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Abstract. We revisit the classical two-dimensionalMcKay correspondence in two respects:
The first one, which is the main point of this work, is that we take into account of the mul-
tiplicative structure given by the orbifold product; second, instead of using cohomology,
we deal with the Chow motives. More precisely, we prove that for any smooth proper two-
dimensional orbifoldwith projective coarsemoduli space, there is an isomorphism of algebra
objects, in the category of complex Chow motives, between the motive of the minimal res-
olution and the orbifold motive. In particular, the complex Chow ring (resp. Grothendieck
ring, cohomology ring, topological K-theory) of the minimal resolution is isomorphic to
the complex orbifold Chow ring (resp. Grothendieck ring, cohomology ring, topological
K-theory) of the orbifold surface. This confirms the two-dimensionalMotivic Crepant Res-
olution Conjecture.

1. Introduction

Finite subgroups of SL2(C) are classically studied by Klein [1] and Du Val [2].
A complete classification (up to conjugacy) is available : cyclic, binary dihedral,
binary tetrahedral, binary octahedral and binary icosahedral. The last three types
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correspond to the groups of symmetries of Platonic solids1 as the names indicate.
Let G ⊂ SL2(C) be such a (non-trivial) finite subgroup acting naturally on the
vector space V := C2. The quotient X := V/G has a unique rational double
point.2 Let f : Y → X be the minimal resolution of singularities:

V

π

Y
f

X

which is a crepant resolution, that is, KY = f ∗KX . The exceptional divisor, denoted
by E , consists of a union of (− 2)-curves3 meeting transversally.

The classical McKay correspondence ([3], cf. also [4]) establishes a bijection
between the set Irr′(G) of non-trivial irreducible representations of G on the one
hand and the set Irr(E) of irreducible components of E on the other hand :

Irr′(G) � Irr(E)

ρ �→ Eρ.

Thus E = ⋃
ρ∈Irr′(G) Eρ . Moreover, this bijection respects the ‘incidence rela-

tions’ : precisely, for any ρ1 	= ρ2 ∈ Irr′(G), the intersection number (Eρ1 · Eρ2),
which is 0 or 1, is equal to the multiplicity of ρ2 in ρ1⊗V (hence is also equal to the
multiplicity of ρ1 in ρ2 ⊗ V ), where V is the 2-dimensional natural representation
via G ⊂ SL(V ). All these informations can be encoded into Dynkin diagrams of
A-D-E type, which is on the one hand the dual graph of the exceptional divisor E
and on the other hand the McKay graph of the non-trivial irreducible representa-
tions of G, with respect to the preferred representation V . Apart from the original
observation of McKay, there are many approaches to construct this correspondence
geometrically and to extend it to higher dimensions : K-theory of sheaves [5], G-
Hilbert schemes [6–9], motivic integration [10–15] and derived categories [16]
etc.We refer the reader to Reid’s note of his Bourbaki talk [4] for more details and
history.

Following Reid [9], one can recast the aboveMcKay correspondence (the bijec-
tion) as follows: the isomorphism classes of irreducible representations index a
basis of the homology of the resolution Y . This is of course equivalent to say that
the conjugacy classes of G index a basis of the cohomology of Y . The starting
point of this paper is that the quotient X = V/G is the coarse moduli space of a
smooth orbifold/Deligne–Mumford stackX := [V/G], and that the (co)homology
of the coarse moduli space |IX | of its inertia stack IX has a basis indexed by the
conjugacy classes of G. Thus Reid’s McKay correspondence can be stated as an
isomorphism of vector spaces:

H∗(Y ) � H∗(|IX |).
1 i.e. regular polyhedrons in R3.
2 Such (isolated) surface singularities are also known as Klein, DuVal, Gorenstein, canon-

ical, simple or A-D-E singularities according to different points of view.
3 i.e. smooth rational curve with self-intersection number equal to −2.
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Chen and Ruan defined in [17] the orbifold cohomology and the orbifold prod-
uct (i.e. Chen–Ruan cohomology) for any smooth orbifold. See Definition 2.1 for
a down-to-earth construction in the global quotient case. By definition, the orb-
ifold cohomology ring H∗

orb([V/G]) has H∗(|IX |) as the underlying vector space.
Therefore it is natural to ask whether there is a multiplicative isomorphism (of
algebras)

H∗(Y ) � H∗
orb([V/G]).

None of the aforementioned beautiful theories (K-theory, G-Hilbert schemes,
motivic integration and derived categories) produces an isomorphism which
respects the multiplicative structures. Nevertheless, the existence of such an iso-
morphism of algebras is known. For example, it is a baby case of the result of
Ginzburg–Kaledin [18] on symplectic resolutions of symplectic quotient singu-
larities. An explicit isomorphism between the equivariant orbifold quantum coho-
mology of [V/G] and the equivariant cohomology of its minimal resolution is
proposed by Bryan–Graber–Pandharipande in [19], which is verified for theC2/Z3
case (see also the related work [20,21]). We will use the same formula to construct
our multiplicative isomorphism.

This isomorphism fits perfectly into Ruan’s following more general Cohomo-
logical Crepant Resolution Conjecture (CCRC) :

Conjecture 1.1. (CCRC [22]) Let M be a smooth projective variety endowed with
a faithful action of a finite group G. Assume that the quotient X := M/G is
Gorenstein, then for any crepant resolution Y → X, there is an isomorphism of
graded C-algebras:

H∗
qc(Y,C) � H∗

orb ([M/G],C) . (1)

More generally, given a smooth proper orbifold X with underlying singular vari-
ety X being Gorenstein, then for any crepant resolution Y → X, we have an
isomorphism of graded C-algebras:

H∗
qc(Y,C) � H∗

orb (X ,C) .

Here the left hand side is the quantum corrected cohomology algebra, whose
underlying graded vector space is just H∗(Y,C), endowed with the cup product
with quantum corrections related to Gromov–Witten invariants with curve classes
contracted by the crepant resolution, as defined in [22]. Since we only consider
in this paper the two-dimensional situation, the Gromov–Witten invariants always
vanish hence there are no quantum corrections involved. See Lemma2.3 for this
vanishing.

Conjecture1.1 suggests that one should consider the existence of such multi-
plicative McKay correspondence in the global situation (instead of a quotient of
a vector space by a finite group), that is, a Gorenstein quotient of a surface by a
finite group action, or even more generally a two-dimensional proper Gorenstein
orbifold. Our following main result confirms this, which also pushes the (surface)
McKay correspondence to the motivic level:
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Theorem 1.2. (Motivic multiplicative global McKay correspondence) Let X be
a smooth proper two-dimensional Deligne–Mumford stack with isolated stacky
points. Assume that X has projective coarse moduli space X with Gorenstein sin-
gularities. Let Y → X be the minimal resolution. Then we have an isomorphism of
algebra objects in the category CHMC of Chow motives with complex coefficients:

h(Y )C � horb (X )C . (2)

In particular, one has an isomorphism of C-algebras:

CH∗(Y )C � CH∗
orb (X )C ;

H∗(Y,C) � H∗
orb (X ,C) ;

K0(Y )C � Korb (X )C ;
K top(Y )C � K top

orb (X )C .

This result also confirms the 2-dimensional case of the so-calledMotivic Hyper-
Kähler Resolution Conjecture studied in [23] and [24]. See Sect. 2.1 for the basics
of Chow motives.

As the definitions of the orbifold theories are particularly explicit and elemen-
tary for the global quotient stacks (cf. Sect. 2.2), we deliberately treat the global
quotient case (Sect. 3) and the general case (Sect. 4) separately.
Convention.All Chow rings andK-theories arewith rational coefficients unless oth-
erwise stated. CHM is the category of Chow motives with rational coefficients and
h : SmProjop → CHM is the (contra-variant) functor that associates a smooth pro-
jective variety its Chowmotive (Sect. 2.1). An orbifold means a separated Deligne–
Mumford stack of finite type with trivial stabilizer at the generic point. We work
over an algebraically closed field of characteristic zero.

2. Crepant resolution conjecture

Let us give the construction of the orbifold Chow motive (as an algebra object)
and the orbifold Chow ring. we will first give the down-to-earth definition for an
orbifold which is a global Gorenstein quotient by a finite group ; then we invoke
the techniques in [25] to give the construction in the general setting of Deligne–
Mumford stacks. We refer to our previous work [23] (joint with Charles Vial), [24]
as well as the original sources (for cohomology and Chow rings) [17,25–27] for
the history and more details. For the convenience of the reader, we start with a
reminder on the basic notions of Chow motives.

2.1. The category of Chow motives

The idea of (pure) motives, proposed initially by Grothendieck, is to construct
a universal cohomology theory X �→ h(X) for smooth projective varieties. His
construction uses directly the algebraic cycles on the varieties together with some
natural categorical operations. On the one hand, motives behave just like the classi-
cally considered Weil cohomology theories ; on the other hand, they no longer take
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values in the category of vector spaces but in some additive idempotent-complete
rigid symmetric monoïdal category. Although the construction works for any ade-
quate equivalence relation on algebraic cycles, we use throughout this paper the
finest one, namely the rational equivalence, so that our results will hold for Chow
groups and imply the other analogous ones, on cohomology for instance, by apply-
ing appropriate realization functors.

Fix a base field k. The category of Chow motives over the field k with rational
coefficients, denoted by CHM, is defined as follows (cf. [28] for a more detailed
treatment). An object, called a Chow motive, is a triple (X, p, n), where n is an
integer, X is a smooth projective variety over k and p ∈ CHdim X (X × X) is a
projector, that is, p ◦ p = p as correspondences. Morphisms between two objects
(X, p, n) to (Y, q,m) form the followingQ-vector subspace of CHm−n+dim X (X ×
Y ) :

HomCHM ((X, p, n), (Y, q,m)) := q ◦ CHm−n+dim X (X × Y ) ◦ p.

The composition of morphisms are defined by the composition of correspondences.
We have the following naturally defined contra-variant functor from the category
of smooth projective varieties to the category of Chow motives :

h : SmProjop → CHM

X �→ (X,�X , 0)

( f : X → Y ) �→ t� f ∈ CHdim X (Y × X)

where t� f is the transpose of the graph of f . The image h(X) is called the Chow
motive of X .

The category CHM is additive with direct sum induced by the disjoint union
of varieties. By construction, CHM is idempotent complete (i.e. pseudo-abelian) :
for any motive M and any projector of it, that is, φ ∈ EndCHM(M) such that
φ ◦ φ = φ, we have M ∼= Im(φ) ⊕ Im(idM −φ). As an example, let us recall
the definition of the so-called reduced motive: for a smooth projective variety X

together with a chosen k-rational point x , the composition of Spec k
x−→ X with the

structure morphism X → Spec k is identity, hence defines a projector φ of h(X).
The reduced motive of the pointed variety (X, x), denoted by h̃(X), is by definition
Im(idh(X) −φ). One can show that the isomorphism class of h̃(X) is independent
of the choice of the point x (cf. [28, Example 4.1.2.1]).

There is also a natural symmetric monoïdal structure on CHM, compatible with
the additive structure, given by

(X, p, n) ⊗ (Y, q,m) := (X × Y, p × q, n + m).

Hence the Künneth formula h(X × Y ) ∼= h(X) ⊗ h(Y ) holds for any smooth
projective varieties X and Y . Moreover, this tensor category is rigid, with the
following duality functor

(X, p, n)∨ := (X, t p, dim X − n).

Given an integer n, the motive (Spec k,�Spec k, n) is called the n-th Tate motive
and is denoted by 1(n). They are the tensor invertible objects. For any motive M ,
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the tensor product M ⊗ 1(n) is denoted by M(n) and called the n-th Tate twist
of M . In particular, we have the Poicaré duality: h(X)∨ ∼= h(X)(dim X) for any
smooth projective variety X . The Lefschetz motive is L := 1(− 1). One checks
that the reduced motive of P1 is isomorphic to L.

The functor h is considered as a cohomology theory and it is universal in the
sense that any Weil cohomology theory must factorize through h. We can extend
the notion of Chow groups from varieties to motives by defining for any integer i
and any Chow motive M ,

CHi (M) := HomCHM (1(−i), M) ,

Hence the Chow groups of a smooth projective variety X is recovered as CHi (X) =
CHi (h(X)) .

In all the above constructions, one can replace for the coefficient field the
rational numbers by the complex numbers and obtain the category of complex
Chow motives CHMC.

2.2. Orbifold theory: global quotient case

Let M be a smooth projective variety and G be a finite group acting faithfully
on M . Assume that G preserves locally the canonical bundle : for any x ∈ M
fixed by g ∈ G, the differential Dg ∈ SL(TxM). This amounts to require that
the quotient X := M/G has only Gorenstein singularities. Denote by Mg =
{x ∈ M | gx = x} the fixed locus of g ∈ G,M 〈g,h〉 = Mg∩Mh (with the reduced
scheme structure) and X := [M/G] the quotient smooth Deligne–Mumford stack.

Definition 2.1. (Orbifold theories) We define an auxiliary algebra object h(M,G)

in CHMwith G-action, and the orbifold motive h([M/G])will be its subalgebra of
invariants. The definitions for Chow rings, cohomology and K-theory are similar.

(1◦) For any g ∈ G, the age function, denoted by age(g), is a Z-valued locally
constant function on Mg , whose value on a connected component Z is

age(g)|Z :=
r−1∑

j=0

j

r
rank(Wj ),

where r is the order of g, Wj is the eigen-subbundle of the restricted tangent
bundle T M |Z , for the natural automorphism induced by g, with eigenvalue

e
2π i
r j . The age function is invariant under conjugacy.

(2◦) We endow the direct sums

h(M,G) :=
⊕

g∈G
h(Mg)(− age(g))

CH∗(M,G) :=
⊕

g∈G
CH∗− age(g)(Mg)

H∗(M,G) :=
⊕

g∈G
H∗−2 age(g)(Mg)
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K (M,G) :=
⊕

g∈G
K0(M

g)Q

K top(M,G) :=
⊕

g∈G
K top(Mg)Q

with the natural G-action induced by the following action: for any g, h ∈ G,

h : Mg �−→ Mhgh−1

x �→ hx .

(3◦) For any g ∈ G, define

Vg :=
r−1∑

j=0

j

r
[Wj ] ∈ K0(M

g)Q,

whose virtual rank is age(g), where r and Wj ’s are as in (1◦).
(4◦) For any g1, g2 ∈ G, let g3 = g−1

2 g−1
1 , we define the (virtual class of ) the

obstruction bundle on the fixed locus M 〈g1,g2〉 by

Fg1,g2 := Vg1
∣
∣
M<g1,g2> + Vg2

∣
∣
M<g1,g2>

+ Vg3
∣
∣
M<g1,g2> + T M<g1,g2> − T M |M<g1,g2> ∈ K0

(
M<g1,g2>

)
Q .

(3)

(5◦) The orbifold product �orb is defined as follows: given g, h ∈ G, let ι :
M<g,h> ↪→ M be the natural inclusion.

• For cohomology:

�orb : Hi−2 age(g)(Mg) × H j−2 age(h)(Mh) → Hi+ j−2 age(gh)(Mgh)

(α, β) �→ ι∗
(
α|M<g,h> � β|M<g,h>

� ctop(Fg,h)
)

• For Chow groups:

�orb : CHi−age(g)(Mg) × CH j−age(h)(Mh) → CHi+ j−age(gh)(Mgh)

(α, β) �→ ι∗
(
α|M<g,h> · β|M<g,h>

·ctop(Fg,h)
)

• For K-theory:

�orb : K0(M
g)Q × K0(M

h)Q → K0(M
gh)Q

(α, β) �→ ι!
(
α|M<g,h> · β|M<g,h> · λ−1(F

∨
g,h)

)

where λ−1 is obtained from the Lambda operation λt : K0(M<g,h>) →
K0(M<g,h>)[[t]] by evaluating t = −1 (cf. [29, Chapter II, Sect. 4]). The
definition for topological K-theory is similar.
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• For motives: �orb : h(Mg)(− age(g)) ⊗ h(Mh)(− age(h)) → h(Mgh)(− age
(gh)) is determined by the correspondence

δ∗(ctop(Fg,h)) ∈ CHdim Mg+dim Mh+age(g)+age(h)−age(gh)(Mg × Mh × Mgh),

where δ : M<g,h> → Mg × Mh × Mgh is the natural morphism sending x to
(x, x, x).

(6◦) Finally, we take the subalgebra of invariants whose existence is guaranteed
by the idempotent completeness of CHM (see Sect. 2.1) :

horb ([M/G]) := h (M,G)G ;
CH∗

orb ([M/G]) := (
CH∗(M,G), �orb

)G ;
and similarly

H∗
orb ([M/G]) := (

H∗(M,G), �orb
)G ;

Korb ([M/G]) := (K (M,G), �orb)
G ;

K top
orb ([M/G]) := (

K top(M,G), �orb
)G

.

These are commutativeQ-algebras and depend only on the stack [M/G] (not
the presentation).

2.3. Orbifold theory: general case

Let X be a smooth proper orbifold with projective coarse moduli space X with
Gorenstein singularities. Recall that under theGorenstein assumption, the age func-
tion takes values in integers. Define the orbifold Chow motive and orbifold Chow
group as follows:

horb(X ) := h(IX )(− age) := ⊕i h(IXi )(− agei ),

CH∗
orb(X ) := CH∗−age(IX ) := ⊕i CH

∗−agei (IXi ) ;
where the theory of Chow ring (with rational coefficients) as well as the intersection
theory of a stack is the one developed byVistoli [30]; the theory ofChowmotives for
smooth proper Deligne–Mumford stacks is the so-calledDMCmotives4 developed
by Behrend–Manin in [31] and reviewed in Toën [32, Sect. 2. First construction],
which is proven in [32, Theorem 2.1] to be equivalent to the usual category of
Chow motives ; IX = ∐

i IXi is the decomposition into connected components
while the age function age is the locally constant function whose value on IXi is
agei which is Chen–Ruan’s degree shifting number defined in [17, Sect. 3.2]. Let
us also point out that Toën’s second construction in [32, Sect. 3] of Chow motives
of Delign–Mumford stacks is very close to the orbifold Chowmotive defined above
with the only difference being the age-shifting.

4 DMC stands for Deligne–Mumford Chow.
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Now the key point is to put a product structure on horb(X ) and CH∗
orb(X ).

Consider the moduli space K0,3(X , 0), constructed by Abramovich–Vistoli [33],
of 3-pointed twisted stable maps of genus zero with trivial curve class. It comes
equipped with a virtual fundamental class [K0,3(X , 0)]vir ∈ CHdim X (K0,3(X , 0))
together with three (proper) evaluation maps: ei : K0,3(X , 0) → IX with target
being the inertia stack ([25]). Note that in general, the evaluation morphism has
target in a different stack, the rigidified cyclotomic inertial stack ([25, Sect. 3.4]).
However, in the smooth orbifold case, one can prove that the evaluation morphisms
of the degree 0 twisted stable maps land in the inertial stack [34, Sect. 1.3.1].

Pushing forward the virtual fundamental class gives the class

γ := (e1, e2, ě3)∗
(
[K0,3(X , 0)]vir

)
∈ CHdim X (IX 3),

where ě3 is the composition of the evaluation map e3 and the involution IX → IX
inverting the group element (cf. [25]); andwe are using again Vistoli’s Chow groups
([30]). The orbifold product for the orbifold Chow ring is defined as the action of
the correspondence γ :

CH∗
orb(X )× CH∗

orb(X ) → CH∗
orb(X )

‖ ‖
CH∗−age(IX )× CH∗−age(IX ) → CH∗−age(IX )

(α, β) �→ pr3,∗
(
pr∗1(α) · pr∗2(β) · γ

)

It can be checked (cf. [25, Theorem 7.4.1]) that the age shifting makes the above
orbifold product additivewith respect to the degrees (otherwise, it is not!). Similarly,
we can define the multiplicative structure on horb(X ) to be

γ ∈ CHdim X (IX 3) = HomCHM (h(IX )(− age) ⊗ h(IX )(− age), h(IX )(− age))

= HomCHM
(
horb(X ) ⊗ horb(X ), horb(X )

)
.

Thanks to [25, Theorem 7.4.1], this product structure is associative. On the
other hand, when X is a finite group global quotient stack, the main result of [27,
Sect. 8] implies that the elementary construction in Sect. 2.2 actually recovers the
above abstract construction.

2.4. Crepant resolution conjectures

With orbifold theories being defined, we can speculate that a motivic or K-theoretic
version of the Crepant Resolution Conjecture 1.1 should hold. But the problem is
that in the definition of the quantum corrections, there is the subtle convergence
property which is difficult to make sense in general for Chow groups / motives or
for K-theory. Therefore, we will look at some cases that these quantum corrections
actually vanish a priori :
Case 1: Hyper-Kähler resolution. The first one is when the resolution Y is holomor-
phic symplectic, which implies that all (Chow-theoretic, K-theoretic or cohomolog-
ical) Gromov–Witten invariants vanish (see the proof of [24, Lemma 8.1]). In this
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case, we indeed have the following Motivic HyperKähler Resolution Conjecture
(MHRC), proposed in [23]:

Conjecture 2.2. (MHRC [23], [24]) Let M be a smooth projective holomorphic
symplectic variety endowed with a faithful symplectic action of a finite group G.
If the quotient X := M/G has a crepant resolution Y → X, then there is an
isomorphism of algebra object in the category CHMC of complex Chow motives:

h(Y ) � horb([M/G]).
In particular, we have an isomorphism of graded C-algebras:

CH∗(Y )C � CH∗
orb ([M/G])C .

Thanks to the orbifold Chern character isomorphism constructed by Jarvis–
Kaufmann–Kimura in [27],MHRC also implies the K-theoretic Hyper-Kähler Res-
olutionConjecture of loc.cit.Conjecture 2.2 is proven in our jointworkwithCharles
Vial [23] for Hilbert schemes of abelian varieties and generalized Kummer varieties
and in [24] for Hilbert schemes of K3 surfaces.
Case 2: Surface minimal resolution. The second one is the main purpose of the
article, namely the surface case, i.e. dim(Y ) = 2. In this case, the vanishing of
quantum corrections is explained in the following lemma.

Lemma 2.3. Let X be a surface with Du Val singularities and π : Y → X be the
minimal resolution. Then the virtual fundamental class of M0,3 (Y, β) is rationally
equivalent to zero for any curve class β which is contracted by π .

Proof. Consider the forgetful-stabilization morphism

f : M0,3 (Y, β) → M0,0 (Y, β) .

By the general theory, the virtual fundamental class of M0,3 (Y, β) is the pull-back
of the virtual fundamental class of M0,0 (Y, β). However, the virtual dimension of
M0,0 (Y, β) is (β · KY ) + (dim Y − 3) = −1 since π is crepant. Therefore, both
moduli spaces have zero virtual fundamental class in Chow group, cohomology or
K-theory. ��

Thanks to the vanishing of quantum corrections, the motivic version of the
Crepant Resolution Conjecture 1.1 for surfaces is exactly the content of our main
Theorem1.2. See the precise statement in Introduction. We will first give the proof
for stacks which are finite group global quotients in Sect. 3, then the proof in the
general case in Sect. 4.

3. Proof of Theorem1.2: global quotient case

In this section, we show Theorem1.2 in the following setting: S is a smooth projec-
tive surface, G is a finite group acting faithfully on S such that the canonical bundle
is locally preserved (Gorenstein condition), X := S/G is the quotient surface (with
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Du Val singularities) and Y → X is the minimal (crepant) resolution. Recall that
L := 1(− 1) is the Lefschetz motive in CHM (Sect. 2.1).

For any x ∈ S, let

Gx := {g ∈ G | gx = x}
be the stabilizer. Let Irr(Gx ) be the set of isomorphism classes of irreducible rep-
resentations of Gx and Irr′(Gx ) be that of non-trivial ones. We remark that by
assumption, there are only finitely many points of S with non-trivial stabilizer.

3.1. Resolution side

Wefirst compute the Chowmotive algebra (or Chow ring) of theminimal resolution
Y .

For any x ∈ S, we denote by x its image in S/G. The Chow motive of Y has
the following decomposition in CHM:

h (Y ) � h(S)G ⊕
⊕

x∈S/G

⊕

ρ∈Irr′(Gx )

Lx,ρ �
⎛

⎝h(S) ⊕
⊕

x∈S

⊕

ρ∈Irr′(Gx )

Lx,ρ

⎞

⎠

G

, (4)

where Lx,ρ and Lx,ρ are both the Lefschetz motive L corresponding to the irre-
ducible component of the exceptional divisor over x , indexed by the non-trivial
irreducible representation ρ of Gx via the classical McKay correspondence. The
second isomorphism in (4) being just a trick of reindexing, let us explain a bit
more on the first one. Let f : Y → S/G be the minimal resolution of singulari-
ties. By the classical McKay correspondence, over each singular point x ∈ S/G,
the exceptional divisor Ex := f −1(x) is a union (with A-D-E configuration)
of smooth rational curves ∪ρ∈Irr′(Gx )Ex,ρ . As f is obviously a semi-small mor-
phism, we can invoke the motivic decomposition of De Cataldo–Migliorini [35,
Theorem 1.0.1], with the stratification being S/G = (S/G)reg ∪ Sing(S/G),
to obtain directly the first isomorphism in (4). It is then not hard to follow the
proof in loc.cit. to see that the first isomorphism in (4) is induced by the pull-back
f ∗ = t� f : h(S)G = h(S/G) → h(Y ) together with the push-forward along the

inclusions L = h̃(Ex,ρ)
ix,ρ,∗−−−→ h(Y ), where h̃ is the reduced motive (see Sect. 2.1).

We remark that the inverse of the isomorphism (4) is more complicated to describe
and involves the inverse of the intersection matrix (cf. the definition of �′ in the
end of [35, Sect. 2]).

The product structure of h(Y ) is determined as follows via the above decompo-
sition (4), which also uses the classical McKay correspondence. Let ix : {x} ↪→ S
be the natural inclusion.

• h(S)⊗ h(S)
δS−→ h(S) is the usual product induced by the small diagonal of S3.

• For any x with non-trivial stabilizer Gx and any ρ ∈ Irr′(Gx ),

h(S) ⊗ Lx,ρ
i∗x−→ Lx,ρ

is determined by the class x ∈ CH2(S) = Hom(h(S) ⊗ L,L).
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• For any ρ ∈ Irr′(Gx ) as above,

Lx,ρ ⊗Lx,ρ
− 2ix,∗−−−−→ h(S),

is determined by − 2x ∈ CH2(S). The reason is that each component of the
exceptional divisor is a smooth rational curve of self-intersection number equal
to − 2.

• For any ρ1 	= ρ2 ∈ Irr′(Gx ),
– If they are adjacent, that is, ρ1 appears (with multiplicity 1) in the Gx -

module ρ2 ⊗ Tx S, then by the classical McKay correspondence, the com-
ponents in the exceptional divisor over x indexed by ρ1 and by ρ2 intersect
transversally at one point. Therefore

Lx,ρ1 ⊗Lx,ρ2
ix,∗−−→ h(S),

is determined by x ∈ CH2(S).
– If they are not adjacent, then again the classical McKay correspondence
tells us that the two components indexed by ρ1 and ρ2 of the exceptional

divisor do not intersect ; hence Lx,ρ1 ⊗Lx,ρ2
0−→ h(S) is the zero map.

• The other multiplication maps are zero.

The G-action on (4) is as follows:

• The G-action of h(S) is induced by the original action on S.
• For any h ∈ G, it maps for any x ∈ S and ρ ∈ Irr′(Gx ), the Lefschetz motive

Lx,ρ isomorphically to Lhx,hρ , where hρ ∈ Irr′(Ghx ) is the representation
which makes the following diagram commutes:

Gx �
g �→hgh−1

ρ

Ghx

hρ

Vρ .

(5)

3.2. Orbifold side

Now we compute the orbifold Chow motive algebra of the quotient stack [S/G].
The computation is quite straight-forward. Here L := 1(− 1) is the Lefschetz
motive.

First of all, it is easy to see that age(g) = 1 for any element g 	= id of G, and
age(id) = 0. By Definition 2.1,

h(S,G) = h(S) ⊕
⊕

g∈G
g 	=id

⊕

x∈Sg
Lx,g = h(S) ⊕

⊕

x∈S

⊕

g∈Gx
g 	=id

Lx,g, (6)

where Lx,g is the Lefschetz motive 1(− 1) indexed by the fixed point x of g.
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Lemma 3.1. (Obstruction class)For any g, h ∈ G different from id, the obstruction
class is

cg,h =
{
1 if g = h−1

0 if g 	= h−1

Proof. For any g 	= id and any x ∈ Sg , the action of g on Tx S is diagonalizable
with a pair of conjugate eigenvalues, therefore Vg in Definition2.1 is a trivial vector
bundle of rank one on Sg . Hence for any g, h ∈ G different from id and x ∈ S
fixed by g and h, the dimension of the fiber of the obstruction bundle Fg,h at x is

dim Fg,h(x) = dim Vg(x) + dim Vh(x) + dim V(gh)−1(x) − dim Tx S,

which is 1 if g 	= h−1 and is 0 if g = h−1. The computation of cg,h follows. ��
Once the obstruction classes are computed, we can write down explicitly the

orbifold product from Definition2.1, which is summarized in the following propo-
sition.

Proposition 3.2. The orbifold product on h(S,G) is given as follows via the decom-
position (6):

h(S) ⊗ h(S)
δS−→ h(S);

h(S) ⊗ Lx,g
i∗x−→ Lx,g ∀gx = x;

Lx,g ⊗Lx,g−1
ix,∗−−→ h(S).

where the first morphism is the usual product given by small diagonal; the second
and the third morphisms are given by the class x ∈ CH2(S) and ix : {x} ↪→ S is
the natural inclusion; all the other possible maps are zero.

The G-action on (6) is as follows by Definition 2.1:

• The G-action on h(S) is the original action.
• For any h ∈ G, it maps for any x ∈ S and g 	= id ∈ Gx , the Lefschetz motive

Lx,g isomorphically to Lhx,hgh−1 .

3.3. The multiplicative correspondence

With both sides of the correspondence computed, we can give the multiplicative
McKay correspondence morphism, which is in the category CHMC of complex
Chow motives. Consider the morphism

� : h(S) ⊕
⊕

x∈S

⊕

ρ∈Irr′(Gx )

Lx,ρ → h(S) ⊕
⊕

x∈S

⊕

g∈Gx
g 	=id

Lx,g, (7)

which is given by the following ‘block diagonal matrix’:
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• id : h(S) → h(S);
• For each x ∈ S (with non-trivial stabilizer Gx ), the morphism

⊕

ρ∈Irr′(Gx )

Lx,ρ →
⊕

g∈Gx
g 	=id

Lx,g

is the ‘matrix’ with coefficient 1√|Gx |
√

χρ0(g) − 2 · χρ(g) at place (ρ, g) ∈
Irr′(Gx ) × (Gx\{id}), where χ denotes the character, ρ0 is the natural 2-
dimensional representation Tx S of Gx . Note that ρ0(g) has determinant 1,
hence its trace χρ0(g) is a real number.

• The other morphisms are zero.

To conclude themain theorem, one has to show three things: (i) � is compatible
with the G-action; (i i) � is multiplicative and (i i i) � induces an isomorphism�G

of complex Chow motives on G-invariants.

Lemma 3.3. � is G-equivariant.

Proof. The G-action on the first direct summand h(S) is by definition the same,
hence is preserved by �|h(S) = id. For the other direct summands, since it is a
matrix computation, we can treat the Lefschetz motives as 1-dimensional vector
spaces: let Ex,ρ be the ‘generator’ of Lx,ρ and ex,g be the ‘generator’ of Lx,g .
Then the G-actions computed in the previous subsections say that for any x and
any h ∈ Gx ,

h.Ex,ρ = Ehx,hρ and h.ex,g = ehx,hgh−1 ,

where hρ is defined in (5).
Therefore

�(h.Ex,ρ)

= �(Ehx,hρ)

= 1√|Ghx |
∑

g∈Ghx

√
χρ0(g) − 2χhρ(g) ehx,g

= 1√|Gx |
∑

g∈Gx

√
χρ0(g) − 2χhρ(hgh−1) ehx,hgh−1

= 1√|Gx |
∑

g∈Gx

√
χρ0(g) − 2χρ(g) ehx,hgh−1

= 1√|Gx |
∑

g∈Gx

√
χρ0(g) − 2χρ(g) h.ex,g

= h.�(Ex,ρ),

where the third equality is a change of variable: replace g by hgh−1, the fourth
equality follows from the definition of hρ in (5) ��



Multiplicative McKay correspondence for surfaces 309

Proposition 3.4. (Multiplicativity) � preserves the multiplication, i.e. � is a mor-
phism of algebra objects in CHMC.

Proof. The cases of multiplying h(S) with itself or with a Lefschetz motive Lx,ρ

are all obviously preserved by �. We only need to show that for any x ∈ S with
non-trivial stabilizer Gx , the morphism

⊕

ρ∈Irr′(Gx )

Lx,ρ →
⊕

g∈Gx
g 	=id

Lx,g

given by the matrix with coefficient 1√|Gx |
√

χρ0(g) − 2 · χρ(g) at place (ρ, g) is
multiplicative (note that the result of the multiplication could go outside of these
direct sums to h(S)). Since this is just a matrix computation, let us treat Lefschetz
motives as 1-dimensional vector spaces (or equivalently, we are looking at the
corresponding multiplicativity of the realization of � for Chow rings): let Ex,ρ be
the ‘generator’ of Lx,ρ and ex,g be the ‘generator’ of Lx,g . Then the computations
of the products in the previous two subsections say that:

Ex,ρ1 · Ex,ρ2 =
⎧
⎨

⎩

− 2x if ρ1 = ρ2;
x if ρ1, ρ2 are adjacent;
0 if ρ1, ρ2 are not adjacent;

(8)

ex,g · ex,h =
{
x if g = h−1;
0 if g 	= h−1; (9)

Therefore for any ρ1, ρ2 ∈ Irr′(Gx ), we have

�(Ex,ρ1) · �(Ex,ρ2)

= 1

|Gx |
∑

g∈Gx

∑

h∈Gx

√
χρ0(g) − 2

√
χρ0(h) − 2χρ1(g)χρ2(h) ex,g · ex,h

= 1

|Gx |
∑

g∈Gx

√
χρ0(g) − 2

√
χρ0(g

−1) − 2χρ1(g)χρ2(g
−1) · x

= 1

|Gx |
∑

g∈Gx

(χρ0(g) − 2) χρ1(g)χρ2(g) · x

= 1

|Gx |

⎛

⎝
∑

g∈Gx

χρ0⊗ρ1(g)χρ2(g) − 2
∑

g∈Gx

χρ1(g)χρ2(g)

⎞

⎠ · x

= (〈ρ0 ⊗ ρ1, ρ2〉 − 2〈ρ1, ρ2〉) · x
= �

(
Ex,ρ1 · Ex,ρ2

)

where the first equality is the definition of � (and we add the non-existent ex,1
with coefficient 0), the second equality uses (9) the orthogonality among ex,g’s
(i.e.Lx,g’s), the third equality uses the fact thatχρ0 takes real value; the last equality
uses all three cases of (8). ��
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Proposition 3.5. (Additive isomorphism) Taking G-invariants on both sides of (7),
�G is an isomorphism of complex Chow motives between h(Y ) and horb([S/G]).
Proof. We should prove the following morphism is an isomorphism:

�G : h(S)G ⊕
⎛

⎝
⊕

x∈S

⊕

ρ∈Irr′(Gx )

Lx,ρ

⎞

⎠

G

→ h(S)G ⊕

⎛

⎜
⎜
⎝

⊕

x∈S

⊕

g∈Gx
g 	=id

Lx,g

⎞

⎟
⎟
⎠

G

.

Since� is given by ‘block diagonal matrix’, it amounts to show that for each x ∈ S
(with Gx non trivial), the following is an isomorphism :

⊕

ρ∈Irr′(Gx )

Lx,ρ →

⎛

⎜
⎜
⎝

⊕

g∈Gx
g 	=id

Lx,g

⎞

⎟
⎟
⎠

Gx

. (10)

which is equivalent to say that the following square matrix is non-degenerate :
(√

χρ0(g) − 2 · χρ(g)
)

(ρ,[g]) , (11)

where ρ runs over the set Irr′(Gx ) of isomorphism classes of non-trivial irreducible
representations and [g] runs over the set of conjugacy classes of Gx different from
id.

As this is about a matrix, it is enough to look at the realization of (10):

⊕

ρ∈Irr′(Gx )

Ex,ρ →

⎛

⎜
⎜
⎝

⊕

g∈Gx
g 	=id

ex,g

⎞

⎟
⎟
⎠

Gx

,

where both sides come equipped with non-degenerate quadratic forms given by
intersection numbers and degrees of the orbifold product respectively. More pre-
cisely, by (8) and (9):

(Ex,ρ1 · Ex,ρ2) =
⎧
⎨

⎩

− 2 if ρ1 = ρ2;
1 if ρ1, ρ2 are adjacent;
0 if ρ1, ρ2 are not adjacent;

(ex,g · ex,h) =
{
1 if g = h−1;
0 if g 	= h−1;

which are both clearly non-degenerate. Now Proposition3.4 shows that our matrix
(11) respects the non-degenerate quadratic forms on both sides, therefore it is non-
degenerate.

Let us note here also an elementary proof which does not use the orbifold
product. We first remark that for any g 	= id, ρ0(g) ∈ SL2(C) which is of finite



Multiplicative McKay correspondence for surfaces 311

order and different from the identity, hence its trace χ0(g) 	= 2. Therefore the
nondegeneracy of the matrix (11) is equivalent to the nondegeneracy of the matrix

(
χρ(g)

)
(ρ,[g]) ,

which is obtained from the character table of the finite group Gx by removing the
first row (corresponding to the trivial representation) and the first column (corre-
sponding to id ∈ Gx ). The nondegeneracy of this matrix is a completely general
fact, which holds for all finite groups. We will give a proof in Lemma3.6 at the end
of this section. ��

The combination of Lemma3.3, Propositions3.4 and 3.5 proves the isomor-
phism of algebra objects (2) in the main Theorem1.2 in the global quotient case.
For the isomorphisms for the Chow rings and cohomology rings, it is enough to
apply realization functors. For the isomorphisms for the K-theory and topologi-
cal K-theory, it suffices to invoke the construction of orbifold Chern characters in
[27] which induce isomorphisms of algebras from (orbifold) K-theory to (orbifold)
Chow ring as well as from (orbifold) topological K-theory to (orbifold) cohomol-
ogy ring. The proof of Theorem1.2 in the global quotient case is now complete.
��

The following lemma is used in the second proof of Proposition3.5. The elegant
proof below is due to Cédric Bonnafé. We thank him for allowing us to use it.
Recall that for a finite group G, its character table is a square matrix whose rows
are indexed by isomorphism classes of irreducible complex representations of G
and columns are indexed by conjugacy classes of G.

Lemma 3.6. Let G be any finite group. Then thematrix obtained from the character
table by removing the first row corresponding to the trivial representation and the
first column corresponding to the identity element, is non-degenerate.

Proof. Denote by 1 the trivial representation and by ρ1, . . . , ρn the set of iso-
morphism classes of non-trivial representations of G. Suppose we have a linear
combination

∑n
i=1 ciχρi , with ci ∈ C, which vanishes for all non-identity conju-

gacy class, hence for all non-identity elements of G:

n∑

i=1

ciχρi (g) = 0, ∀g 	= id ∈ G. (12)

Set

c0 := − 1

|G|
n∑

i=1

ci dim(ρi ),

and denote by χreg be the character of the regular representation, then (12) implies
that the following linear combination vanishes for all g ∈ G:

c0χreg +
n∑

i=1

ciχρi = 0.
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If c0 	= 0, it contradicts to the fact that the trivial representation should appear (with
multiplicity 1) in the regular representation.
Hence we have c0 = 0. Then by the linear independency among the characters of
irreducible representations, we must have c1 = · · · = cn = 0. ��

4. Proof of Theorem1.2 : general orbifold case

In this section, we give the proof of Theorem1.2 in the full generality. As the proof
goes essentially in the same way as the global quotient case in Sect. 3, we will focus
on the different aspects of the proof and refer to the arguments in Sect. 3 whenever
possible.

Recall the setting: X is a two-dimensional Deligne–Mumford stack with only
finitely many points with non-trivial stabilizers ; X is the underlying (projective)
singular surface with only Du Val singularities and Y → X is the minimal resolu-
tion. For each x ∈ X , denote by Gx its stabilizer, which is contained in SL2.

Throughout this section, Chowgroups of stacks are as in [30] andChowmotives
of stacks or singular Q-varieties are as in [32, Sect. 2].

4.1. Resolution side

Similar to (4), we have the following decomposition given by the classical McKay
correspondence (see Sect. 1):

h(Y ) � h(X) ⊕
⊕

x∈X

⊕

ρ∈Irr′(Gx )

Lx,ρ (13)

and the multiplication is the following:

• h(X) ⊗ h(X)
δX−→ h(X) is the usual intersection product.

• For anyρ ∈ Irr′(Gx ), h(X)⊗Lx,ρ
i∗x−→ Lx,ρ is given by the class x ∈ CH2(X) =

Hom(h(X) ⊗ L,L).

• For any ρ ∈ Irr′(Gx ), Lx,ρ ⊗Lx,ρ
−2ix,∗−−−→ h(X), is determined by −2x ∈

CH2(X).
• For any ρ1 	= ρ2 ∈ Irr′(Gx ),

– If they are adjacent, that is, ρ1 appears (with multiplicity 1) in the Gx -
module ρ2 ⊗C2, where C2 is such that C2/Gx is the singularity type of x ,
then

Lx,ρ1 ⊗Lx,ρ2
ix,∗−−→ h(X),

is determined by x ∈ CH2(X).

– If they are not adjacent, then Lx,ρ1 ⊗Lx,ρ2
0−→ h(X) is the zero map.

• The other multiplication maps are zero.
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4.2. Orbifold side

Similar to (6), we have

h(X ) = h(X) ⊕
⊕

x∈X

⎛

⎜
⎜
⎝

⊕

g∈Gx
g 	=id

Lx,g

⎞

⎟
⎟
⎠

Gx

, (14)

where the action of Gx is by conjugacy.
Note that degree 0 twisted stable maps with 3 marked points to X are either

untwisted stable maps to X or a twisted map to one of the stacky points of X .
In the latter case, the irreducible components of the moduli space around these
twisted stable maps and the obstruction bundle are the same as those of the twisted
stable maps to the orbifold [C2/G]. It is then clear that the orbifold product can be
described as if X is a global quotient. Therefore the orbifold product on h(X ) is
given by the following, via (14):

• h(X) ⊗ h(X)
δS−→ h(X) is the usual intersection product.

• For all g ∈ Gx , h(X) ⊗ Lx,g
i∗x−→ Lx,g determined by the class of x ∈ X .

• For all g ∈ Gx , Lx,g ⊗Lx,g−1
ix,∗−−→ h(X) determined by the class of x ∈ X .

• The other multiplication maps are zero.

4.3. The multiplicative isomorphism

Similar to (7), we define

φ : h(X) ⊕
⊕

x∈X

⊕

ρ∈Irr′(Gx )

Lx,ρ → h(X) ⊕
⊕

x∈X

⊕

g∈Gx
g 	=id

Lx,g, (15)

which is given by the following ‘block matrix’:

• id : h(X) → h(X);
• For each x ∈ X (with non-trivial stabilizer Gx ), the morphism

⊕

ρ∈Irr′(Gx )

Lx,ρ →
⊕

g∈Gx
g 	=id

Lx,g

is the ‘matrix’ with coefficient 1√|Gx |
√

χρ0(g) − 2 · χρ(g) at place (ρ, g) ∈
Irr′(Gx ) × (Gx\{id}), where χ denotes the character, ρ0 is the natural 2-
dimensional representation C2 of Gx such that C2/Gx is the singularity type
of x . Note that ρ0(g) has determinant 1, hence its trace χρ0(g) is a real number.

• The other morphisms are zero.
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To conclude Theorem1.2, on the one hand, the same proof as in Proposition3.4
shows that φ is multiplicative. On the other hand, one sees immediately that φ

factorizes through

h(X) ⊕
⊕

x∈X

⎛

⎜
⎜
⎝

⊕

g∈Gx
g 	=id

Lx,g

⎞

⎟
⎟
⎠

Gx

.

It is thus enough to show that the following induced map is an (additive) isomor-
phism:

ψ : h(X) ⊕
⊕

x∈X

⊕

ρ∈Irr′(Gx )

Lx,ρ → h(X) ⊕
⊕

x∈X

⎛

⎜
⎜
⎝

⊕

g∈Gx
g 	=id

Lx,g

⎞

⎟
⎟
⎠

Gx

,

However this follows from the proof of Proposition3.5, where one shows that (10)
is an isomorphism. The proof of Theorem1.2 is complete. ��
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