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Motivic hyper-Kähler resolution conjecture
I: Generalized Kummer varieties
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Given a smooth projective variety M endowed with a faithful action of a finite
group G, following Jarvis–Kaufmann–Kimura (Invent. Math. 168 (2007) 23–81),
and Fantechi–Göttsche (Duke Math. J. 117 (2003) 197–227), we define the orbifold
motive (or Chen–Ruan motive) of the quotient stack ŒM=G� as an algebra object in the
category of Chow motives. Inspired by Ruan (Contemp. Math. 312 (2002) 187–233),
one can formulate a motivic version of his cohomological hyper-Kähler resolution
conjecture (CHRC). We prove this motivic version, as well as its K–theoretic analogue
conjectured by Jarvis–Kaufmann–Kimura in loc. cit., in two situations related to an
abelian surface A and a positive integer n . Case (A) concerns Hilbert schemes
of points of A: the Chow motive of AŒn� is isomorphic as algebra objects, up
to a suitable sign change, to the orbifold motive of the quotient stack ŒAn=Sn� .
Case (B) concerns generalized Kummer varieties: the Chow motive of the generalized
Kummer variety Kn.A/ is isomorphic as algebra objects, up to a suitable sign
change, to the orbifold motive of the quotient stack ŒAnC10 =SnC1� , where AnC10 is
the kernel abelian variety of the summation map AnC1! A . As a by-product, we
prove the original cohomological hyper-Kähler resolution conjecture for generalized
Kummer varieties. As an application, we provide multiplicative Chow–Künneth
decompositions for Hilbert schemes of abelian surfaces and for generalized Kummer
varieties. In particular, we have a multiplicative direct sum decomposition of their
Chow rings with rational coefficients, which is expected to be the splitting of the
conjectural Bloch–Beilinson–Murre filtration. The existence of such a splitting for
holomorphic symplectic varieties is conjectured by Beauville (London Math. Soc.
Lecture Note Ser. 344 (2007) 38–53). Finally, as another application, we prove
that over a nonempty Zariski open subset of the base, there exists a decomposition
isomorphism R��Q'

L
Ri��QŒ�i � in Db

c .B/ which is compatible with the cup
products on both sides, where � W Kn.A/! B is the relative generalized Kummer
variety associated to a (smooth) family of abelian surfaces A! B .
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1 Introduction

1.1 Motivation 1: Ruan’s hyper-Kähler resolution conjectures

In [19], Weimin Chen and Yongbin Ruan construct the orbifold cohomology ring
H�orb.X / for any complex orbifold X. As a Q–vector space, it is defined to be the
cohomology of its inertia variety H�.IX / (with degrees shifted by some rational
numbers called age), but is endowed with a highly nontrivial ring structure coming from
moduli spaces of curves mapping to X. An algebrogeometric treatment is contained
in Abramovich–Graber–Vistoli [1], based on the construction of the moduli stack of
twisted stable maps in Abramovich–Vistoli [2]. In the global quotient case,1 some
equivalent definitions are available: see for example Fantechi–Göttsche [26], Jarvis–
Kaufmann–Kimura [36], Kimura [38] and Section 2.

Originating from the topological string theory of orbifolds in Dixon–Harvey–Vafa–
Witten [23; 24], one observes that the stringy topological invariants of an orbifold,
e.g. the orbifold Euler number and the orbifold Hodge numbers, should be related to
the corresponding invariants of a crepant resolution (Batyrev [4], Batyrev–Dais [5],
Yasuda [63] and Lupercio–Poddar [42]). A much deeper relation was brought forward
by Ruan, who made, among others, the following cohomological hyper-Kähler resolu-
tion conjecture (CHRC) in [51]. For more general and sophisticated versions of this
conjecture, see Ruan [52], Bryan–Graber [15] and Coates–Ruan [20].

1In this paper, by “global quotient”, we always mean the quotient of a smooth projective variety by a
finite group.
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Conjecture 1.1 (Ruan’s CHRC) Let X be a compact complex orbifold with under-
lying variety X being Gorenstein. If there is a crepant resolution Y ! X with Y
being hyper-Kähler, then we have an isomorphism of graded commutative C–algebras,
H�.Y;C/'H�orb.X ;C/.

As the construction of the orbifold product can be expressed using algebraic correspon-
dences (see Abramovich–Graber–Vistoli [1] and Section 2), one has the analogous
definition of the orbifold Chow ring CHorb.X / (see Definition 2.7 for the global
quotient case) of a smooth proper Deligne–Mumford stack X. Motivated by the study
of algebraic cycles on hyper-Kähler varieties, we propose to investigate the Chow-
theoretic analogue of Conjecture 1.1. For reasons which will become clear shortly,
it is more powerful and fundamental to consider the following motivic version of
Conjecture 1.1. Let CHMC be the category of Chow motives with complex coefficients
and h be the (contravariant) functor that associates to a smooth projective variety its
Chow motive.

Metaconjecture 1.2 (MHRC) Let X be a smooth proper complex Deligne–Mumford
stack with underlying coarse moduli space X being a (singular) symplectic variety. If
there is a symplectic resolution Y !X, then we have an isomorphism h.Y /' horb.X /
of commutative algebra objects in CHMC , hence in particular an isomorphism of
graded C–algebras, CH�.Y /C ' CH�orb.X /C .

See Definition 3.1 for generalities on symplectic singularities and symplectic resolutions.
The reason it is only a metaconjecture is that the definition of orbifold Chow motive for
a smooth proper Deligne–Mumford stack in general is not available in the literature and
we will not develop the theory in this generality in this paper (see however Remark 2.10).
From now on, let us restrict ourselves to the case where the Deligne–Mumford stack
in question is of the form of a global quotient X D ŒM=G�, where M is a smooth
projective variety with a faithful action of a finite group G, in which case we will define
the orbifold Chow motive horb.X / in a very explicit way in Definition 2.5.

The motivic hyper-Kähler resolution conjecture that we are interested in is the following
more precise statement, which would contain all situations considered in this paper
and its sequel.

Conjecture 1.3 (MHRC: global quotient case) Let M be a smooth projective holo-
morphic symplectic variety equipped with a faithful action of a finite group G by
symplectic automorphisms of M. If Y is a symplectic resolution of the quotient
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variety M=G, then we have an isomorphism of (commutative) algebra objects in the
category of Chow motives with complex coefficients,

h.Y /' horb.ŒM=G�/ in CHMC :

In particular, we have an isomorphism of graded C–algebras,

CH�.Y /C ' CH�orb.ŒM=G�/C:

The definition of the orbifold motive of ŒM=G� as a (commutative) algebra object in
the category of Chow motives with rational coefficients2 is particularly down-to-earth;
it is the G–invariant subalgebra object of some explicit algebra object:

horb.ŒM=G�/ WD

�M
g2G

h.M g/.� age.g//; ?orb

�G
;

where M g is the subvariety of fixed points of g , for each g 2 G, and the orbifold
product ?orb is defined by using natural inclusions and Chern classes of normal bundles
of various fixed loci; see Definition 2.5 (or (2)) for the precise formula of ?orb as well
as the Tate twists by age (Definition 2.3) and the G–action. The orbifold Chow ring3

is then defined as the commutative algebra

CH�orb.ŒM=G�/ WD
M
i

HomCHM.1.�i/; horb.ŒM=G�//;

or, equivalently and more explicitly,

(1) CH�orb.ŒM=G�/ WD

�M
g2G

CH��age.g/.M g/; ?orb

�G
;

where ?orb is defined as follows: for two elements g; h 2 G, the orbifold prod-
uct of ˛ 2 CHi�age.g/.M g/ and ˇ 2 CHj�age.h/.M h/ is the following element
in CHiCj�age.gh/.M gh/:

(2) ˛ ?orb ˇ WD ��.˛jM<g;h> �ˇjM<g;h> � ctop.Fg;h//;

2Strictly speaking, the orbifold Chow motive of ŒM=G� in general lives in the larger category of Chow
motives with fractional Tate twists. However, in our cases of interest, namely when there exists a crepant
resolution, for the word “crepant resolution” to make sense we understand that the underlying singular
variety M=G is at least Gorenstein, in which case all age shiftings are integers and we stay in the usual
category of Chow motives. See Definitions 2.1 and 2.5 for the general notions.

3The definition of the orbifold Chow ring already appeared on page 211 of Fantechi–Göttsche [26] and
was proved to be equivalent to the construction in Abramovich–Graber–Vistoli [1] by Jarvis–Kaufmann–
Kimura [36] .
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where M<g;h> WDM g \M h , the map �W M<g;h> ,!M gh is the natural inclusion
and Fg;h is the obstruction bundle. This construction is completely parallel to the
construction of orbifold cohomology due to Fantechi–Göttsche [26], which is further
simplified in Jarvis–Kaufmann–Kimura [36].

With the orbifold Chow theory briefly reviewed above, we see that in Conjecture 1.3,
the fancy side of ŒM=G� is actually the easier side, which can be used to study the
motive and cycles of the hyper-Kähler variety Y . Let us turn this idea into the following
working principle, which will be illustrated repeatedly in examples in the rest of the
introduction.

Slogan The cohomology theories4 of a holomorphic symplectic variety can be under-
stood via the hidden stack structure of its singular symplectic models.

Interesting examples of symplectic resolutions appear when considering the Hilbert–
Chow morphism of a smooth projective surface. More precisely, in his fundamental
paper [7], Beauville provides such examples:

Example 1 (Beauville) Let S be a complex projective K3 surface or an abelian
surface. Its Hilbert scheme of length-n subschemes, denoted by S Œn�, is a symplectic
crepant resolution of the symmetric product S .n/ via the Hilbert–Chow morphism.

The corresponding cohomological hyper-Kähler resolution conjecture was proved
independently by Fantechi–Göttsche [26] and Uribe [54], making use of the work of
Lehn–Sorger [41] computing the ring structure of H�.S Œn�/. The motivic hyper-Kähler
resolution conjecture (Conjecture 1.3) in the case of K3 surfaces will be proved in
Fu–Tian [30] and the case of abelian surfaces is our first main result:

Theorem 1.4 (MHRC for AŒn� ) Let A be an abelian surface and AŒn� be its Hilbert
scheme as before. Then we have an isomorphism of commutative algebra objects in the
category CHM of Chow motives with rational coefficients,

h.AŒn�/' horb;dt.ŒA
n=Sn�/;

where on the left-hand side, the product structure is given by the small diagonal of
AŒn� �AŒn� �AŒn� while on the right-hand side, the product structure is given by the orb-
ifold product ?orb with a suitable sign change, called discrete torsion in Definition 3.5.

4In the large sense: Weil cohomology, Chow rings, K–theory, motivic cohomology, etc. and finally,
motives.
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In particular, we have an isomorphism of commutative graded Q–algebras,

(3) CH�.AŒn�/Q ' CH�orb;dt.ŒA
n=Sn�/:

Example 2 (Beauville) Let A be a complex abelian surface. The composition of
the Hilbert–Chow morphism followed by the summation map AŒnC1�! A.nC1/! A

is an isotrivial fibration. The generalized Kummer variety Kn.A/ is by definition the
fiber of this morphism over the origin of A. It is a hyper-Kähler resolution of the
quotient AnC10 =SnC1 , where AnC10 is the kernel abelian variety of the summation
map AnC1! A.

The second main result of the paper is the following theorem confirming the motivic
hyper-Kähler resolution conjecture (Conjecture 1.3) in this situation:

Theorem 1.5 (MHRC for Kn.A/) Let Kn.A/ be the 2n–dimensional generalized
Kummer variety associated to an abelian surface A. Let AnC10 WD Ker.CW AnC1!A/

endowed with the natural SnC1–action. Then we have an isomorphism of commutative
algebra objects in the category CHM of Chow motives with rational coefficients,

h.Kn.A//' horb;dt.ŒA
nC1
0 =SnC1�/;

where on the left-hand side, the product structure is given by the small diagonal while
on the right-hand side, the product structure is given by the orbifold product ?orb with
the sign change given by discrete torsion in Definition 3.5. In particular, we have an
isomorphism of commutative graded Q–algebras,

(4) CH�.Kn.A//Q ' CH�orb;dt.ŒA
nC1
0 =SnC1�/:

1.2 Consequences

We get some by-products of our main results.

Taking the Betti cohomological realization, we confirm Ruan’s original cohomological
hyper-Kähler resolution conjecture (Conjecture 1.1) in the case of generalized Kummer
varieties:

Theorem 1.6 (CHRC for Kn.A/) Let the notation be as in Theorem 1.5. We have
an isomorphism of graded commutative Q–algebras,

H�.Kn.A//Q 'H
�
orb;dt.ŒA

nC1
0 =SnC1�/:
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The CHRC has never been proved in the case of generalized Kummer varieties in the
literature. Related work on the CHRC in this case are Nieper-Wißkirchen’s description
of the cohomology ring H�.Kn.A/;C/ in [47], which plays an important role in our
proof; and Britze’s thesis [14] comparing H�.A�Kn.A/;C/ and the computation of
the orbifold cohomology ring of ŒA�AnC10 =SnC1� in Fantechi–Göttsche [26]. See
however Remark 6.16.

From the K–theoretic point of view, we also have the following closely related conjecture
(KHRC) in Jarvis–Kaufmann–Kimura [36, Conjecture 1.2], where the orbifold K–theory
is defined in a similar way, with the top Chern class in (2) replaced by the K–theoretic
Euler class; see Definition 2.8 for details.

Conjecture 1.7 (K–theoretic hyper-Kähler resolution conjecture [36]) In the same
situation as in Metaconjecture 1.2, we have isomorphisms of C–algebras,

K0.Y /C 'Korb.X /C and K top.Y /C 'K
top
orb.X /C:

Using Theorems 1.4 and 1.5, we can confirm Conjecture 1.7 in the two cases considered
here:

Theorem 1.8 (KHRC for AŒn� and Kn.A/) Let A be an abelian surface and n be a
natural number. There are isomorphisms of commutative C–algebras,

K0.A
Œn�/C 'Korb.ŒA

n=Sn�/CI

K top.AŒn�/C 'K
top
orb.ŒA

n=Sn�/CI

K0.Kn.A//C 'Korb.ŒA
nC1
0 =SnC1�/CI

K top.Kn.A//C 'K
top
orb.ŒA

nC1
0 =SnC1�/C:

1.3 On explicit descriptions of the Chow rings

Let us make some remarks on the way we understand Theorem 1.4 and Theorem 1.5.
For each of them, the seemingly fancy right-hand side of (3) and (4) given by the
orbifold Chow ring is actually very concrete (see (1)): as groups, since all fixed loci are
just various diagonals, they are direct sums of Chow groups of products of the abelian
surface A, which can be handled by Beauville’s decomposition of Chow rings of
abelian varieties [8]; while the ring structures are given by the orbifold product, which
is extremely simplified in our cases (see (2)): all obstruction bundles Fg;h are trivial
and hence the orbifold products are either the intersection product pushed forward by
inclusions or simply zero.
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In short, given an abelian surface A, Theorem 1.4 and Theorem 1.5 provide an explicit
description of the Chow rings of AŒn� and of Kn.A/ in terms of Chow rings of products
of A (together with some combinatoric rules specified by the orbifold product). To
illustrate how explicit it is, we work out two simple examples in Section 3.2: the Chow
ring of the Hilbert square of a K3 surface or an abelian surface and the Chow ring of
the Kummer K3 surface associated to an abelian surface.

1.4 Motivation 2: Beauville’s splitting property

The original motivation for the authors to study the motivic hyper-Kähler resolution
conjecture (Metaconjecture 1.2) was to understand the (rational) Chow rings, or more
generally the Chow motives, of smooth projective holomorphic symplectic varieties,
that is, of even-dimensional projective manifolds carrying a holomorphic 2–form which
is symplectic (i.e. nondegenerate at each point). As an attempt to unify his work
on algebraic cycles on abelian varieties [8] and his result with Voisin [11] on Chow
rings of K3 surfaces, Beauville conjectured in [10], under the name of the splitting
property, that for a smooth projective holomorphic symplectic variety X, there exists a
canonical multiplicative splitting of the conjectural Bloch–Beilinson–Murre filtration
of the rational Chow ring (see Conjecture 7.1 for the precise statement). In this paper,
we will understand the splitting property as in the following motivic version (see
Definition 7.2 and Conjecture 7.4):

Conjecture 1.9 (Beauville’s splitting property: motives) Let X be a smooth pro-
jective holomorphic symplectic variety of dimension 2n. Then we have a canonical
multiplicative Chow–Künneth decomposition of h.X/ of Bloch–Beilinson type, that is,
a direct sum decomposition in the category of rational Chow motives,

(5) h.X/D

4nM
iD0

hi .X/;

satisfying the following properties:

(i) Chow–Künneth The cohomology realization of the decomposition gives the
Künneth decomposition: H�.hi .X//DH i .X/, for each 0� i � 4n.

(ii) Multiplicativity The product �W h.X/˝ h.X/! h.X/ given by the small
diagonal ıX �X �X �X respects the decomposition: the restriction of � on
the summand hi .X/˝ hj .X/ factorizes through hiCj .X/.
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(iii) Bloch–Beilinson–Murre For any i; j 2N ,

- CHi .hj .X//D 0 if j < i ;
- CHi .hj .X//D 0 if j > 2i ;
- the realization induces an injective map

HomCHM.1.�i/; h
2i .X//! HomQ�HS .Q.�i/;H

2i .X//:

Such a decomposition naturally induces a (multiplicative) bigrading on the Chow ring
CH�.X/D

L
i;s CHi .X/s by setting

(6) CHi .X/s WD HomCHM.1.�i/; h
2i�s.X//;

which is the original splitting that Beauville envisaged.

Our main results Theorem 1.4 and Theorem 1.5 allow us, for X being a Hilbert scheme
of an abelian surface or a generalized Kummer variety, to achieve in Theorem 1.10 par-
tially the goal Conjecture 1.9: we construct the candidate direct sum decomposition (5)
satisfying conditions (i) and (ii) in Conjecture 1.9, namely a self-dual multiplicative
Chow–Künneth decomposition in the sense of Shen–Vial [53] (see Definition 7.2). The
remaining condition (iii) on Bloch–Beilinson–Murre properties is very much related to
Beauville’s weak splitting property, which has already been proved in Fu [29] for the
case of generalized Kummer varieties; see Beauville [10], Voisin [58], Yin [64] and
Rieß [50] for the complete story and more details.

Theorem 1.10 (Theorem 7.9 and Proposition 7.13) Let A be an abelian surface
and n be a positive integer. Let X be the corresponding 2n–dimensional Hilbert
scheme AŒn� or generalized Kummer variety Kn.A/. Then X has a canonical self-
dual multiplicative Chow–Künneth decomposition induced by the isomorphisms of
Theorems 1.4 and 1.5, respectively. Moreover, via the induced canonical multiplicative
bigrading on the (rational) Chow ring given in (6), the i th Chern class of X lies
in CHi .X/0 for any i .

The associated filtration F j CHi .X/ WD
L
s�j CHi .X/s is supposed to satisfy the

Bloch–Beilinson–Murre conjecture (see Conjecture 7.11). We point out in Remark 7.12
that Conjecture 7.5 (Beauville’s conjecture on abelian varieties) implies for X in our
two cases some Bloch–Beilinson–Murre properties: CH�.X/s D 0 for s < 0 and the
cycle class map restricted to CH�.X/0 is injective.

See Remark 7.10 for previous related results.
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1.5 Cup products versus decomposition theorem

For a smooth projective morphism � W X ! B Deligne shows in [21] that one has an
isomorphism

R��QŠ
M
i

Ri��QŒ�i �;

in the derived category of sheaves of Q–vector spaces on B . Voisin [59] shows that,
although this isomorphism cannot in general be made compatible with the product
structures on both sides, not even after shrinking B to a Zariski open subset, it can be
made so if � is a smooth family of projective K3 surfaces. Her result is extended in
Vial [55] to relative Hilbert schemes of finite lengths of a smooth family of projective
K3 surfaces or abelian surfaces. As a by-product of our main result in this paper, we
can similarly prove the case of generalized Kummer varieties.

Theorem 1.11 (Corollary 8.4) Let A ! B be an abelian surface over B . Con-
sider � W Kn.A/! B , the relative generalized Kummer variety. Then there exist a
decomposition isomorphism

(7) R��QŠ
M
i

Ri��QŒ�i �

and a nonempty Zariski open subset U of B such that this decomposition becomes
multiplicative for the restricted family over U.

Conventions and notation Throughout the paper, all varieties are defined over the
field of complex numbers.

� The notation CH (resp. CHC ) means Chow groups with rational (resp. complex)
coefficients. CHM is the category of Chow motives over the complex numbers with
rational coefficients.

� For a variety X, its small diagonal, always denoted by ıX , is f.x; x; x/ j x 2Xg �
X �X �X.

� For a smooth surface X, its Hilbert scheme of length-n subschemes is always
denoted by X Œn�. It is smooth of dimension 2n by Fogarty [27].

� An (even) dimensional smooth projective variety is holomorphic symplectic if it
has a holomorphic symplectic (i.e. nondegenerate at each point) 2–form. When talking
about resolutions, we tend to use the word hyper-Kähler as its synonym, which usually
(but not in this paper) requires also “irreducibility”, that is, the simple connectedness of

Geometry & Topology, Volume 23 (2019)



Motivic hyper-Kähler resolution conjecture, I 437

the variety and the uniqueness up to scalars of the holomorphic symplectic 2–form. In
particular, punctual Hilbert schemes of abelian surfaces are examples of holomorphic
symplectic varieties.

� An abelian variety is always supposed to be connected. Its nonconnected general-
ization causes extra difficulty and is dealt with in Section 6.2.

� When working with 0–cycles on an abelian variety A, to avoid confusion, for a
collection of points x1; : : : ; xm 2 A, we will write Œx1�C � � �C Œxm� for the 0–cycle
of degree m (or equivalently, a point in A.m/, the mth symmetric product of A) and
x1C� � �Cxm will stand for the usual sum using the group law of A, which is therefore
a point in A.
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2 Orbifold motives and orbifold Chow rings

To fix the notation, we start by a brief reminder of the construction of pure motives
(see [3]). In order to work with Tate twists by age functions (Definition 2.3), we have
to extend slightly the usual notion of pure motives by allowing twists by a rational
number.
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Definition 2.1 (Chow motives with fractional Tate twists) The category of Chow
motives with fractional Tate twists with rational coefficients, denoted by ACHM , has as
objects finite direct sums of triples of the form .X; p; n/, with X a connected smooth
projective variety, p 2 CHdimX .X �X/ a projector and n 2 Q a rational number.
Given two objects .X; p; n/ and .Y; q;m/, the morphism space between them consists
of correspondences:

HomeCHM
..X; p; n/; .Y; q;m// WD q ıCHdimXCm�n.X �Y / ıp;

where we simply impose that all Chow groups of a variety with noninteger codi-
mension are zero. The composition law of correspondences is the usual one. Iden-
tifying .X; p; n/˚ .Y; q; n/ with .X q Y; pq q; n/ makes ACHM a Q–linear cate-
gory. Moreover, ACHM is a rigid symmetric monoidal pseudoabelian category with
unit 1 WD .Spec C;Spec C; 0/, tensor product defined by .X; p; n/ ˝ .Y; q;m/ WD

.X � Y; p � q; nCm/ and duality given by .X; p; n/
_

WD .X; tp; dimX � n/. There
is a natural contravariant functor hW SmProjop

!ACHM sending a smooth projective
variety X to its Chow motive h.X/D .X;�X ; 0/ and a morphism f W X ! Y to its
transposed graph t�f 2 CHdimY .Y �X/D HomeCHM

.h.Y /; h.X//.

Remarks 2.2 Some general remarks are in order:

(i) The category ACHMC of Chow motives with fractional Tate twists with complex co-
efficients is defined similarly by replacing all Chow groups with rational coefficients CH
by Chow groups with complex coefficients CHC in the above definition.

(ii) The usual category of Chow motives with rational (resp. complex) coefficients
CHM (resp. CHMC ; see [3]) is identified with the full subcategory of ACHM (resp.
ACHMC ) consisting of objects .X; p; n/ with n 2 Z.

(iii) Thanks to the extension of the intersection theory (with rational coefficients)
of Fulton [32] to the so-called Q–varieties by Mumford [43], the motive functor h

defined above can actually be extended to the larger category of finite group quotients
of smooth projective varieties, or more generally to Q–varieties with global Cohen–
Macaulay cover; see for example [17, Sections 2.2–2.3]. Indeed, for global quotients
one defines h.M=G/ WD

�
M; .1=jGj/

P
g2G

t�g ; 0
�
WD h.M/G. (Note that it is es-

sential to work with rational coefficients.) Denoting by � W M !M=G the quotient
morphism and letting X be an auxiliary variety, a morphism from h.X/ to h.M=G/

is a correspondence in CHdimX .X �M=G/, which, under the above identification
h.M=G/ D h.M/G, is regarded as a G–invariant element of CHdimX .X �M/ via
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the pullback idX ���, where �� is defined in [32, Example 1.7.6]. The latter has the
property that ���� D jGj � id while ���� D

P
g2G

t�g . It is useful to observe that
if we replace G by G �H, where H acts trivially on M, the pullback �� changes
by the factor jH j. We will avoid this kind of confusion by only considering faithful
quotients when dealing with Chow groups of quotient varieties.

Let M be an m–dimensional smooth projective complex variety equipped with a faithful
action of a finite group G. We adapt the constructions in [26] and [36] to define the
orbifold motive of the smooth proper Deligne–Mumford stack ŒM=G�. For any g 2G,
M g WD fx 2M j gxD xg is the fixed locus of the automorphism g , which is a smooth
subvariety of M. The following notion is due to Reid (see [49]).

Definition 2.3 (age) Given an element g 2G, let r 2N be its order. The age of g ,
denoted by age.g/, is the locally constant Q�0–valued function on M g defined as
follows. Let Z be a connected component of M g. Choosing any point x 2Z , we have
the induced automorphism g� 2 GL.TxM/, whose eigenvalues, repeated according to
multiplicities, are

fe2�
p
�1.˛1=r/; : : : ; e2�

p
�1.˛m=r/g;

with 0� ˛i � r � 1. One defines

age.g/jZ WD
1

r

mX
iD1

˛i :

It is obvious that the value of age.g/ on Z is independent of the choice of x 2Z and
it takes values in N if g� 2 SL.TxM/. Also immediate from the definition, we have
age.g/C age.g�1/D codim.M g �M/ as locally constant functions. Thanks to the
natural isomorphism hW M g !M hgh�1 sending x to h:x , for any g; h 2G, the age
function is invariant under conjugation.

Example 2.4 Let S be a smooth projective variety of dimension d and n a positive
integer. The symmetric group Sn acts by permutation on M D Sn. For each g 2Sn ,
a straightforward computation (see Paragraph 5.1.3) shows that age.g/ is the constant
function 1

2
d.n� jO.g/j/, where O.g/ is the set of orbits of g as a permutation of

f1; : : : ; ng. For example, when S is a surface (i.e. d D 2), the age is always a nonneg-
ative integer and we have age.id/D 0, age.12 : : : r/D r � 1, age.12/.345/D 3, etc.

Recall that an algebra object in a symmetric monoidal category .M;˝; 1/ (for example,
CHM, ACHM , etc.) is an object A 2ObjM together with a morphism �W A˝A!A
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in M, called the multiplication or product structure, satisfying the associativity axiom
� ı .�˝ id/ D � ı .id˝�/. An algebra object A in M is called commutative if
�ı �D�, where �W A˝A!A˝A is the structural symmetry isomorphism of M. For
each smooth projective variety X, its Chow motive h.X/ is naturally a commutative
algebra object in CHM (hence in ACHM , ACHMC , etc.) whose multiplication is given
by the small diagonal ıX 2 CH2 dimX .X �X �X/D HomCHM.h.X/˝ h.X/; h.X//.

Definition 2.5 (orbifold Chow motive) We define first of all an auxiliary (in general
noncommutative) algebra object h.M;G/ of ACHM in several steps:

(i) As a Chow motive with fractional twists, h.M;G/ is defined to be the direct sum
over G of the motives of fixed loci twisted à la Tate by � age:

h.M;G/ WD
M
g2G

h.M g/.� age.g//:

(ii) h.M;G/ is equipped with a natural G–action: each element h2G induces for each
g2G an isomorphism hW M g!M hgh�1 by sending x to h:x , hence an isomorphism
between the direct summands h.M g/.� age.g// and h.M hgh�1/.� age.hgh�1// by
the conjugation invariance of the age function.

(iii) For any g 2 G, let r be its order. We have a natural automorphism g� of the
vector bundle TM jMg . Consider its eigen-subbundle decomposition

TM jMg D

r�1M
jD0

Wg;j ;

where Wg;j is the subbundle associated to the eigenvalue e2�
p
�1.j=r/. Define

Sg WD

r�1X
jD0

j

r
ŒWg;j � 2K0.M

g/Q:

Note that the virtual rank of Sg is nothing but age.g/ by Definition 2.3.

(iv) For any g1; g2 2G, let M<g1;g2>DM g1 \M g2 and g3D g�12 g�11 . Define the
following element in K0.M<g1;g2>/Q :

Fg1;g2

WD Sg1 jM<g1;g2> CSg2 jM<g1;g2> CSg3 jM<g1;g2> CTM
<g1;g2>�TM jM<g1;g2> :

Note that its virtual rank is

(8) rkFg1;g2 D age.g1/C age.g2/� age.g1g2/� codim.M<g1;g2> �M g1g2/:

Geometry & Topology, Volume 23 (2019)



Motivic hyper-Kähler resolution conjecture, I 441

In fact, this class in the Grothendieck group is represented by a genuine obstruc-
tion vector bundle that is constructed in [26] (see [36]). In particular, the quantity
age.g1/C age.g2/� age.g1g2/ is always an integer.

(v) The product structure ?orb on h.M;G/ is defined to be multiplicative with respect
to the G–grading and for each g1; g2 2G, the orbifold product

?orbW h.M
g1/.� age.g1//˝ h.M g2/.� age.g2//! h.M g1g2/.� age.g1g2//

is the correspondence determined by the algebraic cycle

ı�.ctop.Fg1;g2//

2 CHdimMg1CdimMg2Cage.g1/Cage.g2/�age.g1g2/.M g1 �M g2 �M g1g2/;

where ıW M<g1;g2> ! M g1 �M g2 �M g1g2 is the natural morphism sending x

to .x; x; x/ and ctop means the top Chern class of Fg1;g2 . One can check easily that
the product structure ?orb is invariant under the action of G.

(vi) The associativity of ?orb is nontrivial. The proof in [36, Lemma 5.4] is completely
algebraic hence also works in our motivic case.

(vii) Finally, the orbifold Chow motive of ŒM=G�, denoted by horb.ŒM=G�/, is the
G–invariant subalgebra object5 of h.M;G/, which turns out to be a commutative
algebra object in ACHM :

(9) horb.ŒM=G�/ WD h.M;G/G D

�M
g2G

h.M g/.� age.g//; ?orb

�G
:

We still use ?orb to denote the orbifold product on this subalgebra object horb.ŒM=G�/.

Remark 2.6 With Definition 2.5(ii) in mind, the correspondence

p WD
1

jGj

X
h2G

�h 2
M
h2G

M
g2G

CHdimMg

.M g
�M hgh�1/

defines an idempotent endomorphism of the Chow motive h.M;G/, which is equal toL
g2G h.M g/.� age.g//. Under this identification, and ignoring the algebra structure,

the Chow motive horb.ŒM=G�/ is defined explicitly as the image of p (which exists,
since the category of Chow motives is pseudoabelian). Composing a correspondence in
HomCHM..Y; q;m/; h.M;G// with p amounts to symmetrizing. The orbifold product

5Here we use the fact that the category eCHM is Q–linear and pseudoabelian to define the G–invariant
part AG of a G–object A as the image of the projector .1=jGj/

P
g2G g 2 End.A/ .
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on horb.ŒM=G�/ is then given by the symmetrization of the orbifold product of h.M;G/
(Definition 2.5(v)), that is, by p ı?orb ı .p˝p/W h.M;G/˝h.M;G/! h.M;G/. We
note that p is self-dual, so that, by [56, Lemma 3.3], pı?orbı.p˝p/D .p˝p˝p/�?orb

if ?orb is viewed as a cycle on h.M;G/˝ h.M;G/˝ h.M;G/.

By replacing the rational equivalence relation by another adequate equivalence relation
(see [3]), the same construction gives the orbifold homological motives, orbifold
numerical motives, etc. associated to a global quotient smooth proper Deligne–Mumford
stack as algebra objects in the corresponding categories of pure motives (with fractional
Tate twists).

The definition of the orbifold Chow ring then follows in the standard way and agrees
with the one in [26; 36; 1].

Definition 2.7 (orbifold Chow ring) The orbifold Chow ring of ŒM=G� is the com-
mutative Q�0–graded Q–algebra CH�orb.ŒM=G�/ WD

L
i2Q�0

CHiorb.ŒM=G�/ with

(10) CHiorb.ŒM=G�/ WD HomeCHM
.1.�i/; horb.ŒM=G�//:

The ring structure on CH�orb.ŒM=G�/, called orbifold product, denoted again by ?orb , is
determined by the product structure ?orbW horb.ŒM=G�/˝horb.ŒM=G�/! horb.ŒM=G�/

in Definition 2.5.

More concretely, CH�orb.ŒM=G�/ is the G–invariant Q–subalgebra of an auxiliary
(noncommutative) finitely Q�0–graded Q–algebra CH�.M;G/, which is defined by

CH�.M;G/ WD
�M
g2G

CH��age.g/.M g/; ?orb

�
;

where for two elements g; h 2 G, the orbifold product of ˛ 2 CHi�age.g/.M g/ and
ˇ 2 CHj�age.h/.M h/ is the following element in CHiCj�age.gh/.M gh/:

(11) ˛ ?orb ˇ WD ��.˛jM<g;h> �ˇjM<g;h> � ctop.Fg;h//;

where �W M<g;h> ,!M gh is the natural inclusion.

Similarly, the orbifold K–theory is defined as follows. Recall that for a smooth vari-
ety X and for F 2K0.X/, we have the lambda operation �t W K0.X/!K0.X/ŒŒt ��,
where �t .F / is a formal power series

P1
iD0 t

i�i .F / subject to the multiplicativ-
ity relation �t .F ˚ F 0/ D �t .F / � �t .F

0/ for all objects F;F 0 2 K.X/, and such
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that, for any rank-r vector bundle E over X, we have �t .ŒE�/ D
Pr
iD0 t

i Œ
Vi
E�.

See [61, Chapter II, Section 4]. Finally ��1.F / is defined by evaluating at t D �1
in �t .F / and is called the K–theoretic Euler class of F _; see also [36, page 34].

Definition 2.8 (orbifold K–theory) The orbifold K–theory of ŒM=G�, denoted by
Korb.ŒM=G�/, is the subalgebra of G–invariant elements of the Q–algebra K.M;G/,
which is defined by

K.M;G/ WD

�M
g2G

K0.M
g/; ?orb

�
;

where for two elements g; h2G, the orbifold product of ˛2K0.M g/ and ˇ2K0.M h/

is the following element in K0.M gh/:

˛ ?orb ˇ WD ��.˛jM<g;h> �ˇjM<g;h> ���1.F
_

g;h//;

where �W M<g;h> ,!M gh is the natural inclusion and ��1.F
_

g;h
/ is the K–theoretic

Euler class of Fg;h as defined above.

Remark 2.9 The main interest of the paper lies in the situation when the underlying
singular variety of the orbifold has at worst Gorenstein singularities. Recall that an
algebraic variety X is Gorenstein if it is Cohen–Macaulay and the dualizing sheaf is a
line bundle, denoted by !X . In the case of a global quotient M=G, being Gorenstein
is implied by the local G–triviality of the canonical bundle !M , which means that
the stabilizer of each point x 2 M is contained in SL.TxM/. In this case, it is
straightforward to check that the age function actually takes values in the integers Z

and therefore the orbifold motive lies in the usual category of pure motives (without
fractional twists) CHM. In particular, the orbifold Chow ring and orbifold cohomology
ring are Z–graded. Example 2.4 exhibits a typical situation that we would like to study;
see also Remark 3.2.

Remark 2.10 (nonglobal quotients) In the broader setting of smooth proper Deligne–
Mumford stacks which are not necessarily finite group global quotients, the orbifold
Chow ring is still well defined in [1] but the down-to-earth construction as above, which
is essential for the applications (see our slogan in Section 1), is lost (see however the
equivariant treatment [25]). Another problem is that the definition of the orbifold Chow
motive in this general setting is neither available in the literature nor covered in this paper.
In the case where the coarse moduli space is projective with Gorenstein singularities,
the orbifold Chow motive is constructed in [31, Section 2.3] in the spirit of [1].
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3 Motivic hyper-Kähler resolution conjecture

3.1 A motivic version of the cohomological hyper-Kähler resolution
conjecture

In [51], as part of the broader picture of stringy geometry and topology of orbifolds, Ruan
proposed the cohomological hyper-Kähler resolution conjecture (CHRC), which says
that the orbifold cohomology ring of a compact Gorenstein orbifold is isomorphic to the
Betti cohomology ring of a hyper-Kähler crepant resolution of the underlying singular
variety if one takes C as coefficients; see Conjecture 1.1 in the introduction for the
statement. As explained in Ruan [52], the plausibility of the CHRC is justified by some
considerations from theoretical physics as follows. Topological string theory predicts
that the quantum cohomology theory of an orbifold should be equivalent to the quantum
cohomology theory of a/any crepant resolution of (possibly some deformation of) the
underlying singular variety. On the one hand, the orbifold cohomology ring constructed
by Chen–Ruan [19] is the classical part (genus zero with three marked points) of the
quantum cohomology ring of the orbifold (see [18]); on the other hand, the classical
limit of the quantum cohomology of the resolution is the so-called quantum corrected
cohomology ring [52]. However, if the crepant resolution has a hyper-Kähler structure,
then all its Gromov–Witten invariants as well as the quantum corrections vanish and
one expects therefore an equivalence, i.e. an isomorphism of C–algebras, between the
orbifold cohomology of the orbifold and the usual Betti cohomology of the hyper-Kähler
crepant resolution.

Before moving on to a more algebrogeometric study, we have to recall some standard
definitions and facts on (possibly singular) symplectic varieties (see [9; 46]):

Definition 3.1 � A symplectic form on a smooth complex algebraic variety is a
closed holomorphic 2–form that is nondegenerate at each point. A smooth variety
is called holomorphic symplectic or just symplectic if it admits a symplectic form.
Projective examples include deformations of Hilbert schemes of K3 surfaces and of
abelian surfaces, generalized Kummer varieties, etc. A typical nonprojective example
is provided by the cotangent bundle of a smooth variety.

� A (possibly singular) symplectic variety is a normal complex algebraic variety
such that its smooth part admits a symplectic form whose pullback to a/any resolution
extends to a holomorphic 2–form. A germ of such a variety is called a symplectic
singularity. Such singularities are necessarily rational Gorenstein [9] and conversely,
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by a result of Namikawa [46], a normal variety is symplectic if and only if it has
rational Gorenstein singularities and its smooth part admits a symplectic form. The
main examples that we are dealing with are of the form of a quotient by a finite group of
symplectic automorphisms of a smooth symplectic variety, e.g. the symmetric products
S .n/ D Sn=Sn of smooth algebraic surfaces S with trivial canonical bundle.

� Given a singular symplectic variety X, a symplectic resolution or hyper-Kähler
resolution is a resolution f W Y !X such that the pullback of a symplectic form on the
smooth part Xreg extends to a symplectic form on Y . Note that a resolution is symplectic
if and only if it is crepant: f �!X D!Y . The definition is independent of the choice of
a symplectic form on Xreg . A symplectic resolution is always semismall. The existence
of symplectic resolutions and the relations between them form a highly attractive topic in
holomorphic symplectic geometry. An interesting situation, which will not be touched
upon in this paper however, is the normalization of the closure of a nilpotent orbit in a
complex semisimple Lie algebra, whose symplectic resolutions are extensively studied
in the literature (see [28; 13]). For examples relevant to this paper, see Examples 3.4.

Returning to the story of the hyper-Kähler resolution conjecture, in order to study
algebraic cycles and motives of holomorphic symplectic varieties, especially with a
view toward the splitting property conjecture of Beauville [10] (see Section 7), we
would like to propose the motivic version of the CHRC; see Metaconjecture 1.2 in the
introduction for the general statement. As we are dealing exclusively with the global
quotient case in this paper and its sequel, we will concentrate on this more restricted
case and on the more precise formulation Conjecture 1.3 in the introduction.

Remark 3.2 (integral grading) We use the same notation as in Conjecture 1.3. Then,
since G preserves a symplectic form (hence a canonical form) of M, the quotient
variety M=G has at worst Gorenstein singularities. As is pointed out in Remark 2.9,
this implies that the age functions take values in Z, the orbifold motive horb.ŒM=G�/

is in CHM, the usual category of (rational) Chow motives, and the orbifold Chow
ring CH�orb.ŒM=G�/ is integrally graded.

Remark 3.3 (K–theoretic analogue) As noted in the introduction (Conjecture 1.7), we
are also interested in the K–theoretic version of the hyper-Kähler resolution conjecture
(KHRC) proposed in [36, Conjecture 1.2]. We want to point out that in Conjecture 1.3,
the statement for Chow rings is more or less equivalent to the KHRC; however, the full
formulation for Chow motivic algebras is, on the other hand, strictly richer. In fact, in
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all cases that we are able to prove the KHRC, in this paper as well as in the upcoming
one [30], we have to first solve the MHRC on the motive level and deduce the KHRC
as a consequence. See Section 4 for the proof of Theorem 1.8.

Examples 3.4 All examples studied in this paper are in the following situation: let M
and G be as in Conjecture 1.3 and Y be (the principal component of) the G–Hilbert
scheme G–Hilb.M/ of G–clusters of M, that is, a 0–dimensional G–invariant sub-
scheme of M whose global functions form the regular G–representation (see [34; 45]).
In some interesting cases, Y gives a symplectic resolution of M=G :

� Let S be a smooth algebraic surface, and let G D Sn act on M D Sn by
permutation. By the result of Haiman [33, Theorem 5.1], Y DSn–Hilb.Sn/ is
isomorphic to the nth punctual Hilbert scheme S Œn�, which is a crepant resolution,
hence a symplectic resolution if S has trivial canonical bundle, of M=G D S .n/,
the nth symmetric product.

� Let A be an abelian surface, and let M be the kernel of the summation map
sW AnC1!A and GDSnC1 act on M by permutations. Then Y DG�Hilb.M/

is isomorphic to the generalized Kummer variety Kn.A/ and is a symplectic
resolution of M=G.

Although both sides of the isomorphism in Conjecture 1.3 are in the category CHM of
motives with rational coefficients, it is in general necessary to make use of roots of
unity to realize such an isomorphism of algebra objects. However, in some situations,
it is possible to stay in CHM by making a suitable sign change, which is related to the
notion of discrete torsion in theoretical physics:

Definition 3.5 (discrete torsion) For any g; h 2G, let

(12) �.g; h/ WD 1
2
.age.g/C age.h/� age.gh//:

It is easy to check that

(13) �.g1; g2/C �.g1g2; g3/D �.g1; g2g3/C �.g2; g3/:

In the case when �.g; h/ is an integer for all g; h 2 G, we can define the orb-
ifold Chow motive with discrete torsion of a global quotient stack ŒM=G�, denoted
by horb;dt.ŒM=G�/, by the following simple change of sign in step (v) of Definition 2.5:
the orbifold product with discrete torsion

?orb;dtW h.M
g1/.� age.g1//˝ h.M g2/.� age.g2//! h.M g1g2/.� age.g1g2//
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is the correspondence determined by the algebraic cycle

.�1/�.g1;g2/ � ı�.ctop.Fg1;g2//

2 CHdimMg1CdimMg2Cage.g1/Cage.g2/�age.g1g2/.M g1 �M g2 �M g1g2/:

Thanks to (13), ?orb;dt is still associative. Similarly, the orbifold Chow ring with
discrete torsion of ŒM=G� is obtained by replacing (11) in Definition 2.7 by

(14) ˛ ?orb;dt ˇ WD .�1/
�.g;h/

� i�.˛jM<g;h> �ˇjM<g;h> � ctop.Fg;h//;

which is again associative by (13).

Thanks to the notion of discrete torsion, we can have the following version of motivic
hyper-Kähler resolution conjecture, which takes place in the category of rational Chow
motives and involves only rational Chow groups.

Conjecture 3.6 (MHRC: global quotient case with discrete torsion) In the same
situation as Conjecture 1.3, suppose that �.g; h/ of Definition 3.5 is an integer for
all g; h 2 G. Then we have an isomorphism of (commutative) algebra objects in the
category of Chow motives with rational coefficients,

h.Y /' horb;dt.ŒM=G�/ in CHM :

In particular, we have an isomorphism of graded Q–algebras,

CH�.Y /' CH�orb;dt.ŒM=G�/:

Remark 3.7 It is easy to see that Conjecture 3.6 implies Conjecture 1.3: to get rid
of the discrete torsion sign change .�1/�.g;h/, it suffices to multiply the isomorphism
on each summand h.M g/.� age.g//, or CH.M g/, by

p
�1

age.g/
, which involves of

course the complex numbers (roots of unity at least).

3.2 Toy examples

To better illustrate the conjecture as well as the proof in Section 4, we present in
this section some explicit computations for two of the simplest nontrivial cases of
the MHRC.

3.2.1 Hilbert squares of K3 surfaces Let S be a K3 surface or an abelian surface.
Consider the involution f on S �S flipping the two factors. The relevant Deligne–
Mumford stack is ŒS2=f �; its underlying singular symplectic variety is the second
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symmetric product S .2/, and S Œ2� is its symplectic resolution. Let fS2 be the blowup
of S2 along its diagonal �S :

E
j
//

�

��

�

fS2
�

��

�S
�
// S �S

Then f lifts to a natural involution on fS2 and the quotient is

qW fS2� S Œ2�:

On the one hand, CH�.S Œ2�/ is identified, via q�, with the invariant part of CH�.fS2 /;
on the other hand, by Definition 2.7, CH�orb.ŒS

2=S2�/DCH�.S2;S2/inv. Therefore to
check either MHRC Conjecture 1.3 or Conjecture 3.6 (at the level of Chow rings only)
in this case, we only have to show the following:

Proposition 3.8 We have an isomorphism of C–algebras,

CH�.fS2/C'CH�.S2;S2/C:

In fact, taking into account the discrete torsion, there is an isomorphism of Q–algebras,

CH�.S Œ2�/' CH�orb;dt.ŒS
2=S2�/:

Proof A straightforward computation using (iii) and (iv) of Definition 2.5 shows
that all obstruction bundles are trivial (at least in the Grothendieck group). Hence, by
Definition 2.7,

CH�.S2;S2/D CH�.S2/˚CH��1.�S /;

whose ring structure is explicitly given by

˛ ?orb ˇ D ˛ �ˇ 2 CHiCj .S2/ for any ˛ 2 CHi .S2/ and ˇ 2 CHj .S2/;

˛ ?orb ˇ D ˛j� �ˇ 2 CHiCj .�S / for any ˛ 2 CHi .S2/ and ˇ 2 CHj .�S /;

˛ ?orb ˇ D��.˛ �ˇ/ 2 CHiCjC2.S2/ for any ˛ 2 CHi .�S / and ˇ 2 CHj .�S /:

The blowup formula (see for example, [57, Theorem 9.27]) provides an a priori only
additive isomorphism

.��; j��
�/W CH�.S2/˚CH��1.�S / '�!CH�.fS2/;

whose inverse is given by .��;���j �/.
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With everything given explicitly as above, it is straightforward to check that this
isomorphism respects also the multiplication up to a sign change:

� For any ˛ 2 CHi .S2/ and ˇ 2 CHj .S2/, one has

��.˛ ?orb ˇ/D �
�.˛ �ˇ/D ��.˛/ � ��.ˇ/:

� For any ˛ 2 CHi .S2/ and ˇ 2 CHj .�S /, the projection formula yields

j��
�.˛ ?orb ˇ/D j��

�.˛j� �ˇ/D j�.j
���.˛/ ���ˇ/D ��.˛/ � j��

�.ˇ/:

� For any ˛ 2CHi .�S / and ˇ 2CHj .�S /, we make the sign change ˛?orb;dtˇD

���.˛ �ˇ/ and we get

j��
�.˛/ � j��

�.ˇ/D j�.j
�j��

�˛ ���ˇ/

D j�.c1.N
E=eS2/ ���˛ ���ˇ/

D�����.˛ �ˇ/

D ��.˛ ?orb;dt ˇ/;

where in the next-to-last equality one uses the excess intersection formula for the
blowup diagram together with the fact that N

E=eS2 D O�.�1/ while the excess
normal bundle is

��TS=O�.�1/' T� ˝O�.�1/' O�.1/;

where one uses the assumption that KS D 0 to deduce that T� ' O�.2/.

As the sign change is exactly the one given by discrete torsion (Definition 3.5), we
have an isomorphism of Q–algebras,

CH�.S Œ2�/' CH�orb;dt.ŒS
2=S2�/:

By Remark 3.7, this yields, without making any sign change, an isomorphism of
C–algebras,

CH�.S Œ2�/C ' CH�orb.ŒS
2=S2�/C;

which concludes the proof.

3.2.2 Kummer K3 surfaces Let A be an abelian surface. We always identify A20 WD
Ker.A�A C

�!A/ with A by .x;�x/ 7! x . Under this identification, the associated
Kummer K3 surface S WDK1.A/ is a hyper-Kähler crepant resolution of the symplectic
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quotient A=f , where f is the involution of multiplication by �1 on A. Consider the
blowup of A along the fixed locus F which is the set of 2–torsion points of A:

E
j
//

�

��

�

zA

�

��

F
i
// A

Then S is the quotient of zA by zf , the lifting of the involution f . As in the previous
toy example, the MHRC at the level of Chow rings only in the present situation is
reduced to the following:

Proposition 3.9 We have an isomorphism of C–algebras, CH�. zA/C'CH�.A;S2/C .
In fact, taking into account the discrete torsion, there is an isomorphism of Q–algebras,
CH�.K1.A//' CH�orb;dt.ŒA=S2�/.

Proof Because the computation is quite similar to that of Proposition 3.8, we only give
a sketch of the proof. By Definition 2.7, age.id/D 0, age. zf /D 1 and CH�.A;S2/D
CH�.A/˚CH��1.F /, whose ring structure is given by

˛ ?orb ˇ D ˛ �ˇ 2 CHiCj .A/ for any ˛ 2 CHi .A/ and ˇ 2 CHj .A/;

˛ ?orb ˇ D ˛jF �ˇ 2 CHi .F / for any ˛ 2 CHi .A/ and ˇ 2 CH0.F /;

˛ ?orb ˇ D i�.˛ �ˇ/ 2 CH2.A/ for any ˛ 2 CH0.F / and ˇ 2 CH0.F /:

Again by the blowup formula, we have an isomorphism

.��; j��
�/W CH�.A/˚CH��1.F / '�!CH�. zA/;

whose inverse is given by .��;���j �/. It is now straightforward to check that they
are moreover ring isomorphisms with the left-hand side equipped with the orbifold
product. The sign change comes from the negativity of the self-intersection of (the
components of) the exceptional divisor.

4 Main results and steps of the proofs

The main results of the paper are the verification of Conjecture 3.6, hence Conjecture 1.3
by Remark 3.7, in the following two cases, Case (A) and Case (B). See Theorem 1.4
and Theorem 1.5 in the introduction for the precise statements of the results. These
two theorems are proved in Section 5 and Section 6 respectively.
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Let A be an abelian surface and n be a positive integer.

Case (A) Hilbert schemes of abelian surfaces M is equal to An endowed with
the natural action of G D Sn . The symmetric product A.n/ D M=G is a singular
symplectic variety and the Hilbert–Chow morphism

�W Y D AŒn�! A.n/

gives a symplectic resolution.

Case (B) Generalized Kummer varieties M is equal to AnC10 WDKer.AnC1 s
�!A/

endowed with the natural action of G DSnC1 . The quotient AnC10 =SnC1 DM=G is
a singular symplectic variety. Recall that the generalized Kummer variety Kn.A/ is
the fiber over OA of the isotrivial fibration AŒnC1�! A.nC1/ s

�!A. The restriction
of the Hilbert–Chow morphism

Y DKn.A/! AnC10 =SnC1

gives a symplectic resolution.

Let us deduce the KHRC (Conjecture 1.7) in these two cases from our main results:6

Proof of Theorem 1.8 Let M and G be as in either Case (A) or Case (B). With-
out using discrete torsion, we have an isomorphism of C–algebras CH�.M/C '

CH�orb.ŒM=G�/C by Theorems 1.4 and 1.5. An orbifold Chern character is constructed
in [36], which by [36, Main result 3] provides an isomorphism of Q–algebras,

chorbW Korb.ŒM=G�/Q
'
�!CH�orb.ŒM=G�/Q:

The desired isomorphism of algebras is then obtained by the composition of chorb (ten-
sored with C ), the Chern character isomorphism chW K.Y /Q '

�!CH�.Y /Q tensored
with C, and the isomorphism CH�.M/C ' CH�orb.ŒM=G�/C from our main results.

Similarly, for topological K–theory one uses the orbifold topological Chern character,
which is also constructed in [36],

chorbW K
top
orb.ŒM=G�/Q

'
�!H�orb.ŒM=G�;C/;

together with chW K top.Y /Q
'
�!H�.Y;Q/ and the cohomological hyper-Kähler reso-

lution conjecture,
H�orb.ŒM=G�;C/'H

�.Y;C/;

6Our proof for the KHRC passes through Chow rings, thus a direct geometric (sheaf-theoretic)
description of the isomorphism between K.Y /C and Korb.ŒM=G�/C is still missing.
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which is proved in Case (A) in [26] and [54] based on [41] and in Case (B) in
Theorem 1.6.

In the rest of this section, we explain the main steps of the proofs of Theorem 1.4 and
Theorem 1.5. For both cases, the proof proceeds in three steps. For each step, Case (A)
is quite straightforward and Case (B) requires more subtle and technical arguments.

Step (i) Recall the notation h.M;G/ WD
L
g2G h.M g/.� age.g//. Denote by

�W h.M;G/G ,! h.M;G/ and pW h.M;G/� h.M;G/G

the inclusion of and the projection onto the G–invariant part h.M;G/G, which is a
direct factor of h.M;G/ inside CHM. We will first construct an a priori just additive
G–equivariant morphism of Chow motives h.Y /! h.M;G/, given by some corre-
spondences f.�1/age.g/U g 2 CH.Y �M g/gg2G inducing an (additive) isomorphism

� D p ı
X
g

.�1/age.g/U g W h.Y / '�! horb.ŒM=G�/D h.M;G/G :

The isomorphism � will have the property that its inverse is  WD
�
.1=jGj/

P
g
tU g

�
ı�

(see Proposition 5.2 and Proposition 6.4 for Case (A) and Case (B) respectively). Note
that since

P
g.�1/

age.g/U g is G–equivariant, we have � ı� D
P
g.�1/

age.g/U g and
likewise  ıp D .1=jGj/

P
g
tU g. Our goal is then to prove that these morphisms are

moreover multiplicative (after the sign change by discrete torsion), i.e. that the diagram

(15)

h.Y /˝2

�˝2

��

ıY
// h.Y /

�

��

horb.ŒM=G�/
˝2

?orb;dt
// horb.ŒM=G�/

is commutative, where the algebra structure ?orb;dt on the Chow motive horb.ŒM=G�/ is
the symmetrization of the algebra structure ?orb;dt on h.M;G/ defined in Definition 3.5
(in the same way that the algebra structure ?orb on the Chow motive horb.ŒM=G�/ is
the symmetrization of the algebra structure ?orb on h.M;G/; see Remark 2.6).

The main theorem will then be deduced from the following:

Proposition 4.1 With the notation as before, the following two algebraic cycles have
the same symmetrization in CH

��`
g2GM

g
�3�:
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� W WD
�
.1=jGj/

P
g U

g � .1=jGj/
P
g U

g �
P
g.�1/

age.g/U g
�
�
.ıY /;

� the algebraic cycle Z determining the orbifold product (Definition 2.5(v)) with
the sign change by discrete torsion (Definition 3.5):

ZjMg1�Mg2�Mg3 D

�
0 if g3 ¤ g1g2;

.�1/�.g1;g2/ � ı�ctop.Fg1;g2/ if g3 D g1g2:

Here the symmetrization of a cycle in
�`

g2GM
g
�3 is the operation

 7! .p˝p˝p/� D
1

jGj3

X
g1;g2;g32G

.g1; g2; g3/::

Proposition 4.1 implies Theorems 1.4 and 1.5 The only thing to show is the com-
mutativity of (15), which is of course equivalent to the commutativity of the diagram

h.Y /˝2
ıY

// h.Y /

�

��

horb.ŒM=G�/
˝2

 ˝2

OO

?orb;dt
// horb.ŒM=G�/

By the definition of � and  , we need to show the following diagram is commutative:

(16)

h.Y /˝2
ıY

// h.Y /P
g.�1/

age.g/Ug

��

h.M;G/˝2

�
.1=jGj/

P
g
tUg

�̋ 2

OO

h.M;G/

p

��

horb.ŒM=G�/
˝2

�˝2

OO

?orb;dt
// horb.ŒM=G�/

It is easy to see that the composition
P
g.�1/

age.g/U g ı ıY ı
�
.1=jGj/

P
g
tU g

�̋ 2

is the morphism (or correspondence) induced by the cycle W in Proposition 4.1; see
e.g. [56, Lemma 3.3]. On the other hand, ?orb;dt for horb.ŒM=G�/ is by definition
p ıZ ı �˝2. Therefore, the desired commutativity, hence also the main results, amounts
to the equality p ıW ı �˝2 D p ıZ ı �˝2, which says exactly that the symmetrizations
of W and of Z are equal in CH

��`
g2GM

g
�3 �.

One is therefore reduced to show Proposition 4.1 in both Case (A) and Case (B).
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Step (ii) We prove that W on the one hand and Z on the other hand, as well as their
symmetrizations, are both symmetrically distinguished in the sense of O’Sullivan [48]
(see Definition 5.4). To avoid confusion, let us point out that the cycle W is already
symmetrized. In Case (B) concerning the generalized Kummer varieties, we have to
generalize the category of abelian varieties and the corresponding notion of symmet-
rically distinguished cycles, in order to deal with algebraic cycles on “nonconnected
abelian varieties” in a canonical way. By the result of O’Sullivan [48] (see Theorem 5.5
and Theorem 5.6), it suffices for us to check that the symmetrizations of W and Z are
numerically equivalent.

Step (iii) Finally, in Case (A), explicit computations of the cohomological realization
of � show that the induced (iso)morphism �W H�.Y /!H�orb.ŒM=G�/ is the same as
the one constructed in [41]. While in Case (B), based on the result of [47], one can
prove that the cohomological realization of � satisfies Ruan’s original cohomological
hyper-Kähler resolution conjecture. Therefore the symmetrizations of W and Z are
homologically equivalent, which finishes the proof by Step (ii).

5 Case (A): Hilbert schemes of abelian surfaces

We prove Theorem 1.4 in this section. Our notation is as before: M WD An with the
action of G WDSn and the quotient A.n/ WDM=G. Then the Hilbert–Chow morphism

�W AŒn� DW Y ! A.n/

gives a symplectic resolution.

5.1 A recap of Sn–equivariant geometry

To fix the conventions and terminology, let us collect here a few basic facts concerning
Sn–equivariant geometry:

5.1.1 The conjugacy classes of the group Sn consist of permutations of the same
cycle type; hence the conjugacy classes are in bijection to partitions of n. The number
of disjoint cycles whose composition is g 2Sn is exactly the number jO.g/j of orbits
in f1; : : : ; ng under the permutation action of g 2Sn . We will say that g 2Sn is of
partition type �, denoted by g 2 �, if the partition determined by g is �.
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5.1.2 Let X be a variety of pure dimension d . Given a permutation g 2Sn , the fixed
locus .Xn/g WD Fixg.Xn/ can be described explicitly as the partial diagonal

f.x1; : : : ; xn/ 2X
n
j xi D xj if i and j are in the same orbit under the action of gg:

As in [26], we therefore have the natural identification

.Xn/g DXO.g/:

In particular, the codimension of .Xn/g in Xn is d.n� jO.g/j/.

5.1.3 Since g and g�1 belong to the same conjugacy class, it follows from the equality
age.g/C age.g�1/D codim..Xn/g �Xn/ that

age.g/D d

2
.n� jO.g/j/;

as was stated in Example 2.4.

5.1.4 Let P.n/ be the set of partitions of n. Given such a partition

�D .�1 � � � � � �l/D .1
a1 : : : nan/;

where l WD j�j is the length of � and ai D jfj j 1� j � n and �j D igj, we define

S� WDSa1 � � � � �San :

For g 2Sn a permutation of partition type �, its centralizer C.g/, i.e. the stabilizer
under the action of Sn on itself by conjugation, is isomorphic to the semidirect product:

C.g/' .Z=�1 � � � � �Z=�l/ÌS�:

Note that the action of C.g/ on Xn restricts to an action on .Xn/g DXO.g/'X l and
the action of the normal subgroup Z=�1� � � � �Z=�l � C.g/ is trivial. We denote the
quotient by X .�/ WD .Xn/g=C.g/D .Xn/g=S� , and we regard the motive h.X .�// as
the direct summand h..Xn/g/S� inside h..Xn/g/ via the pullback along the projection
.Xn/g ! .Xn/g=S� ; see Remarks 2.2(iii).

5.2 Step (i): Additive isomorphisms

In this section, we establish an isomorphism between h.Y / and horb.ŒM=G�/ by using
results of [16], and more specifically by constructing correspondences similar to the
ones used therein.
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Let

(17) U g WD .AŒn� �A.n/ .A
n/g/red

D f.z; x1; : : : ; xn/ 2 A
Œn�
� .An/g j �.z/D Œx1�C � � �C Œxn�g

be the incidence variety, where �W AŒn�! A.n/ is the Hilbert–Chow morphism. As
the notation suggests, U g is the fixed locus of the induced automorphism g on the
isospectral Hilbert scheme

U WD U id
DAŒn��A.n/ A

n
D f.z; x1; : : : ; xn/ 2A

Œn�
�An j �.z/D Œx1�C� � �C Œxn�g:

Note that dimU g DnCjO.g/jD2n�age.g/ [12] and dim.AŒn��.An/g/D2 dimU g.
For each g 2G, we consider the correspondence

(18) �g WD .�1/
age.g/U g 2 CH2n�age.g/.AŒn� � .An/g/;

which defines a morphism of Chow motives

(19) � WD
X
g2G

�g W h.A
Œn�/!

M
g2G

h..An/g/.� age.g//DW h.An;Sn/;

where we used the notation from Definition 2.5.

Lemma 5.1 The algebraic cycle � in (19) defines an Sn–equivariant morphism with
respect to the trivial action on AŒn� and the action on h.An;Sn/ of Definition 2.5.

Proof For each g; h 2G, as the age function is invariant under conjugation, it suffices
to show that the following composition is equal to �hgh�1 :

h.AŒn�/
�g
�! h..An/g/.� age.g// h

�! h..An/hgh
�1

/.� age.g//:

This follows from the fact that the diagram

AŒn� U goo

��

h

'
// U hgh

�1

��

.An/g
h

'
// .An/hgh

�1

is commutative.

As before, �W h.An; G/G ,! h.An; G/ and pW h.An; G/� h.An; G/G are the inclu-
sion of and the projection onto the G–invariant part. Thanks to Lemma 5.1, we obtain
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the desired morphism

(20) � WD p ı�W h.AŒn�/! horb.ŒA
n=G�/D h.An; G/G ;

which satisfies � D � ı� .

Now one can reformulate the result of de Cataldo–Migliorini [16], which actually
works for all surfaces, as follows:

Proposition 5.2 The morphism � is an isomorphism, whose inverse is given by
 WD .1=nŠ/

�P
g2G

tU g
�
ı �, where

tU g W h..An/g/.� age.g//! h.AŒn�/

is the transposed correspondence of U g.

Proof Let �D .�1� � � � ��l/2P.n/ be a partition of n of length l and let A� be Al,
equipped with the natural action of S� and with the natural morphism to A.n/ that sends
.x1; : : : ; xl/ to

Pl
jD1 �j Œxj �. Define the incidence subvariety U � WD .AŒn��A.n/A

�/red .
Denote the quotients by A.�/ WDA�=S� and U .�/ WDU �=S� , where the latter is also
regarded as a correspondence between AŒn� and A.�/. See Remarks 2.2(iii) for the use of
Chow motives of global quotients, and Paragraph 5.1.4 for our case at hand (i.e. A.�/ ).

The main theorem in [16] asserts that the following correspondence is an isomorphism:

�0 WD
X

�2P.n/

U .�/W h.AŒn�/ '�!
M
�2P.n/

h.A.�//.j�j �n/I

moreover, the inverse of �0 is given by

 0 WD
X

�2P.n/

1

m�
�
tU .�/W

M
�2P.n/

h.A.�//.j�j �n/ '�! h.AŒn�/;

where m� D .�1/n�j�j
Qj�j
jD1 �j is a nonzero constant. To relate our morphism � to

the isomorphism �0 and also to  and  0 one uses the following elementary lemma:

Lemma 5.3 One has a natural isomorphism,

(21)
� M
g2Sn

h..An/g/.� age.g//
�Sn

'
�!

M
�2P.n/

h.A.�//.j�j �n/:
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Proof By regrouping permutations by their partition types, we clearly have� M
g2Sn

h..An/g/.� age.g//
�Sn
Š

M
�2P.n/

�M
g2�

h..An/g/

�Sn
.j�j �n/:

So it suffices to give a natural isomorphism, for any fixed partition � 2 P.n/, between�L
g2� h..A

n/g/
�Sn and h.A.�//. However, such an isomorphism of motives follows

from the isomorphism of quotient varieties

(22)
�a
g2�

.An/g
�
=Sn Š A

�=S� D A
.�/;

where the first isomorphism can be obtained by choosing a permutation g0 2 � and
observing that the centralizer of g0 is isomorphic to the semidirect product

.Z=�1 � � � � �Z=�l/ÌS�;

where the normal subgroup Z=�1 � � � � �Z=�l acts trivially. We remark that there are
some other natural choices for the isomorphism in (21), due to different points of view
and conventions; but they only differ from ours by a nonzero constant.

Now it is easy to conclude the proof of Proposition 5.2. The idea is to relate the
isomorphisms �0 and  0 of de Cataldo and Migliorini recalled above to our morphisms
� and  . Given a partition � 2 P.n/, for any g 2 �, the isomorphism between
.An/g and A� will identify U g to U �. We have the commutative diagram`

g2� U
g //

q
����

`
g2�.A

n/g

q
����

U .�/ //

��

A.�/

AŒn�

where the degree of each of the two quotient-by-Sn morphisms q is easily computed:
deg.q/D nŠ=

�Qj�j
jD1 �j

�
. The natural isomorphism (21) of Lemma 5.3 is simply given

by

1

deg q
q� ı �W h

�a
g2�

.An/g
�Sn

'
�! h.A.�//;

Geometry & Topology, Volume 23 (2019)



Motivic hyper-Kähler resolution conjecture, I 459

with inverse given by p ı q� (in fact the image of q� is already Sn–invariant). Thus
the composition of � with the natural isomorphism (21) is equal toX

�2P.n/

�
1

deg q
q� ı

X
g2�

.�1/age.g/U g
�
D

X
�2P.n/

1

deg q
q� ı q

�
ı .�1/j�j�nU .�/

D

X
�2P.n/

.�1/j�j�nU .�/;

where we used the commutative diagram above for the first equality. As a consequence,
� is an isomorphism as �0 D

P
�2P.n/ U

.�/ is one.

Similarly, the composition of the inverse of (21) with  is equal toX
�2P.n/

�
1

nŠ

X
g2�

tU g ı q�
�
D

X
�2P.n/

1

nŠ
�
tU .�/ ı q� ı q

�

D

X
�2P.n/

deg q
nŠ
�
tU .�/ D

X
�2P.n/

.�1/j�j�n

m�
�
tU .�/:

Since  0 D
P
�2P.n/.1=m�/ �

tU .�/ is the inverse of �0 by [16], as noted above,  
is the inverse of � .

Then to show Theorem 1.4, it suffices to prove Proposition 4.1 in this situation, which
will be done in the next two steps.

5.3 Step (ii): Symmetrically distinguished cycles on abelian varieties

The following definition is due to O’Sullivan [48]. Recall that all Chow groups are
with rational coefficients. As in [48], we denote in this section by CH the Q–vector
space of algebraic cycles modulo the numerical equivalence relation.

Definition 5.4 (symmetrically distinguished cycles [48]) Let A be an abelian variety
and ˛ 2 CHi .A/. For each integer m � 0, denote by Vm.˛/ the Q–vector subspace
of CH.Am/ generated by elements of the form

p�.˛
r1 �˛r2 � � � � �˛rn/;

where n�m and rj � 0 are integers, and pW An! Am is a closed immersion with
each component An! A being either a projection or the composite of a projection
with Œ�1�W A! A. Then ˛ is called symmetrically distinguished if for every m the
restriction of the projection CH.Am/! CH.Am/ to Vm.˛/ is injective.
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Despite their seemingly complicated definition, symmetrically distinguished cycles
behave very well. More precisely, we have:

Theorem 5.5 (O’Sullivan [48]) Let A be an abelian variety. Then:

(i) The symmetric distinguished cycles in CHi .A/ form a Q–vector subspace.

(ii) The fundamental class of A is symmetrically distinguished and the intersection
product of two symmetrically distinguished cycles is symmetrically distinguished.
They form therefore a graded Q–subalgebra of CH�.A/.

(iii) Let f W A! B be a morphism of abelian varieties. Then f�W CH.A/! CH.B/
and f �W CH.B/! CH.A/ preserve symmetrically distinguished cycles.

The reason why this notion is very useful in practice is that it allows us to conclude
an equality of algebraic cycles modulo rational equivalence from an equality modulo
numerical equivalence (or, a fortiori, modulo homological equivalence):

Theorem 5.6 (O’Sullivan [48]) The composition CH.A/sd ,! CH.A/� CH.A/ is
an isomorphism of Q–algebras, where CH.A/sd is the subalgebra of symmetrically
distinguished cycles. In other words, in each numerical class of algebraic cycle on A,
there exists a unique symmetrically distinguished algebraic cycle modulo rational
equivalence. In particular, a (polynomial of) symmetrically distinguished cycles is
trivial in CH.A/ if and only if it is numerically trivial.

Returning to the proof of Theorem 1.4, it remains to prove Proposition 4.1. Keeping
the same notation as in Step (i), we first prove that in our situation the two cycles in
Proposition 4.1 are symmetrically distinguished.

Proposition 5.7 The following two algebraic cycles, as well as their symmetrizations,
are symmetrically distinguished in CH

��`
g2G.A

n/g
�3 �:

� W WD
�
.1=jGj/

P
g U

g � .1=jGj/
P
g U

g �
P
g.�1/

age.g/U g
�
�
.ıAŒn�/;

� the algebraic cycle Z determining the orbifold product (Definition 2.5(v)) with
the sign change by discrete torsion (Definition 3.5):

ZjMg1�Mg2�Mg3 D

�
0 if g3 ¤ g1g2;

.�1/�.g1;g2/ � ı�ctop.Fg1;g2/ if g3 D g1g2:
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Proof For W , it amounts to showing that .U g1�U g2�U g3/�.ıAŒn�/ is symmetrically
distinguished in CH..An/g1 � .An/g2 � .An/g3/, for any g1; g2; g3 2 G. Indeed,
by [60, Proposition 5.6], .U g1 �U g2 �U g3/�.ıAŒn�/ is a polynomial of big diagonals
of .An/g1 � .An/g2 � .An/g3 DW AN. However, all big diagonals of AN are clearly
symmetrically distinguished since �A 2 CH.A � A/ is. By Theorem 5.5, W is
symmetrically distinguished.

As for Z , for any fixed g1; g2 2G, it is easy to see that Fg1;g2 is always a trivial vector
bundle, at least virtually, hence its top Chern class is either 0 or 1 (the fundamental
class), which is of course symmetrically distinguished. Also recall that (Definition 2.5)

ıW .An/<g1;g2> ,! .An/g1 � .An/g2 � .An/g1g2 ;

which is a (partial) diagonal inclusion, in particular a morphism of abelian varieties.
Thus ı�.ctop.Fg1;g2// is symmetrically distinguished by Theorem 5.5, hence so is Z .

Finally, since any automorphism in G �G �G preserves symmetrically distinguished
cycles, symmetrizations of Z and W remain symmetrically distinguished.

By Theorem 5.6, in order to show Proposition 4.1, it suffices to show on the one hand
that the symmetrizations of Z and W are both symmetrically distinguished, and on the
other hand that they are numerically equivalent. The first part is exactly the previous
Proposition 5.7 and we now turn to an a priori stronger version of the second part in
the following final step.

5.4 Step (iii): Cohomological realizations

We will show in this section that the symmetrizations of the algebraic cycles W and Z
have the same (rational) cohomology class. To this end, it is enough to show the
following:

Proposition 5.8 The cohomology realization of the (additive) isomorphism

�W h.AŒn�/ '�!

�M
g2G

h..An/g/.� age.g//
�Sn

is an isomorphism of Q–algebras

�W H�.AŒn�/ '�!H�orb;dt.ŒA
n=Sn�/D

�M
g2G

H��2 age.g/..An/g/; ?orb;dt

�Sn
:

In other words, Sym.W / and Sym.Z/ are homologically equivalent.
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Before we proceed to the proof of Proposition 5.8, we need to do some preparation on
the Nakajima operators (see [44]). Let S be a smooth projective surface. Recall that
given a cohomology class ˛ 2H�.S/, the Nakajima operator

pk.˛/W H
�.S Œr�/!H�.S ŒrCk�/;

for any r 2 N , is by definition ˇ 7! IrIk
�.˛ � ˇ/ WD q�.p

�.˛ � ˇ/ � ŒIrIk�/, where
pW S ŒrCk� �S �S Œr�! S �S Œr� and qW S ŒrCk� �S �S Œr�! S ŒrCk� are the natural
projections and the cohomological correspondence IrIk is defined as the unique irre-
ducible component of maximal dimension of the incidence subscheme

f.� 0; x; �/ 2 S ŒrCk� �S �S Œr� j � � � 0 and �.� 0/D �.�/C kŒx�g:

Here and in the sequel, � is always the Hilbert–Chow morphism. To the best of our
knowledge, it is still not known whether the above incidence subscheme is irreducible
but we do know that there is only one irreducible component with maximal dimension
(D 2r C kC 1); see [44, Section 8.3; 40, Lemma 1.1].

For our purpose, we need to consider the following generalized version of such corre-
spondences in a fashion similar to [40]. Following that work, the shorthand S Œn1�;:::;Œnr �

means the product S Œn1��� � ��S Œnr �. A sequence of Œ1�’s of length n is denoted by Œ1�n.
For any r; n; k1; : : : ; kn 2N , we consider the closed subscheme of S ŒrC

P
ki �;Œ1�

n;Œr�

whose closed points are given by (see [40] for the natural scheme structure)

JrIk1;:::;kn WD

�
.� 0; x1; : : : ; xn; �/

ˇ̌̌
� � � 0 and �.� 0/D �.�/C

nX
iD1

ki Œxi �

�
:

As far as we know, the irreducibility of JrIk1;:::;kn is unknown in general, but we will
only need its component of maximal dimension. To this end, we consider the following
locally closed subscheme of S ŒrC

P
ki �;Œ1�

n;Œr� by adding an open condition:

I 0rIk1;:::;kn

WD

�
.� 0; x1; : : : ; xn; �/

ˇ̌̌
� � � 0; xi ¤ xj ; xi \ � D∅ and �.� 0/D �.�/C

X
i

ki Œxi �

�
:

Let IrIk1;:::;kn be its Zariski closure. By Briançon [12] (see also [40, Lemma 1.1]),
IrIk1;:::;kn is irreducible of dimension 2r CnC

P
ki and it is the unique irreducible

component of maximal dimension of JrIk1;:::;kn . In particular, the correspondence IrIk
used by Nakajima mentioned above is the special case when nD 1. Let us also mention
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that when r D 0, we actually have that J0Ik1;:::;kn is irreducible [16, Remark 2.0.1],
and hence is equal to I0Ik1;:::;kn .

For any r; n;m; k1; : : : ; kn; l1; : : : ; lm 2N , consider the following diagram, analogous
to the one found in [40, page 181]:

S ŒrC
P
kiC

P
lj �;Œ1�

m;ŒrC
P
ki � S ŒrC

P
kiC

P
lj �;Œ1�

m;ŒrC
P
ki �;Œ1�

n;Œr�
p123oo

p345 //

p1245

��

S ŒrC
P
ki �;Œ1�

n;Œr�

S ŒrC
P
kiC

P
lj �;Œ1�

mCn;Œr�

By a similar argument as in [40, page 181] (actually easier since we only need weaker
dimension estimates), we see that

� p1245 induces an isomorphism from p�1123.I
0
rC

P
ki Il1;:::;lm

/\p�1345.I
0
rIk1;:::;kn

/

to I 0
rIk1;:::;kn;l1;:::;lm

;

� the complement of I 0
rIk1;:::;kn;l1;:::;lm

in

p1245.p
�1
123.I

0
rC

P
ki Il1;:::;lm

/\p�1345.I
0
rIk1;:::;kn

//

is of dimension < 2r CnCmC
P
ki C

P
lj D dim I 0

rIk1;:::;kn;l1;:::;lm
;

� the intersection of p�1123.I
0
rC

P
ki Il1;:::;lm

/ and p�1345.I
0
rIk1;:::;kn

/ is transversal at
the generic point of p�1123.IrC

P
ki Il1;:::;lm/\p

�1
345.IrIk1;:::;kn/.

Combining these, we have in particular that

(23) p1245;�.p
�
123ŒIrC

P
ki Il1;:::;lm � �p

�
345ŒIrIk1;:::;kn �/D ŒIrIk1;:::;kn;l1;:::;lm �:

We will only need the case r D 0 and mD 1 in the proof of Proposition 5.8.

Proof of Proposition 5.8 The existence of an isomorphism of Q–algebras between the
two cohomology rings H�.AŒn�/ and H�orb;dt.ŒA

n=Sn�/ is established by Fantechi and
Göttsche [26, Theorem 3.10] based on the work of Lehn and Sorger [41]. Therefore by
the definition of � in Step (i), it suffices to show that the cohomological correspondence

�� WD
X
g2Sn

.�1/age.g/U g�W H
�.AŒn�/!

M
g2Sn

H��2 age.g/..An/g/

coincides with the following inverse of the isomorphism ‰ used in Fantechi–Göttsche
[26, Theorem 3.10]:

ˆW H�.AŒn�/!
M
g2Sn

H��2 age.g/..An/g/;

p�1.˛1/ � � � p�l .˛l/1 7! nŠ �Sym.˛1 � � � � �˛l/:

Geometry & Topology, Volume 23 (2019)



464 Lie Fu, Zhiyu Tian and Charles Vial

Let us explain the notation from [26] in the above formula: ˛1; : : : ; ˛l 2 H�.A/;
the symbol � stands for the exterior product

Q
pr�i .�/; p is the Nakajima operator;

1 2H 0.AŒ0�/'Q is the fundamental class of a point; �D .�1; : : : ; �l/ is a partition
of n; g 2 Sn is a permutation of type � with a numbering f1; : : : ; lg '�!O.g/ of
orbits of g (as a permutation) chosen so that �j is the length of the j th orbit; the
class ˛1 � � � � �˛l is placed in the direct summand indexed by g ; and Sym means the
symmetrization operation .1=nŠ/

P
h2Sn

h. Note that Sym.˛1�� � ��˛l/ is independent
of the choice of g , numbering, etc.

A repeated use of (23) with r D 0 and mD 1, along with the projection formula, yields

p�1.˛1/ � � � p�l .˛l/1D I�0I�1;:::;�l .˛1 � � � � �˛l/D U
��.˛1 � � � � �˛l/;

where the second equality comes from the definition and the irreducibility of U � (see
[16, Remark 2.0.1]). As a result, one only has to show that

(24)
X
g2Sn

.�1/age.g/U g� ıU
��.˛1 � � � � �˛l/D nŠ �Sym.˛1 � � � � �˛l/:

Indeed, for a given g2G, if g in not of type �, then by [16, Proposition 5.1.3], we know
that U g�ıU �

�
D 0. For any g 2G of type �, fix a numbering 'W f1; : : : ; lg '�!O.g/

such that j'.j /j D �j and let z'W A� D Al ! AO.g/ be the induced isomorphism.
Then denoting by qW A� � A.�/ the quotient map by S� , the computation [16,
Proposition 5.1.4] implies that for such g 2 �,

U g� ıU
��.˛1 � � � � �˛l/D z'� ıU

�
� ıU

��.˛1 � � � � �˛l/

Dm� � z'� ı q
�
ı q�.˛1 � � � � �˛l/

Dm� � deg.q/ �Sym.˛1 � � � � �˛l/

Dm� � jS�j �Sym.˛1 � � � � �˛l/;

where m� D .�1/n�j�j
Qj�j
iD1 �i as before. Putting those together, we haveX

g2Sn

.�1/age.g/U g�U
��.˛1 � � � � �˛l/D

X
g2�

.�1/n�j�jU g�U
��.˛1 � � � � �˛l/

D

X
g2�

� j�jY
iD1

�i

�
� jS�j �Sym.˛1 � � � � �˛l/

D nŠ �Sym.˛1 � � � � �˛l/;

where the last equality is the orbit-stabilizer formula for the action of Sn on itself by
conjugation. The desired equality (24), hence also the proposition, is proved.
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As explained in Section 4, the proof of Theorem 1.4 is now complete: Proposition 5.7
and Proposition 5.8 together imply that Sym.W / and Sym.Z/ are rationally equivalent
using Theorem 5.6. Therefore Proposition 4.1 holds in our Case (A), which means
exactly that the isomorphism � in Proposition 5.2 (defined in (20)) is also multiplicative
with respect to the product structure on h.AŒn�/ given by the small diagonal and the
orbifold product with sign change by discrete torsion on h.An;Sn/

Sn.

6 Case (B): Generalized Kummer varieties

We prove Theorem 1.5 in this section. Our notation is as in the beginning of Section 4:

M D AnC10 WD Ker.AnC1 C�!A/;

which is noncanonically isomorphic to An, with the action of G D SnC1 and the
quotient X WD A.nC1/0 WDM=G. Then the restriction of the Hilbert–Chow morphism
to the generalized Kummer variety

Kn.A/DW Y
f
�!A

.nC1/
0

is a symplectic resolution.

6.1 Step (i): Additive isomorphisms

We use the result in [17] to establish an additive isomorphism h.Y / '�! horb.ŒM=G�/.

Recall that a morphism f W Y ! X is called semismall if for all integers k � 0, the
codimension of the locus fx 2 X j dimf �1.x/ � kg is at least 2k . In particular,
f is generically finite. Consider a (finite) Whitney stratification X D

`
a Xa by

connected strata such that for any a , the restriction f jf �1.Xa/W f
�1.Xa/!Xa is a

topological fiber bundle of fiber dimension da . Then the semismallness condition says
that codimXa � 2da for any a . In that case, a stratum Xa is said to be relevant if
equality holds: codimXa D 2da .

The result we need for Step (i) is de Cataldo–Migliorini [17, Theorem 1.0.1]. Let us
only state their theorem in the special case where all fibers over relevant strata are
irreducible, which is enough for our purpose:

Theorem 6.1 [17] Let f W Y !X be a semismall morphism of complex projective
varieties with Y being smooth. Suppose that all fibers over relevant strata are irre-
ducible and that for each connected relevant stratum Xa of codimension 2da (and
fiber dimension da ), the normalization Za of the closure Xa is projective and admits
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a stratification with strata being finite group quotients of smooth varieties. Then (the
closure of) the incidence subvarieties between Xa and Y induce an isomorphism of
Chow motives, M

a

h.Za/.�da/' h.Y /:

Moreover, the inverse isomorphism is again given by the incidence subvarieties but with
different nonzero coefficients.

Remarks 6.2 � The normalizations Za are singular, but they are Q–varieties, for
which the usual intersection theory works with rational coefficients (see Remarks 2.2).

� The statement about the correspondence inducing isomorphisms as well as the
(nonzero) coefficients of the inverse correspondence is contained in [17, Section 2.5].

� Since any symplectic resolution of a (singular) symplectic variety is semismall, the
previous theorem applies to the situation of Conjectures 1.3 and 3.6.

� The correspondence in [16] which is used in Section 5 for Case (A) is a special
case of Theorem 6.1.

� Theorem 6.1 is used in [62] to deduce a motivic decomposition of generalized
Kummer varieties equivalent to Corollary 6.3.

Let us start by making precise a Whitney stratification for the (semismall) symplectic
resolution Y DKn.A/!XDA

.nC1/
0 . Our notation is as in the proof of Proposition 5.2.

Let P.nC 1/ be the set of partitions of nC 1. Then

X D
a

�2P.nC1/

X�;

where the locally closed strata are defined by

X� WD

� j�jX
iD1

�i Œxi � 2 A
.nC1/

ˇ̌̌ j�jX
iD1

�ixi D 0 with xi distinct
�
;

with normalization of closure

Z� DX�
norm
D A

.�/
0 WD A

�
0=S�;

where

(25) A�0 D

�
.x1; : : : ; xj�j/ 2 A

�
ˇ̌̌ j�jX
iD1

�ixi D 0

�
:
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It is easy to see that dimX� D dimA�0 D 2.j�j � 1/ while the fibers over X� are
isomorphic to a product of Briançon varieties [12]

Qj�j
iD1B�i , which is irreducible of

dimension
Pj�j
iD1.�i � 1/D nC 1� j�j D

1
2

codimX� .

In conclusion, f W Kn.A/! A
.nC1/
0 is a semismall morphism with all strata being

relevant and all fibers over strata being irreducible. One can therefore apply Theorem 6.1
to get the following:

Corollary 6.3 For each � 2 P.nC 1/, let

V � WD

�
.�; x1; : : : ; xj�j/

ˇ̌̌
�.�/D

j�jX
iD1

�i Œxi � and
j�jX
iD1

�ixi D 0

�
�Kn.A/�A

�
0

be the incidence subvariety, whose dimension is n � 1 C j�j. Then the quotients
V .�/ WD V �=S� �Kn.A/�A

.�/
0 induce an isomorphism of rational Chow motives,

�0W h.Kn.A//
'
�!

M
�2P.nC1/

h.A
.�/
0 /.j�j �n� 1/:

Moreover, the inverse  0 WD �0�1 is induced by
P
�2P.nC1/.1=m�/V

.�/, where m�D
.�1/nC1�j�j

Qj�j
iD1 �i is a nonzero constant.

Similarly to Proposition 5.2 for Case (A), the previous Corollary 6.3 allows us to
establish an additive isomorphism between h.Kn.A// and horb.ŒA

nC1
0 =SnC1�/:

Proposition 6.4 Let M D AnC10 with the action of G DSnC1 . Let p and � denote
the projection onto and the inclusion of the G–invariant part of h.M;G/. For each
g 2G, let

(26) V g WD .Kn.A/�A.nC1/0

M g/red �Kn.A/�M
g

be the incidence subvariety. Then they induce an isomorphism of rational Chow
motives,

� WD p ı
X
g2G

.�1/age.g/V g W h.Kn.A//
'
�!

�M
g2G

h.M g/.� age.g//
�G
:

Moreover, its inverse  is given by .1=.nC 1/Š/
P
g2G

tV g ı �.
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Proof The proof goes exactly as for Proposition 5.2, with Lemma 5.3 replaced by the
following canonical isomorphism:

(27)
� M
g2SnC1

h

�
.AnC10 /g

�
.� age.g//

�SnC1
'
�!

M
�2P.nC1/

h.A
.�/
0 /.j�j �n� 1/:

Indeed, if � is the partition determined by g , then it is easy to compute that age.g/D
nC 1 � jO.g/j D nC 1 � j�j and moreover that the quotient of .AnC10 /g by the
centralizer of g , which is

Qj�j
iD1Z=�iZÌS� with

Qj�j
iD1Z=�iZ acting trivially, is

exactly A.�/0 .

To show Theorem 1.5, it remains to show Proposition 4.1 in this situation (where all
cycles U are actually V of Proposition 6.4).

6.2 Step (ii): Symmetrically distinguished cycles on abelian torsors with
torsion structures

Observe that we have the extra technical difficulty that .AnC10 /g is in general an
extension of a finite abelian group by an abelian variety, thus nonconnected. To deal
with algebraic cycles on not necessarily connected “abelian varieties” in a canonical
way as well as the property of being symmetrically distinguished, we introduce the
following category. Roughly speaking, this is the category of abelian varieties with
origin fixed only up to torsion. It lies between the category of abelian varieties (with
origin fixed) and the category of abelian torsors (i.e. varieties isomorphic to an abelian
variety, thus without a chosen origin).

Definition 6.5 (abelian torsors with torsion structure) One defines the following
category A.

An object of A, called an abelian torsor with torsion structure, or an ATTS, is a pair
.X;QX /, where X is a connected smooth projective variety and QX is a subset of X
such that there exists an isomorphism, as complex algebraic varieties, f W X ! A

from X to an abelian variety A which induces a bijection between QX and Tor.A/,
the set of all torsion points of A. The point here is that the isomorphism f , called a
marking, usually being noncanonical in practice, is not part of the data of an ATTS.

A morphism between two objects .X;QX / and .Y;QY / is a morphism of complex
algebraic varieties �W X ! Y such that �.QX /�QY . Compositions of morphisms
are defined in the natural way. Note that by choosing markings, a morphism between
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two objects in A is essentially the composition of a morphism between two abelian
varieties followed by a torsion translation.

Denote by AV the category of abelian varieties. Then there is a natural functor
AV!A sending an abelian variety A to .A;Tor.A//.

The following elementary lemma provides the kind of examples we will be considering:

Lemma 6.6 (constructing ATTSs and compatibility) Let A be an abelian variety. Let
f W ƒ!ƒ0 be a morphism of lattices7 and fAW A˝Zƒ! A˝Zƒ

0 be the induced
morphism of abelian varieties. Then:

(i) Ker.fA/ is canonically a disjoint union of ATTSs such that

QKer.fA/ D Ker.fA/\Tor.A˝Zƒ/:

(ii) If one has another morphism of lattices gW ƒ0! ƒ00 inducing a morphism of
abelian varieties gAW A˝Zƒ

0!A˝Zƒ
00, then the natural inclusion Ker.fA/ ,!

Ker.gA ıfA/ is a morphism of ATTSs (on each component).

Proof For (i), we have the following two short exact sequences of abelian groups:

0! Ker.f /!ƒ �
�! Im.f /! 0 and 0! Im.f /!ƒ0! Coker.f /! 0;

with Ker.f / and Im.f / being lattices. Tensoring them with A, one has exact sequences

0! A˝Z Ker.f /! A˝Zƒ
�A
�!A˝Z Im.f /! 0;

0! T ! A˝Z Im.f /! A˝Zƒ
0;

where T WD TorZ.A;Coker.f // is a finite abelian group consisting of some torsion
points of A˝Z Im.f /. Then

Ker.fA/D ��1A .T /

is an extension of the finite abelian group T by the abelian variety A˝Z Ker.f /.
Choosing a section of � makes A˝Zƒ the product of A˝Z Ker.f / and A˝Z Im.f /,
inside of which Ker.fA/ is the product of A˝Z Ker.f / and the finite subgroup T
of A˝Z Im.f /. This shows that QKer.fA/ WD Ker.fA/ \ Tor.A˝Z ƒ/, which is
independent of the choice of the section, makes each connected component of Ker.fA/,
a fiber over T , an ATTS.

7A lattice is a free abelian group of finite rank.
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With (i) proved, (ii) is trivial: the torsion structures on Ker.fA/ and on Ker.gA ıfA/
are both defined by claiming that a point is torsion if it is a torsion point in A˝Zƒ.

Before generalizing the notion of symmetrically distinguished cycles to the new cate-
gory A, we have to first prove the following well-known fact.

Lemma 6.7 Let A be an abelian variety and x 2 Tor.A/ be a torsion point. Then the
corresponding torsion translation

tx W A! A; y 7! xCy;

acts trivially on CH.A/.

Proof The following proof, which we reproduce for the sake of completeness, is
taken from [37, Lemma 2.1]. Let m be the order of x . Let �tx be the graph of tx .
Then one has m�.�tx /Dm�.�A/ in CH.A�A/, where m is the multiplication by m
map of A � A. However, m� is an isomorphism of CH.A � A/ by Beauville’s
decomposition [8]. We conclude that �txD�A , and hence the induced correspondences,
which are t�x and the identity, respectively, are the same.

Definition 6.8 (symmetrically distinguished cycles in A) Given an ATTS .X;QX /2A

(see Definition 6.5), an algebraic cycle  2CH.X/ is called symmetrically distinguished
if, for a marking f W X!A, the cycle f�./2CH.A/ is symmetrically distinguished in
the sense of O’Sullivan (Definition 5.4). By Lemma 6.7, this definition is independent of
the choice of marking. An algebraic cycle on a disjoint union of ATTSs is symmetrically
distinguished if it is so on each component. We denote by CH.X/sd the subspace
consisting of symmetrically distinguished cycles.

The following proposition is clear from Theorem 5.5 and Theorem 5.6.

Proposition 6.9 Let .X;QX / 2 Obj.A/ be an ATTS. Then:

(i) CH�.X/sd , the space of symmetric distinguished cycles in CH�.X/, is a graded
Q–subalgebra of CH�.X/.

(ii) If f W .X;QX /! .Y;QY / is a morphism in A, then f�W CH.X/!CH.Y / and
f �W CH.Y /! CH.X/ preserve symmetrically distinguished cycles.

(iii) The composition CH.X/sd ,! CH.X/� CH.X/ is an isomorphism. In partic-
ular, a (polynomial of) symmetrically distinguished cycles is trivial in CH.X/ if
and only if it is numerically trivial.
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We will need the following easy fact to prove that some cycles on an ATTS are symmet-
rically distinguished by checking it in an ambient abelian variety.

Lemma 6.10 Let i W B ,! A be a morphism of ATTSs which is a closed immersion.
Let  2 CH.B/ be an algebraic cycle. Then  is symmetrically distinguished in B if
and only if i�./ is so in A.

Proof One implication is clear from Proposition 6.9(ii). For the other one, assume
i�./ is symmetrically distinguished in A. By choosing markings, one can suppose
that A is an abelian variety and B is a torsion translation by � 2Tor.A/ of a subabelian
variety of A. Thanks to Lemma 6.7, changing the origin of A to � does not change
the cycle class i�./ 2 CH.A/, hence one can further assume that B is a subabelian
variety of A. By Poincaré reducibility, there is a subabelian variety C � A such that
the natural morphism � W B �C ! A is an isogeny. We have the following diagram:

B �C
pr1

��

�
��

B
j

DD

i
// A

Because ��W CH.A/! CH.B �C/ is an isomorphism with inverse .1= deg.�//�� ,

 D pr1� ı j�./D pr1� ı�
�
ı

1

deg.�/
�� ı j�./D

1

deg.�/
pr1� ı�

�
ı i�./:

Since � and pr1 are morphisms of abelian varieties, the hypothesis that i�./ is
symmetrically distinguished implies that  is also symmetrically distinguished by
Proposition 6.9(ii).

We now turn to the proof of Proposition 4.1 in Case (B), which takes the following
form. As is explained in Section 4, with Step (i) being done (Proposition 6.4), this
would finish the proof of Theorem 1.5.

Proposition 6.11 (Proposition 4.1 in Case (B)) In CH
��`

g2GM
g
�3 �, the sym-

metrizations of the following two algebraic cycles are rationally equivalent:

� W WD
�
.1=jGj/

P
g V

g � .1=jGj/
P
g V

g �
P
g.�1/

age.g/V g
�
�
.ıKn.A//;

� Z is the cycle determining the orbifold product (Definition 2.5(v)) with the sign
change by discrete torsion (Definition 3.5):

ZjMg1�Mg2�Mg3 D

�
0 if g3 ¤ g1g2;

.�1/�.g1;g2/ � ı�ctop.Fg1;g2/ if g3 D g1g2:
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To this end, we apply Proposition 6.9(iii) by proving in this section that they are both
symmetrically distinguished (Proposition 6.12) and then verifying in Section 6.3 that
they are homologically equivalent (Proposition 6.13).

Let M be the abelian variety AnC10 D
˚
.x1; : : : ; xnC1/2A

nC1 j
P
i xi D 0

	
as before.

For any g 2G, the fixed locus

M g
D

�
.x1; : : : ; xnC1/ 2 A

nC1
ˇ̌̌X
i

xi D 0 and xi D xg:i for all i
�

has the decomposition into connected components

(28) M g
D

a
�2AŒd�

M g
� ;

where d WD gcd.g/ is the greatest common divisor of the lengths of orbits of the
permutation g , AŒd� is the set of d–torsion points and the connected component M g

�

is described as follows.

Let � 2 P.nC 1/ be the partition determined by g and l WD j�j be its length. Choose
a numbering 'W f1; : : : ; lg '�! O.g/ of orbits such that j'.i/j D �i . Then d D

gcd.�1; : : : ; �l/ and ' induces an isomorphism

(29) z'W A�0
'
�!M g ;

sending .x1; : : : ; xl/ to .y1; : : : ; ynC1/ with yj D xi if j 2 '.i/. Here A�0 is defined
in (25), which has obviously the decomposition into connected components

(30) A�0 D
a

�2AŒd�

A�=d� ;

where

A�=d� D

�
.x1; : : : ; xl/ 2 A

�
ˇ̌̌ lX
iD1

�i

d
xi D �

�
is connected (noncanonically isomorphic to Al�1 as varieties) and is equipped with
a canonical ATTS (Definition 6.5) structure, namely, a point of A�=d� is defined to be
of torsion (i.e. in Q

A
�=d
�

) if and only if it is a torsion point (in the usual sense) in the
abelian variety A�. The decomposition (28) of M g is the transportation of the decom-
position (30) of A�0 via the isomorphism (29): A�=d�

z'
�!
'

M
g
� . The component M g

�

hence acquires a canonical ATTS structure. It is clear that the decomposition (28) and
the ATTS structure on components are both independent of the choice of ' . One can
also define the ATTS structure on M g by using Lemma 6.6.
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Similar to Proposition 5.7, here is the main result of this section:

Proposition 6.12 Our notation is as in Proposition 6.11. W and Z , as well as their
symmetrizations, are symmetrically distinguished in CH

��`
g2GM

g
�3 �, where M g

is viewed as a disjoint union of ATTSs as in (28) and symmetrical distinguishedness is
in the sense of Definition 6.8.

Proof For W , it is enough to show that q� ıp� ı ı�.1Kn.A// is symmetrically dis-
tinguished for any g1; g2; g3 2 G, where the notation is explained in the following
commutative diagram, whose squares are all cartesian and without excess intersections:

(31)

.AŒnC1�/3

�

U g1�U g2�U g3

�

p00
oo

q00
// .AnC1/g1�.AnC1/g2�.AnC1/g3

AŒnC1�

�

* 


ı00
88

� � ı0 // .AŒnC1�/3=A

�

?�

OO

U g1�AU
g2�AU

g3

�

p0
oo

q0
//

?�

OO

.AnC1/g1�A.A
nC1/g2�A.A

nC1/g3
?�
j

OO

Kn.A/
?�

OO

� � ı //Kn.A/
3

?�

OO

V g1�V g2�V g3
?�

OO

p
oo

q
//M g1�M g2�M g3

?�
i

OO

where the incidence subvarieties U g are defined in (17) in Section 5.2 (with n replaced
by nC 1); all fiber products in the second row are over A; the second row is the base
change by the inclusion of small diagonal A ,!A3 of the first row; the third row is the
base change by OA ,!A of the second row; finally, ı , ı0 and ı00 are various (absolute
or relative) small diagonals.

Observe that the two inclusions i and j are in the situation of Lemma 6.6: Let

ƒ WD ZO.g1/˚ZO.g2/˚ZO.g3/;

which admits a natural morphism u to ƒ0 WD Z˚Z˚Z by weighted sum on each
factor (with weights being the lengths of orbits). Let vW ƒ0!ƒ00 WD Z˚Z be given
by .m1; m2; m3/ 7! .m1�m2; m1�m3/. Then it is clear that i and j are identified
with the inclusions

Ker.uA/
i
,!Ker.vA ıuA/

j
,!A˝Zƒ:

By Lemma 6.6, .AnC1/g1 �A .AnC1/g2 �A .AnC1/g3 and M g1 �M g2 �M g3 are
naturally disjoint unions of ATTSs and the inclusions i and j are morphisms of ATTSs
on each component.

Now by functorialities and the base change formula (see [32, Theorem 6.2]), we have

j� ı q
0
� ıp

0�
ı ı0�.1AŒnC1�/D q

00
� ıp

00�
ı ı00�.1AŒnC1�/;
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which is a polynomial of big diagonals of AjO.g1/jCjO.g2/jCjO.g3/j by Voisin’s result
[60, Proposition 5.6] and therefore symmetrically distinguished in particular. By
Lemma 6.10, q0� ıp

0� ı ı0�.1AŒnC1�/ is symmetrically distinguished on each component
of .AnC1/g1 �A .AnC1/g2 �A .AnC1/g3.

Again by functorialities and the base change formula, we have

q� ıp
�
ı ı�.1Kn.A//D i

�
ı q0� ıp

0�
ı ı0�.1AŒnC1�/:

Since i is a morphism of ATTSs on each component (Lemma 6.6), one concludes that
q� ıp

� ı ı�.1Kn.A// is symmetrically distinguished on each component. Hence W ,
being a linear combination of such cycles, is also symmetrically distinguished.

For Z , as in Case (A), it is easy to see that all the obstruction bundles Fg1;g2 are (at
least virtually) trivial vector bundles because according to Definition 2.5, there are
only tangent/normal bundles of/between abelian varieties involved. Therefore the only
nonzero case is the pushforward of the fundamental class of M<g1;g2> by the inclusion
into M g1 �M g2 �M g1g2, which is obviously symmetrically distinguished.

6.3 Step (iii): Cohomological realizations

We keep the notation as before. To finish the proof of Proposition 6.11, hence
Theorem 1.5, it remains to show that the cohomology classes of the symmetrizations
of W and Z are the same. In other words, they have the same realization for Betti
cohomology.

Proposition 6.13 The cohomology realization of the (a priori additive) isomorphism
in Proposition 6.4,

�W h.Kn.A//
'
�!

�M
g2G

h..AnC10 /g/.� age.g//
�SnC1

;

is an isomorphism of Q–algebras

�W H�.Kn.A//
'
�!H�orb;dt.ŒA

nC1
0 =SnC1�/

D

� M
g2SnC1

H��2 age.g/..AnC10 /g/; ?orb;dt

�Sn
:

In other words, Sym.W / and Sym.Z/ are homologically equivalent.
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Proof We use Nieper-Wißkirchen’s following description [47] of the cohomology
ring H�.Kn.A/;C/. Let sW AŒnC1� ! A be the composition of the Hilbert–Chow
morphism followed by the summation map. Recall that s is an isotrivial fibration. In
the sequel, if not specified, all cohomology groups are with complex coefficients. We
have a commutative diagram

H�.A/
s�
//

�

��

H�.AŒn�/

restr.
��

C // H�.Kn.A//

where the upper arrow s� is the pullback by s , the lower arrow is the unit map sending 1
to the fundamental class 1Kn.A/ , the map � is the quotient by the ideal consisting of
elements of strictly positive degree and the right arrow is the restriction map. The
commutativity comes from the fact that Kn.A/D s�1.OA/ is a fiber. Thus one has a
ring homomorphism

RW H�.AŒn�/˝H�.A/C!H�.Kn.A//:

Then [47, Theorem 1.7] asserts that this is an isomorphism of C–algebras.

Now consider the following diagram:

(32)

H�.AŒnC1�/˝H�.A/C

R '

��

ˆ

'
//
�L

g2SnC1
H��2 age.g/..AnC1/g/

�SnC1
˝H�.A/C

r

��

H�.Kn.A//
�

'
//
�L

g2SnC1
H��2 age.g/..AnC10 /g/

�SnC1
� As just stated, the left arrow is an isomorphism of C–algebras, by Nieper-Wißkirchen
[47, Theorem 1.7].

� The upper arrow ˆ comes from the ring isomorphism (which is exactly the CHRC
Conjecture 1.1 for Case (A); see Section 5.4)

H�.AŒnC1�/ '�!

� M
g2SnC1

H��2 age.g/..AnC1/g/

�SnC1
;

established in [26] based on [41]. By (the proof of) Proposition 5.8, this isomorphism
is actually induced by

P
g.�1/

age.g/ �U
g
� W H.A

ŒnC1�/!
L
g H..A

nC1/g/, with U g

the incidence subvariety defined in (17). Note that on the upper-right term of the
diagram, the ring homomorphism H�.A/!

�L
g2SnC1

H��2 age.g/..AnC1/g/
�SnC1
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lands in the summand indexed by g D id, and the map H�.A/!H�.AnC1/SnC1 is
simply the pullback by the summation map A.nC1/! A.

� The lower arrow is the morphism � in question. It is already shown in Step (i)
Proposition 6.4 to be an isomorphism of vector spaces. The goal is to show that it is
also multiplicative.

� The right arrow r is defined as follows. On the one hand, let the image of
the unit 1 2 C be the fundamental class of A.nC1/0 in the summand indexed by
g D id. On the other hand, for any g 2 SnC1 , we have a natural restriction map
H��2 age.g/..AnC1/g/!H��2 age.g/..AnC10 /g/. These will induce a ring homomor-
phism H�.AnC1;SnC1/C ! H�.AnC10 ;SnC1/C by Lemma 6.14, which is easily
seen to be compatible with the SnC1–action and the ring homomorphisms from H�.A/,
hence r is a well-defined homomorphism of C–algebras.

� To show the commutativity of diagram (32), the case for the unit 1 2C is easy to
check. For the case of H�.AŒnC1�/, it suffices to remark that for any g the diagram

H�.AŒnC1�/
restr.

//

U
g
�

��

H�.Kn.A//

V
g
�

��

H..AnC1/g/
restr.
// H..AnC10 /g/

is commutative, where V g is the incidence subvariety defined in (26).

In conclusion, since, in the commutative diagram (32), ˆ and R are isomorphisms of
C–algebras, r is a homomorphism of C–algebras and � is an isomorphism of vector
spaces, we know that they are all isomorphisms of algebras. Thus Proposition 6.13 is
proved assuming the following:

Lemma 6.14 The natural restriction maps

H��2 age.g/..AnC1/g/!H��2 age.g/..AnC10 /g/ for all g 2SnC1

induce a ring homomorphism H�.AnC1;SnC1/! H�.AnC10 ;SnC1/, where their
product structures are given by the orbifold product (see Definition 2.5 or 2.7).

Proof This is straightforward from the definitions. Indeed, for any g1; g2 2SnC1 ,
together with ˛ 2H..AnC1/g1/ and ˇ 2H..AnC1/g2/, since the obstruction bundle
Fg1;g2 is a trivial vector bundle, we have

˛ ?orb ˇ D

�
i�.˛j.AnC1/<g1;g2> [ˇj.AnC1/<g1;g2>/ if rkFg1;g2 D 0;

0 if rkFg1;g2 ¤ 0;
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where i W .AnC1/<g1;g2> ,! .AnC1/g1g2 is the natural inclusion. Therefore by the
base change for the cartesian diagram without excess intersection,

.AnC10 /<g1;g2>
� � i0 //

� _

��

.AnC10 /g1g2
� _

��

.AnC1/<g1;g2>
� �

i
// .AnC1/g1g2

we have

˛ ?orb ˇj.AnC10 /g1g2

D

8̂<̂
:
i0�
�
.˛j.AnC1/<g1;g2> [ˇj.AnC1/<g1;g2>/j.AnC10 /<g1;g2>

�
D i0�.˛j.AnC10 /<g1;g2>

[ˇj
.A
nC1
0 /<g1;g2>

/ if rkFg1;g2 D 0;

0 if rkFg1;g2 ¤ 0

D ˛j
.A
nC1
0 /g1

?orb ˇj.AnC10 /g2
;

which means that the restriction map is a ring homomorphism.

The proof of Proposition 6.13 is finished.

Now the proof of Theorem 1.5 is complete: by Proposition 6.12 and Proposition 6.13,
we know that, thanks to Proposition 6.9(iii), the symmetrizations of Z and W in
Proposition 6.11 are rationally equivalent, which proves Proposition 4.1 in Case (B).
Hence the isomorphism � in Proposition 6.4 is an isomorphism of algebra objects
between the motive of the generalized Kummer variety h.Kn.A// and the orbifold
Chow motive horb.ŒA

nC1
0 =SnC1�/.

We would like to note the following corollary obtained by applying the cohomological
realization functor to Theorem 1.5.

Corollary 6.15 (CHRC: Kummer case) The cohomological hyper-Kähler resolution
conjecture is true for Case (B), namely, one has an isomorphism of Q–algebras,

H�.Kn.A/;Q/'H
�
orb;dt.ŒA

nC1
0 =SnC1�/:

Remark 6.16 This result has never appeared in the literature. It is presumably not
hard to check the CHRC in the case of generalized Kummer varieties directly based
on the cohomology result of Nieper-Wißkirchen [47], which is of course one of the
key ingredients used in our proof. It is also generally believed that the main result of
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Britze’s PhD thesis [14] should also imply this result. However, the proof of its main
result [14, Theorem 40] seems to be flawed: the linear map ‚ constructed in the last line
of page 60, which is claimed to be the desired ring isomorphism, is actually the zero map.
Nevertheless, the authors believe that it is feasible to check the CHRC in this case with
the very explicit description of the ring structure of H�.Kn.A/�A/ obtained in [14].

7 Application 1: Toward Beauville’s splitting property

In this section, a holomorphic symplectic variety is always assumed to be smooth
projective unless stated otherwise and we require neither the simple connectedness nor
the uniqueness up to scalar of the holomorphic symplectic 2–form. Hence examples of
holomorphic symplectic varieties include projective deformations of Hilbert schemes
of K3 or abelian surfaces, generalized Kummer varieties, etc.

7.1 Beauville’s splitting property

Based on [8] and [11], Beauville envisages in [10] the following splitting property for
all holomorphic symplectic varieties.

Conjecture 7.1 (splitting property: Chow rings) Let X be a holomorphic symplectic
variety of dimension 2n. Then one has a canonical bigrading of the rational Chow ring
CH�.X/, called a multiplicative splitting of CH�.X/ of Bloch–Beilinson type: for
any 0� i � 4n,

(33) CHi .X/D
iM
sD0

CHi .X/s;

which satisfies:

� Multiplicativity CHi .X/s � CHi
0

.X/s0 � CHiCi
0

.X/sCs0 .

� Bloch–Beilinson The associated ring filtration

F j CHi .X/ WD
M
s�j

CHi .X/s

satisfies the Bloch–Beilinson conjecture (see e.g. [57, Conjecture 11.21]). In
particular:
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– F 1 D CHhom The restriction of the cycle class map

clW
M
s>0

CHi .X/s!H 2i .X;Q/

is zero.

– Injectivity The restriction of the cycle class map

clW CHi .X/0!H 2i .X;Q/

is injective.

Following Shen–Vial [53], we would like to strengthen Conjecture 7.1 by using the
language of Chow motives, which is, we believe, more fundamental. The following
notion, which was introduced in [53], avoids any mention of the Bloch–Beilinson
conjecture.

Definition 7.2 (multiplicative Chow–Künneth decomposition) Given a smooth pro-
jective variety X of dimension n, a self-dual multiplicative Chow–Künneth decom-
position is a direct sum decomposition in the category CHM of Chow motives with
rational coefficients,

(34) h.X/D

2nM
iD0

hi .X/;

satisfying the following three properties:

� Chow–Künneth The cohomology realization of the decomposition gives the
Künneth decomposition: for each 0� i � 2n, H�.hi .X//DH i .X/.

� Self-duality The dual motive hi .X/_ identifies with h2n�i .X/.n/.

� Multiplicativity The product �W h.X/˝ h.X/! h.X/ given by the small
diagonal ıX �X �X �X respects the decomposition: the restriction of � on
the summand hi .X/˝ hj .X/ factorizes through hiCj .X/.

Such a decomposition induces a (multiplicative) bigrading of the rational Chow ring
CH�.X/D

L
i;s CHi .X/s by setting

(35) CHi .X/s WD CHi .h2i�s.X// WD HomCHM.1.�i/; h
2i�s.X//:

Conjecturally (see [35]), the associated ring filtration F j CHi .X/ WD
L
s�j CHi .X/s

satisfies the Bloch–Beilinson conjecture.
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By the definition of motives (see Definition 2.1), a multiplicative Chow–Künneth
decomposition is equivalent to a collection of self-correspondences f�0; : : : ; �2 dimXg,
where � i 2 CHdimX .X �X/, satisfying

� � i ı� i D � i for all i ;

� � i ı�j D 0 for all i ¤ j ;

� �0C � � �C�2 dimX D�X ;

� Im.� i�W H
�.X/!H�.X//DH i .X/;

� �k ı ıX ı .�
i ˝�j /D 0 for all k ¤ i C j .

The induced multiplicative bigrading on the rational Chow ring CH�.X/ is given by

CHi .X/s WD Im.�2i�s� W CHi .X/! CHi .X//:

The above Chow–Künneth decomposition is self-dual if the transpose of � i is equal
to �2 dimX�i.

For later use, we need to generalize the previous notion for Chow motive algebras:

Definition 7.3 Let h be an (associative but not necessarily commutative) algebra
object in the category CHM of rational Chow motives. Denote by �W h˝ h! h its
multiplication structure. A multiplicative Chow–Künneth decomposition of h is a direct
sum decomposition

hD
M
i2Z

hi ;

such that:

� Chow–Künneth The cohomology realization gives the Künneth decomposi-
tion: H i .h/DH�.hi / for all i 2 Z.

� Multiplicativity The restriction of � to hi ˝ hj factorizes through hiCj for
all i; j 2 Z.

Now one can enhance Conjecture 7.1 to the following:

Conjecture 7.4 (Conjecture 1.9: motivic splitting property) Let X be a holomorphic
symplectic variety of dimension 2n. Then we have a canonical (self-dual) multiplicative
Chow–Künneth decomposition of h.X/,

h.X/D

4nM
iD0

hi .X/;

which is moreover of Bloch–Beilinson–Murre type, that is, for any i; j 2N ,
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(i) CHi .hj .X//D 0 if j < i ;

(ii) CHi .hj .X//D 0 if j > 2i ;

(iii) the realization induces an injective map

HomCHM.1.�i/; h
2i .X//! HomQ�HS .Q.�i/;H

2i .X//:

One can deduce Conjecture 7.1 from Conjecture 7.4 via (35). Note that the range of s
in (33) follows from the first two Bloch–Beilinson–Murre conditions in Conjecture 7.4.

7.2 Splitting property for abelian varieties

Recall that for an abelian variety B of dimension g , using the Fourier transform [6],
Beauville [8] constructs a multiplicative bigrading on CH�.B/,

(36) CHi .B/D
iM

sDi�g

CHi .B/s for any 0� i � g;

where

(37) CHi .B/s WD f˛ 2 CHi .B/ jm�˛ Dm2i�s˛ for all m 2 Zg

is the simultaneous eigenspace for all mW B! B , the multiplication by m 2 Z map.

Using ideas similar to those of [8], Deninger and Murre [22] constructed a multiplicative
Chow–Künneth decomposition (Definition 7.2)

(38) h.B/D

2gM
iD0

hi .B/;

with (by [39])

(39) hi .B/' Symi .h1.B//:

Moreover, one may choose such a multiplicative Chow–Künneth decomposition to be
symmetrically distinguished; see [53, Chapter 7]. This Chow–Künneth decomposition
induces, via (35), Beauville’s bigrading (37). That such a decomposition satisfies the
Bloch–Beilinson condition is the following conjecture of Beauville [6] on CH�.B/,
which is still largely open.

Conjecture 7.5 (Beauville’s conjecture on abelian varieties) Our notation is as above.
For all i 2N:

� CHi .B/s D 0 for s < 0.

� The restriction of the cycle class map clW CHi .B/0!H 2i .B;Q/ is injective.
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Remark 7.6 As torsion translations act trivially on the Chow rings of abelian varieties
(Lemma 6.7), the Beauville–Deninger–Murre decompositions (37) and (38) naturally
extend to the slightly broader context of abelian torsors with torsion structure (see
Definition 6.5).

We collect some facts about the Beauville–Deninger–Murre decomposition (38) for
the proof of Theorem 7.9 in the next section. By choosing markings for ATTSs,
thanks to Lemma 6.7, we see that ATTSs can be endowed with multiplicative Chow–
Künneth decompositions consisting of Chow–Künneth projectors that are symmetrically
distinguished, and enjoying the properties embodied in the two following lemmas. Their
proofs are reduced immediately to the case of abelian varieties, which are certainly
well known.

Lemma 7.7 (Künneth) Let B and B 0 be two abelian varieties (or more generally
ATTSs). Then the natural isomorphism h.B/˝h.B 0/' h.B�B 0/ identifies the sum-
mand hi .B/˝hj .B/ as a direct summand of hiCj .B�B 0/ for any i; j 2N .

Lemma 7.8 Let f W B ! B 0 be a morphism of abelian varieties (or more generally
ATTSs) of dimensions g and g0 respectively. Then:

� The pullback f � WD t�f W h.B
0/! h.B/ sends hi .B 0/ to hi .B/.

� The pushforward f� WD �f W h.B/! h.B 0/ sends hi .B/ to hiC2g
0�2g.B 0/.

7.3 Candidate decompositions in Cases (A) and (B)

In the sequel, let A be an abelian surface and we consider the holomorphic symplectic
variety X , which is either AŒn� or Kn.A/. We construct a canonical Chow–Künneth
decomposition of X and show that it is self-dual and multiplicative. In Remark 7.12, we
observe that this decomposition can be expressed in terms of the Beauville–Deninger–
Murre decomposition of the Chow motive of A, and as a consequence we note that
Conjecture 7.5 (Beauville) for powers of A implies the Bloch–Beilinson conjecture
for X.

We start with the existence of a self-dual multiplicative Chow–Künneth decomposition:

Theorem 7.9 Given an abelian surface A, let X be

Case (A) the 2n–dimensional Hilbert scheme AŒn�; or

Case (B) the nth generalized Kummer variety Kn.A/.

Then X has a canonical self-dual multiplicative Chow–Künneth decomposition.
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Remark 7.10 The existence of a self-dual multiplicative Chow–Künneth decompo-
sition of AŒn� is not new: it was previously obtained by Vial in [55]. As for the
generalized Kummer varieties, if one ignores the multiplicativity of the Chow–Künneth
decomposition, which is of course the key point here, then it follows rather directly from
de Cataldo and Migliorini’s result [17] as explained in Section 6.1 (see Corollary 6.3)
and is explicitly written down by Ze Xu [62].

Proof of Theorem 7.9 The following proof works for both cases. Let M WD An,
G WDSn and X WDAŒn� in Case (A) and M WDAnC10 , G WDSnC1 and X WDKn.A/
in Case (B). Thanks to Theorem 1.4 and Theorem 1.5, we have an isomorphism of
motive algebras,

h.X/ '�!

�M
g2G

h.M g/.� age.g//; ?orb;dt

�G
;

whose inverse on each direct summand h.M g/.� age.g// is given by a rational multiple
of the transpose of the induced morphism h.X/! h.M g/.� age.g//. It thus suffices
to prove that each direct summand has a self-dual Chow–Künneth decomposition in
the sense of Definition 7.2, and that the induced Chow–Künneth decomposition on the
motive algebra

h WD
M
g2G

h.M g/.� age.g//; with ?orb;dt as the product;

is multiplicative in the sense of Definition 7.3. To this end, for each g 2 G, an
application of the Deninger–Murre decomposition (38) to M g, which is an abelian
variety in Case (A) and a disjoint union of ATTSs in Case (B), gives us a self-dual
multiplicative Chow–Künneth decomposition

h.M g/D

2 dimMgM
iD0

hi .M g/:

Now we define, for each i 2N ,

(40) hi WD
M
g2G

hi�2 age.g/.M g/.� age.g//:

Here, by convention, hj .M g/D 0 for j < 0, hence in (40), hi D 0 if i � 2 age.g/ >
2 dim.M g/ for any g 2G, that is, when i >maxg2Gf4n� 2 age.g/g D 4n.
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Then obviously, as a direct sum of Chow–Künneth decompositions,

hD

4nM
iD0

hi

is a Chow–Künneth decomposition. It is self-dual because each M g has dimension
2n� 2 age.g/. It remains to show the multiplicativity condition that �W hi ˝ hj ! h

factorizes through hiCj, which is equivalent to saying that for any i; j 2N and g; h2G,
the orbifold product ?orb (discrete torsion only changes a sign and thus is irrelevant here)
restricted to the summand hi�2 age.g/.M g/.� age.g//˝ hj�2 age.h/.M h/.� age.h//
factorizes through hiCj�2 age.gh/.M gh/.� age.gh//. Thanks to the fact that the ob-
struction bundle Fg;h is always a trivial vector bundle in both of our cases, we know
that (see Definition 2.5) ?orb either is zero when rk.Fg;h/¤ 0 or, when rk.Fg;h/D 0,
is defined as the correspondence from M g �M h to M gh given by the composition

(41) h.M g/˝ h.M h/ '�! h.M g
�M h/

��1
�! h.M<g;h>/

�2�
�! h.M gh/.codim.�2//;

where
M gh M<g;h>? _

�2
oo � � �1 // M g �M h

are morphisms of abelian varieties in Case (A) and morphisms of ATTSs in Case (B).
Therefore, one can suppose further that rk.Fg;h/D 0, which implies by using (8) that
the Tate twists match:

codim.�2/� age.g/� age.h/D� age.gh/:

Now Lemma 7.7 applied to the first isomorphism in (41) and Lemma 7.8 applied
to the last two morphisms in (41) show that, omitting the Tate twists, the summand
hi�2 age.g/.M g/˝ hj�2 age.h/.M h/ is sent by � inside the summand hk.M gh/, with
index

kD iCj �2 age.g/�2 age.h/C2 dim.M gh/�2 dim.M<g;h>/D iCj �2 age.gh/;

where the last equality is by (8) together with the assumption rk.Fg;h/D 0.

In conclusion, we get a multiplicative Chow–Künneth decomposition hD
L4n
iD0 h

i

with hi given in (40); hence a multiplicative Chow–Künneth decomposition for its
G–invariant part, which is isomorphic to h.X/ as motive algebras.

The decomposition in Theorem 7.9 is supposed to be Beauville’s splitting of the
Bloch–Beilinson–Murre filtration on the rational Chow ring of X. In particular:
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Conjecture 7.11 (Bloch–Beilinson for X ) Our notation is as in Theorem 7.9. For
all i 2N:

� CHi .X/s D 0 for s < 0.

� The restriction of the cycle class map clW CHi .X/0!H 2i .X;Q/ is injective.

As a first step toward this conjecture, let us make the following remark:

Remark 7.12 Conjecture 7.5 (Beauville’s conjecture on abelian varieties) implies
Conjecture 7.11. Indeed, keep the same notation as before. From (40) (together with
the canonical isomorphisms (21) and (27)), we obtain

CHi .AŒn�/s D CHi .h2i�s.AŒn�//

D

� M
g2Sn

CHi�age.g/.h2i�s�2 age.g/.AO.g///

�Sn
D

M
�2P.n/

CHiCj�j�n.A�/S�s ;

CHi .KnA/s D CHi .h2i�s.KnA//

D

� M
g2SnC1

CHi�age.g/.h2i�s�2 age.g/.A
O.g/
0 //

�SnC1
D

M
�2P.nC1/

CHiCj�j�n�1.A�0/
S�
s ;

in our two cases, respectively, whose vanishing (s < 0) and injectivity into cohomology
by cycle class map (s D 0) follow directly from those of A� or A�0 .

In fact, [56, Theorem 3] proves more generally that the second point of Conjecture 7.5
(the injectivity of the cycle class map clW CHi .B/0 ! H 2i .B;Q/ for all complex
abelian varieties) implies Conjecture 7.11 for all smooth projective complex varieties X
whose Chow motive is of abelian type, which is the case for a generalized Kummer
variety by Proposition 6.4. Of course, one has to check that our definition of CHi .X/0
here coincides with the one in [56], which is quite straightforward.

The Chern classes of a (smooth) holomorphic symplectic variety X are also supposed
to be in CHi .X/0 with respect to Beauville’s conjectural splitting. We can indeed
check this in both cases considered here:
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Proposition 7.13 The setup is the same as in Theorem 7.9. The Chern class ci .X/
belongs to CHi .X/0 for all i .

Proof In Case (A), that is, in the case where X is the Hilbert scheme AŒn�, this is
proved in [55]. Let us now focus on Case (B), that is, on the case where X is the gener-
alized Kummer variety Kn.A/. Let f� i j 0� i � 2ng be the Chow–Künneth decompo-
sition of Kn.A/ given by (40). We have to show that ci .Kn.A//D .�2i /�ci .Kn.A//,
or equivalently that .�j /�ci .Kn.A// D 0 as soon as .�j /�ci .Kn.A// is homo-
logically trivial. By Proposition 6.4, it is enough to show that for any g 2 G ,
.�
j
Mg/�..V

g/�ci .Kn.A/// D 0 as soon as .�jMg/�..V
g/�ci .Kn.A/// is homolog-

ically trivial. Here, recall that (28) makes M g a disjoint union of ATTSs and that �j
Mg

is a Chow–Künneth projector on M g which is symmetrically distinguished on each com-
ponent of M g . By Proposition 6.9, it is enough to show that .V g/�.ci .Kn.A// is sym-
metrically distinguished on each component of M g. As in the proof of Proposition 6.12,
we have for any g 2G the following commutative diagram, whose squares are cartesian
and without excess intersections:

(42)

AŒnC1�

�

U g

�

p0
oo

q0
// .AnC1/g

Kn.A/
?�

OO

V g
?�

OO

p
oo

q
// M g
?�
i

OO

where the incidence subvariety U g is defined in (17) in Section 5.2 (with n replaced
by nC1) and the bottom row is the base change by OA ,!A of the top row. Note that
ci .Kn.A//D ci .A

ŒnC1�/jKn.A/ , since the tangent bundle of A is trivial. Therefore, by
functorialities and the base change formula (see [32, Theorem 6.2]), we have

.V g/�.ci .Kn.A// WD q� ıp
�.ci .Kn.A//D i

�
ı q0� ıp

0�.ci .A
ŒnC1�//:

By Voisin’s result [60, Theorem 5.12], q0� ı p
0�.ci .A

ŒnC1�// is a polynomial of big
diagonals of AjO.g/j, thus symmetrically distinguished in particular. It follows from
Proposition 6.9 that .V g/�.ci .Kn.A// is symmetrically distinguished on each compo-
nent of M g. This concludes the proof of the proposition.

8 Application 2: Multiplicative decomposition theorem of
rational cohomology

Deligne’s decomposition theorem states the following:
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Theorem 8.1 (Deligne [21]) Let � W X ! B be a smooth projective morphism. In
the derived category of sheaves of Q–vector spaces on B , there is a decomposition
(which is noncanonical in general)

(43) R��QŠ
M
i

Ri��QŒ�i �:

Both sides of (43) carry a cup product: on the right-hand side the cup product is the
direct sum of the usual cup products Ri��Q˝Rj��Q!RiCj��Q defined on local
systems, while on the left-hand side the derived cup product R��Q˝R��Q!R��Q

is induced by the (derived) action of the relative small diagonal ı � X �B X �B X
seen as a relative correspondence from X �B X to X . As explained in [59], the
isomorphism (43) does not respect the cup product in general. Given a family of
smooth projective varieties � W X !B , Voisin [59, Question 0.2] asked if there exists a
decomposition as in (43) which is multiplicative, i.e. which is compatible with the cup
product, maybe over a nonempty Zariski open subset of B . By Deninger–Murre [22],
there does exist such a decomposition for an abelian scheme � W A! B . The main
result of [59] is:

Theorem 8.2 (Voisin [59]) For any smooth projective family � W X ! B of K3
surfaces, there exist a decomposition isomorphism as in (43) and a nonempty Zariski
open subset U of B such that this decomposition becomes multiplicative for the
restricted family �jU W X jU ! U.

As implicitly noted in [55, Section 4], Voisin’s result (Theorem 8.2) holds more generally
for any smooth projective family � W X!B whose generic fiber admits a multiplicative
Chow–Künneth decomposition (K3 surfaces do have a multiplicative Chow–Künneth
decomposition; this follows by suitably reinterpreting, as in [53, Proposition 8.14], the
vanishing of the modified diagonal cycle of Beauville–Voisin [11] as the multiplicativity
of the Beauville–Voisin Chow–Künneth decomposition):

Theorem 8.3 Let � W X ! B be a smooth projective family, and assume that the
generic fiber X of � admits a multiplicative Chow–Künneth decomposition. Then
there exist a decomposition isomorphism as in (43) and a nonempty Zariski open
subset U of B such that this decomposition becomes multiplicative for the restricted
family �jU W X jU ! U.
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Proof By spreading out a multiplicative Chow–Künneth decomposition of X, there
exist a sufficiently small but nonempty Zariski open subset U of B and relative corre-
spondences …i 2 CHdimB X .X jU �U X jU /, for 0� i � 2 dimB X , forming a relative
Chow–Künneth decomposition, which means that �X jU =U D

P
i …

i, …i ı…i D…i ,
…i ı…j D 0 for i ¤ j , and …i acts as the identity on Ri .� Œn�jU /�Q and as zero
on Rj .� Œn�jU /�Q for j ¤ i . By [59, Lemma 2.1], the relative idempotents …i induce
a decomposition in the derived category,

R.�jU /�QŠ
4nM
iD0

H i .R.�jU /�Q/Œ�i �D
4nM
iD0

Ri .�jU /�QŒ�i �;

with the property that …i acts as the identity on the summand H i .R.�jU /�Q/Œ�i � and
acts as zero on the summands H j .R.�jU /�Q/Œ�j � for j ¤ i . In order to establish
the existence of a decomposition as in (43) that is multiplicative and hence to conclude
the proof of the theorem, we thus have to show that …k ı ı ı .…i �…j / acts as zero
on R.�jU /�Q˝R.�jU /�Q, after possibly further shrinking U, whenever k ¤ i C j .
But more is true: being generically multiplicative, the relative Chow–Künneth decom-
position f…ig is multiplicative, that is, …k ı ı ı .…i �…j /D 0 whenever k ¤ i C j ,
after further shrinking U if necessary. The theorem is now proved.

As a corollary, we can extend Theorem 8.2 to families of generalized Kummer varieties:

Corollary 8.4 Let � W A! B be an abelian surface over B . Consider

Case (A) AŒn�!B the relative Hilbert scheme of length-n subschemes on A!B ; or

Case (B) Kn.A/! B the relative generalized Kummer variety.

Then, in both cases, there exist a decomposition isomorphism as in (43) and a nonempty
Zariski open subset U of B such that this decomposition becomes multiplicative for
the restricted family over U.

Proof The generic fiber of AŒn� ! B (resp. Kn.A/! B ) is the 2n–dimensional
Hilbert scheme (resp. generalized Kummer variety) attached to the abelian surface that
is the generic fiber of � . By Theorem 7.9, it admits a multiplicative Chow–Künneth
decomposition. (Strictly speaking, we only established Theorem 7.9 for Hilbert schemes
of abelian surfaces and generalized Kummer varieties over the complex numbers;
however, the proof carries through over any base field of characteristic zero.) We
conclude by invoking Theorem 8.3.
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