminates.

Next, suppose that θ > 0. Take

t = min{t′ ∈ R>0 | Supp(xBy) 6= Supp(xB + t′Dy)}.

Take B + C =
∑

min{bi + tdi, 1}Di, where C is effective. Then KX +B +
C ≡S D+C and Supp(D+C) = SuppD. Note that t is the smallest number
making θ(X,B + C,D + C) < θ(X,B,D).

Consider the morphism f : (X,B+C)→ S. Here we remind that (X,B)
satisfies the BCHM condition and B ≥ A, which implies that f : (X,B +
C)→ S still satisfies the BCHM condition. Since θ(X,B+C,D) is smaller,
by the induction hypothesis, there exists a minimal model f ′ : X ′ → S,
a birational morphism α : (X,B + C) 99K (X ′, B′ + C ′) over S such that
KX′+B

′+C ′ is relatively nef. HereB′ = α∗B, C ′ = α∗C. DenoteD′ = α∗D,
then D′ ≡S KX′ +B′.

We may run an MMP on f ′ : (X ′, B′)→ S with scaling of C ′. As (X,B)
and (X,B+C) satisfy the BCHM condition, (X ′, B′) and (X ′, B′+C ′) also
satisfy the BCHM condition.

By construction, there exists an effective R-divisor E′ whose support is
contained in xB′y, such that KX′ + B′ + C ′ + E′ = KX′ + B′ + tD′ ≡S
(1 + t)(KX′ + B′). For any extremal ray R in this MMP, we have ((KX′ +
B′) · R) < 0 and ((KX′ + B′ + C ′) · R) ≥ 0, hence (E · R) < 0. Therefore,
any contracted curve is contained in xB′y and each small contraction is a
PL contraction. Here we keep the same symbol to denote strict transforms
in the MMP. By the existence of PL flips and the special termination of
MMP with scaling, this MMP works and terminates to a minimal model
f ′′ : X ′′ → S with a birational map β : (X ′, B′) 99K (X ′′, B′′) over S.

The composition map β◦α : X 99K X ′′ is surjective in codimension 1 and
KX′′ +B′′ is relatively nef. However, β ◦ α might not satisfy the negativity
for KX +B, so we need to discuss more.

Step 2. Consider the following set:

I = {s ∈ [0, 1] | f : (X,B + sC)→ S has a minimal model}.

Note that 1 ∈ I, and our goal is to show that 0 ∈ I. We will show that if
s ∈ I and s > 0, then there exists a sufficiently small ε > 0 such that s′ ∈ I
if 0 ≤ s− s′ ≤ ε by modifying the argument in Step 1.

Take αs : (X,B + sC) 99K (X ′s, B
′
s + sC ′s) to be a minimal model of

(X,B + sC) with natural morphism f ′s : X ′s → S. As negativity is an open
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condition, if ε is sufficiently small, KX +B+ s′C is negative with respect to
αs.

We can run an MMP on f ′s : (X ′s, B
′
s+s

′C ′s)→ S with scaling of (s−s′)C ′s.
As before, extremal rays in this MMP intersects negatively on an R-divisor
supported in xB′sy. Hence by the existence of PL flips and the special
termination of MMP with scaling, this MMP works and terminates to a
minimal model β′s : (X ′s, B

′
s + s′C ′s) 99K (X ′′s′ , B

′′
s′ + s′C ′′s′) with morphism

f ′′s′ : X ′′s′ → S. The composition map βs′ ◦ αs : X 99K X ′′s′ is surjective in
codimension 1 and KX′′s +B′′s+s′C ′′s′ is relatively nef. Moreover, KX+B+s′C
satisfies negativity, hence s′ ∈ I.

Step 3. Take s0 = inf I. Note that s0 < 1. We will show that s0 ∈ I,
then by Step 2, s0 = 0 ∈ I. In order to show this, firstly we construct a
weak minimal model.

Take a strictly decreasing sequence I 3 sk → s0, take minimal models
αk : (X,B + skC) 99K (X ′k, B

′
k + skC

′
k) with morphisms f ′k : X ′k → S.

We can run an MMP on f ′k : (X ′k, B
′
k + s0C

′
k)→ S with scaling of (sk −

s0)C ′k. As before, by the existence of PL flips and the special termination
of MMP with scaling, this MMP works and terminates to a minimal model
βk : (X ′k, B

′
k + s0C

′
k) 99K (X ′′k , B

′′
k + s0C

′′
k ) with morphism f ′′k : X ′′k → S.

The divisors contracted by βk ◦ αk are all irreducible components of
D, hence after replacing {sk} by a subsequence, we may assume that the
contracted divisors do not depend on k. Then X ′′k are all isomorphic in
codimension 1. Since KX′′k

+ B′′k + s0C
′′
k is relatively nef, they are crepant

to each other. That is, their pullbacks coincide on a common resolution.
Therefore, the discrepancy divisor of KX +B + s0C is independent of k.

Take an arbitrary prime divisor P over X. Denote ak ≥ 0 to be the
coefficient of P in the discrepancy divisor of KX + B + skC with respect
to αk, and bk ≥ 0 to be the coefficient of P in the discrepancy divisor of
KX′k

+ B′k + s0C
′
k with respect to βk. Denote aP to be the coefficient of P

in the discrepancy divisor of KX + B + s0C with respect to βk ◦ αk, then
aP = limk→∞(ak + bk) ≥ 0.

Therefore, for any k, γ = βk ◦αk gives a weak minimal model (X ′′k , B
′′
k +

s0C
′′
k ) = (X ′′, B′′+s0C

′′) of (X,B+s0C). Recall that (X,B+s0C) satisfies
the BCHM condition, in the following argument, after changing the bound-
ary, we may assume that (X,B + s0C) is KLT, and hence (X ′′, B′′ + s0C

′′)
is also KLT.

Step 4. If aP > 0 holds for any prime divisor P on X contracted by γ,
then γ is a minimal model, and s0 ∈ I, which concludes the proof.

If aP = 0 for some prime divisors contracted by γ, as (X ′′, B′′ + s0C
′′)

is KLT, by the following lemma, we can take a “crepant extraction” of
these divisors from (X ′′, B′′ + s0C

′′), and this gives a minimal model of
(X,B + s0C).
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Lemma 3.4.5 (Crepant extraction). Let (X,B) be an n-dimensional quasi-
projective DLT pair and P be a discrete valuation on the function field of
X. Take a log resolution f : Y → (X,B) such that the center of P is a
prime divisor EP on Y , write f∗(KX + B) = KY + BY , suppose that the
coefficient of EP in BY is in [0, 1). Moreover, if the coefficient is 0, then
we assume that the center of P on X is not contained in xBy. Suppose the
existence of PL flips in dimension n and the special termination of MMP
with scaling in dimension n hold. Then there exists a projective birational
morphism g : (X ′, B′)→ (X,B) from a Q-factorial DLT pair such that

(1) g is crepant: g∗(KX +B) = KX′ +B′.

(2) The center of P is a prime divisor on X ′, and it is the only exceptional
divisor of g.

Proof. Note that if we construct a Q-factorial algebraic variety X ′ satis-
fying (2), then (1) automatically follows. After slightly modifying B by
Lemma 2.1.7, we may assume that (X,B) is KLT while the assumption on
the coefficient of EP is preserved. Take E to be the sum of all exceptional
divisors of f except for EP , take B′Y = max{BY , E}. Then (Y,B′Y ) is a DLT
pair and KY +B′Y −f∗(KX +B) is effective with support E = xB′Y y. Hence
by the existence of PL flips and the special termination of MMP with scal-
ing, we can run an MMP on (Y,B′Y ) over X with scaling of a general ample
divisor, which terminates to a minimal model g : (X ′, B′) → X. Note that
KX′ + B′ − g∗(KX + B) is effective and exceptional over X, which implies
that it is 0 by the negativity lemma. In other words, all divisors in E are
contracted by this MMP. On the other hand, since all extremal rays in this
MMP intersect negatively along E, only divisors in E can be contracted. So
the strict transform of EP is the only exceptional divisor of g.

In the end of this section, we show the finiteness of minimal models.
{finiteness of mm}

Theorem 3.4.6 (Finiteness of minimal models). Under the BCHM condi-
tion, suppose that the existence of minimal models in dimension n holds,
then the finiteness of minimal models in dimension n holds.

Recall that in Theorem 2.10.3, we showed the finiteness of canonical
models assuming the existence of minimal models and canonical models. On
the other hand, in Remark 2.10.5 and Example 2.10.7, finiteness of minimal
models does not hold in general. But if we assume the BCHM condition,
then we can show the finiteness of minimal models, which in fact can be
reduced to the finiteness of canonical models.

Proof. Fix f : X → S. Suppose that P is a polytope spanned by effective
R-divisors such that for any B ∈ P , f : (X,B) → S satisfies the BCHM
condition. We may assume further that for any B ∈ P , (X,B) is KLT and
B ≥ A where A is a relatively ample effective Q-divisor.
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Take H1, . . . ,Hs to be relatively ample effective divisors whose classes
form a basis of N1(X/S). Fix a sufficiently small real number ε > 0, after
changing A, we may assume that A − ε

∑
iHi is effective and relatively

ample. Consider a new polytope

Q′ := {B +
∑
i

hiHi | B ∈ P,−ε ≤ hi ≤ ε}.

If taking ε is sufficiently small, we may assume that for any B′ ∈ Q′, f :
(X,B′)→ S satisfies the BCHM condition. Consider the polytope

Q := {B′ ∈ Q′ | [KX +B′] ∈ Eff(X/S)}.

Hence by the existence of minimal models and Theorem 2.10.3, there are
finitely many canonical models corresponding to Q. In order to finish the
proof, we only need to show that every minimal model corresponding to P
is a canonical model corresponding to Q.

Take any B ∈ P , and suppose α : (X,B) 99K (Y,C) is a minimal model
of f : (X,B) → S. Take a relatively ample divisor HY on Y , take H =
α−1
∗ HY . We can write H ≡S

∑
diHi for some real numbers di. Take a

sufficiently small real number δ > 0, we may assume that B+ δ
∑
diHi ∈ Q

and α : (X,B + δ
∑
diHi) 99K (Y,C + δ

∑
diα∗Hi) is a minimal model of

f : (X,B + δ
∑
diHi) → S as negativity is an open condition, this is also

a canonical model since KY + C + δ
∑
diα∗Hi ≡S KY + C + δHY is ample

over S.

3.5 The non-vainishing theorem

Among a series of theorems deriving geometric consequences from numerical
conditions, the non-vanishing theorem is one of the most difficult ones. It
was prove in dimension 3 unconditionally ([103], [104]). Under the BCHM
condition that the boundary is big, this difficult theorem can be proved by
induction on dimensions.

Let us recall the statement of the non-vanishing theorem: KX + B is
relatively pseodo-effective, then there exists an effective R-divisor D such
that D ≡S KX +B.

{NV thm}
Theorem 3.5.1 (Non-vanishing theorem). Under the BCHM condition,
suppose that the existence of PL flips in dimension n, the special termi-
nation of MMP with scaling in dimension n, the existence and finiteness of
minimal models for pairs (X,B) with KX +B relatively big in dimension n
hold, then the non-vanishing theorem in dimension n holds.

Remark 3.5.2. In the following proof, we actually prove a slightly stronger
statement: “ there exists an effective R-divisor D such that D ∼R KX+B”.
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This is because we are going to derive the general result from the statement
on generic fibers, but numerical equivalence does not work for this purpose.

On the other hand, by Theorem 3.4.1 and Remark 3.4.2, assuming the
existence of PL flips in dimension n and the special termination of MMP with
scaling in dimension n, then the non-vanishing up to numerical equivalence
is sufficient to show the existence of a minimal model (Y,C). We can make
(X,B) satisfying the KLT version BCHM condition, then (Y,C) is KLT and
C is big, then by the base point free theorem, KY + C is semiample, and
in particular, it is R-linearly equivalent to an effective R-divisor. Pulling
back to X, we know that KX + B is R-linearly equivalent to an effective
R-divisor.

Proof. Step 0. We may assume that (X,B) is KLT and B = 3A + E is
big, where A is a general effective ample R-divisor and E is an effective
R-divisor . Until Step 5, we suppose that S is a point.

Take a log resolution g : X ′ → (X,B), write g∗(KX +B) = KX′ +B′, it
suffices to show the theorem for (X ′, (B′)+). Therefore, from the beginning,
we may assume that X is smooth and the support of B is of normal crossing.
Also we may assume that A is a Q-divisor and kA is integral for a sufficiently
large positive integer k.

Step 1. Consider the divisorial Zariski decomposition KX +B = P +N .
Firstly we consider the case P ≡ 0. In this case, KX + B ≡ N . From the
above remark, we can get the non-vanishing up to R-linear equivalence.

Step 2. In the following, we assume that P 6≡ 0. We will construct a
PLT pair (Y,C) by increasing the boundary.

Since KX + B is pseudo-effective, by Theorem 2.9.8, after replacing k,
for any sufficiently large m,

dimH0(X, xmk(KX +B)y + kA) >

(
(k + 1)n

n

)
.

Fix a general smooth point x in X, denote mx to be the maximal ideal of
the local ring of this point, as length(OX,x/mkn+1

x ) =
(

(k+1)n
n

)
, there exists

an effective R-divisor G ∼R m(KX +B) +A such that multxG > n.
Then (X,G) is not LC at x. In fact, if consider the blowing up a x, and

denote the exceptional divisor to be Ex, then the coefficient of Ex in the
pullback of KX+G is larger than 1. Take a log resolution g : Y → (X,B+G)
such that Ex is a divisor on Y , take an effective R-divisor F with sufficiently
small coefficients whose support is the exceptional locus of g.

TakeBt = 2A+(1−t/m)A+E+(t/m)G. Note thatB0 = B, Bm = E+G,
and KX +Bt ∼R (1 + t)(KX +B).

Denote g∗(KX +Bt) = KY + C̄t, take C ′t = (C̄t)
+ + F , Et = (C̄t)

− + F .
Here +,− are positive part and negative part. Then

KY + C ′t = g∗(KX +Bt) + Et.
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Take the divisorial Zariski decomposition KY + C ′t = Pt + Nt, and take
Ct = (C ′t −Nt)

+. By convexity, Ct is continuous for t ∈ (0,m).

As B0 = B, (Y,C0) is KLT. On the other hand, as Bm = E + G and x
is a general point, the coefficient of Ex in Nm is not greater than that in F .
Here we use the fact that

KY + C ′t = g∗(KX +Bt) + Et ≡ (1 + t)g∗(KX +B) + (C̄t)
− + F

and Ex is not in the support of (C̄t)
−. Therefore, (Y,Cm) is not LC. We

can consider the LC threshold

t0 = max{t | (Y,Ct) is LC}.

Take C = Ct0 . As the support of C is of normal crossing, (Y,C) is DLT.

By using the part of A contained in Bt to perturb the tie breaking, we
may assume that (Y,C) has a unique LC center.

By the construction, KY + C is pseudo-effective. Moreover, using the
fact that C ≥ g−1

∗ A, we may further assume that C contains an ample
divisor. Once we can show that KY + C is numerically equivalent to an
effective R-divisor, then KX + Bt0 is numerically equivalent to an effective
R-divisor. Since KX +Bt0 ∼R (1+ t0)(KX +B), we can conclude the proof.

Step 3. Replacing (X,B) by the PLT pair (Y,C), we may assume that
X is smooth, B = A+E + Z where A is an effective ample Q-divisor, E is
an effective R-divisor, and Z = xBy is irreducible. By the sub-adjunction
formula, (KX + B)|Z = KZ + BZ . By the construction in Step 2, Z is not
contained in the numerically fixed part of KX +B.

Take {Ei} to be irreducible components of E, consider the vector v =∑
eiEi. For a sufficiently small real number ε > 0, suppose that |ei| ≤ ε,

for a sufficiently small real number t > 0, take Bt,v = B + t(v +A). As ε is
sufficiently small, we may assume that v +A is ample.

Since KX + Bt,v is big, by the assumption on the existence of minimal
models, there exists a minimal model αt,v : (X,Bt,v) 99K (Yt,v, Ct,v).

Step 4. We will show that if ε and t are sufficiently small, the birational
map αt,v induces a birational map αZ : Z 99K W independent of the choice
of t, v. Here note that Z is not contained in the numerically fixed part of
KX +Bt,v, hence is not contracted by αt,v.

Fix a sufficiently small t1 > 0, take 0 ≤ t < t1, consider the polytope

Vt = {B + t′(v +A) | v =
∑

eiEi, |ei| ≤ ε, t ≤ t′ ≤ t1}

in the linear space of divisors. Fixing t > 0, for any B′ ∈ Vt, (X,B′) is PLT
and KX + B′ is big. By the assumption on the existence and finiteness of
minimal models, there are finitely many birational maps αk : X 99K Xk,
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such that for any Bt′,v ∈ Vt, αt′,v coincides with one of αk. So by taking
the limit t → 0, there are at most countably many minimal models for
boundaries in V0 \ {B}.

Consider the restrictions of those birational maps on Z. If all αk|Z are
the same, then we can finish this step. So we may assume that there are at
least 2 different αk|Z . Fix a birational map αk1 . Consider the subset

Qk1 = {B′ ∈ V0 | αk1 is a weak minimal model of (X,B′)}.

If (X,B) has a weak minimal model, then we can finish the proof. So we
may assume that Qk1 does not contain B, which implies that Qk1 is a closed
sub-polytope of V0 \ {B}. Take V ′k1

to be the smallest polytope containing
Qk1 and B.

Replacing V0 by V ′k1
, we can do the same argument on V ′k1

as above.
If we could not get the conclusion of this step, then this process does not
terminate, and we can get a decreasing sequence of polytopes V0 ⊃ V ′k1

⊃
V ′k2
⊃ . . . with vertex B, where we can make proper choice of αki in each

step, such that αki+1
|Z is different from αki |Z for each i. By the compactness,

we can find a ray L starting from B such that L intersects all Qki . Using
this line, we can construct an MMP on (X,B) with scaling which consists
of an infinite sequence of flips and is not isomorphic in a neighborhood of
Z for infinitely many steps, which contradicts to the special termination of
MMP with scaling.

Step 5. By using similar argument as in the proof of the base point
free theorem, we will show certain extension theorem from Z to X by the
vanishing theorem. By the sub-adjunction formula, we have

(KYt,v + Ct,v)|W = KW + CW,t,v,

denote limt→0CW,t,v = CW , note that this limit does not depends on v.
Since KW + CW,t,v is nef, KW + CW is also nef. Take Ā = αZ∗(A|Z).

Recall that B = A + E + Z and {Ei} are irreducible components of E.
Consider P to be a sufficiently small rational polytope in the linear space
spanned by Ei containing E such that if E′ ∈ P , then (X,A + E′ + Z) is
PLT. As Ā is big,

NW = {Ē′ = αZ∗(E
′|Z) | E′ ∈ P,KW + Ā+ Ē′ is nef}

is a rational polytope in the linear space of divisors on W by the cone
theorem. Its pullback

N = {E′ ∈ P | Ē′ = αZ∗(E
′|Z) ∈ NW }

is a rational polytope containing E.
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Take rational points Fj ∈ N and real numbers rj > 0 such that
∑
rj = 1

and E =
∑
rjFj . Correspondingly we have Q-divisor Bj = A+Fj+Z, such

that B =
∑
rjBj . Take CW,j = Ā+ αZ∗(Fj |Z), then CW =

∑
rjCW,j .

Taking t > 0 sufficiently small and Fj sufficiently close to E, donote

Bj = A+ Fj + Z = B + tvj ,

we may assume that B + t(vj +A) satisfies conditions in Steps 3-4. Denote
Yj = Yt,vj and (αt,vj )∗Bj = Cj , note that

(KYj + Cj)|W = KW + CW,j .

Denote Aj = αj∗A, then KYj + Cj + tAj is nef and big.

Take q to be the common multiple of the denominators of coefficients of
all Fj , since KW + CW,j is nef and CW,j is big, by the effective base point
free theorem, there exists a positive integer m independent of q, such that
|mq(KW + CW,j)| is free. Consider the approximation of coefficients of E
by those of Fj , the differences are bounded by order 1

q1+δ for some δ > 0.
As Fj − E = tvj , if q is sufficiently large, then we can make tq sufficiently
small. Note that

mq(KYj + Cj)−W
= (mq − 1)(KYj + Cj + tAj) +KYj + αj∗(1− (mq − 1)t)A+ Fj),

and we may assume that

(Yj , αj∗((1− (mq − 1)t)A+ Fj))

is KLT, by the vanishing theorem,

H1(Yj ,mq(KYj + Cj)−W ) = 0.

Hence

H0(Yj ,mq(KYj + Cj))→ H0(W,mq(KW + CW,j))

is surjective. So H0(Yj ,mq(KYj + Cj)) 6= 0. Recall that (Yj , Cj + tAj) is a
minimal model of (X,Bj + tA), take a common resolution p : X ′ → X and
q : X ′ → Y , we know that p∗(KX + Bj + tA) ≥ q∗(KYj + Cj + tAj). On
the other hand, p∗A ≤ q∗Aj by the negativity lemma, hence p∗(KX +Bj) ≥
q∗(KYj +Cj). This implies that H0(X,mq(KX +Bj)) 6= 0. As B =

∑
rjBj ,

there exists an effective R-divisor D such that KX +B ∼R D.

Step 6. Finally we consider the case that S is not a point. Restricting to
the generic fiber Xη of f , from the above argument, there exists an effective
R-divisor Dη such that KXη +Bη ∼R Dη. That is, there exists real numbers
ri and rational functions hi on Xη such that, KXη +Bη−Dη =

∑
ridiv(hi).
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Denote D to be the closure of Dη on X. As hi are also rational functions
on X, G = KX+B−D−

∑
ridiv(hi) defines an R-divisor G on X. Note that

G does not dominate S, so there exists an effective ample divisorH on S such
that f(Supp(G)) ⊂ H and f∗H+G ≥ 0. Hence KX +B ∼R,S D+G+f∗H
which proves the theorem.

Remark 3.5.3. (1) The non-vanishing theorem is to show the weak ef-
fectivity(numerically equivalent to an effective divisor) assuming the
pseudo-effectivity. At the first glance the difference between effectivity
and pseudo-effectivity looks easy, but in fact it is the root of difficulty
and fun in the minimal model theory. It assert that some nature of
mathematics is hiding in the boundary of the cone of big divisors. This
is a statement of the type of the base point free theorem.

(2) If one wants to partially solve some conjectures in the minimal model
theory, what immediately comes to mind is, for example, the case that
B = 0, or the case that KX + B is big. However, such conditions are
not compatible with the inductive argument. On the other hand, the
condition that B can be written as B = A + E works very well in the
induction.

(3) If B is a Q-divisor, then in the proof we can show that D can be also
taken to be a Q-divisor.

3.6 Summary

In summary, by complicated inductive arguments, all the theorems have
been proved at the same time. In conclusion, we get the following theorem:

{existence of mm final}
Theorem 3.6.1 (Existence of minimal models). Let (X,B) be a Q-factorial
KLT pair and f : X → S a projective morphism to a quasi-projective variety.
Assume the following conditions:

(1) B is relatively big, that is, there exists a relatively ample R-divisor A
and an effective R-divisor E such that B = A+ E.

(2) KX +B is relatively pseudo-effective, that is, [KX +B] ∈ Eff(X/S).

Then there exists a minimal model of f : (X,B)→ S.

This theorem has many important corollaries. Firstly, combining with
the base point free theorem, the following corollary directly follows:

Corollary 3.6.2. Under the assumption of Theorem 3.6.1, assume further
that B is a Q-divisor. Then the canonical ring

R(X/S,KX +B) =
∞⊕
m=0

f∗(OX(xm(KX +B)y))
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is a finitely generated graded OS-algebra.

In the above result, the assumption that B is big is not necessary (see
Theorem ??).

We can also conclude the existence of minimal models when the log
canonical divisor is big:

{existence of mm log big}
Corollary 3.6.3. In Theorem 3.6.1, if we replace conditions (1), (2) with
the following condition (3), we can get the same conclusion:

(3) KX +B is relatively big.

Proof. By the assumption, there exists an effective R-divisor B′ such that
KX + B ≡S B′. For a sufficiently small ε > 0, (X,B + εB′) is KLT and
B + εB′ is relatively big. A minimal model of f : (X,B + εB′) → S is also
a minimal model of f : (X,B)→ S.

Corollary 3.6.4. Let X be a Q-factorial normal algebraic variety with
terminal singularities and f : X → S a projective morphism to a quasi-
projective variety. Assume that KX is relatively big. Then there exists a
minimal model of f : X → S with Q-factorial terminal singularities.

Proof. This follows from Corollary 3.6.3. As B = 0 and X is terminal, the
resulting minimal model is automatically terminal.

As a special case of the existence of minimal models, we get the following
theorem:

{Existence of flips}
Theorem 3.6.5 (Existence of flips). Let (X,B) be a Q-factorial DLT pair
and f : X → S a projective morphism to a quasi-projective variety. Then
the flip of any small contraction of f : (X,B)→ S always exists.

If KX +B is not relatively pseudo-effective, then we can get a Mori fiber
space unconditionally:

Theorem 3.6.6 (Existence of Mori fiber spaces). Let (X,B) be a Q-factorial
KLT pair and f : X → S a projective morphism to a quasi-projective
variety. Assume that KX + B is not relatively pseudo-effective, that is,
[KX + B] 6∈ Eff(X/S). Then there exists a birational model of f admitting
a Mori fiber space structure. More precisely, there exists a Q-factorial KLT
pair (Y,C) over S and a birational map α : (X,B) 99K (Y,C) satisfying the
following conditions:

(1) α is surjective in codimension 1, C = α∗B.

(2) If we take a normal algebraic variety Z with birational projective mor-
phisms p : Z → X, q : Z → Y such that α = q ◦ p−1, then G =
p∗(KX +B)− q∗(KY +C) is effective, and the support of p∗G contains
all prime divisors contracted by α.
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(3) There exists a Mori fiber space h : Y → Z over S.

Note that we do not assume that B is relatively big.

Proof. Take a sufficiently general relatively ample effective Q-divisor H such
that (X,B + H) is KLT and KX + B + H is relatively ample. Take a
sufficiently small ε > 0 such that KX + B + εH is not relatively pseudo-
effective. As B + εH is relatively big, we can run an MMP on (X,B + εH)
with scaling of (1− ε)H, which terminates to a Mori fiber space. It is easy
to see that this MMP is also an MMP on (X,B +H).

Remark 3.6.7. Currently we have proven strong partial results in the mini-
mal model theory under the BCHM condition. It is expected that induction
methods will be successful even if we drop the BCHM condition, and all
problems in the minimal model theory can be settled in the near future.

As an auxiliary result, the following theorem were already proved in the
process of the proof:

Theorem 3.6.8 (Crepant blowing up or Crepant extraction). Let (X,B) be a
quasi-projective KLT pair. Take a very log resolution f ′ : Y ′ → X and write
(f ′)∗(KX+B) = KY ′+C

′. Choose a set of several f ′-exceptional divisors on
Y with non-negative coefficients in C ′. Then there exists a Q-factorial KLT
pair (Y,C) and a projective birational morphism g : (Y,C) → (X,B), such
that g is crepant, that is, g∗(KX +B) = KY +C, and the set of exceptional
divisor of g coincides with the chosen set.

Proof. Take an effective R-divisor F on Y ′ whose support is the f ′-exceptional
divisors not contained in the chosen set. If F is sufficiently small, then
(Y, (C ′)+ +F ) is KLT. Then a minimal model of f ′ : (Y, (C ′)+ +F )→ X is
the crepant blowing up we want. Here as f ′ is birational, every R-divisor is
relatively big.

As special cases, we get “Q-factorialization” and“Q-factorial terminal-
ization”:

{Q-factorialization}
Corollary 3.6.9 (Q-factorialization). Let (X,B) be a quasi-projective KLT
pair. Then there exists a Q-factorialization of X, that is, there exists a Q-
factorial normal algebraic variety Y and a projective birational morphism
g : Y → X which is isomorphic in codimension 1.

Proof. Take the chosen set to be the empty set.
{Q-factorial terminalization}

Corollary 3.6.10 (Q-factorial terminalization). Let (X,B) be a quasi-
projective KLT pair. Then there exists a Q-factorial terminalization of
(X,B), that is, there exists a Q-factorial terminal pair (Y,C) and a pro-
jective birational crepant morphism g : (Y,C)→ (X,B).
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Proof. Take the chosen set to be the set of all exceptional divisors with
non-negative coefficients.

Note that the Q-factorial terminalizations are maximal among all crepant
blowing ups. In particular, if B = 0 and X has canonical singularities, then
this is the crepant blowing up considered in [64], which is applied to proved
the termination of flips inductively in [70].

Example 3.6.11. As a toric variety is KLT , it admits a Q-factorialization.

Take a toric variety (X,B). That is, T ⊂ X is a T -equivariant open
immersion into a normal algebraic variety with a T -action where T is an
algebraic torus, and B = X \ T is a reduced divisor. Take Σ = {σ} to
be the corresponding fan. Take Σ′ to be a fan with same vertices as Σ in
which each σ is subdivided into simplicial cones. Take (X ′, B′) to be the
corresponding toric variety. In this case, X ′ is Q-factorial and there is a
natural birational morphism f : X ′ → X isomorphic in codimension 1 such
that f∗(KX + B) = KX′ + B′. The choice of subdivision is not necessarily
unique. If taking the subdivision appropriately, then f is projective and we
get a Q-factorialization.

Similarly, we can prove the following result, which is useful for general-
izing statements for KLT or DLT pairs to LC pairs:

{DLT blowup}
Corollary 3.6.12 (DLT blow-up). Let (X,B) be a quasi-projective LC pair.
Then there exists a Q-factorial DLT pair (Y,C) and a projective birational
crepant morphism f : (Y,C) → (X,B) such that exceptional divisors of f
are contained in xCy.

Proof. Take a log resolution f ′ : Y ′ → (X,B), write (f ′)∗(KX + B) =
KY ′ + C ′. As (X,B) is LC, the coefficients of C ′ are at most 1. Write
C ′′ = (f ′)−1

∗ B + Exc(f ′). Then C ′′ − C ′ is effective and its support is the
union of all exceptional divisors of f ′ with coefficients less than 1 in C ′.

Take a general relatively ample effective divisor A and a sufficiently
small real number t > 0, we can apply MMP to f : (Y ′, C ′′ + tA) → X.
As KY ′ + C ′′ + tA = (f ′)∗(KX + B) + (C ′′ − C ′) + tA, if t is sufficiently
small, the support of the numerically fixed part of KY ′ + C ′′ + tA over X
coincides with the support of C ′′ − C ′. Therefore, the minimal model of
f : (Y ′, C ′′ + tA) → X contracts all divisors in C ′′ − C ′, which is a DLT
blow-up.

For a DLT blow-up, we can blowing up LC centers to get another DLT
blow-up. So in general DLT blow-ups do not have maximality as Q-factorial
terminalizations.



3.7. ALGEBRAIC FIBER SPACES 199

3.7 Algebraic fiber spaces

In this section, we introduce the weak semi-stable reduction theorem ([1])
and the semi-positivity theorem ([55]) for algebraic fiber spaces. We will
just give outlines without proof. There is a relatively simple proof for the
latter one [81].

Algebraic fiber spaces can be viewed as relative version of algebraic vari-
eties. Birational equivalences between algebraic varieties are given by their
function fields. The function fields of algebraic varieties are regular exten-
sions of the base field. So birational equivalences between algebraic fiber
spaces are given by regular extensions of function fields.

The weak semi-stable reduction theorem can be viewed as the desingu-
larization theorem for algebraic fiber spaces. The semi-positivity theorem
is an important consequence of Hodge theory. Both theorems are proved
when the base field is of characteristic 0, and in positive characteristics the
latter one has counterexample.

3.7.1 Algebraic fiber spaces and toroidal geometry

A finite extension L/K of fields is a regular extension if the following con-
ditions are satisfied:

(1) (Separability) There exists a transcendence basis t1, . . . , tn over K such
that L is a separable algebraic extension of K(t1, . . . , tn).

(2) (Relative algebraic closedness) The set of elements in L algebraic over
K is K.

If K is an algebraically closed field, then the above 2 conditions auto-
matically hold. In this case, there exists an algebraic variety X over K such
that L = K(X).

If K is a regular extension of an algebraically closed field k, then there
exist algebraic varieties X,Y over k such that L = k(X),K = k(Y ) and a
morphism f : X → Y satisfying the following conditions:

(1) f is dominant, that is, the generic point of X is mapped to that of Y .

(2) The geometric generic fiber of f is irreducible and reduced.

The morphism f : X → Y above is called an algebraic fiber space. As
in this book we mainly interested in projective algebraic varieties, X and Y
are usually assumed to be projective. We often work over base field of char-
acteristic 0, in which case the separability of field extensions automatically
holds.

Next we explain the language of toroidal geometry. A toroidal variety
is a pair of variety and divisor locally isomorphic to a toric variety. Here
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“locally” means in the classical analytic topology or étale topology, and the
base field is the complex number field.

A pair (X,B) consisting of a normal algebraic variety and a reduced
divisor is called a toroidal variety, if for each point xi ∈ X, there exists an
analytic neighborhood Ui of xi, a toric variety Yi, a point yi ∈ Yi, and an
analytic neighborhood Vi of yi ∈ Yi, such that there is an analytic isomor-
phism (Ui, B∩Ui, xi) ∼= (Vi, Ci∩Vi, yi). Here Ci = Yi \Ti is the complement
of the torus on Yi. Here in addition we assume that irreducible compo-
nents of B are normal, that is, we only consider toroidal varieties without
self-intersection.

A pair (X,B) is called a smooth toroidal variety, if X is a smooth alge-
braic variety and B is a normal crossing divisor. A pair (X,B) is called a
quasi-smooth toroidal variety, if locally it is a quotient of a smooth toroidal
variety by a finite abelian group: for any point xi ∈ X, there exists an
analytic neighborhood xi ∈ Ui, and a finite abelian group acting diagonally
on an analytic neighborhood Ṽi of a point ỹi on Cn, such that there is an
analytic isomorphism (Ui, B ∩ Ui, xi) ∼= (Ṽi/Gi, (C̃ ∩ Ṽi)/Gi, yi). Here C̃ is
the union of coordinate hyperplanes, and yi is the image of ỹi.

Remark 3.7.1. Similar to toric varieties, a toroidal variety is also associated
with a fan ([85]). A toric variety is determined by its fan, the information
of analytically local structure and global glueing is determined by the fan.

A toroidal variety is analytically locally isomorphic to a KLT pair, so
it is also KLT , and admits a Q-factorialization. A toroidal variety is Q-
factorial if and only if the fan is simplicial, if and only if it is quasi-smooth.

For a toric variety (X,B), the sheaf Ω1
X(logB) of all logaritmic differen-

tial forms, that is, rational differential forms on X with at most logarithmic
poles along B, is a locally free sheaf of rank n = dimX. In fact, the exten-
sion of regular differential forms dzi/zi (i = 1, . . . , n) on the toruc T = X \B
form a basis. Here zi (i = 1, . . . , n) are coordinates of T . Hence for a toroidal
variety (X,B), Ω1

X(logB) is also locally free.

Take Ω•X(logB) to be the wedge product algebra of Ω1
X(logB). Using

the exterior derivative d on logaritmic differential forms, we can define the
log De Rham complex

Ω•X(logB)

= {0→ OX → Ω1
X(logB)→ Ω2

X(logB)→ · · · → Ωn
X(logB)→ 0}.

A dominant morphism f : (X,B)→ (Y,C) between toroidal varieties is
called a toroidal morphism if locally it is isomorphic to a toric morphism.
If (X,B) and (Y,C) are quasi-smooth, this is equivalent to the following:
for any point xi ∈ X, there exist analytic neighborhoods xi ∈ Uiand yi =
f(xi) ∈ U ′i , and finite morphisms from open subsets of affine spaces πi :



3.7. ALGEBRAIC FIBER SPACES 201

Ṽi → Ui and π′i : Ṽ ′i → U ′i such that f is induced by fi : Ṽi → Ṽ ′i , where we
may write

f∗i wj =
∏

z
cjk
k

for coordinates (z1, . . . , zn) and (w1, . . . , wm). Here n = dimX, m = dimY ,
{cjk} are non-negative integers.

For a toroidal morphism f : (X,B) → (Y,C), the sheaf of relative loga-
rithmic differential forms Ω1

X/Y (log) is defined by

Ω1
X/Y (log) = Ω1

X(logB)/f∗Ω1
Y (logC).

It is a locally free sheaf on X of rank dimX − dimY . In particular, if f is
finite, then f∗Ω1

Y (logC) ∼= Ω1
X(logB) and Ω1

X/Y (log) ∼= 0.

We can similarly define the relative log De Rham complex Ω•X/Y (log).
Denote d = dimX − dimY , then

Ωd
X/Y (log) ∼= OX(KX +B − f∗(KY + C)).

This is denoted by ωX/Y (log) and called the relative log canonical sheaf .

3.7.2 The weak semi-stable reduction theorem and the semi-
positivity theorem

Assume that the base field is of characteristic 0.

The disingularization theorem is a fundamental theorem in birational
geometry for algebraic varieties, while the “weak semi-stable reduction the-
orem” is a fundamental theorem in birational geometry for algebraic fiber
spaces:

Theorem 3.7.2 (Weak semistable reduction theorem [1]). Let f0 : X0 →
Y0 be a surjective morphism between projective varieties with geometrically
integral generic fiber, and Z ⊂ X0 a closed proper subset. Then we can
construct the following algebraic fiber space models:

(1) Well prepared model: There exists a quasi-smooth projective toroidal
variety (X1, B1), a smooth projective toroidal variety (Y1, C1), a mor-
phism f1 : X1 → Y1, and birational morphisms g1 : X1 → X0, h1 : Y1 →
Y0 such that f0 ◦ g1 = h1 ◦ f1 with the following properties:

(1-1) g−1
1 (Z) ⊂ B1.

(1-2) f1 : (X1, B1)→ (Y1, C1) is toroidal.

(1-3) f1 is equi-dimensional, that is, every geometric fiber is of dimen-
sion dimX0 − dimY0.
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(2) Weakly semistable model: There exists a quasi-smooth projective
toroidal variety (X2, B2), a smooth projective toroidal variety (Y2, C2),
a morphism f2 : X2 → Y2, a Galois finite morphism h2 : Y2 → Y1, and
a projective birational morphism µ : X2 → (X1 ×Y1 Y2)ν isomorphic in
codimension 1 with the following properties:

(2-1) g−1
2 (B1) = B2, h−1

2 (C1) = C2.

(2-2) f2 : (X2, B2)→ (Y2, C2) is toroidal.

(2-3) f2 is equi-dimensional, and every geometric fiber is reduced.

Here (X1 ×Y1 Y2)ν is the normalization and g2 : X2 → X1 is the induced
morphism. Moreover, by adding some reduced divisor to C1 and replace
B1 accordingly, we may assume that g2 : (X2, B2) → (X1, B1) and h2 :
(Y2, C2)→ (Y1, C1) are toroidal.

Remark 3.7.3. (1) A well prepared model is a birational model, but a
weakly semistable model is not as there is a base change. The birational
morphism µ is a Q-factorialization.

(2) The reason that a weakly semistable model is called “weak” is that the
ambient space X2 is not necessarily smooth. If the base space Y0 is of
dimension 1, then there exists a semistable model in which X2 is smooth.
However, X2 → (X1 ×Y1 Y2)ν is not isomorphic in codimension 1, but a
resolution of singularities ([85]). The base change h2 is constructed by
using Theorem 1.8.2.

A locally free sheaf F in a projective algebraic variety X is called nu-
merically semipositive or nef if the tautological quotient invertible sheaf
OPX(F )(1) on PX(F ) is nef. The following semipositivity theorem repre-
sents the geometric property of algebraic fiber spaces:

Theorem 3.7.4 (Semipositivity theorem, [55]). For a well prepared algebraic
fiber space f : (X,B)→ (Y,C), the following properties hold:

(1) For any integers p, q, Rqf∗(Ω
p
X/Y (log)) is a locally free sheaf on Y .

(2) For any integer q, Rqf∗(ωX/Y (log)) is numerically semipositive.

This result can be generalized by using the covering trick:
{subadjunctionTh2}

Theorem 3.7.5 ([75, Theorem 2]). Let f : (X, B̄) → (Y, C̄) be a well
prepared algebraic fiber space and B an effective Q-divisor whose support is
contained in B̄ with coefficients in [0, 1). Assume that κ(Xy, (KX+B)|Xy) =
0 for a general fiber Xy of f . Write B̄ =

∑
Bi, C̄ =

∑
Cj into irreducible

components, write B =
∑
biBi.

Assume that there exists a positive integer m and an integral effective di-
visor D on X satisfying the following conditions, which determines effective
Q-divisors M and C on Y :
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1. m(KX+B) is Cartier, D ∈ |m(KX+B)|, the support of D is contained
in B̄. Write D =

∑
diBi.

2. M is the largest Q-divisor on Y satisfying f∗M ≤ D. Write M =∑
mjCj.

3. Take B0 := B −D/m+ f∗(M/m) =
∑
b0iBi, f

∗Cj =
∑
bijBi, and

cj = max
i
{(b0i + bij − 1)/bij | f(Bi) = Cj}.

Take C =
∑
cjCj.

Then (Y,C) is KLT and L := M/m− (KY + C) is nef.

Proof. Step 1. From the construction, KX + B0 ∼Q f∗M/m ∼Q f∗(L +
KY + C). Take B1 = B0 − f∗C, then KX +B1 ∼Q f∗(L+KY ).

C is the smallest Q-divisor satisfying f∗(C̄ − C) ≤ B̄ −B0. Also

f∗L ∼Q KX +B0 − f∗(KY + C)

= KX + B̄ − f∗(KY + C̄)− (B̄ −B0) + f∗(C̄ − C).

Therefore, L is the largest Q-divisor satisfying

f∗L ≤ KX + B̄ − f∗(KY + C̄).

3.8 The finite generation theorem

In this section, we prove the main theorem of this book: the finite generation
theorem, that is, the canonical ring of any smooth algebraic variety is finitely
generated. This can be reduced to the general type case as in BCHM using
the semi-positivity theorem after simplifying the situation by the weak semi-
stable reduction theorem. Here slightly generally, we introduce the proof for
KLT pairs ([30]).

3.9 Generalizations of the minimal model theory

So far in this book, we established the minimal model theory for algebraic
varieties over algebraically closed fields of characteristic zero. This result can
be easily generalized to algebraic varieties admitting finite group actions or
over algebraically non-closed fields by modifying certain results appropri-
ately. Let us check these one by one.
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3.9.1 The equivariant minimal model theory

Consider a pair (X,B) with morphism f : X → S admitting a finite group G
action. That is, G acts on X, S, f is G-equivariant, and B is a G-invariant
R-divisor.

3.9.2 The MMP over algebraically non-sclosed fields

Consider the generalization to algebraically non-closed fields.

3.10 Remaining problems

3.10.1 The abundance conjecture

3.10.2 Case of numerical Kodaira dimension zero

3.10.3 Generalization to positive characteristics

3.11 Related topics

3.11.1 Boundedness results

3.11.2 Minimal log discrepancies

3.11.3 The Sarkisov program

3.11.4 Rationally connected varieties

3.11.5 The category of smooth algebraic varieties
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d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273–
310, Sijthoff and Noordhoff, Alphen aan den Rijn–Germantown, Md.,
1980.

[127] Reid, Miles. Minimal models of canonical 3-folds. Algebraic varieties
and analytic varieties (Tokyo, 1981), 131–180, Adv. Stud. Pure Math.,
1, North-Holland, Amsterdam, 1983.

[128] Reid, Miles. Decomposition of toric morphisms. Arithmetic and geom-
etry, Vol. II, 395–418, Progr. Math., 36, Birkhäuser Boston, Boston,
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