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We discuss the Picard group of the moduli space Kg of quasi-polarized K3 surfaces of

genus g ≤ 12 and g �= 11. In this range, Kg is unirational, and a general element in Kg

is a complete intersection with respect to a vector bundle on a homogenous space, by

the work of Mukai. In this paper, we find generators for the Picard group PicQ(Kg) using

the Noether–Lefschetz (NL) theory. This verifies the NL conjecture on the moduli of K3

surfaces in these cases.

1 Introduction

It is well known that the moduli space Mg of smooth projective curves of genus g is

a quasi-projective variety with Picard number one for g ≥ 3 (cf. [9]). The Picard group

PicQ(Mg) with rational coefficients is generated by the first Chern class of the Hodge

bundle. In the moduli theory of higher-dimensional varieties, the primitively polarized

K3 surface of genus g can be viewed as a 2-dimensional analog of genus g smooth pro-

jective curve, and it is natural for us to study the Picard group of its moduli space K◦
g.

Unlike in the curve case, the rank of Pic(K◦
g) is no longer constant; it has been

shown by O’Grady [21] that rank(Pic(K◦
g)) increases to infinity as g is increasing (see

also [16, Section 7]). Besides the Hodge line bundle, there are many other natural
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divisors on K◦
g coming from geometry. Actually, the Noether–Lefschetz (NL) locus of K◦

g

parameterizing K3 surfaces with Picard number >1 is a union of countably many irre-

ducible divisors by the Hodge theory. We call them the NL divisors on K◦
g. In this paper,

we study the Picard group on K◦
g for g ≤ 12 (g �= 11) and find its generators in terms of

NL-divisors on K◦
g.

For convenience, instead of working on K◦
g, we will study the moduli space Kg of

primitively quasi-polarized K3 surfaces of genus g, which is more natural from a Hodge

theoretic point of view. It is known that Kg is a locally Hermitian symmetric variety, by

the Torelli theorem, and the complement Kg\K◦
g is a divisor parameterizing K3 surfaces

containing a (−2)-exceptional curve. In this setting, we define the NL divisors on Kg as

follows: given d,n∈ Z, let Dg
d,n ⊂Kg be the locus of those K3 surfaces S ∈Kg whose Picard

lattice Pic(S) contains a primitive rank 2 sublattice

L β

L 2g − 2 d

β d n

(1.1)

where L is the primitive quasi-polarization of S and β ∈ Pic(S). Each NL divisor Dg
d,n

is irreducible by [22]. In [16], Maulik and Pandharipande conjectured that the divisors

{Dg
d,n} span the group PicQ(Kg)with rational coefficients. Our main result is the following

theorem.

Theorem 1.1. The Picard group of Kg with rational coefficients is spanned by NL divi-

sors for g ≤ 10 and g = 12. Moreover, the basis of PicQ(Kg) of 6 ≤ g ≤ 10, is given by:

• g = 6, {D6
0,−2, D6

5,2, D6
k,0,k= 1, . . . 4}.

• g = 7, {D7
0,−2, D7

5,2, D7
6,2, D7

k,0,k= 1, . . . 4}.
• g = 8, {D8

0,−2, D8
6,2, D8

7,2 D8
k,0, k= 1, . . . 4}.

• g = 9, {D9
0,−2, D9

6,2, D9
7,2 D9

k,0, k= 1, . . . 5}.
• g = 10, {D10

0,−2, D10
7,2, D10

8,2, D10
9,4, D10

k,0, k= 1, . . . 5}.

For g = 12, the group PicQ(K12) is generated by

{D12
0,−2, D12

7,2, D12
8,2, D12

9,2, D12
10,4, D12

11,4, D12
k,0,k= 1, . . . 6}. (1.2)

�

Remark 1.2. The rank of Pic(K12) is 11, so there is a linear relation between the gener-

ators in (1.2). See Remark 4.2 for more details. �
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7240 F. Greer et al.

When 2 ≤ g ≤ 5, a general K3 surface in Kg is a double cover of P2 (g = 2) or a

complete intersection in Pg, and the assertion can be found in [15, 22, 25, 26]. In these

cases, the proof relies on the explicit construction of the moduli space of the correspond-

ing complete intersections via geometric invariant theory (GIT). If g is>5, the general K3

surface of genus g is no longer a complete intersection in Pg, but it can be interpreted as

a complete intersection with respect to certain vector bundles on homogenous spaces,

for g in the range of our theorem, so there ought to be a similar construction.

2 Geometry of K3 Surfaces

In this section, we review Mukai’s work on the projective models of general low genus

quasi-polarized K3 surfaces. We give a precise characterization, in terms of the Picard

lattice, of the (nongeneral) K3 surfaces lying outside the locus of Mukai models. We also

include a few examples to illustrate the phenomenon. Throughout this paper, we work

over complex numbers.

2.1 Notations

Let (S, L) be a primitively quasi-polarized K3 surface of genus g, that is, L ∈ Pic(S) is big

and nef with L2 = 2g − 2. The middle cohomology H2(S,Z) is an even unimodular lattice

of signature (3,19) under the intersection form 〈, 〉 and is isometric to

U⊕3 ⊕ (−E8)
⊕2,

by the classification of even unimodular indefinite lattices, where U is the hyperbolic

lattice of rank 2 and E8 is the positive-definite lattice associated to the Lie group of the

same name. Let Λg := c1(L)⊥ be the orthogonal complement, which is an even lattice of

signature (2,19). The isometry class of Λg is independent of (S, L) because the group of

isometries of U⊕3 ⊕ (−E8)
⊕2 acts transitively on the set of primitive vectors of square

(2g − 2) (cf. [7, Proposition 3.3]).

The period domain Dg associated to Λg can be realized as a connected compo-

nent of

D±
g := {v ∈ P(Λg ⊗ C)|〈v, v〉 = 0, 〈v, v̄〉> 0}.

The monodromy group

Γg = {g ∈ Aut(Λg)
+| g acts trivially on Λ∨

g/Λg},
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naturally acts on Dg, where Aut(Λg)
+ denotes the connected component of the identity

of Aut(Λg). According to the Global Torelli theorem for K3 surfaces, there is an

isomorphism

Kg
∼=Dg/Γg

via the period map. Hence, Kg is a locally Hermitian symmetric variety with only finite

quotient singularities, and is thus Q-factorial. Each NL divisor Dg
d,n can be considered

as the quotient of a codimension 1 subdomain in Dg.

As we will use later, we also define the divisors on Kg by specifying a curve

class (cf. [16]): given the data d,n, let Cg
d,n be the locus parameterizing the K3 surfaces

containing a class β with β2 = nand L · β = d. The divisor Cg
d,n is supported on a collection

of NL divisors Dg
d′,n′ satisfyingΔg

d′,n′ = k2Δ
g
d,n for some k∈ Z, whereΔg

d,n is the determinant

of the lattice Λg
d,n. It is not hard to see that the span of two sets {Dg

d,n} and {Cg
d,n} are the

same, and Kg\K◦
g = Cg

0,−2.

2.2 Mukai models

Let (S, L) be a smooth quasi-polarized K3 surface of genus g. The linear system |L|
defines a map ψL from S to Pg. The image of ψL is called a projective model of S. If

ψL is birational to its image, then ψL(S) is a degree 2g − 2 surface in Pg with at worst

rational double points.

Remark 2.1. Suppose that, ψL is birational. If the K3 surface S contains a (−2)-

exceptional curve, the morphism ψL contracts this exceptional curve and the image

ψL(S) has a rational double point. Thus, it is easy to see that ψL(S) is singular only

if (S, L) ∈Kg\K◦
g. �

As we mentioned in the introduction, when 6 ≤ g ≤ 12 (g �= 11), general members

in Kg are no longer complete inspections in Pg, but can be interpreted as complete

intersections with respect to vector bundles on homogenous spaces in the following

sense. Let E be a rank r vector bundle on a smooth projective variety X with local frame

{e1, . . . , er}. A global section

s =
r∑

i=1

fiei ∈ H0(X, E), fi ∈OX,
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7242 F. Greer et al.

is nondegenerate at x if s(x)= 0 and ( f1, . . . , fr) is a regular sequence. The section s is

nondegenerate if it is nondegenerate at every point of (s)0, where (s)0 the zero locus of

the section s.

A subscheme Y is a complete intersection with respect to E if Y is the zero locus

of a nondegenerate global section of W. In particular, one can view the complete inter-

section of r-hypersurfaces H1, H2, . . . , Hr in X as the complete intersection with respect

to the vector bundle

E =OX(H1)⊕ OX(H2) · · · ⊕ OX(Hr)

on X.

Now we review Mukai’s Brill–Noether (BN) theory on K3 surfaces, which essen-

tially gives us the classification of the projective models of general K3 surfaces. For

simplicity of the discussion, we may only consider the polarized K3 surfaces in K◦
g.

Definition 2.2. A polarized K3 surface (S, L) of genus g is BN general if the inequal-

ity h0(M)h0(N) < h0(L) holds for any pair (M, N) of nontrivial line bundles such that

M ⊗ N ∼= L. �

Remark 2.3. The BN theory on K3 surfaces is analogous to the BN theory on curves.

Actually, if a smooth curve C ∈ |L| is BN general, then the polarized K3 surface (S, L) is

BN general (cf. [8]). �

When (S, L) is BN general of genus g, for any two integers r, s with rs = g, Mukai

[19] shows that there exists a rigid and stable vector bundle Vr on S of rank r such

that Vr is globally generated and ∧rVr
∼= L. The higher cohomology of Vr vanishes and

dim H0(S,Vr)= r + s. Then there is a map

ΦVr : S → Gr(r, H0(S,Vr)
∨).

Remark 2.4. For g = 6,8,9,10,12, the values of r, s chosen by Mukai are

g 6 8 9 10 12

rs 2 · 3 2 · 4 3 · 3 2 · 5 3 · 4

In the case g = 7, Mukai chose the rank 5 vector bundle V7 with ∧5 E7 = L⊗2. The linear

system (V7, H0(S,V7)) embeds the K3 surface S into a Grassmannian Gr(5,10), whose

image is contained in the isotropic Grassmannian IGr(5,10). �
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For 6 ≤ g ≤ 12 and g �= 11, Mukai has shown that the image of ΦEr can be

described as complete intersections with respect to a vector bundle on some homoge-

nous subspace in Gr(r, H0(S,Vr))
∨. Here we just summarize Mukai’s results in [19].

Theorem 2.5. If a primitively polarized K3 surface (S, L) of genus 6 ≤ g ≤ 10 or g = 12

is BN general, then it is isomorphic to a complete intersection with respect to a vec-

tor bundle Eg in a homogenous space Xg via ψL , where Xg and the images ψL(S) are

listed:

• g = 6: X6 = Gr(2,5) and E6 =OX6(1)
⊕3 ⊕ OX6(2), ψL(S) is a complete intersec-

tion of a quadric and a codimension 3 linear section in X6;

• g = 7: X7 is the isotropic Grassmannian IGr(5,10) and E7 =OX7(1)
⊕8, ψL(S) is

a codimension 8 linear section of X7;

• g = 8: X8 = Gr(2,6) and E8 =OX8(1)
⊕6, ψL(S) is a codimension 6 linear section

of X8;

• g = 9: X9 is the Langrangian Grassmannian LGr(3,6) and E9 =OX9(1)
⊕4, ψL(S)

is a codimension 4 linear section of X9;

• g = 10: X10 is the flag variety of dimension 5 associated with the adjoint rep-

resentation of G2 embedded in P13 and E10 =OX10(1)
⊕3; ψL(S) is a codimension

3 linear section of X10;

• g = 12: let V be a 7-dimensional vector space and X12 = Gr(3,V). Then (S, L) ∈
K12 is BN general if and only if ψL(S) is birational to a hyperplane section of

Gr(3,V, N)⊆ P13, where N ⊆ ∧2V∨ is a nondegenerate 3-dimensional subspace

and Gr(3,V, N)⊆ Gr(3,V) consists of 3-dimensional subspaces U of V such

that the restriction of N to U × U is zero. �

Here, the nondegeneracy of the subspace N ⊆ ∧2V∨ means that there is no

decomposable vector in N ∧ V∨ ⊆ ∧3V∨. When N is nondegenerate, Gr(3,V, N) is a

smooth Fano three-fold of index 1 and can be considered as a complete intersection

with respect to the vector bundle ∧2F⊕3 on Gr(3,V), where F is the dual of the universal

subbundle on Gr(3,V).

Remark 2.6. The homogenous space Xg is the quotient of a simply connected, semisim-

ple Lie group by a maximal parabolic subgroup. Here, we list some of the associated

semisimple Lie groups of Xg (7 ≤ g ≤ 10), which will be used later:

- g = 7: the spin group Spin(10);

- g = 8: the special linear group P GL(6);
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- g = 9: the symplectic group Sp(6);

- g = 10: the exceptional group of type G2. �

Next, observing that a smooth codimension 3 linear section of Gr(2,5) is the

unique (up to isomorphism) Fano three-fold F5 of degree 5 and index 2, one can certainly

consider the general K3 surface in K6 as a quadric hypersurface in F5. It is known that

the Fano three-fold F5 is a quasi-homogenous space with automorphism group P SL(2).

The following lemma describes the locus of such K3 surfaces.

Lemma 2.7. A BN general K3 surface (S, L) of genus 6 is contained in the smooth Fano

three-fold F5 if and only if (S, L) is not contained in D6
4,0. �

Proof. By Theorem 2.5, we already know that a BN general K3 surface (S, L) ∈K6 is

a complete intersection of a quadric hypersurface Y ⊆ X6 and a codimension 3 linear

section Σ ⊆ X6. We know that Σ is isomorphic to F5 if Σ is smooth.

If Σ is singular, we claim that Σ must contain a quadric surface Q. Actually,

the codimension 3 linear sections in X10 have been determined by Todd and Kimura

(cf. [13, 27]), and it is straightforward to see the existence of the quadric surface. For

instance, a codimension 3 linear section Σ0 with an A1 singularity (this is the generic

case) is defined in P6 as follows:

z0z2 + z1z4 + z2
3 = 0

z0z5 + z2
4 + z3z6 = 0

z1z5 − z2z4 = 0

z1z6 − z3z4 = 0

z2z6 − z3z5 = 0.

(2.1)

Then there exists a quadric cone Q = {z0z2 + z2
3 = z4 = z5 = z6 = 0} in Σ0. The K3 surface

(S, L) is contained in D6
4,0 since the intersection Q ∩ Y is an elliptic curve of degree 4. �

2.3 Non-BN general K3 surfaces

In this section, we classify all non-BN general K3 surfaces for 6 ≤ g ≤ 12 (g �= 11) and

interpret them as a union of NL divisors in Kg. This is natural because non-BN gen-

eral K3 surfaces (S, L) must contain some special curve, and hence lie in some NL

divisor Dg
d,n.
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Lemma 2.8. The locus of non-BN general K3 surfaces in Kg is a union of the NL divisors

Dg
d,n satisfying √

2(g − 1)n<d≤ min
{

g − 1,
n+ 2

2
+ g − 2g + 2

n+ 4

}
.

In particular, a quasi-polarized K3 surface (S, L) of genus 6 ≤ g ≤ 12 and g �= 11 is non-BN

general if and only if it lies in one of the following NL divisors:

(I) Dg
d,0, d= 1,2, . . . , [ g−1

2 ] + 1;

(II) - g = 6, D6
5,2

- g = 7, D7
5,2, D7

6,2

- g = 8, D8
6,2, D8

7,2

- g = 9, D9
6,2, D9

7,2

- g = 10, D10
7,2, D10

8,2, D10
9,4

- g = 12, D12
7,2, D12

8,2, D12
9,2, D12

10,4, D12
11,4 �

Proof. First, suppose (S, L) is not BN general. Then there exist line bundles M, N ∈
Pic(X) satisfying M + N = L and

h0(M)h0(N)≥ g + 1 (2.2)

To compute h0(M) and h0(N), let us recall some results about the linear systems on K3

surfaces. Let F be an effective divisor on S. Saint-Donat has shown that the following

conditions are satisfied:

(i) When |F | has no fixed component, then |F | is basepoint-free and one of the

following holds:

• F 2 > 0, h1(F )= 0. The Riemann–Roch theorem yields

h0(F )= F 2

2
+ 2;

• F 2 = 0, F = kE for some line bundle E satisfying E2 = 0 and

h0(F )= k + 1.

(ii) When F = F ′ + Γ with the fixed component Γ and F ′ has no fixed component,

then F ′ is either base point free or F ′ = kE by (i). For each connected reduced

fixed component Γ ′ of F, we have (Γ ′)2 = −2 and F ′ · Γ ′ = 0 or 1 if F ′ is base

point free; E · Γ ′ = 0 or 1 if F ′ = kE . The converse is also true.
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A connected component Γ ′ of Γ is said to be of Type I if it is reduced

with Γ ′ · F ′ = 1 (respectively, Γ ′ · E = 1) and of Type II otherwise. The first

cohomology of F vanishes if F only has Type I fixed component and F ′ is

base point free.

Coming back to the proof, we discuss two cases.

Case 1. If |L| contains a fixed component, then S is an elliptic K3 surface with a section

that lies in Dg
1,0 (see also Section 2.7). The assertion holds.

Case 2. If |L| has no fixed component, we claim that we can find divisors M̃, Ñ = L − M̃

such that h1(M̃)= h1(Ñ)= 0 and h0(M̃)h0(Ñ)≥ h0(L). Admitting this, we set M̃2 = n and

L · M̃ = d; then h0(M̃)= n
2 + 2 and h0(Ñ)= g + n

2 + 1 − d. Without loss of generality, we

assume h0(M̃)≤ h0(Ñ). Thus we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(n

2
+ 2

) (
g + n

2
+ 1 − d

)
≥ g + 1;

g + n

2
+ 1 − d≥ n

2
+ 2;

d2 − n(2g − 2) > 0.

(2.3)

Here the last inequality in (2.3) is just the Hodge index theorem. Thus (S, L) is contained

in Cg
d,n, where d,n satisfies (2.3).

Now we prove the claim. Note that the inequality h0(M)h0(L − M)≥ h0(L) still

holds if we replace M by its base point free part. So we can assume that M is base point

free.

Denote by ΓI (ΓII) the sum of all Type I (Type II) fixed components of N. Then we

can write N = N ′ + ΓI + ΓII and N ′ has no fixed component. Then the line bundles

M̃ :=
⎧⎨⎩M + ΓII if N ′ is base point free,

M + (k − 1)E + ΓII if N ′ = kE and E2 = 0,

and Ñ = L − M̃ has zero first cohomology. This is because L is nef, which implies that M̃

and Ñ have no Type II fixed component by a simple intersection computation. Thus we

have proved the claim.

Moreover, our assertion follows easily from the fact that the union of Cg
d,n is the

same as the union of Dg
d,n for d,n satisfying the condition (2.3).
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Conversely, if (S, L) lies in one of the NL divisors listed in the statement, then

Pic(S) contains an element M such that M · L = d and M2 = n, satisfying the given condi-

tion. We have the inequality

h0(M)h0(L − M)≥
(

M2

2
+ 2

)(
(L − M)2

2
+ 2

)
≥ g + 1. �

Remark 2.9. A similar computation can be found in [12, Chapter 5], where Johnsen and

Knutsen classify all non-Clifford general K3 surfaces of genus 6 ≤ g ≤ 10. �

2.4 Projective model of non-BN general K3 surfaces

In this section, we describe the projective models of non-BN general K3 surfaces, which

will be used later. Indeed, there is a projective model for the general K3 surface in each

of the NL divisors of Lemma 2.6. Let us start with Saint-Donat’s result.

Proposition 2.10 ([24]). Assume that L is ample. If ψL is not isomorphic to its image,

then

(1) |L| has a fixed component D, which is a smooth rational curve. The image of

ψ|L−D|(S) is a rational normal curve of degree g in Pg;

(2) ψL is a generically 2 : 1 map and ψL(S) is a smooth rational normal scroll of

degree g − 1, or a cone over a rational normal curve of degree g + 1. �

The first (respectively, second) case happens if and only if (S, L) admits an ellip-

tic fibration with a section (respectively, bisection), which means that S contains an

elliptic curve of degree 1 (respectively, 2). Moreover, we have the following lemma.

Lemma 2.11. For 2 ≤ g ≤ 12 and g �= 11, the polarized K3 surface (S, L) lies in Cg
2,0 if and

only if ψL : S → Pg is not isomorphic to its image. Moreover, Cg
2,0 = Dg

1,0 ∪ Dg
2,0 when g �= 7,

and C7
2,0 = Dg

1,0 ∪ Dg
2,0 ∪ D7

5,2. �

Proof. By the discussion above, ψL is not an isomorphism if and only if it contains an

elliptic curve of degree 1 or 2. The locus of those (S, L) ∈Kg containing an elliptic curve

of degree 1 is the irreducible divisor Dg
1,1 because the corresponding rank 2 sublattice(

g 1

1 0

)

is always primitive.
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Similarly, for 6 ≤ g ≤ 12 and g �= 11, the locus of those (S, L) ∈Kg containing an

elliptic curve of degree 2 is the irreducible divisor Dg
2,1, except in the case g = 12. When

g = 12, this locus is the union of the two irreducible divisors D7
2,1 and D7

5,2, because there

are two primitive lattices (
12 2

2 0

)
and

(
12 5

5 2

)

which contain an element β satisfying β2 = 0 and β · L = 2. �

For the case (S, L) is non-BN general and ψL is an isomorphism, the image ψL(S)

is contained in some rational normal scrolls T , that is, projective bundles over P1. Here

we say a rational number scroll T is of type (d1,d2, . . .dn) if

T ∼= P

(
n⊕

i=1

OP1(di)

)

for di ≥ 0. The image of the natural morphism T → P(H0(
⊕n

i=1 OP1(di))) may be singular

if di = 0 for some i, and we say that T is a singular rational normal scroll.

For the low genera appearing in this paper, Johnsen and Knutsen [12] and Hana

[8] have classified all the non-BN general K3 surfaces whose projective models lie in

various rational normal scrolls. Using their results, one can find the projective models

of the K3 surfaces lying in each irreducible component of the non-BN general locus. For

instance, when g = 6, we have

• (S, L) ∈ D6
3,0 if ψL(S) is the hypersurface of a rational normal scroll of type

(2,1,1);

• (S, L) ∈ D6
5,2 if ψL(S) is the complete intersection of a singular rational normal

scroll of type (2,1,0,0).

We refer the readers to [12, Chapter 11; 8, Chapter 2] for the complete list of all possible

projective models.

3 Birational Models of Kg

This section is devoted to the description of a birational model of Kg via GIT. More

precisely, we can interpret the moduli space of BN general K3 surfaces as a moduli space

of smooth complete intersections, using Theorem 2.5. The latter can be constructed via

GIT and this allows us to compute the Picard group of Kg directly.
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3.1 GIT construction

Recall that the general K3 surface in Kg among the range of Mukai models is a com-

plete intersection with respect to some vector bundle Eg on a homogenous space Xg, by

Theorem 2.5. We obtain the GIT model of the moduli space as follows:

(I) For 6 ≤ g ≤ 10, let Vg = H0(Xg,Og(1)), the complete intersections ψL(S) are

parameterized by Grassmannians with a natural group action of Gg coming from the

action on Xg:

• W6 = P(H0(F5,OF5(2))), G6 = P SL(2);

• W7 = Gr(8,V7), G7 = Spin(10);

• W8 = Gr(6,V8), G8 = SL(6);

• W9 = Gr(4,V9), G9 = Sp(6);

• W10 = Gr(3,V10), G10 is the quotient of G2 by its center;

As Wg has Picard number 1, one can naturally take the GIT quotient Wss
g //Gg with

respect to the Gg-linearized ample line bundle OWg(1), where Wss
g is the semistable locus

of Wg. We denote by

Φg : Wss
g //Gg ���Kg

the natural rational map to Kg. As proved by Mukai (cf. [17, Theorem 0.2]), Φg is bira-

tional, and thus the image of Φg contains an open subset of Kg. Our goal of this section

is to describe the image of smooth complete intersections in Kg via Φg.

(II) The case of g = 12 is slightly different. The BN general K3 surface is a

hyperplane section of the smooth Fano three-fold Gr(3,V, N)⊆ P13 for some nondegen-

erate N. This is a complete intersection with respect to the vector bundle (∧2F)⊕3 on

X12 = Gr(3,V). Since H0(Gr(3,V),∧2F)∼= ∧2V∨, we have a natural parameter space V12

of nondegenerate Gr(3,V, N) which is birational to the GIT quotient

Gr(3,∧2V∨)ss//P GL(V).

The moduli space K12 is birational to the P13-bundle P12 → V12, where the fiber over

an element F ∈ V12 is the projective space P(H0(OF (1))). In the rest of this section, we

will discuss the GIT stability of the smooth elements in Wg. We start with the study of

discriminant loci of complete intersections, which play an important role in the proof

of the main theorem.
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3.2 Discriminant loci of complete intersections

First, we discuss general discriminant loci in moduli of complete intersections with

respect to vector bundles, and then we restrict to our cases.

Let X be a smooth projective variety and E be a globally generated vector bundle

on X. The discriminant locus ΔE of E is defined by

ΔE := {s ∈ P(H0(X, E))∨|(s)0 is either singular, or not a complete intersection w.r.t. E},
(3.1)

when E is a very ample line bundle, ΔE is isomorphic to the dual variety X∨, which is

an irreducible subvariety in P(H0(X, E)). Moreover, ΔE is an irreducible divisor if there

exists an element s ∈ΔE such that (s)0 has only isolated singularities (cf. [6, Proposition

1.3]). This implies the following result for vector bundles.

Proposition 3.1. Let P(E) be the associated projective bundle on X, and OP(E)(1) be its

relatively ample line bundle. There is a natural isomorphism

Ψ : H0(P(E),OP(E)(1))
∼−→ H0(X, E). (3.2)

The zero locus of a nonzero section s ∈ H0(P(E),O(1)) in P(E) is smooth if and only if the

section Ψ (s) ∈ H0(X, E) is nondegenerate and the zero locus of Ψ (s) is smooth in P(E). In

other words, ΔE is isomorphic to ΔOP(E)(1). If E is very ample, that is, OP(E)(1) very ample,

then ΔE is an irreducible divisor when there is a complete intersection with respect to

E with only isolated singularities. �

Proof. For the proof, see [18, Proposition 1.9]. �

In the case where E = L⊕k is a direct sum of k-copies of a very ample line bun-

dle L, one can also parameterize the complete intersections with respect to E by the

Grassmannian Gr(k, H0(X, L)) and define

Δk,L = {〈s1, . . . , sk〉 ∈ Gr(k, H0(X, L))|(⊕isi)0 is either singular or not a

complete intersection}, (3.3)

which is called the discriminant locus of L⊕k in Gr(k, H0(X, L)).
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Proposition 3.2. The discriminant locus Δk,L is an irreducible divisor in Gr(k, H0(X, L))

when there is a complete intersection with respect to E with at worst isolated

singularities. �

Proof. The assertion follows from the fact that Δk,L is the quotient (ΔE ∩
P(H0(X, E))s)/SL(k). �

Remark 3.3. In this paper, one can see that most of the vector bundles Eg in Mukai’s

description are very ample, so the irreducibility of the discriminant locus follows from

Proposition 3.1. We should also mention that this method can still be applied to study

the case of K3 surfaces of genus 18 and 20 (cf. [18]), although the corresponding vector

bundles are not ample. �

3.3 GIT stability

Now we discuss GIT stability of the smooth complete intersections in Section 3.1. With

the notation in Theorem 2.5, we say that a nondegenerate three-fold Gr(3,V, N) is non-

special if it does not belong to Prokhorov’s class of genus 12 Fano three-fold defined in

[23], and is special otherwise. Then we start with a useful lemma.

Lemma 3.4. Let X be either a K3 surface or a nonspecial smooth nondegenerate three-

fold Gr(3,V, N). Let L be the natural polarization on X. The group AutL(X) of automor-

phisms f : X
∼−→ X that preserve the polarization L, that is, f∗L ∼= L, is finite. �

Proof. For the proof, see [11, Chapter 5, Proposition 3.3] for K3 surfaces and [23] for

automorphism groups of Fano three-folds. �

Remark 3.5. By [23], there are only three types of Fano three-folds of genus 12 with

infinite automorphism group. One is the Mukai–Umemura manifold constructed in [20]

with automorphism group SL(2), and the other two have automorphism groups Ga and

Gm. The moduli space for each of these types is at most 1-dimensional. �

Theorem 3.6. For 6 ≤ g ≤ 10, if S ∈ Wg is one of the smooth complete intersections

described above, then S is GIT stable in Wg. Moreover, the smooth nondegenerate com-

plete intersection Gr(3,V, N)⊆ Gr(3,V) is GIT stable in Gr(3,∧2V∨) if it is not in the

orbit of special complete intersections. �
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Proof. Let Δg ⊆ Wg denote the discriminant locus, in the sense of (3.3), for 6 ≤ g ≤ 10. By

Lemma 3.2, Δg is an irreducible hypersurface in Wg, since there are complete intersec-

tions with only one rational double point. Indeed, the K3 surface with a primitive Picard

lattice (
2g − 2 0

0 −2

)

will be such a singular complete intersection.

The discriminant locus Δg is thus cut out by a single homogenous equation Ωg =
0, namely the discriminant form. Moreover, the discriminant form Ωg is Gg-invariant

because the property of singularity is preserved under changes of coordinates. Hence

Ωg is a Gg-invariant function. The semistability of the smooth surface S then follows

from the fact that Ωg does not vanish at S.

By Lemma 3.4, we know that S only have finite stabilizers. Suppose that S is

strictly semistable and hence the orbit of S is not closed in Wg −Δg. We claim that there

must exist an element S′ ∈ Wg −Δg in the closure of the orbit of S such that S′ has sta-

bilizer group of strictly positive dimension. Note that Wg −Δg is affine with the natural

Gg action, one can just take S′ to be a point in the closure of the orbit of S in Wg −Δg and

not contained in the orbit itself, which must then have a strictly positive-dimensional

stabilizer group. The surface S′ is a smooth K3 surface with an infinite automorphism

group preserving the polarization, which contradicts Lemma 3.4. Therefore, S must be

GIT stable.

For the case g = 12, we employ a similar idea, using a discriminant form.

Let W12 ⊆ Gr(3,∧2V∨) be the locus of nondegenerate elements in Gr(3,∧2V) and Δ :=
Gr(3,∧2V∨)\W12 be the complement of W12. As any smooth nondegenerate Gr(3,V, N)

has only finitely many automorphisms if it is nonspecial, it suffices to show that Δ is

an irreducible G12-invariant divisor in Gr(3,∧2V∨). To prove this, let us consider the

incident variety

Ω = {(N, [v])|∃ω ∈ Ns.t. ω ∧ v is decomposable} ⊆ Gr(3,∧2V∨)× P(V∨),

with the first projection π1(Ω)=Δ. The second projection π2 :Ω → P(V∨) is surjective,

and the fiber π−1
2 (v) for any v ∈ P(V∨) can be described as follows.

Set Dv = {[ω] ∈ P(∧2V∨)| ω ∧ v is decomposable} ⊆ P(∧2V∨), and Vv = V∨/v the

quotient vector space. Then Dv is isomorphic to the 14-dimensional irreducible variety

(G̃r(2,Vv)× Vv)/C
∗,
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where G̃r(2,Vv) is the space of decomposable vectors in ∧2Vv, and C∗ acts simultaneously

by scaling on G̃r(2,Vv) and Vv ∼= v ∧ Vv.

Next, we define the correspondence

Rv = {(N, ω)| ω⊂ N} ⊆ Gr(3,∧2V∨)× Dv

p

�������������������� q

���������������������

Gr(3,∧2V∨) Dv

where the fiber of the second projection q over ω ∈ Dv is isomorphic to the Grassmannian

Gr(2,∧2V∨/ω). Now we claim that the first projection p is generically finite, and then we

have π−1
2 (v)= p(Rv) is irreducible of dimension 50.

To prove the claim, we need only show the existence of a fiber of p which is finite.

Actually, it is easy to see that there exists a 3-dimensional subspace N ⊆ ∧2V∨
v such that

the plane P(N) meets Gr(2,V∨
v ) in P(∧2V∨

v ) at finitely many points. Identifying N as an

element in Gr(3,∧2V∨), we know that the fiber p−1(N) is just the intersection of P(N) and

Gr(2,V∨
v ) in P(∧2V∨

v ), which is finite. Thus, we have proved the claim, and we have that

Ω is irreducible of dimension 56.

For the rest of the assertion, we still need to understand the general fiber of

the projection π1 :Ω → Gr(3,∧2V∨). Indeed, for general N ∈Δ, it contains only one 1-

dimensional linear subspace spanned by an element ω of the form

ω= f1 ∧ f2 + v ∧ f3,

for some v ∈ V∨, and f1, f2, f3 ∈ Vv are linearly independent. Then the fiber π−1
1 (N) is just

the 3-dimensional projective space P(〈v, f1, f2, f3〉).
Combining everything, we get Δ= π1(Ω) is irreducible of dimension 53 in

Gr(3,∧2V∨), and this completes the proof. �

4 Proof of the Main Theorem

According to Borcherds’ theta lifting theory, a beautiful result of the NL theory on K3

surfaces is that the generating series of NL divisors (in the sense of [16]) is a vector-

valued modular form (cf. [2, 16]). As an application, Bruinier [4] computes the dimension

of the subspace PicNL
Q (Kg) of PicQ(Kg) generated by NL divisors (see also [15]).
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Lemma 4.1 ([15]). Let ρg be the dimension of PicNL
Q (Kg). Then

ρg = 31g + 24

24
− 1

4
αg − 1

6
βg −

g−1∑
k=0

{
k2

4g − 4

}
− �

{
k | k2

4g − 4
∈ Z,0 ≤ k≤ g − 1

}
(4.1)

where

αg =

⎧⎪⎨⎪⎩
0, if g is even;(

2g − 2

2�− 3

)
otherwise.

, βg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

g − 1

4g − 5

)
− 1, if g ≡ 1 mod 3,(

g − 1

4g − 5

)
+
(

g − 1

3

)
otherwise

and (a
b) is the Jacobi symbol. In particular, ρg = 6,7,7,8,9,12 for g = 6,7,8,9,10,11. �

Now we are ready to give the proof of our main theorem.

Proof. We still separate the proof into two cases: (I) 6 ≤ g ≤ 10 and (II) g = 12. For case

(I), we let Ug ⊆ Wg be the open subset parameterizing the smooth complete intersections.

By definition, Ug is the complement of the discriminant locus Δg in Wg. By Theorem 3.6,

the reductive Lie group Gg acts properly on Ug. Then we get an open immersion:

Φ ′
g : Ug//Gg −→Kg.

We denote by KBN
g the complement of the union of NL divisors listed in Theorem 1.1.

Then it is contained in the image of Φ ′
g by Theorem 2.5 and Lemma 2.8.

Moreover, since the complement Wg\Ug is an irreducible divisor and Pic(Wg)∼=
Z, the Picard group of Ug is torsion. Let PicQ(Ug)Gg be the group of Gg-linearized line

bundles on Ug. By [14, Proposition 4.2], there is an injection

Pic(Ug//Gg) ↪→ Pic(Ug)Gg . (4.2)

The forgetful map PicQ(Ug)Gg → PicQ(Ug) has kernel the group of rational characters

χ(Gg), which is trivial because Gg is simple. Thus PicQ(Ug//Gg) is trivial. Note that KBN
g

is an open subset of Ug//Gg; then PicQ(Ug//Gg)= 0 implies that PicQ(KBN
g )= 0 by the local-

ization sequence for Picard groups. It follows that the Picard group PicQ(Kg) is spanned

by precisely the NL divisors stated in the theorem. Finally, these NL divisors form a

basis of PicQ(Kg) by the dimension counts of Lemma 4.1.

For case (II), we let U12 ⊆P12 be the locus parameterizing complete intersections

of a smooth three-fold Gr(3,V, N)⊆ P13 which are not in the orbit of special three-folds
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and a hyperplane section in P13. By Theorem 3.6, we know that U12 admits a fibration to

the orbit space

Wns
12//SL(V). (4.3)

where Wns
12 ⊆ Gr(3,∧2V∨) is the parameter space of Gr(3,V, N) which is not in the orbit

of special three-folds. The open subset

Wns
12 ↪→ Gr(3,∧2V∨)\Δ

has Picard number zero, and so does the quotient Wns
12/SL(V). The fiber of U12 →

Wns
12/SL(V) over a three-fold F ∈ Wns

12/SL(V) is the complement of the discriminant ΔOF (1)

in P(OF (1)). Therefore, dim PicQ(U12)= 0.

Similarly, one observes that the image of U12 ↪→K12 contains the complement of

the NL divisors listed in the main theorem statement, union with a high codimension

(≥ 2) subvariety (see Remark 3.5) parameterizing the K3 surfaces in special three-folds.

As before, this shows that the Picard group PicQ(K12) is spanned by the NL divisors in

the assertion. �

By Lemma 4.1, the rank of PicQ(K12) is 11, hence the generators in (1.2) are not

linearly independent. They will satisfy a linear relation (4.4) (see Remark 4.2).

Remark 4.2. As we have mentioned at the beginning of this section, the NL divisors

Dg
d,n (in the sense of [16]) correspond to certain vector-valued modular forms (cf. [3,

Section 1.2]). So in principle, one can compute the relations between NL divisors via

these vector-valued modular forms. In a forthcoming result of Arie Peterson, he shows

the following relation on PicQ(K12):

3D12
8,2 − D12

9,2 − 4D12
10,4 + 2D12

11,4 + 8D12
4,0 − 5D12

5,0 + D12
6,0 = 0. (4.4)

�

Remark 4.3. As shown in [5, Section 6.3] (see also [15] for the more general case), the

second cohomology group H2(Dg/Γg,Q) has a pure Hodge structure and we have an

isomorphism

PicQ(Dg/Γg)
∼−→ H2(Dg/Γg,Q) (4.5)

from the exponential exact sequence. The latter is also isomorphic to the arithmetic

group cohomology H2(Γg,Q). The NL conjecture is equivalent to the cohomology group of

Dg/Γg being spanned by (classes of) locally Hermitian symmetric subvarieties. Recently,
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there have emerged more standard ways to study this problem on locally Hermitian

symmetric varieties of orthogonal type; cf. [1, 10]. In a sequel to this paper, we will

approach the conjecture from this direction. �
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