
Advances in Mathematics 320 (2017) 361–390
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Irregular varieties with geometric genus one, theta 

divisors, and fake tori

Jungkai Chen a,b,∗, Zhi Jiang c, Zhiyu Tian d

a Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
b National Center for Theoretical Sciences, 1 Sec. 4, Roosevelt Rd., Taipei 106, 
Taiwan
c Shanghai Center for Mathematical Sciences, 22F East Guanghua Tower, Fudan 
University, No. 220 Handan Road, Shanghai, China
d CNRS, Institut Fourier, UMR 5582, Université Grenoble Alpes, CS 40700, 
38058, Grenoble, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 February 2017
Received in revised form 2 August 
2017
Accepted 28 August 2017
Available online 11 September 2017
Communicated by Aravind Asok

Keywords:
Irregular variety
Fake torus
Theta divisor
Generic vanishing theorem
Fourier–Mukai transform

We study the Albanese image of a compact Kähler manifold 
whose geometric genus is one. In particular, we prove that if 
the Albanese map is not surjective, then the manifold maps 
surjectively onto an ample divisor in some abelian variety, 
and in many cases the ample divisor is a theta divisor. With 
a further natural assumption on the topology of the manifold, 
we prove that the manifold is an algebraic fiber space over a 
genus two curve. Finally we apply these results to study the 
geometry of a compact Kähler manifold which has the same 
Hodge numbers as those of an abelian variety of the same 
dimension.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: jkchen@ntu.edu.tw (J. Chen), zhijiang@fudan.edu.cn (Z. Jiang), 

zhiyu.tian@univ-grenoble-alpes.fr (Z. Tian).
http://dx.doi.org/10.1016/j.aim.2017.09.004
0001-8708/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aim.2017.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:jkchen@ntu.edu.tw
mailto:zhijiang@fudan.edu.cn
mailto:zhiyu.tian@univ-grenoble-alpes.fr
http://dx.doi.org/10.1016/j.aim.2017.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2017.09.004&domain=pdf


362 J. Chen et al. / Advances in Mathematics 320 (2017) 361–390
1. Introduction

Kawamata proved in [9] that if X is a smooth projective variety with Kodaira dimen-
sion κ(X) = 0, then the Albanese morphism aX : X → AX is an algebraic fiber space. 
An effective version of this result was obtained in [7]. For instance, the author proved 
that if pg(X) = P2(X) = 1, aX is an algebraic fiber space. Pareschi, Popa and Schnell 
recently prove the same criterion for compact Kähler manifolds in [13].

On the other hand, if we only assume that pg(X) = 1, aX is not necessarily surjective. 
In this article we will show that, if pg(X) = 1 and aX is not surjective, the Albanese 
image is closely related to the geometry of theta divisors.

Theorem 1.1. Let X be a compact Kähler manifold with pg(X) = 1. Then

(1) dim aX(X) ≥ 1
2 dimAX ;

(2) aX is not surjective if and only if there exists a quotient map of abelian varieties 
AX → B such that the image of the induced map f : X → B is an ample divisor D
of B.

In the statement of (2), the quotient AX → B is deduced from generic vanishing theory 
of Green–Lazarsfeld. The dual Pic0 B ⊂ Pic0 AX is actually the neutral component of 
the intersection of certain cohomological support loci of KX .

In a special case when AX is simple, we have:

Theorem 1.2. Let X be a compact Kähler manifold with pg(X) = 1. Assume that aX is 
not surjective and AX is simple. Then aX(X) := D is an ample divisor of AX . Moreover, 
if D is smooth in codimension 1, then D is a theta divisor of AX and aX is a fibration 
onto D.

One ingredient of the proof of Theorem 1.1 is the decomposition theorem introduced 
in [3] and proved in general by Pareschi, Popa, and Schnell in [13]. By the decomposition 
theorem, the “positive” part of aX∗ωX comes from algebraic varieties and this allows us 
to reduce the statement to the algebraic setting.

Hacon and Pardini proved in [6] that dim aX(X) ≥ 1
2 dimAX if X is of maximal 

Albanese dimension and pg(X) = 1. Hence Theorem 1.1 (1) is a natural generalization 
of Hacon and Pardini’s theorem. The “if” part of (2) is clear. If there exists a surjective 
morphism from X → D, the induced morphism g : X → D ↪→ B factors through 
aX : X → AX . Then aX is not surjective. The “only if” part can then be proved using 
the idea in Pareschi’s characterization of theta divisors (see [11]). In Section 3 and 4, we 
will see much more precise structures of aX(X) and why it should be related to theta 
divisors.

With a further assumption on the second Betti cohomology, we have a very strong 
conclusion:
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Theorem 1.3. Let X be a compact Kähler manifold with pg(X) = 1. Then the pull-back 
map a∗X : H2(AX , Q) → H2(X, Q) is not injective if and only if there exists a fibration 
ϕ : X → C to a smooth projective curve C of genus 2.

The “if” part is again clear. The fibration f induces a fibration AX → JC. Since C
is a curve, H2(JC, Q) → H2(C, Q) is not injective. Hence H2(AX , Q) → H2(X, Q) is 
also not injective. The genus 2 curve appears because the assumption on the cohomology 
implies that the Lefschetz hyperplane theorem fails in this case, which forces the divisor 
D in Theorem 1.1 to admit a fibration onto a genus 2 curve.

A more careful analysis shows the following.

Corollary 1.4. Let X be a compact Kähler manifold with pg(X) = 1. Then the de Rham 
fundamental group π1(X) ⊗ Q of X is isomorphic to a product of Q2r × (π1(C) ⊗ Q)i, 
where C is a smooth curve of genus 2. To be more precise, dim(Ker(H2(AX , Q) =
Λ2H1(X, Q) → H2(X, Q))) is divisible by 5 and the number i appearing above is 
1
5 dim(Ker(H2(AX , Q) = Λ2H1(X, Q) → H2(X, Q))), 2r + 2i = b1(X). The number i
is less or equal to the codimension of the the Albanese image of X.

The de Rham fundamental group is the Q-unipotent completion of the topological 
fundamental group (cf. [1]). Campana showed that a resolution of singularities of the 
Albanese image of X computes the de Rham fundamental group. In Corollary 1.4, we 
actually show that the Albanese image of X can be decomposed, in some sense, to a 
product of sub-torus of AX , some smooth projective curves of genus 2, and some ample 
divisors of dimension ≥ 2 of abelian subvarieties of AX . Hence we can read off from the 
de Rham fundamental group the numbers of factors of genus 2 curves and the number 
5 comes from the dimension of kernels H2(JC, Q) → H2(C, Q), where C is a smooth 
projective curve of genus 2.

The motivation to study the Albanese image of irregular varieties with geometric 
genus one comes from an explicit geometry question.

Catanese showed that a compact Kähler manifold, whose integral cohomology ring is 
isomorphic to that of a torus, is actually a complex torus.

In [4], the authors study projective varieties X with mild singularities, whose rational 
cohomology rings are isomorphic to those of complex tori. These varieties are called 
rational cohomology tori. The Albanese morphism of a rational cohomology torus is 
finite and is often an abelian cover of the Albanese variety.

It is then natural to ask what can we say about the general structure of X if we 
further loosen the condition on cohomology rings. The condition that dimHi(X, Q) =
dimHi(AX , Q) is too weak to say anything interesting. Indeed, by blowing-up subvari-
eties on Pm-bundles over curves, we can construct many varieties verifying this condition.

On the other hand, Betti cohomology of smooth projective varieties carries Hodge 
structures, which usually inherit information about the complex structure of X. John 
Christian Ottem asked:
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Question 1.5. Let X be a compact Kähler manifold. Assume that hp,q(X) = hp,q(AX)
for all p and q. Is X a rational cohomology torus?

Note that the above question is equivalent to ask whether the Albanese morphism 
aX is generically finite under the assumption of Hodge numbers. If so, the pull-back 
a∗X : H∗(AX , Q) → H∗(X, Q) would be an isomorphism and hence X is a rational 
cohomology torus.

The answer to Ottem’s question is negative. A counter-example is described in [4, 
Example 1.7], which is an elliptic curve fibration over a genus 2 curve. We will see that, 
despite the counterexamples, there are strong restrictions on the structure of aX : X →
AX .

Definition 1.6. Let X be a compact Kähler manifold. We say that X is a fake torus if the 
Hodge numbers of X are the same as those of a complex torus of the same dimension 
and the Albanese morphism aX is not generically finite.

The following results are direct applications of Theorem 1.3.

Corollary 1.7. Let X be a fake torus. There exists a fibration f : X → C to a smooth 
projective curve C of genus 2. In particular, the fundamental group of a fake torus is 
non-abelian.

Proof. By definition of fake torus, pg(X) = 1 and aX is not surjective. Hence any Kähler 
class on X does not come from AX . Moreover, since dimH2(AX , Q) = dimH2(X, Q), 
the pull-back a∗X : H2(AX , C) → H2(X, C) is not injective. Then Theorem 1.3 implies 
that there exists a fibration f : X → C. Then we have a surjective map π1(X) � π1(C). 
Hence π1(X) is not abelian. �
Corollary 1.8. Let X be a compact Kähler manifold, whose Hodge numbers are the same 
as those of a complex torus of the same dimension. Then either π1(X) ⊗ Q � Q2n and 
X is a rational cohomology torus or dimQ π1(X) ⊗Q = ∞ and X is a fake torus.

Proof. If aX is surjective, then a∗X : H ·(AX , Q) → H ·(X, Q) is injective and hence is an 
isomorphism by assumption on Hodge numbers. Then X is a rational cohomology torus. 
Otherwise, X is a fake torus by definition.

When aX is surjective, by [1, Corollary 2.18], π1(X) ⊗Q � π1(AX) ⊗Q = Q2n. When 
aX is not surjective, X is a fake torus. Then by the above corollary, we have a surjective 
map π1(X) ⊗Q � π1(C) ⊗Q, where C is a smooth projective curve of genus 2. Hence 
dimQ π1(X) ⊗Q = ∞. �

We have a good understanding on the structure of aX(X) for a fake torus X, thanks 
to the theory of generic vanishing. However, the fiber of aX is poorly understood. That is 
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the reason that we don’t have a picture of the general structure of fake tori. Nevertheless, 
when dim aX(X) = dimX − 1, we have the following general result.

Theorem 1.9. Let X be a fake torus of dimension n. If dim aX(X) = n − 1, then X is 
not of general type.

Moreover, we can also describe explicitly fake tori in low dimensions. Here is the result 
in dimension two.

Proposition 1.10. Let X be a fake torus of dimension 2. Then X is a minimal projective 
surface with κ(X) = 1. Furthermore, there exists a finite abelian group G acting faithfully 
on an elliptic curve E and on a smooth projective curve D of genus ≥ 3 such that 
E/G � P1, D/G = C is a smooth curve of genus 2, and X is isomorphic to the diagonal 
quotient (D ×E)/G.
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2. Notations and preliminaries

2.1. Subvarieties of general type

A compact Kähler manifold is always connected and a variety is always supposed to 
be reduced and irreducible.

A subvariety of a torus is called of general type if any of its desingularization is 
a smooth projective variety of general type. Ueno ([20, Theorem 10.9]) proved that a 
subvariety of a complex torus is not of general type if and only if it is fibred by sub-torus. 
More precisely, given a subvariety Z of a complex torus B. Let K be the maximal subtorus 
of B such that K +Z = Z and denoted B� = B/K. Then there is Z� ⊂ B� such that Z�

is of general type and Z → Z� is fibred by K. We call Z� (resp. Z� ⊂ B�) the κ-reduction 
of Z (resp. of Z ⊂ B). We call K the κ-kernel of Z. Notice that if Z is of general type, 
then clearly Z� = Z. Hence one has (Z�)� = Z� in general.

Let X be a compact Kähler manifold. We denote by Y ⊂ AX the image of the 
Albanese morphism of X. In sequel, we will fix the following notation:
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X

f

aX
g

Y

h

AX

p

Z B,

(1)

where Z ⊂ B is the κ-reduction of Y ⊂ AX . In this setting, if Y is of general type, then 
h and p are respectively isomorphisms of Y and AX .

For any torus A, we will denote by Â = Pic0(A) the dual abelian variety.
We adapt the following notations. Assume that Z ↪→ A is a subvariety (possibly of 

general type) of an abelian variety and assume that B̂ is an abelian subvariety of Â. Let 
B be a quotient abelian variety of A and ZB denote the image of Z in B. The κ-reduction 
of ZB , denoted Z�

B, is called the κ-reduction of Z with respect to B. We will need the 
following easy lemma.

Lemma 2.1. Let Z ↪→ A be a subvariety of an abelian variety, B̂2 ⊂ B̂1 ⊂ Â be abelian 
subvarieties, and ZBi

↪→ Bi be the κ-reduction with respect to Bi. Then there is induced 
commutative diagram with surjective vertical morphisms

Z�
B1

B�
1

Z�
B2

B�
2.

(2)

In particular, the torus B̂�
2 is a subtorus of B̂�

1.

Lemma 2.2. Let Z ↪→ B be a subvariety of general type. For B̂1 and B̂2 two abelian 
subvarieties of B̂. Let B̂12 be the neutral component of B̂1∩ B̂2 and let B̂1

2 be the neutral 
component of B̂�

1 ∩ B̂2. Then (B1
2)� = (B12)�.

Proof. It is clear that B̂1
2 ⊂ B̂12 and hence (̂B1

2)� ⊂ (̂B12)� by Lemma 2.1. Moreover, 
since (̂B12)� ⊂ B̂�

1 and (̂B12)� ⊂ B̂�
2 ⊂ B̂2, one has (̂B12)� ⊂ B̂1

2 . Hence

(̂B12)� = ̂(B12)�
� ⊂ (̂B1

2)�.

This completes the proof. �
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2.2. Hodge type sheaves

It is well-known that coherent sheaves on a projective varieties with origin from Hodge 
theory usually carry nice positive properties. We now recall the definition of some positive 
properties.

Let F be a coherent sheaf of an abelian variety A, the cohomological support loci of 
F is the closed subset

V i(F ) := {P ∈ Pic0(A) | dimHi(F ⊗ P ) > 0}

of Â. Moreover, we will also consider the jump loci

V i
k (F ) := {P ∈ Pic0(A) | dimHi(F ⊗ P ) ≥ k}.

We say that F is a GV-sheaf if codimÂ V i(F ) ≥ i for each i > 0 and we say that F is 
M-regular if codimÂ V i(F ) > i for each i > 0.

Let F be a torsion-free coherent sheaf of a smooth projective variety X. We say that 
F is weakly positive (see also [15, Definition 2.1]) if there exists a Zariski open subset 
U of X such that for every ample divisor H of X, every integer α > 0, there exists an 
integer β > 0 such that ŜαβF ⊗Hβ is generated by global sections over U , where ŜαβF

stands for the reflexive hull of SαβF .
In the following, we often consider a torsion-free coherent sheaf F on a subvariety 

i : Z ↪→ A (we usually do not distinguish F and i∗F ) satisfying the following properties:

(P1) F is a GV sheaf on A;
(P2) for all i, k ≥ 0, V i(F ) and V i

k (F ) are union of torsion translated abelian subvari-
eties of Pic0(A);

(P3) let g : A → B be a morphism between abelian varieties, let ZB be the image of Z, 
and let r = dimZ − dimZB , then

Rg∗(F ⊗Q) =
⊕

0≤j≤r

Rjg∗(F ⊗Q)[−j] ∈ Db(B),

for any torsion line bundle Q ∈ Pic0(A);
(P4) moreover, Rjg∗(F ⊗Q) is either 0 or is a torsion-free GV sheaf on ZB.

We call a torsion-free coherent sheaf on Z satisfying Properties (1), (2), (3) and (4) a 
Hodge sheaf on A supported on Z.

Lemma 2.3. Let F be a Hodge sheaf on A supported on Z.

(1) If for some i > 0, V i(F ) has a component P0 + B̂0 of codimension i, where P0 is a 
torsion line bundle and B̂0 is an abelian subvariety. Let K be the kernel of A → B0, 
then Z + K = Z. In particular, if Z is of general type, F is M-regular.
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(2) Let g : A → B be a morphism between abelian varieties and let Q ∈ Pic0(A) a 
torsion line bundle. If Rjg∗(F ⊗Q) 
= 0 for some j ≥ 0, Rjg∗(F ⊗Q) is a Hodge 
sheaf on B supported on ZB.

(3) Let F ′ be a direct summand of F , then F ′ is also a Hodge sheaf.

Proof. The proof of (1) is standard, see for instance [8, Lemma 1.1]. (3) is also clear.
For (2), let Q := Rjg∗(F ⊗Q). Then Q is a GV sheaf on ZB by (P4). By (P3), we 

know that, for any j ≥ 0 and Q′ ∈ Pic0(B),

hj(A,F ⊗Q⊗ g∗Q′) =
∑

s+t=j

hs(B,Rtg∗(F ⊗Q) ⊗Q′).

Since all V j
k (F ) are unions of torsion translated abelian subvarieties of Pic0(A), all 

V s
k (Q) are union of torsion translated abelian subvarieties of Pic0(B). Let g′ : B → B′

be a morphism between abelian varieties and let f = g′ ◦ g. Then

Rf∗(F ⊗Q) = Rg′∗Rg∗(F ⊗Q) = Rg′∗(
⊕
j

Rjg∗
(
F ⊗Q)[−j]

)
.

We then conclude that Q satisfies (P3) and (P4) by the same argument as in [10, 
Theorem 3.4]. �

We call a Hodge sheaf on A supported on Z a strong Hodge sheaf if it satisfies 
furthermore the following two properties.

(P5) For any morphism g : A → B between abelian varieties and for any Q ∈ Pic0(A), 
let ε : Z ′

B → ZB be a desingularization, then there exists a torsion-free coherent 
sheaf FQ on Z ′

B such that Rε∗FQ = g∗(F ⊗Q) and FQ ⊗ω−1
Z′

B
is weakly positive 

on Z ′
B ;

(P6) Let g : A → B be as above. For b ∈ ZB general, denote j : Zb ↪→ K the fibers of Z
and A over b. Then F |Zb

satisfies (P1) − (P5).

Remark 2.4. It is clear that F |Zb
is a strong Hodge sheaf on K supported on Zb.

Lemma 2.5. Let f : X → A be a morphism from a compact Kähler manifold to an 
abelian variety. Let F = Rjf∗ωX for some j ≥ 0. Then F is a strong Hodge sheaf on 
A supported on f(X).

Proof. First of all, [13, Theorem A] implies the property (P1) for F .
The property (P3) was proved by Kollár in [10] when X is projective and was proved 

by Saito in general (see [16] and [17], or [13, Theorem 14.2]).
Combining (P2) with the work of Green–Lazarsfeld [5], we know that all cohomological 

support loci V i(F ) are translated abelian subvarieties of Pic0(A). The fact that V i(F )
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always contains a torsion point is first proved by Wang in [22], see also [13, Corollary 
17.1].

Let Z → X be the étale cover induced by the torsion line bundle Q and let h : Z → B

be the composition of morphisms. Then Rkg∗(F ⊗Q) is a direct summand of Rj+kh∗ωZ

and hence we have (P4).
For (P5), we consider a birational modification π : X ′ → X between compact Kähler 

manifolds such that the composition of morphisms f ◦ π : X ′ → ZB factors through ε as 
follows: X ′ f ′

−→ Z
g′

−→ Z ′
B

ε−→ ZB . Then by Saito’s decomposition, we have g∗(Rjf∗ωX ⊗
Q) = ε∗(g′∗Rjf ′

∗ωX′). Note that g′∗Rjf ′
∗ωX′ is a direct summand of Rj(g′ ◦ f ′)∗ωX′ by 

Saito’s decomposition. Moreover, Rj(g′ ◦ f ′)∗ωX′/Z′
B

is weakly positive (see Popa [14, 
Theorem 10.4] or Schnell [18, Theorem 1.4]). Hence g′∗R

jf ′
∗ωX′/Z′

B
is also weakly positive.

Finally, by base change, F |Zb
= Rjfb∗ωXb

, where fb : Xb → K is the induced 
morphism between fibers. Hence we also have (P6). �
Remark 2.6. More generally, the properties (P1) − (P6) are satisfied by certain coherent 
sheaves which are graded pieces of the underlying D-modules of mixed Hodge modules.

Let M = (M , F·M , MQ) be a polarizable Hodge module on an abelian variety A. Then 
for each k ∈ Z, the coherent sheaf grFk M satisfies (P1) and (P2) (see [13]). Moreover, 
let p be the smallest number such that FpM 
= 0 and let S(M ) := FpM . Then Saito 
([17]) showed that S(M ) satisfies (P3) and (P4). By Popa and Schnell’s result on weakly 
positive properties of S(M ), it is also easy to show that S(M ) satisfies (P5) and (P6).

3. Hodge sheaf F supported on Z with χ(F ) = 1

In this section, we will prove Theorem 1.1. We first prove a general but technical 
result on the structure of Z and Theorem 1.1 is a direct consequence.

The following lemma is essentially due to Pareschi (see [11]).

Lemma 3.1. Let Z ↪→ B be a subvariety of general type. Let F be a torsion-free sheaf on 
Z such that F is M-regular on B and χ(B, F ) = 1. Then V 1(F ) 
= ∅. Moreover, for a 
component W of V 1(F ), if codimB̂ W = j + 1 ≥ 2, then W is indeed a component of 
V j(F ).

Proof. Indeed, we can apply the argument of Pareschi in the proof of [11, Theorem 
5.1]. Denote by RΦ : D(B) → D(B̂) and RΨ : D(B̂) → D(B) the Fourier–Mukai 
functors induced by the normalized Poincaré line bundles P on B × B̂. Let RΔ(F ) :=
RH om(F , OB) ∈ D(B). Then Pareschi and Popa ([12, Corollary 3.2]) proved that 
RΦ(RΔ(F ))[−g] = RgΦ(RΔ(F )) is a torsion-free coherent sheaf on B̂ of rank equal 
to χ(B, F ), i.e. 1. Hence, we can write RΦ(RΔ(F ))[−g] = L ⊗ IZ , where L is a line 
bundle on B̂ and IZ ↪→ OB̂ is an ideal sheaf of a subscheme Z of of B̂. On the other 
hand, by Mukai’s formula, we know that (−1)∗RΨ(L ⊗IZ ) = RΔ(F ), whose support is 
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also Z. Hence IZ is a proper subsheaf of OB̂ otherwise the support of (−1)∗RΨ(L ⊗IZ )
is a union of translated abelian subvarieties.

Moreover, we know that (−1B̂)∗RjΦ(F ) � E xtj(L ⊗ IZ , OB̂) (see for instance [11, 
Proposition 1.6]). For any j ≥ 1, Supp

(
E xtj(L ⊗ IZ , OB̂)

)
⊂ Z . Hence for any j ≥ 1, 

Supp(RjΦ(F )) ⊂ 0B̂ − Z . By cohomology and base-change, V 1(F ) ⊂ 0B̂ − Z .
Let W be a component of V 1(F ) of codimension j + 1 ≥ 2. Then the support of 

E xtj(L ⊗ IZ , OB̂) � E xtj+1(L ⊗ OZ , OB̂) has 0B̂ −W as a component. Hence V j(F )
has a component W of codimension j + 1, j > 0. �

Let Z be a subvariety of general type of an abelian variety B of codimension s. If 
s = 1, Z is an ample divisor of B. The following lemma deals with the higher codimension 
cases.

Lemma 3.2. Let Z ↪→ B be a subvariety of general type of codimension s ≥ 1. Assume that 
there exists a Hodge sheaf F supported on Z with χ(Z, F ) = 1. For any component Ti =
Pi+B̂i of V 1(F ), where Pi is a torsion line bundle and B̂i is an abelian subvariety of B̂, 
let Zi := ZBi

and Z�
i := Z�

Bi
be the κ-reduction of Zi. Then codimBi

Zi = codimB�
i
Z�
i =

s − 1.

Proof. Since F is a Hodge sheaf, by definition, we know that each component Ti of 
V 1(F ) can be written as Pi + B̂i, where Pi is a torsion line bundle and B̂i is an abelian 
subvariety of B̂.

We consider the commutative diagram

Z

hi

h�
i

B

pi

p�
i

Zi Bi

Z�
i Bi

�,

(3)

where both the fibers of Zi → Z�
i and Bi → B�

i are translates of abelian variety RBi
=

ker(Bi → B�
i ).

By construction, codimBi
Zi = codimB�

i
Z�
i , we just need to show that codimBi

Zi =
s − 1.

Assume that codimB̂ B̂i = j + 1. Then, by Lemma 3.1, Pi + B̂i is a component of 
V j(F ), by (P3), we know that for any Q ∈ B̂i,

0 
= Hj(Z,F ⊗ Pi ⊗Q) =
∑

H l(Zi, R
khi∗(F ⊗ Pi) ⊗Q).
l+k=j
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By (P4), all Rkhi∗(F⊗Pi) are GV-sheaves on Zi. Thus for a general Q the right hand side 
has a single term H0(Zi, Rjhi∗(F ⊗Pi) ⊗Q). We then conclude that Rjhi∗(F ⊗Pi) is a 
non-trivial torsion-free sheaf on Zi. By (P3), a general fiber of hi has dimension at least j. 
Moreover, Z is of general type, thus a general fiber Zt of hi must be a divisor of Bt. Hence 
dimZi = dimZ−j, dimBi = dimB−j−1, and codimBi

Zi = codimB Z−1 = s −1. �
For the inductive purpose, we need the following more refined statement.

Lemma 3.3. Keep the assumptions of Lemma 3.2. We then consider the diagram (3) with 
i = 1. Let Q ∈ B̂ be a general torsion point (in particular, Q /∈ V 1(F )) and consider 
the sheaf FQ := h�

1∗(F ⊗Q).
Then the map

B̂k 
→ B̂1
k : = the neutral component of B̂k ∩ B̂�

1

induces an bijection between the following sets:

S1 := {B̂k | Tk = Pk + B̂k is a component of V 1(F ) and q(B̂k) = B̂/B̂�
1},

and

S2 := {B̂′
k | T ′

k = P ′
k + B̂′

k is a component of V 1(FQ)},

where q : B̂ → B̂/B̂�
1 is the natural quotient.

Proof. We have h0(Z�
1, FQ) = h0(Z, F ⊗ Q) = χ(Z, F ⊗ Q) = χ(Z, F ) = 1, where 

the second equality uses the assumption that Q is general. Since Z�
1 is of general type 

and by Lemma 2.3, FQ is a Hodge sheaf on B�
1 supported on Z�

1, FQ is M-regular. By 
upper-semi-continuity of cohomology, h0(Z�

1, FQ ⊗ Q′) = 1 for Q′ ∈ Pic0(B�
1) general. 

Hence, χ(Z�
1, FQ) = h0(Z�

1, FQ ⊗Q′) = 1.
Since Q /∈ V 1(F ), we know that R1h�

1∗(F ⊗Q) = 0. Otherwise, R1h�
1∗(F ⊗Q) is a 

M-regular sheaf on Z�
1 since Z�

1 is of general type. Then V 0(R1h�
1∗(F ⊗ Q)) = B̂�

1 and 
by (P3), Q ∈ V 1(F ), which is a contradiction. Hence,

h1(Z,F ⊗Q⊗ h�
1
∗
P ) = h1(Z�

1,FQ ⊗ P ),

for any P ∈ B̂�
1.

Consider the sequence

B̂�
1

h�
1
∗

B̂
q

B̂/B̂�
1 .
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We then conclude that V 1(FQ) + Q = q−1(q(Q)) ∩ V 1(F ). As Q ∈ B̂�
1 is general, we 

have the bijection S2 → S1 described above. �
Lemma 3.4. Let Z ↪→ B be a subvariety of general type of codimension s ≥ 2. Assume that 
Z generates B and there exists a Hodge sheaf F supported on Z with χ(Z, F ) = 1. For 
any two components T̂i = Pi + B̂i and T̂j = Pj + B̂j, if B̂i + B̂j = B̂, then B̂�

i + B̂�
j = B̂.

Proof. We denote by B̂ij the neutral component of B̂i ∩ B̂j and let Zij be the image 
of Z ↪→ B → Bij . Then, the induced morphism B → Bi ×Bij

Bj is an isogeny since 
B̂i + B̂j = B̂. We have the following commutative diagram:

Z B

isogeny

Zi ×Zij
Zj Bi ×Bij

Bj .

Hence Z is an irreducible component of an étale cover of Zi ×Zij
Zj .

Let Ri (resp. Rij) be the κ-kernel of Zi (resp. Zij). Since Z is of general type, a 
general fiber of Z → Zj is of general type, and hence the general fiber of Zi → Zij is 
also of general type.

Then the composition of morphisms Ri → Bi → Bij is an isogeny onto its image R′
i

and R′
i +Zij = Zij . We denote by B′

ij the quotient Bij/R
′
i and Z ′

ij = Zij/R
′
i. Note that 

B�
i = Bi/Ri. Hence

dimB�
i + dimBj − dimB′

ij = dimBi − dimRi + dimBj − (dimBij − dimR′
i)

= dimBi + dimBj − dimBij = dimB.

It follows that the natural surjective morphism B → B�
i ×B′

ij
Bj is again an isogeny 

and Z is an irreducible component of the inverse image under this isogeny of Z�
i ×Z′

ij
Zj . 

Hence B̂�
i + B̂j = B̂.

We apply the same argument to Bj and B�
i . We then conclude as before that the 

morphism Rj → B′
ij is also an isogeny onto its image. In particular, B̂�

i + B̂�
j = B̂. �

Proposition 3.5. Let Z ↪→ B be a subvariety of general type of codimension s ≥ 2. Assume 
that Z generates B and there exists a Hodge sheaf F supported on Z with χ(Z, F ) = 1. 
Then, there exist at least s components Ti = Pi + B̂i of V 1(F ), 1 ≤ i ≤ s, such that 
B̂i + B̂j = B̂ for any i 
= j. We call them a collection of essential components of V 1(F ).

Proof. Note that codimB�
1
Z�

1 = s −1 by Lemma 3.2, Z�
1 generates B�

1, and χ(Z�
1, FQ) = 1

for the Hodge sheaf FQ as in Lemma 3.3.
We run induction on s. When s = 2, we know that V 1(FQ) 
= ∅, hence by the corre-

spondence in Lemma 3.3, there exists T2 such that q(B̂2) = B̂/B̂�
1. Then B̂1 + B̂2 = B̂.
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When s ≥ 3, by induction, there exist s − 1 essential components of V 1(FQ) corre-
sponds to subvarieties: B̂1

2 , . . . , B̂1
s such that B̂1

i + B̂1
j = B̂�

1 for any 2 ≤ i 
= j ≤ s.
By the bijection in Lemma 3.3, there exist correspondingly s −1 components of V 1(F ): 

T2 = P2 + B̂2, . . . , T̂s = Ps + B̂s. Since q(B̂i) = B̂/B̂�
1 for each 2 ≤ i ≤ s, B̂i + B̂�

1 = B̂

and hence B̂i + B̂1 = B̂. Moreover, as B̂1
i + B̂1

j = B̂�
1, one has B̂i + B̂j = B̂ for 

2 ≤ i < j ≤ s. �
Theorem 3.6. Let Z ↪→ B be a subvariety of general type of codimension s ≥ 2. As-
sume that Z generates B and that there exists a Hodge sheaf F supported on Z with 
χ(Z,F ) = 1. Fix a collection of essential components Ti = Pi + B̂i of V 1(F ), 1 ≤ i ≤ s. 
Let Ûi =

(⋂
j �=i B̂j

)
0 be the neutral component of 

(⋂
j �=i B̂j

)
. Let Ki := U �

i (cf. the 
notations in Section 2). Then we have the followings:

(1)
∑

1≤j≤s K̂j = B̂ and 
∑

j �=i K̂j = B̂�
i for each i;

(2) the image of the composition of morphisms Z ↪→ B � Ki is an ample divisor Di of 
Ki for each i.

Proof. We will prove by induction on s ≥ 2. If s = 2, U1 = B2 and U2 = B1. Hence 
K1 = B�

2 and K2 = B�
1 then we are done.

We assume that the statement of Theorem 3.6 holds when the codimension of the 
subvariety in abelian variety is at most s − 1. As in Lemma 3.3, we consider F i

Q =
h�
i∗(F ⊗ Q), for a general torsion Q ∈ B̂. Then F i

Q is a Hodge sheaf on Z�
i with 

χ(Z�
i , F

i
Q) = 1.

Indeed, for any i, by the bijection in Lemma 3.3, each Tj for j 
= i corresponds to 

a component T i
j = P i

j + B̂i
j of V 1(F i

Q). Since B̂j + B̂k = B̂ for any j 
= k, we have 

B̂i
j + B̂i

k = B̂�
i , for any i, j, k pairwise distinct.

Since codimB�
i
Z�
i = s − 1, by induction, for each t 
= i, let

Û i
t :=

( ⋂
j �=i,t

(̂Bi
j)
)
0,

and Ki
t = (U i

t )�. Then by induction hypothesis, one has

(1′)
∑

t�=i K̂
i
t = B̂�

i ;
(2′) the image of the composition of morphisms Z ↪→ B � Ki

t is an ample divisor.

On the other hand, we have

Û i
t =

( ⋂
B̂i

j

)
0 =

(
(
⋂

B̂j) ∩ B̂�
i

)
0.
j �=i,t j �=i,t
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Since Ût =
(⋂

j �=t B̂j

)
0 =

(
(
⋂

j �=i,t B̂j) ∩ B̂i

)
0, by Lemma 2.2, we have

Ki
t = (U i

t )� = U �
t = Kt.

Hence, by (1′), 
∑

j �=i K̂j = B�
i for each j 
= i. Then 

∑
1≤j≤s K̂j = B̂. We deduce (2)

from (2′). �
Remark 3.7. We have actually proved that Z is an irreducible component of an étale 
cover of certain fibre product of the ample divisors Di of Ki, 1 ≤ i ≤ s.

In general, we can not expect that dim(K̂i ∩ B̂�
i ) = 0 for 1 ≤ i ≤ s and that Z is an 

étale cover of the product of these Di. However, we have this nice picture in some special 
cases.

Lemma 3.8. Under the assumption of Theorem 3.6, if dimKi = 2, then dim(K̂i∩B̂�
i ) = 0

and hence we have a commutative diagram

Z B

ρisogeny

Di × Zi Ki ×Bi.

Proof. We know that K̂i + B̂�
i = B̂ by Theorem 3.6 and codimB̂ B̂i ≥ 2. If dim K̂i =

dimKi = 2, then B̂�
i = B̂i and dim(K̂i ∩ B̂�

i ) = 0. �
Corollary 3.9. Under the assumption of Theorem 3.6, we have 2 dimZ ≥ dimB.

Assume that 2 dimZ = dimB. Pick s = codimB Z essential components T̂i of V 1(F ). 
For each K̂i defined in Theorem 3.6, we have dim K̂i = 2 and we have a commutative 
diagram:

Z B

ρisogeny

D1 × · · · ×Ds K1 × · · · ×Ks.

(4)

Proof. We prove by induction on s. If s = 1, since V 1(F ) 
= ∅ and a codimension-(s +1)
component of V 1(F ) is a component of V s(F ), we conclude that B is an abelian surface 
and we are done.

In general, we take T̂1 = P1 + B̂1 a component of V 1(F ). Assume that dimZ�
1 = n −s

and dimB�
1 = dimZ − s − 1 for s ≥ 1. As for Q ∈ B̂ general, F 1

Q = h�
1∗(F ⊗ Q) is a 

Hodge sheaf on Z�
1 with χ(Z�

1, F
1
Q) = 1. By induction, one has
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dimZ�
1 ≥ codimB�

1
Z�

1 = codimB1Z1 = s− 1,

where the last equality follows from Lemma 3.2. Since dimZ > dimZ�
1, one has dimZ ≥ s

immediately.
Assume that dimB = 2s. For the s components T̂i = Pi + B̂i of V 1(F ), by the same 

argument as above, we see that dimZ�
i = s −1 and dimB�

i = dimBi = 2s −2. Hence, by 
induction, each Z�

i has the structure as in (4). Hence dimKi = 2 and dim(K̂i ∩ B̂i) = 0
for each 1 ≤ i ≤ s. We then have the diagram (4). �
Corollary 3.10. Use the same assumptions of Theorem 3.6 and furthermore assume that 
B has k simple factors. Then s = codimB Z ≤ k. If s = codimB Z = k, we have a 
commutative diagram:

Z B

ρisogeny

D1 × · · · ×Ds K1 × · · · ×Ks,

(5)

where Di ↪→ Ki is an ample divisor for each 1 ≤ i ≤ s. In particular Z is an irreducible 
component of ρ−1(D1 × · · · ×Ds).

Proof. We argue by induction on k. If k = 1, all components of V 1(F ) are isolated 
points. By Lemma 3.2, Z is a divisor of B. In general, if s > 2, we consider Z�

1 ↪→ B�
1

with the Hodge sheaf F 1
Q such that χ(Z�

1, F
1
Q) = 1. Note that codimB�

1
Z�

1 = s − 1 and 

B�
1 has at most k − 1 simple factors. Hence by induction, s ≤ k.
If the equality holds, each Ki is a simple abelian variety and dim(K̂i ∩

∑
j �=i K̂j) = 0. 

Then the natural morphism ρ : B → K1 × · · · ×Ks is an isogeny and we have (5). �
We then finish the proof of Theorem 1.1.

Proof. Let X be a compact Kähler manifold with pg = 1. We consider the diagram 
(1). Note that F = f∗ωX is a Hodge sheaf on B supported on Z with h0(Z, f∗ωX) =
pg(X) = 1. Being a Hodge sheaf supported on Z, we have χ(Z, F ) ≥ 1. On the other 
hand, by semi-continuity, h0(Z, F ⊗ Q) ≤ 1, for Q ∈ Â general. As F is a GV-sheaf, 
χ(Z, F ) = χ(Z, F ⊗ Q) = h0(Z, F ⊗ Q) ≤ 1. Hence χ(ZF ) = 1. Then Theorem 1.1
follows easily from Theorem 3.6 and Corollary 3.9. �
4. Strong Hodge sheaf F supported on Z with χ(F ) = 1 and theta divisors

The main goal of this section is to study the following problem, which is a general-
ization of question asked by Pareschi (see [8, Question 4.6]).
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Question 4.1. Let Z ↪→ B be a subvariety of an abelian variety and Z generates B. 
Assume that Z is of general type and there exists a strong Hodge sheaf F on Z such 
that χ(Z, F ) = 1. Then does there exist theta divisors Θi, 1 ≤ i ≤ m and a birational 
morphism t : Z ′ := Θ1 × · · · ×Θm → Z such that F = t∗(ωZ′ ⊗Q) for some torsion line 
bundle Q on Z ′?

The main results in [8] state that we have a positive answer to the above question in 
two special cases:

(1) F is the pushforward of the canonical sheaf of a desingularization of Z and Z is 
smooth in codimension 1;

(2) dimZ = 1
2 dimB and F = f∗ωX , where f : X → Z is a surjective morphism from 

a smooth projective variety X to Z.

Results in Section 3 provide further evidences for a positive answer and we will prove 
it in some other cases.

Lemma 4.2. Assume that Z is a smooth projective curve of genus at least 2 and F is 
a torsion-free sheaf on Z such that F ⊗ ω−1

Z is weakly positive. Then χ(Z, F ) ≥ 1. If 
χ(Z, F ) = 1, then Z is a smooth projective curve of genus 2 and F = ωZ ⊗Q for some 
line bundle Q ∈ Pic0(Z). If F is a Hodge sheaf and h0(C, F ) = 1, then Q is a torsion 
line bundle.

Proof. Since F ⊗ ω−1
Z is weakly positive on the smooth projective curve Z, it is nef. In 

particular deg F ≥ r(2g− 2), where r is the rank of F . By the Riemann–Roch formula, 
χ(C, F ) ≥ r(g − 1) ≥ 1. If equality holds, r = 1, g = 2, deg F = 2.

If F is a Hodge sheaf, then the cohomology support loci is a union of torsion translates 
of abelian subvarieties of J(C). So Q has to be a torsion line bundle. �
Theorem 4.3. Under the assumption of Question (4.1), assume moreover that dimB =
2 dimZ, then Question (4.1) has an affirmative answer.

Proof. We apply Corollary (3.10) and diagram (4). Let Ci be the normalization of Di

and Z ′ the connected component of (C1 × · · · ×Cn) ×(K1×···×Kn) B which dominates Z. 
We then have

Z ′

π

τ
Z B

ρisogeny

C1 × · · · × Cn D1 × · · · ×Dn K1 × · · · ×Kn

C1
τ1

D1 K1,

where π is an étale morphism and τ is a desingularization.
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We prove by induction on dimZ. If dimZ = 1, then there exists F ′ on Z ′ such that 
Rτ∗F

′ = F and F ′ ⊗ ω−1
Z′ is weakly positive. By Lemma 4.2, we conclude the proof.

We then assume that Theorem 4.3 holds in dimension < n. Take Q ∈ B̂ a general 
torsion point, for the morphism t1 : Z → D1, let QQ = t1∗(F ⊗ Q). Then QQ is 
a strong Hodge sheaf on K1 supported on D1. Moreover, h0(D1, QQ) = 1 and hence 
χ(D1,QQ) = 1. By (P5), there exists Q′

Q on C1 such that Rτ1∗Q
′
Q = QQ and Q′

Q⊗ω−1
C1

is weakly positive. Then by Lemma 4.2, C1 is a smooth curve of genus 2 and QQ =
τ1∗(ωC1 ⊗ Q1) for a torsion line bundle Q1 ∈ Pic0(C1). In particular, rank QQ = 1. 
Similarly, we see that each Ci has genus 2.

Let F be a general fiber of t1 and let BF the correspondingly fiber of B → K1. 
Then F ′

Q := (F ⊗ Q) |F is a strong Hodge sheaf on BF supported on F such that 
h0(F, F ′

Q) = 1. By induction, F is birational to a product of n − 1 genus 2 curves. 
Then the natural morphism F → D2 × · · · × Ds is birational and so is the morphism 
Z → D1 × · · · ×Ds. Hence π is an isomorphism.

It remains to show that F ′ is isomorphic to the canonical bundle of Z ′ twisted by 
a torsion line bundle. Note that F ′ restricted to each factor Ci is of such form by 
Lemma 4.2 and we conclude by the see-saw principle. �
Theorem 4.4. Let Z be a subvariety of general type of an abelian variety B of codimen-
sion s. Assume that there exists a strong Hodge sheaf F on B supported on Z such 
that χ(Z, F ) = 1, Z is smooth in codimension 1 and B has s simple factors. Then 
Question 4.1 has an affirmative answer.

We first prove the divisorial case and then apply Theorem 3.6 to conclude the proof 
for the general case.

4.1. Divisorial case

In this subsection, we assume that B is a simple abelian variey of dimension g, Z is 
an irreducible ample divisor smooth in codimension 1 and there exists a strong Hodge 
sheaf F on B such that χ(Z, F ) = 1. Note that in this case Z is normal.

We aim to prove Theorem 4.3 in this case. Our argument follows closely that of 
Pareschi in [11, Theorem 5.1].

Let ρ : X → Z be a desingularization and by definition of stong Hodge sheaf, there 
exists a torsion-free sheaf F ′ on X such that Rρ∗F

′ = ρ∗F
′ = F and F ′ ⊗ ω−1

X

is weakly positive. Since Z is normal, the composition of morphism X
ρ−→ Z ↪→ B is 

primitive, namely the pull-back B̂ → Pic0(X) is injective (in other words, any étale over 
of Z induced by an étale cover of B remains irreducible).

Let RΔB(F ) = RH om(F , OB). Since F is M-regular on B and χ(F ) = 1,

RΦPB
(RΔB(F )) = (L⊗ IV )[−g],
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where V is a subscheme of B̂ of dimension zero and L is a line bundle on B̂. Since B is 
simple, L is either ample, anti-ample, or trivial. We will see soon that L is ample.

By Fourier–Mukai equivalence,

RΔB(F ) � (−1B)∗RΨPB
(L⊗ IV ), (6)

and both are supported on B.
We then consider the short exact sequence on B̂:

0 → L⊗ IV → L → L |V → 0,

and apply the functor RΨPB
:

0 → R0ΨPB
(L⊗ IV ) → R0ΨPB

(L) → R0ΨPB
(L |V ) → R1ΨPB

(L⊗ IV ) → R1Ψ(L).

From this long exact sequence, we know that L has sections otherwise
R0ΨPB

(L |V ) → R1ΨPB
(L ⊗ IV ) is an injection and RΔB(F ) cannot be supported 

on B. If L is trivial, then R0ΨPB
(L ⊗ IV ) = 0, R0ΨPB

(L) is the skyscraper sheaf 
supported at 0 ∈ B, and R0ΨPB

(L |V ) is (always) locally free. Thus this does not 
happen either. That is, L is ample and RiΨPB

(L ⊗ IV ) � RiΨPB
(L) = 0 for i > 1. 

We can write the previous long exact sequence more explicitly as

0 → R0ΨPB
(L⊗ IV ) → R0ΨPB

(L) → R0ΨPB
(L |V ) → R1ΨPB

(L⊗ IV ) → 0.

Since R0ΔB(F ) = 0, we have RΨPB
(L ⊗ IV ) = R1ΨPB

(L ⊗ IV )[−1] and

0 → R0ΨPB
(L) → R0ΨPB

(L |V ) → R1ΨPB
(L⊗ IV ) → 0. (7)

Taking the duality of (6), we see that F � E xt1((−1B)∗R1ΨPB
(L ⊗ IV ), OB̂). Apply 

the functor RΔB to (7), we have:

0 → R0ΨPB
(L |V )∨ → R0ΨPB

(L)∨ → F → 0.

We know that W := R0ΨPB
(L |V )∨ is a flat vector bundle and R0ΨPB

(L)∨ is an 
ample vector bundle on B.

Let ψL : B̂ → B be the isogeny induced by L. Assume that h0(B̂, L) = k ≥ 1. It follows 
that degψL = k2. Moreover, we know that ψ∗

LR0ΨPB
(L)∨ = L⊕k. Let W̃ = ψ∗

LW and 
F̃ = ψ∗

LF . As a consequence,

0 → W̃ → L⊕k → F̃ → 0. (8)

We compute
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ch(F̃ ) = ch(L⊕k) − ch(W̃ )

≡ k
∑
m≥1

1
m!L

m,

where ≡ means algebraic equivalence between algebraic cycles on B̂.
On the other hand, since Z → B is primitive, the induced étale cover X̃ := X ×A Â

is irreducible and so is Z̃ := Z ×A Â. Let ρ′ : X̃ → Z̃ be the induced desingularization 
and F̃ ′ be the pullback of F on X̃. We denote

i : X̃
ρ′

Z̃
j

B̂ .

Thus

Ri∗F̃
′ = i∗F̃

′ = F̃ ,

and F̃ ′ ⊗ ω−1
X̃

is also weakly positive on X̃. By Grothendieck–Riemann–Roch,

i∗(ch(F̃ ′)Td(X̃)) ≡ ch(F̃ ) ≡ k
∑
m≥1

1
m!L

m.

Let rank F̃ = rank F̃ ′ = k1 ≤ k. Compute the degree 1 terms, we have k1Z̃ ≡ kL. 
Compute the degree 2 terms, we have

i∗
(
c1(F̃ ′) − 1

2kc1(ωX̃
)
)
≡ 1

2kL
2.

Since F̃ ′ ⊗ ω−1
X′ is weakly positive, D := det F̃ ′ − k1KX̃

is a psuedo-effective divisor 
on X̃ (see for instance [21, Corollary 2.20]). Then i∗(1

2k1KX̃
+ D) ≡ 1

2kL
2. Hence we 

write

j∗(ρ′∗KX̃
+ ρ′∗D

′) ≡ k

k1
L2,

where D′ is a pseudo-effective Q-divisor on X̃.
Since Z̃ is normal, we have ρ′∗KX̃

= KZ̃ = OB̂(Z̃) |Z̃ and hence [j∗ρ′∗(KX̃
)] =

( k
k1

)2[L]2 ∈ H4(X, Q). As D is pseudo-effective, we see immediately that k = k1 and 

OB̂(Z̃) is algebraically equivalent to L. We note moreover that ρ′∗ωX̃
= ωZ̃ ⊗I for some 

ideal sheaf I . Hence, for a general Q ∈ Pic0(B̂),

χ(X̃, ω
X̃

) = h0(X̃, ω
X̃
⊗ i∗Q) = h0(Z̃, ρ′∗ωX̃

⊗Q) ≤ h0(Z̃,OB̂(Z̃) |Z̃ ⊗Q) = k.

On the other hand, X̃ → X is an étale cover of degree k2. Thus, k = 1, ϕL : Â → A is 
an isomorphism and Z � Z̃ is a theta divisor. By (8), F = ωZ ⊗Q for some torsion line 
bundle Q ∈ B̂.
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Remark 4.5. Instead of assuming that Z is smooth in codimension 1, we can conclude 
by a similar argument by simply assuming that ρ∗KX ≡ M |D for some line bundle M
on B.

4.2. General case

We consider the commutative diagram (5) in Corollary 3.10 and argue by induction 
on s.

If Z ↪→ B is not primitive, we can take an étale cover of B′ → B such that, for an 
irreducible component Z ′ of Z ×B B′, Z ′ ↪→ B′ is primitive and Z ′ is birational to Z. 
Hence we will assume that Z ↪→ B is primitive.

Since Di is the image of the natural morphism Z → Ki, Di ↪→ Ki is also primitive. 
Hence, ρ−1(D1 ×· · ·×Ds) is irreducible and Z � ρ−1(D1 ×· · ·×Ds). Since Z is smooth 
in codimension 1, each Di is smooth in codimension 1. Moreover each Di is an ample 
divisor of the simple abelian variety Ki. We denote by p : Z → D1 the natural morphism. 
Then for Q ∈ Pic0(B) general, we have

χ(D1, p∗(F ⊗Q)) = h0(D1, p∗(F ⊗Q)) = h0(Z,F ⊗Q) = 1.

By (4.1), each Di is a theta divisor and the sheaf p∗(F ⊗ Q) has rank 1. Then for 
a general fiber F of p, F is a subvariety of general type of B1 := ker(B → K1) and 
is smooth in codimension 1. Note that (F ⊗ Q) |F is a strong Hodge sheaf on B1
supported on F . Since p∗(F ⊗ Q) has rank 1, h0(F, (F ⊗ Q) |F ) = 1. It then follows 
that χ(F, F ⊗Q |F ) = 1.

By induction, F is birational to a product of theta divisors. Consider the induced 
morphisms

F

πF

B1

π

D2 × · · · ×Ds K2 × · · · ×Ks.

Since π is an isogeny, we see immediately that π is an isomorphism and πF is also an 
isomorphism. Thus Z � D1 × · · · ×Ds. Moreover, F is a torsion-free rank 1 sheaf and 
by induction, F |D1×y� ωD1 ⊗Q1 for all y ∈ D2 × · · · ×Ds, where Q1 is a fixed torsion 
line bundle on D1 and F |x×D2×···×Ds

� ωD2×···×Ds
⊗ Q2 for all x ∈ D1, where Q2 is 

a fixed torsion line bundle on D2 × · · · ×Ds. Indeed, Q1 and Q2 can be read from the 
cohomological support loci of F . We then conclude that F = ωZ ⊗ (Q1 � Q2).

4.3. Proof of Theorem 1.2

Theorem 1.2 is a direct corollary of the proof of Theorem 4.4. We have already proved 
that all the assertions except the last one that the Albanese map is a fibration. To prove 
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that the Albanese map is a fibration, simply note that in the first part of the proof, we 
have already established that aX∗(ωX) has rank 1. Then the Albanese map has to be a 
fibration.

5. Fibrations over genus 2 curves

In this section, we take into considerations the map between the second Betti coho-
mology.

We first assume Theorem 5.1 and complete the proof of Theorem 1.3.

Proof. We use the commutative diagram (1).
We first claim that the restriction map H2(B, Q) → H2(ZX , Q) is not injective. 

Otherwise, since Y = ZX ×BAX and Z generates B, the map H2(AX , Q) → H2(Y, Q) is 
also injective. Moreover, since g is a surjective, the pull-back g∗ : Hi(Y, Q) → Hi(X, Q)
induces an injective map GrWi Hi(Y, Q) → Hi(X, Q), where W · is the weight filtration on 
H∗(Y, Q). Thus, a∗X : H2(AX , Q) → H2(X, Q) is injective and hence is a contradiction.

Thus, the restriction map H2(B, Q) → H2(ZX , Q) is not injective and ZX gener-
ates B. By Theorem 5.1 below, we have a fibration h : ZX → C, where ZX is the 
normalization of ZX and C is a smooth projective curve of genus 2. Since f : X → ZX

factors through the normalization of ZX , we then have a fibration ϕ : X → C. �
Theorem 5.1. Let Z ↪→ B be a subvariety of general type generating B and let Z be the 
normalization of Z. Let F be a strong Hodge sheaf on Z. Assume that χ(Z, F ) = 1 and 
the restriction map H2(B, Q) → H2(Z, Q) is not injective. Then there exists a fibration 
h : Z → C to a smooth projective genus 2 curve C.

Proof. We argue by induction on codimB Z. If codimB Z = 1, Z is an ample divisor of B. 
By Lefschetz hyperplane theorem, the restriction map Hi(B, Q) → Hi(Z, Q) is injective 
for all 0 ≤ i ≤ dimZ. Hence dimZ = 1. By Lemma 4.2, Z is a smooth projective curve 
of genus 2.

In the following assume that codimB Z = k ≥ 2 and that Theorem 5.1 holds for 
subvarieties of B whose codimension is less than k.

Pick two components T̂1 = P1+B̂1 and T̂2 = P2+B̂2 of V 1(F ) such that B̂1+B̂2 = B̂. 
Consider the morphisms h�

1 : Z → Z�
1 and h2 : Z → Z�

2 as in Lemma 3.2.

Claim: Either

ϕ1 : H2(B�
1,Q) → H2(Z�

1,Q)

is not injective or

ϕ2 : H2(B�
2,Q) → H2(Z�

2,Q)

is not injective.
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We argue by contradiction. Assume that both ϕ1 and ϕ2 are injective. Let K̂ be the 

neutral component of B̂�
1∩B̂�

2. Then the induced morphism B → B�
1×KB�

2 is an isogeny. 
We also take B�

1 → K ′
1 and B�

2 → K ′
2 be quotients with connected fibers such that the 

indcued morphisms B�
i → K ′

i ×K are isogenies for i = 1, 2.
Note that

H2(B,Q) =
(
H2(B�

1,Q) + H2(B�
2,Q)

)
⊕

(
H1(K ′

1,Q) ∧H1(K ′
2,Q)

)
.

Let 0 
= α = w + v in the kernel of the restriction map ϕ : H2(B, Q) → H2(Z, Q), 
where w ∈ H2(B�

1, Q) + H2(B�
2, Q) and v ∈ H1(K ′

1, Q) ∧H1(K ′
2, Q). Moreover we can 

write H2(B�
i , Q) = Wi ⊕H2(K, Q), where Wi = H2(K ′

i, Q) ⊕
(
H1(K ′

i, Q) ∧H1(K, Q)
)
. 

Then

H2(B�
1,Q) + H2(B�

2,Q) = W1 ⊕W2 ⊕H2(K,Q),

and we suppose that w = w1 +w2 +w3, where wi ∈ Wi for i = 1, 2 and w3 ∈ H2(K, Q).
We then take a smooth models Z ′ of Z, Z ′

i of Z�
i for i = 1, 2 and consider the maps

Z ′

h′
i

ρ
B

pi

K ′
3−i

Z ′
i

ρi

B�
i .

Since ϕi is injective and the Hodge structures on H2(B�
i , Q) is pure, ρ∗i : H2(B�

i , Q) →
H2(Z ′

i, Q) is also injective, for i = 1, 2. Note that α is also in the kernel of ρ∗ :
H2(B, Q) → H2(Z ′, Q).

We take a ample class l ∈ H2(B, Q). Let si be the dimension of a general fiber of pi. 
Then

0 = h′
i∗ρ

∗((w + v) ∪ l2si) = h′
i∗ρ

∗(w ∪ l2si) = Miρ
∗
i (wi + w3),

for some positive number Mi. Since ρ∗i : H2(B�
i , Q) → H2(Z ′

i, Q) is injective, we conclude 
that wi = 0 for i = 1, 2, and 3. Thus w = 0.

Let Z3 be the image of the morphisms Z ↪→ A → K. Since Z generates B, Zi generates 
Bi. Hence for a general fiber Fi of Zi → Z3, the natural map H1(K ′

i, Q) → H1(Fi, Q)
is injective. Let F be a general fiber of Z → Z3. Then we have natural morphisms 
F � F1 × F2 → K ′

1 ×K ′
2. Since the map H1(K ′

1, Q) ∧H1(K ′
2, Q) → H2(F1 × F2, Q) is 

injective and the Hodge structure on H1(K ′
1, Q) ∧H1(K ′

2, Q) is pure, we conclude that 
the map

H1(K ′
1,Q) ∧H1(K ′

2,Q) → H2(F,Q)
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is also injective. This map factors through ϕ |H1(K′
1,Q)∧H1(K′

2,Q): H1(K ′
1, Q) ∧ H1(K ′

2,

Q) → H2(Z, Q), hence ϕ |H1(K′
1,Q)∧H1(K′

2,Q) is also injective and v = 0, which is a 
contradiction.

Conclusion: We may assume that ϕ1 is not injective. Moreover, Z�
1 ↪→ B�

1 is a sub-
variety of general type and Z1 generates B1 and for Q ∈ B̂ a general torsion point, 
FQ := h�

1∗(F ⊗ Q) is a Hodge sheaf supported on Z�
1 with χ(Z�

1, FQ) = 1. Hence by 

induction, there exists a fibration Z�
1 → C to a smooth projective genus 2 curve. Hence 

we have the induced fibration h : Z → C. �
Theorem 5.2. Under the assumption of Theorem 5.1, let m = dim ker(H2(B, Q) →
H2(Z, Q)). Then m is divisible by 5. Let m = 5k. Then there exists a fibration Z →
C1 × · · · × Ck, where Ci is a smooth projective curve of genus 2 for each 1 ≤ i ≤ k.

Proof. Let s = codimB Z. Take components T̂i = Pi+B̂i, 1 ≤ i ≤ s, of V 1(F ) such that 
B̂i + B̂j = B̂ for all i 
= j. Then, as in the proof of 5.1, by induction on s, we actually 
show that for some Ki defined as in Theorem 3.6, the map H2(Kj , Q) → H2(Dj , Q) is 
not injective for some j. Since Dj is an ample divisor of Kj, we conclude that dimKj = 2
and Dj is a curve. Then by Lemma 4.2, the normalization Cj of Dj is a smooth projective 
curve of genus 2. Moreover, by Lemma 3.8, we have a commutative diagram:

Z
normalization

abelian etale cover

Z B

ρisogeny

Cj × Zj
normalization

Dj × Zj Kj ×Bj .

Since B is smooth, W := ker(H2(B, Q) → H2(Z, Q)) = ker(H2(B, Q) → H2(Z, Q)). 
Moreover, ρ is an isogeny, hence W � ker(H2(Kj × Bj , Q) → H2(Cj × Zj , Q)). Since 
H2(Kj×Bj , Q) = H2(Kj , Q) ⊕

(
H1(Kj , Q) ∧H1(Bj , Q)

)
⊕H2(Bj , Q). As Z generates B, 

we conclude that

W � ker(H2(Kj ,Q) → H2(Cj ,Q))
⊕

ker(H2(Bj ,Q) → H2(Zj ,Q)).

Hence dimW = 5 + dim ker(H2(Bj , Q) → H2(Zj , Q)). Since Zj ↪→ Bj also satisfies 
the assumption of Theorem 5.1. We use induction to construct the morphism Z̄ →
C1 × . . . × Ck. To see this map is a fibration, it suffices to show that a general fiber 
is connected. For this purpose, one only need to show that push forward of F has 
rank 1, or equivalently, the restriction of F to a general fiber is one dimensional global 
sections. One can prove this using induction. For the morphism f1 : Z̄ → C1, this is 
done in Lemma 4.2. Then we can work with a general fiber F of f1, which is of general 
type, maps to the product C2 × . . . × Ck and carries a strong Hodge sheaf F |F with 
h0(F, F ) = 1. �
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With this observation it is very easy to prove Corollary 1.4.

Proof of Corollary 1.4. For a general discussion of the de Rham fundamental group, 
we refer the readers to [1]. For our purpose, it suffices to know that if the pull-back 
on cohomology of a morphism f : X → Y between smooth compact Kähler manifolds 
induces an isomorphism f∗ : H1(Y, Q) → H1(X, Q) and an injection f∗ : H2(Y, Q) →
H2(X, Q), then f∗ induces an isomorphism on de Rham fundamental groups. A direct 
consequence of this observation is a result of Campana that a resolution of singularities of 
the Albanese image of a compact Kähler manifold X computes the de Rham fundamental 
group π1(X) ⊗Q.

Let 5s = dim ker(H2(AX , Q) → H2(ZX , Q)). By Theorem 5.2 and its proof, we have 
a commutative diagram

Z
normalization

abelian etale cover

Z B

ρisogeny

C1 × · · · × Cs × Z ′ normalization
D1 × · · · ×Ds × Z ′ K1 × · · · ×Ki ×B′,

where Ci is a smooth projective curve of genus 2 for each 1 ≤ i ≤ s and the map 
H2(B′, Q) → H2(Z ′, Q) is injective.

We apply the above observation to a resolution of singularities of Z and Z ′, Z̃ →
C1×· · ·×Cs× Z̃ ′. Since Z̄ is an abelian étale cover of the product C1×· · ·×Cs×˜̄Z ′, the 
induced map is an isomorphism on H1 and injective on H2 (for the resolutions). Hence 
π1(X) ⊗Q � π1(Z̃) ⊗Q � (π1(C1) ⊗Q)s×(π1(Z̃ ′) ⊗Q) � (π1(C1) ⊗Q)s×(π1(B′) ⊗Q). �
6. Fake tori

In this section, we will always assume that X is a fake torus of dimension n and 
consider the commutative diagram (1), with Z replaced by ZX in the following, namely:

X

f

aX
g

Y

h

AX

p

ZX B,

Note that Y = ZX ×B AX . We summarize what we know about ZX . Let s =
codimAX

Y = codimB ZX . Note that since Y is the Albanese image of X, both Y ↪→ AX

and ZX ↪→ B are primitive. By Theorem 5.1, Remark 5.2, and Corollary 4.3, we have:



J. Chen et al. / Advances in Mathematics 320 (2017) 361–390 385
(1) dimB ≥ 2s. If equality holds, ZX � C1 × · · · × Cs, where each Ci is a smooth 
projective curve of genus 2 and f∗ωX = ωZ ⊗Q for some torsion line bundle Q ∈ B̂;

(2) if s = 1, then ZX is a smooth projective curve of genus 2;
(3) if s = 2, then there exists a genus two curve C and an ample divisor D ↪→ K with 

a commutative diagram:

ZX B

ρisogeny

C ×D JC ×K.

Here is a list of possibile ZX in low dimensions.

Corollary 6.1.

1) If n = 2 or 3, ZX is always a curve of genus 2.
2) If n = 4, either s = 1 or s = 2 and then ZX is isomorphic to a product C1 × C2 of 

two smooth curves of genus 2.
3) If n = 5, either s = 1, or s = 2 and ZX is isomorphic to a product C1 × C2 of two 

smooth curves of genus 2 or is an étale cover of C×D, where D is an ample divisor 
of an abelian 3 fold.

4) If n = 6, either s = 1, or s = 2 and ZX is isomorphic to a product C1 × C2 of two 
smooth curves of genus 2 or is an étale cover of C ×D as in 3), or s = 3 and ZX is 
isomorphic to a product C1 × C2 × C3 of three smooth curves of genus 2.

We now focus on the case s = 1.

Lemma 6.2. If s = 1, then we write ZX = C a smooth curve of genus 2. We have 
f∗(ωX) = ωC ⊗Q for some nontrivial torsion line bundle Q on C. Morevoer,

1) we have a decomposition:

g∗ωX = h∗(ωC ⊗Q)
⊕
t

(q∗t Qt ⊗Qt), (9)

where for each t, qt : AX → Tt is a quotient of abelian varieties with connected fibers, 
Qt is a M-regular sheaf on Tt, Qt /∈ T̂t is a non-trivial torsion line bundle;

2) let C̃ → C be the cyclic étale cover induced by Q and let X̃ = X×C C̃ be the induced 
étale cover of X, then X̃ is of maximal Albanese dimension;

3) let F be a general fiber of f , then F is of maximal Albanese fibration and pg(F ) = 1
hence q(F ) = dimF .

Proof. Note that by the main theorem in [13],
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g∗ωX �
⊕
t

q∗t Ft ⊗Qt,

where each Ft is an M-regular coherent sheaf supported on the complex torus Tt, each 
qt : AX → Tt is surjective with connected fibers, and each Qt is a torision line bundle 
on AX . Since h0(Y, g∗ωX) = 1, there exists a unique t0 such that q∗t0Ft0 ⊗ Qt0 has a 
non-trivial global section. Note that the natural morphism h∗(h∗g∗ωX) = h∗(f∗(ωX)) =
h∗(ωC ⊗Q) → g∗ωX is injective. Since h0(Y, h∗(ωZ ⊗Q)) is also 1, this natural injective 
morphism factors through an injective morphism

h∗(ωC ⊗Q) → q∗t0Ft0 ⊗Qt0 .

Since h0(q∗t0Ft0 ⊗ Qt0) is non-zero, the torsion sheaf Qt0 is contained in V 0(q∗t0Ft0 ⊗
Qt0) = T̂t0 and we may write q∗t0Ft0 ⊗ Qt0 = q∗t0(F ). Since V 0(h∗(ωC ⊗ Q)) = B̂

is contained in V 0(q∗t0Ft0 ⊗ Qt0) = T̂t0 , the morphism p : AX → B factors through 
qt0 : AX → Tt0 and we have the injective morphism on Tt0 :

ϕ : q∗(ωC ⊗Q) → Ft0 ,

where q : Tt0 → B is the natural surjective morphism. Denote by Q the kernel of ϕ. Since 
Ft0 is M-regular and q∗(ωX⊗Q) is GV, we conclude that Q is also an M-regular coherent 
sheaf. On the other hand, h0(At0 , Q) = 0. Hence Q = 0 and ϕ is an isomorphism. 
Therefore, we may write

g∗ωX = h∗(ωC ⊗Q)
⊕
t

(q∗t Qt ⊗Qt), (10)

where for each t, Qt is a torsion line bundle on X. Since h0(Y, g∗ωX) = h0(Y, h∗(ωZ ⊗
Q)) = 1, none of the Qt’s is contained in T̂t.

Note that f∗ωX = ωC ⊗Q is of rank 1. Hence pg(F ) = rank f∗ωX = 1. On the other 
hand, let π : C̃ → C be the étale cover of C induced by the torsion line bundle Q and let 
X̃ and Ỹ be the induced étale covers X×C C̃ and Y ×C C̃. We then consider the fibration 

f̃ : X̃ g̃−→ Ỹ
h̃−→ C̃. Let g′ : X̃ → Y ′ be the Stein facorization of g̃ and after birational 

modifications, we may suppose that Y ′ is smooth. By the first part, we know that h̃∗ωC̃

is a direct summand of g̃∗ωX̃
. Hence hn−1(Ỹ , ̃g∗ωX̃

) > 0. Thus, hn−1(Y ′, g′∗ωX̃
) > 0.

By Kollár’s splitting,

q(X̃) = hn−1(X̃, ω
X̃

) = hn−1(Y ′, g′∗ωX̃
) + hn−2(Y ′, R1g′∗ωX̃

)

= hn−1(Y ′, g′∗ωX̃
) + hn−2(Y ′, ωY ′) = hn−1(Y ′, g′∗ωX̃

) + q(Y ′).

Hence q(X̃) > q(Y ′). Since g′ : X̃ → Y ′ is a fibration, Y ′ is of maximal Albanese 
dimension and dimY ′ = dimX−1, we conclude that X̃ is of maximal Albanese dimension 
and hence so is F .
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Since F is of maximal Albanese dimension and pg(F ) = 1, we know that hi(F, OF ) =
h0(F, Ωi

F ) =
(dim F

i

)
(see for instance [2, Proposition 6.1]). �

Theorem 6.3. Assume that X is a fake torus of dimesnion n ≥ 3 with dimY = n − 1. 
Then

(1) let X̃ = X ×C C̃ defined as in 2) of Lemma 6.2, then a
X̃

is a finite morphism onto 
its image;

(2) X is not of general type.

Proof. Note that Z = C is a smooth curve of genus 2 and Y = C ×JC AX and F
is of maximal Albanese dimension with pg(F ) = 1. We know from Lemma 6.2 that 
q(X̃) ≥ q(Ỹ ) + 1 = q(C̃) + n − 1. Moreover, F is also a general fiber of X̃ → C̃. By 
Lemma 6.2, q(F ) = n −1. Hence q(X̃) −q(C̃) ≤ q(F ) = n −1. Thus, q(X̃) = q(C̃) +n −1.

We now consider the induced fibration f̃ : X̃ → C̃ in Lemma 6.2 and the following 
commutative diagram:

X̃
G

X

g

Ỹ
G

Y

h

C̃
G

C.

Let G be the Galois group of the cover C̃ → C. We define M̃ := C̃×JC̃ A
X̃

and let K be 
the neutral component of the kernel of A

X̃
→ JC̃. We then have a natural generically 

finite morphism X̃ → M̃ and a surjective morphism M̃ → Ỹ . Note that these morphisms 
are G-equivariant. Let M = M̃/G. We then have the induced morphisms on the quotient: 
g : X ρ−→ M

ϕ−→ Y .
We claim that h2(M, Q) = h2(X, Q).
Note that H2(M, Q) = H2(M̃, Q)G and

H2(M̃,Q) = H2(C̃,Q) ⊕
(
H1(C̃,Q)) ∧H1(K,Q)

)
⊕H2(K,Q).

Let K ′ be the neutral component of the kernel of AX → JC, which is also a fiber of h. 
Then we have the quotient morphism K → K ′ by G. Hence H1(K, Q)G � H1(K ′, Q)
and there exists only one non-trivial character χ of G such that H1(K, Q)χ 
= 0 and 
hence dimH1(K, Q)χ = 2.
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Thus

H2(M̃,C)G = H2(C̃,C)G ⊕
(
H1(C̃,C))G ∧H1(K,C)G

)
⊕

(
H1(C̃,C))χ

∗ ∧H1(K,C)χ
)

⊕H2(K,C)G

= H2(C,C) ⊕
(
H1(C,C)) ∧H1(K ′,C)

)
⊕
(
H1(C̃,C))χ

∗ ∧H1(K,C)χ
)

⊕H2(K,C)G.

We also have

H2(Y,Q) = H2(C,Q) ⊕
(
H1(C,Q)) ∧H1(K ′,Q)

)
⊕H2(K ′,Q).

It is easy to see that h2(K, Q)G = dim(∧2H1(K, Q))G = h2(K ′, Q) + 1 and, for any 
non-trivial character ψ, dimH1(C̃, Q)ψ = 2. Hence h2(M, Q) = dimH2(M̃, Q)G =
h2(Y, Q) + 1 + 4 = h2(X, Q).

Since h2(X, Q) = h2(M, Q) and both X and M are smooth projective varieties, the 
surjective morphism ρ : X → M is finite. Then so is the induced morphism on the étale 
covers X̃ → M̃ . Hence a

X̃
is finite onto its image. However, χtop(X̃) = χtop(X) = 0. By 

[4, Theorem 1 of the appendix], X̃ can not be of general type and neither can X. �
Proposition 6.4. Let X be a fake torus of dimension 2. Then X is a minimal projective 
surface with κ(X) = 1. Furthermore, there exists a finite abelian group G acting faithfully 
on an elliptic curve E and on a smooth projective curve D of genus ≥ 3 such that 
E/G � P1, D/G = C is a smooth curve of genus 2, and X is isomorphic to the diagonal 
quotient (D × E)/G.

Proof. Let X̃ → X and C̃ → C be the étale covers induced by Q as in 2) of Lemma 6.2. 
Since a

X̃
is finite and X is not of general type, we conclude that a general fiber of X̃ → C̃

is isogenous to the kernel A
X̃

→ JC̃. Hence f : X → C is isotrivial with a smooth fiber 
isomorphic to an elliptic curve E. Moreover, by Kawamata’s theorem ([9, Theorem 15]), 
we know that a fiber of X̃ → C̃ is either smooth or is a multiple of a smooth curve. 
Hence both X̃ → C̃ and f : X → C are quasi-bundles in the terminology of [19].

By the main result of [19], we conclude that there exists a Galois cover D → C with 
Galois group G such that D ×C X � D × E. Moreover, X � (D × E)/G, where G acts 
faithfully on both factors and the action on the product is the diagonal action. Since 
h1(X, OX) = 2 = h1(C, OC), we conclude that E/G � P1.

On the other hand, any smooth surface isomorphic to (D×E)/G with D/G a smooth 
projective curve of genus 2 and E/G � P1 is a fake torus of dimension 2. �

A fake torus of dimension 3 has Kodaira dimension 1 or 2. With some efforts, in both 
cases, we can prove a similar structural result as in the surface case. Here is a typical 
example.
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Example 6.5. Let G be an abelian group acting faithfully on an elliptic curve E by 
translation. Let S be a smooth projective surface such that G acts faithfully on S and 
S/G is a fake torus of dimension 2. Then the diagonal quotient (S×E)/G is a fake torus 
in dimension 3.

When X is a fake torus of dimension 4 and Y = Z = C1 × C2 is a product of two 
smooth curves of genus 2. We know that f∗ωX = ωZ ⊗Q. Hence f is a fibration and a 
general fiber F of f has pg(F ) = 1. Moreover, we can verify by Kollár’s splitting and 
the Hodge diamond of X that h0(Z, R1f∗ωX) = 4 and h1(Z, R1f∗ωX) = 2. Hence F is 
an irregular surface. We do not know whether or not F is an abelian surface. In general, 
for a fake torus X, we do not have a systematic way to study the fibers of aX .

Finally we conclude by the following questions:

Question 6.6.

(1) Does there exist fake tori of general type?
(2) Does there exist a fake torus X such that ZX is not a product of genus 2 curves?

References

[1] J. Amorós, M. Burger, K. Corlette, D. Kotschick, D. Toledo, Fundamental Groups of Compact 
Kähler Manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, 
Providence, RI, ISBN 0-8218-0498-7, 1996.

[2] J.A. Chen, O. Debarre, Z. Jiang, Varieties with vanishing holomorphic Euler characteristic, J. Reine 
Angew. Math. 691 (2014) 203–227.

[3] J. Chen, Z. Jiang, Positivity in varieties of maximal Albanese dimension, J. Reine Angew. Math. 
(2017), in press, published online: 2015-07-31, http://doi.org/10.1515/crelle-2015-0027.

[4] O. Debarre, Z. Jiang, M. Lahoz, W. Savin, Rational cohomology tori, Geom. Topol. 21 (2) (2017) 
1095–1130.

[5] M. Green, R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, 
J. Amer. Math. Soc. 4 (1) (1991) 87–103.

[6] C.D. Hacon, R. Pardini, Birational characterization of products of curves of genus 2, Math. Res. 
Lett. 12 (1) (2005) 129–140.

[7] Z. Jiang, An effective version of a theorem of Kawamata on the Albanese map, Commun. Contemp. 
Math. 13 (3) (2011) 509–532.

[8] Z. Jiang, M. Lahoz, S. Tirabassi, Characterization of products of theta divisors, Compos. Math. 
150 (8) (2014) 1384–1412.

[9] Y. Kawamata, Characterization of Abelian varieties, Compos. Math. 43 (1981) 253–276.
[10] J. Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1) (1986) 171–202.
[11] G. Pareschi, Basic Results on Irregular Varieties Via Fourier–Mukai Methods, Current Developments 

in Algebraic Geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 
2012, pp. 379–403.

[12] G. Pareschi, M. Popa, Strong generic vanishing and a higher-dimensional Castelnuovo–de Franchis 
inequality, Duke Math. J. 150 (2) (2009) 269–285.

[13] G. Pareschi, M. Popa, Ch. Schnell, Hodge modules on complex tori and generic vanishing for compact 
Kähler manifolds, arXiv:1505.00635v1.

[14] M. Popa, Kodaira–Saito vanishing and applications, Enseign. Math. 62 (1–2) (2016) 49–89.
[15] M. Popa, L. Wu, Weak positivity for Hodge modules, Math. Res. Lett. 23 (4) (2016) 1137–1153.
[16] M. Saito, Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. (2) 42 (2) (1990) 

127–147.

http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4B61686C657247726F7570s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4B61686C657247726F7570s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4B61686C657247726F7570s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib43444As1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib43444As1
http://doi.org/10.1515/crelle-2015-0027
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib444A4Cs1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib444A4Cs1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib474Cs1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib474Cs1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib6870s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib6870s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4As1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4As1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4A4C54s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4A4C54s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib6B6177s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib4B32s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib50s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib50s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib50s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib505031s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib505031s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib505053s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib505053s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib506F70s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5057s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5331s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5331s1


390 J. Chen et al. / Advances in Mathematics 320 (2017) 361–390
[17] M. Saito, On Kollár’s conjecture, in: Several Complex Variables and Complex Geometry, Part 2, 
Santa Cruz, CA, 1989, in: Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 
1991, pp. 509–517.

[18] Ch. Schnell, Weak positivity via mixed Hodge modules, Contemp. Math. 647 (2015) 129–137.
[19] F. Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4) 171 (1996) 63–81.
[20] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes 

in Math., vol. 439, Springer-Verlag, 1975.
[21] E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer 

Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 30, Springer-Verlag, Berlin, 
1995.

[22] B. Wang, Torsion points on the cohomology jump loci of compact Kähler manifolds, Math. Res. 
Lett. 23 (2) (2016) 545–563.

http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5332s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5332s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib5332s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib536368s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib736572s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib55s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib55s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib56s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib56s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib56s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib57s1
http://refhub.elsevier.com/S0001-8708(17)30235-9/bib57s1

	Irregular varieties with geometric genus one, theta divisors, and fake tori
	1 Introduction
	Acknowledgements

	2 Notations and preliminaries
	2.1 Subvarieties of general type
	2.2 Hodge type sheaves

	3 Hodge sheaf F supported on Z with χ(F)=1
	4 Strong Hodge sheaf F supported on Z with χ(F)=1 and theta divisors
	4.1 Divisorial case
	4.2 General case
	4.3 Proof of Theorem 1.2

	5 Fibrations over genus 2 curves
	6 Fake tori
	References


