Errors and Typos in Griffiths\&Harris

Aleksey Zinger, February 12, 2020

Errors/Omissions

p35, \#2,3: the completeness conditions for a sheaf need to be stated for an infinite cover. The book's definition does not imply the infinite-cover condition even for sheaves over $\mathbb{Z} \subset \mathbb{R}$. Without the infinite-cover condition, \breve{H}^{0} need not be the space of global sections.
p104, Lemma: the proof is completely wrong. It is based on the premise that a linear subspace W of an inner-product product space V is dense in V if and only if the orthogonal complement of W in V is 0 . The "only if" is of course true. The "if" part is true if V is complete. It need not be true if V is not complete, an example is in Remark on p10 of
http://www.math.sunysb.edu/~azinger/mat531-spr11/hw10/ps10sol.pdf
p139, middle: the definition of $c_{1}(L)$ in H_{DR}^{2} is off by sign. It implicitly uses an identification between Čech and de Rham cohomologies. The only such identification described in the book is at the bottom of p 44 . This identification differs by $(-1)^{p(p-1) / 2}$ on the p-level from the identification induced via the double complex

$$
\left(\check{C}^{p}\left(\mathfrak{U}, \mathcal{A}^{q}\right), D_{p, q} \equiv \delta+(-1)^{p} d\right) .
$$

The latter is the "natural" identification of \check{H}^{2} and H_{DR}^{2} for the purposes of defining $c_{1}(L)$ in the de Rham cohomology, so that both statements in Proposition on p141 hold. The proof of this proposition contains another sign error on p141 (which cancels the sign error in the definition of $c_{1}(L)$ in the de Rham cohomology): the 3rd and 4th displayed equations in the proof reverse the relation between θ_{α} and θ_{β} worked out in Section 5 Chapter 1 (bottom of p72). The 4th equation is off by sign even from the last equation on the followig page. Once the latter sign error is fixed, one gets -1 for $\int_{\mathbb{P}^{1}} c_{1}(\mathcal{O}(1))$ with the book's definition of $c_{1}(L)$ in the de Rham cohomology.

Typos

p16, lines 9,10: need regular covering
p16, line -2: local antiholomorphic functions
p 27 , line -5 : the last denominator is $\partial \bar{z}_{j}$
p40, line above Basic Fact: $\delta^{*} \sigma=\mu$
p63, line -4: compact analytic subvarieties
p64, line 11: compact analytic subvariety
p77, line 4: $\theta^{*} \longrightarrow \theta$
p 78 , middle, above θ_{E} matrix: which lemma?
p78, middle, θ_{E} matrix: $(1,2)$-entry should be $-{ }^{t} \bar{A}$
p 78 , middle, Θ_{E} matrix: the term in $(1,1)$ - and $(2,2)$-entries should have +
p78, next display: last terms come with - signs; the identities hold only after the projections
p 85 , bottom displayed expression: first lines missing $\sum_{\xi, \xi^{\prime}}$
p87, 2nd displayed expression: last exponent of $1 / 2$ should be outside of the square bracket
p105, line 3: $+\bar{\partial}_{N}^{*} \bar{\partial}_{M}^{*}$
p 123 , line $-12: n-k=p+q(\operatorname{try} p, q=0$ and $n=2)$
p129, line 3: begin
p130, top: f is square free
p134, line -9: $f^{*}([D])=\left[f^{*}(D)\right]$
p148, Proposition: $\Theta=(2 \pi / \sqrt{-1}) \omega$
p153, lines 13,14,-1 (twice); p154, lines 3,-6,-2: $\sqrt{-1} / 2 \longrightarrow \sqrt{-1}$ (see bottom of p111)
p153, lines $-10,-8,-7,-5,-3$: second summands are missing $(-1)^{p+q}$
p153, line -3: \sum_{α}
p 153 , line -1: RHS missing $(-1)^{p+q}$
p154, bottow 2 displayed expressions (6 times);
p155, lines 2,4: $2 \sqrt{-1} \longrightarrow \sqrt{-1}$
p155, lines 4,5: $4 \pi \longrightarrow 2 \pi$
p160, line $-5:-\sqrt{-1} / 2 \longrightarrow-\sqrt{-1}$ (see bottom of p111)
p160, lines $-3,-2$ (3 times); p161 lines $2,3,6,10,11$ (7 times): there should be no factor of 2 in front
p160, line $-2:+1 / 2 \sqrt{-1} \longrightarrow-\sqrt{-1}$
p161, line 3: $-1 / 2 \sqrt{-1} \longrightarrow+\sqrt{-1}$
p161, lines $10,11: 4 \pi \longrightarrow 2 \pi$ (with the above changes)
p162, line 7: missing) before \neq
p162, line 11: a section
p169, line $-5: \mathbb{P}^{k+1} \supset \mathbb{P}^{k}$
p170, 1.: smooth projective
p180, middle, $\left(^{*}\right): \otimes \longrightarrow \oplus$
p 188, middle, $g_{i j}=\operatorname{det} J_{i j}=z(i)_{j}^{-n+1}$
p193, subsection heading: only Definitions here; the other two are in the next two subsections p195, line 12: equality holds for $\Lambda \in W_{a_{1}, \ldots, a_{k}}$
p202, line -14: $b_{\beta-1} \longrightarrow b_{\beta}-1$
p206, line 2: left-hand row \longrightarrow last column
p206, top display: missing $(-1)^{d}$ in front the last expression
p206, line -10: $(n+1)$-planes $\longrightarrow n$-planes
p215, line -12: in Section 4 of Chapter $1 \longrightarrow$ on page 173 (this is in Section 3 of Chapter 1)
p216, line 17: in Section 2 of Chapter $1 \longrightarrow$ on page 77 (this is in Section 5 of Chapter 0)
p217, line 7: in Section 2 of Chapter $1 \longrightarrow$ on page 141 (this is in Section 1 of Chapter 1)
p220, line -4: in Section 2 of Chapter $1 \longrightarrow$ on page 147 (this is in Section 1 of Chapter 1)
p220, line -1: that section \longrightarrow pages 146,141
p227, line 14: $D=(g) \longrightarrow D=(f)$
p228, line 8: $\mathbb{C}^{q} \longrightarrow \mathbb{C}^{g}$
p228, line 16: $\Lambda_{2 g} \longrightarrow \Pi_{2 g}$
p 229 , line 16: $\int_{s_{0}}^{s} \longrightarrow \int_{p_{0}}^{s}$
p230, line 6: $\int_{s_{0}}^{s} \longrightarrow \int_{p_{0}}^{s}$
p235, line 7: $\varphi(D) \longrightarrow \mu(D)$
p235, 3rd display: left arrow should be pointing and is now an inclusion

```
p236, line -10: }\mp@subsup{\sum}{i}{}\longrightarrow\mp@subsup{\sum}{\lambda}{
p236, line -4: }(\mp@subsup{\mu}{}{(g)}(\mp@subsup{D}{}{\prime}))\longrightarrow(\mp@subsup{\mu}{}{(g)}(\mp@subsup{D}{}{\prime}))\mp@subsup{}{j}{
p236, line -1: }\mp@subsup{\mu}{}{(d)}\longrightarrow\mp@subsup{\mu}{}{(g)
p237, lines 2,4: }\mp@subsup{\mu}{}{(d)}\longrightarrow\mp@subsup{\mu}{}{(g)
p237, line -10: df* }\omega\longrightarrow\mp@subsup{f}{}{*}
p238, line -5, RHS: +[-2]
p238, line -3: }\omega=dz\longrightarrow\omega=-2d
p239, line 14: }\omega=dz\longrightarrowd
p239, line 14: \omega\longrightarrow\frac{1}{2}dz
p239, lines -8,-1: }(\lambda)\longrightarrow(\Lambda
p239, line -4: Then }\longrightarrow\mathrm{ Since
p239, line -2, short sentence: under the assumption that RHS of previous display holds
p241, line 2: }\mp@subsup{s}{0}{}\inS\longrightarrow\mp@subsup{s}{0}{}\in
p241, lines 5,13,-5: }\mp@subsup{\int}{\mp@subsup{S}{0}{}}{}\longrightarrow\mp@subsup{\int}{\mp@subsup{p}{0}{}}{
p245, line -4: }\mp@subsup{h}{}{0}(K-D)>\operatorname{max}(0,g-d
p248, line 5: ho (K-D)\longrightarrowho
p248, line 17: a ( d-r-1)-plane }\overline{D
p251, Corollary: any nondegenerate curve
p251, Proof, line 2: second = should }\geq\mathrm{ and the equality holds if and only if C is normal
p251, line -12: a nondegenerate curve
p252, line -7: }(l+m)\longrightarrow(l+m)
p252, line -3: in the section on rules surfaces }\longrightarrow\mathrm{ on page 533
p253, Noether's Theorem: l }\longrightarrow
```

