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In this article we prove the following theorems about weak approximation of smooth

cubic hypersurfaces and del Pezzo surfaces of degree 4 defined over global fields. (1) For

cubic hypersurfaces of dimension at least two defined over global function fields, if there

is a rational point, then weak approximation holds at places of good reduction whose

residue field has at least eleven elements. (2) For del Pezzo surfaces of degree 4 defined

over global function fields, if there is a rational point, then weak approximation holds

at places of good reduction whose residue field has at least thirteen elements. (3) Weak

approximation holds for cubic hypersurfaces of dimension at least ten defined over a

global function field of characteristic not equal to 2, 3, 5 or a purely imaginary number

field.

1 Introduction

Let K be a number field or the function field of a smooth projective geometrically con-

nected curve B over a finite field Fq. Given a variety X defined over K, a natural question

is to understand the set of K-rational points X(K) of X . We can study the set X(K) of K-

rational points by inspecting its local behavior over the completion Kν at each place ν of

K. This naturally leads to the study of local-global problems (i.e., weak approximation)
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for X . The variety X is said to satisfy weak approximation if the set of rational points

is dense in the set of adelic points.

Smooth cubic hypersurfaces have served as a good testing sample for people to

investigate questions related to local-global principles. For smooth cubic hypersurfaces

of dimension at least fifteen(or any other smooth hypersurfaces of sufficiently large

dimensions) defined over the function field Fq(t), weak approximation is established in

[17]. Recent work [2] of Browning and Vishe shows that weak approximation holds for

cubic hypersurfaces of dimension at least six over Fq(t) with q not a power of 2 or 3.

These results depend on the adaption of the circle method to the function field case.

Yong Hu [11] studies weak approximation for cubic hypersurfaces defined over

global function fields K = Fq(B). He proves that if there is a rational point, then weak

approximation holds at a single place of good reduction for q > 47 and the characteristic

is not 2 or 3 using an argument of Swinnerton-Dyer [24], and weak approximation at

zeroth order at places of good reduction for q ≥ 11. In this article we improve his result

as follows.

Theorem 1.1. Let X be a smooth cubic hypersurface of dimension at least two defined

over the function field K = Fq(B) of a curve B defined over a finite field Fq. Assume that X

has a K-rational point. Then X satisfies weak approximation at finitely many places of

good reduction whose residue fields have at least eleven elements. In particular, weak

approximation at places of good reduction holds if q ≥ 11. �

Here, we say that a place ν of K is a place of good reduction for X over K if

there exists a smooth projective morphism X̂ → Spec (Ôν), such that the generic fiber is

isomorphic to X ×K Kν and the closed fiber is a smooth cubic hypersurface, where Oν is

the ring of integers of the local field Kν .

The proof of this theorem uses the deformation theory of rational curves, and

is a refinement of Hu’s approach in [11]. The general deformation techniques allow us

to show that there are certain moduli spaces whose points parameterize sections that

approximate given formal sections to a given order. This part is the new ingredient in this

article in addition to Hu’s approach [11] to weak approximation of cubic hypersurfaces.

The remaining argument is the same as Hu’s. Namely, using the Lang–Weil estimate we

show that for all field extensions of large enough degrees, we can find a section defined

over that field extension that approximates the given formal sections to a specific order.

Finally a trick using the “addition law" on the rational points of cubic hypersurfaces

solves the weak approximation problem over the original finite field.
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With essentially the same ideas we obtain the following result for a smooth del

Pezzo surface of degree 4.

Theorem 1.2. Let X be a smooth del Pezzo surface of degree 4 defined over K = Fq(B),

the function field of a curve B defined over a finite field Fq. Assume thatX has aK-rational

point. Then X satisfies weak approximation at finitely many places of good reduction

whose residue fields have at least thirteen elements. In particular, weak approximation

at finitely many places of good reduction holds if q ≥ 13. �

Here, the definition of places of good reduction is similar to those of cubic hyper-

surfaces.Namelywe require the existence of a smoothprojectivemorphism X̂ → Spec Ôν

whose central fiber is a smooth del Pezzo surface of degree 4 (as opposed to any smooth

projective surface).

Colliot-Thélène has informed us that one could follow the method of [21] to

deduce the result in Theorem 1.2 over a global function field of odd characteristic.

As a side remark, the anti-canonical system of a del Pezzo surface of degree 4

gives an embedding into P
4 as the complete intersection of two quadrics. For a smooth

complete intersection of two quadrics in P
n,n ≥ 5, it is recently proved in [26] that weak

approximation at all places holds using a geometric argument due to Colliot-Thélène

et al. [3, 4]. As for cubic hypersurfaces in P
n over a number field, partial results are

known either by the descent and fibration methods [5, 7, 8] or the circle method [22, 23].

In this paper we prove the following result by a different argument (than the

methods used above).

Theorem 1.3. Let X be a smooth cubic hypersurface of dimension at least ten defined

over a global field K, which is either a purely imaginary number field or Fq(B), the

function field of a smooth projective geometrically connected curve B defined over a finite

field Fq whose characteristic is not 2, 3, 5. Then X satisfies weak approximation. �

A smooth projective cubic hypersurface of dimension at least eight defined over

a global field always has a rational point (the number field case is settled by [1]).

The proof of Theorem 1.3 is based on a method to construct rational curves over

a global field using the geometry of cubic hypersurfaces, first used by Madore [18].

2 Preliminaries

In this section we will recall some important notions and constructions.
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2.1 Formulation of weak approximation over function fields

Let k be a field, and let B be a smooth projective curve over k, with function fieldK = k(B).

We assume that X is a smooth proper variety over K.

Definition 2.1. A model of X is a flat proper morphism π : X → B with generic fiber

isomorphic to X . �

Each section of the model corresponds to a K-rational point of X , and vice versa.

Fromnowonwe assume that the field k is either algebraically closed or finite andunwind

the definition of weak approximation using a geometric formulation (cf. [9, Section 1]),

which is equivalent to the definition in Section 1.

Given a finite sequence (ν1, . . . , νl) of distinct places of K, each νi corresponds

to a closed point bi ∈ B. Let ÔB,bi denote the completion of the local ring OB,bi at the

maximal ideal mB,bi , and let Kνi
be the completion of K = k(B) at bi. Then X satisfies weak

approximation at (ν1, . . . , νl) if the image of the diagonal map X(K) → ∏
i X(Kνi

) is dense,

where
∏

i X(Kνi
) takes the product topology of the ν-adic topologies. Now we fix a model

π : X → B, a place νi, and for each place νi a section ŝi of the restriction

π |Spec ÔB,bi
: X ×B Spec ÔB,bi → Spec ÔB,bi .

Note that ŝi corresponds to a point of X(Kνi
).

A basic νi-adic open neighborhood consists of ŝi in X(Kνi
) consists of sections of

π |Spec ÔB,bi
which agree with ŝi modulo mN+1

B,bi
for some N ∈ N. Then one can reformulate

weak approximation in the following way.

Definition 2.2. We say that X satisfiesweak approximation at order N if for any finite

number of closed points (b1, . . . ,bl) and any formal power series sections (̂s1, . . . , ŝl) of

X ×B Spec ÔB,bi → Spec ÔB,bi ,

there exists a regular section σ of π agreeing with ŝi modulo mN+1
B,bi

for each i. We say X

satisfies weak approximation if X satisfies weak approximation at any order N ≥ 0.

We say that X satisfies weak approximation (of order N for some fixed N ≥ 0)

at places of good reduction if the above condition holds when restricted to sequences

(b1, . . . ,bl) of places of good reduction for X over k(B) (for the given N ). �
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2.2 Iterated blow-ups

Assume we have a section σ : B → X sm of the model π : X → B, where X sm is the smooth

locus of π .

Given any jet data

JN = (N ; (b1, . . . ,bl) ; ŝ1, . . . , ŝl),

consisting of a number N , closed points (b1, . . . ,bl), and formal sections ŝ1, . . . , ŝl around

each points, a section of the model π agreeing with (̂s1, . . . , ŝl) to the Nth order is the

same as a section in the Nth iterated blowup associated with J (Proposition 11, [10]). To

be precise, the iterated blow-up

β(JN) : X (JN) → X

is obtained by performing a sequence of blow-ups as follows: blow up X successively N

times, where at each stage the center is the point at which the strict transform of ŝi meets

the fiber over bi. We denote by X (Jk) the kth blow-up and denote by β(Jk) : X (Jk) → X
the morphism. Observe that at each stage we blow up a smooth point of the fiber of the

corresponding model and that the result does not depend on the order of the bi. The

procedure is depicted in Figure 2.

The fiber of X (JN) over bi ∈ B decomposes into irreducible components

X (JN)bi = Ei,0 ∪ Ei,1 ∪ · · · ∪ Ei,N ,

where

• Ei,0 is the strict transform of Xbi .

• Ei,k = Blri,k (P
n), k = 1, . . . ,N−1, is the blow-up of the intermediate exceptional

divisor P
n at ri,k, the point where the strict transform of ŝi meets the fiber of

the kth blow-up over bi. Here n = dimX .

• Ei,N ∼= P
n is the Nth exceptional divisor.

• The intersection Ei,k ∩ Ei,k+1 is the exceptional divisor P
n−1 ⊂ Ei,k, and a strict

transform of a hyperplane in Ei,k+1 for k = 0, . . . ,N − 1.

• Each Ei,k is a P
1-bundle over the exceptional divisor P

n−1 for k = 1, . . . ,N − 1.

Let ri ∈ Ei,N\Ei,N−1 denote the intersection of the strict transform of ŝi with Ei,N . For

each section σ ′ of π ◦ β(Jk) : X (Jk) → X → B, the composition β(Jk) ◦ σ ′ is a section of
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π : X → B. Given a section σ ′ : X (Jk) → B with σ ′(bi) = ri, composing with β(Jk) yields a

section σ of X → B such that σ ≡ ŝi mod mk+1
B,bi

, for i = 1, . . . , l and for k = 0, . . . ,N .

3 Proof of Theorem 1.1

One of the main ingredients in our proof is the deformation technique developed by

Kollár et al. [14], which was later used by Hassett and Tschinkel [10] to prove weak

approximation at places of good reduction of rationally connected varieties defined over

C(B), the function field of a complex curve. Later Yong Hu [11] applied this method to

proveweak approximation of order 0 at places of good reduction for cubic hypersurfaces

over global function fields. Our approach is motivated by their works. The key to prove

weak approximation of an arbitrary order is to show uniform boundedness results for

the construction of combs, which we prove in the following section.

3.1 Construction of bounded family of combs

Definition 3.1. Let k be a field. A comb with n teeth over k is a nodal curve T over

k, which is a union of two curves D and C over k, such that the following conditions

hold:

• The curve D is a smooth and geometrically irreducible curve defined over k.

• The curve C̄ := C ⊗k k̄ is a union of n subcurves T̄1, . . . , T̄n.

• Each T̄i is a chain of P
1
k̄
’s.

• Each T̄i meets D̄ := D⊗kk̄ transversally in a single smooth point of D̄; however,

the point may not be defined over k.

• T̄i ∩ T̄j = ∅, for all i �= j. �

Here the curve D is called the handle of the comb and each T̄i a tooth.

Let B be a smooth projective curve over a field k and let π : X → B be a flat

projectivemorphismwith smooth separably rationally connected generic fiber. To prove

weak approximation of the generic fiber, we need to produce sections passing through

some given points. To this end it is crucial to construct combs of bounded degree. The

following lemmas will produce bounded family of sections over an algebraically closed

field (cf. Lemma 3.2) and then over a finite field (cf. Lemma 3.3).

Lemma 3.2. Keep the notations introduced above and assume furthermore that the

field k is algebraically closed. Let H be an ample divisor on X . For any triple of positive
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integers (d,L,N), there exists an integer r := r(d,L,N) > 0 such that for any section

σ : B → X sm in the smooth locus of π , degH (σ ) ≤ d and any sequence of distinct closed

points (b1, . . . ,bL) ⊂ B, we can construct a comb T together with a morphism f : T → X
which satisfies the following conditions.

(1) The comb T takes B as its handle and the morphism f restricted to B is the

section σ : B → X .

(2) The comb T has r-teeth mapping to r very free curves {T1, . . . ,Tr}
with bounded H-degree in distinct general fibers over points other than

(b1, . . . ,bL).

(3) The morphism f : T → X is an immersion. That is, the map f ∗�X → �T is

surjective and has locally free kernal. We define the normal sheaf NT as the

dual of the kernal of the surjection f ∗�X → �T .

(4) If the fiber dimension is at least three, then we may choose the immersion

f : T → X to be an embedding.

(5) H1
(
B,NT |B

(− (N + 1)
(∑

bi
))) = 0.

(6) The sheaf NT |B
(− (N + 1)

(∑
bi

))
is globally generated. �

This is proved in [6, Section 2.1], although the authors of [6] did not make explicit state-

ment about the boundedness of the degree. Such boundedness result is immediate from

proof in loc. cit..

Then we can use the Lang–Weil estimate to prove the following boundedness

result over finite fields.

Lemma 3.3. Keep the notations above. Assume that the field k is finite. Let H be an

ample divisor on X . For any triple of positive integers (d,L,N), there exist integers r > 0

and m0 > 0 such that for any m ≥ m0, any section σ : B → X sm defined over Fqm ,

degH (σ ) ≤ d and any sequence of distinct closed points (b1, . . . ,bl) ⊂ B defined over Fqm ,

where
∑

deg[κ(bi) : Fqm ] = L, we can construct a comb T with r teeth together with a

morphism f : T → X satisfying the following conditions.

(1) The comb T takes B as its handle and the morphism f restricted to B is the

section σ : B → X sm.

(2) The comb T has r teeth mapping to r very free curves {T1, . . . ,Tr} with

bounded H-degree in general fibers outside (b1, . . . ,bl).

(3) The morphism f : T → X is an immersion.
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(4) If the fiber dimension is at least three, then we may choose the immersion

f : T → X to be an embedding.

(5) H1
(
B,NT |B

(− (N + 1)
(∑

bi
))) = 0.

(6) The sheaf NT |B
(− (N + 1)

(∑
bi

))
is globally generated. �

Proof. In our proof, all degrees are taken with respect to the ample divisor H. Let S

denote the set of places of bad reduction, and let (d,L,N) be a triple of positive integers.

Let r be the number of very free curves obtained from Lemma 3.2 for themodel π : X → B

over F̄q and the triple (d,L,N).

Consider the space S parameterizing the following data:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a section σ : B → X sm, deg(σ ) ≤ d;

a collection of L distinct points (b1, . . . ,bL) ⊂ B× . . . × B︸ ︷︷ ︸
L

;

a collection of r distinct points {x1, . . . ,xr} ∈ B× . . . × B︸ ︷︷ ︸
r

;

relative tangent directions (v1, . . . ,vr) ∈ (
(T rel

X )|σ(x1), . . . , (T rel
X )|σ(xr )

)
;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

subject to the following requirements:

• The fiber Xbi over each bi is smooth and separably rationally connected.

• The two sets of points {xj}rj=1 and {bi}Li=1 have empty intersection.

• One can attach r very free curves of bounded degree to σ(B) at {xj}rj=1 along

the tangent directions (v1, . . . ,vr) to obtain a comb T , such that

H1
(
B,NT |B

(
− (N + 1)

(∑
bi

)))
= 0

and NT |B
(− (N + 1)

(∑
bi

))
is globally generated.

Let B be the space parameterizing pairs consisting of a section σ of degree at most

d and a collection of L distinct points (b1, . . . ,bL) in B\S, where fibers Xbi are smooth

and separably rationally connected. Lemma 3.2 ensures that fibers of S over any point

(σ , (b1, . . . ,bL)) ∈ B is non-empty. The fiber of S over any point (σ , (b1, . . . ,bL)) ∈ B is

geometrically irreducible.

Now we can complete the proof by applying the Lang andWeil estimate [16]. For

a geometrically irreducible quasiprojective varietyU , we embed it into a projective space

of dimension n and take its closure Ū in P
n. Denote by ∂U the complement of U in Ū . In

order to apply the Lang–Weil estimate to find a rational point inU for every large enough
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finite field, we need to bound the numbers deg Ū , deg ∂U , dimU , and the dimension of

the ambient projective space n. If we have a family of geometrically irreducible varieties

p : U → T , with U and T quasi-projective, then we can realize the morphism p as an

open immersion into some U which is projective over T . Thus there is a universal bound

of the above numbers for each fiber over T . We apply this to the family S over the

base B. Therefore, there exists an integer m′
0 such that for any m ≥ m′

0, for any section

σ : B → X sm and (b1, . . . ,bl)L ⊂ B defined over Fqm , there is an Fqm-rational point of the

fiber of S over (σ , (b1, . . . ,bl)L).

By [15, Theorem 2], there exist integers a0 > 0 and d0 > 0 such that for any

m ≥ a0, b ∈ B\S, any κ(b)-point x in Xb, any tangent vector v in the relative tangent

direction T rel
x , there exists an immersed very free rational curve C in Xb of degree at

most d0 passing through x over Fqm whose tangent direction at x is v.

We take m0 to be the larger of m′
0 and a0. �

3.2 The induction and the reduction

Section 3.1 provides a construction of combs with bounded degree, and these combs will

be used to construct sections for weak approximation of a prescribed order here. We

will adopt notations from Section 2.

Lemma 3.4. Let π : X → B be a flat projective family over a finite field Fq. Assume

that there is a section σ : B → X sm in the smooth locus of π , and the generic fiber is

smooth projective and separably rationally connected. Let H be an ample divisor on X .

Let S ⊂ B denote the finite set of points the fibers over which are either singular or

not separably rationally connected. Then for any two positive integers N and L, there

exist two integers CN ,L,dN ,L, both of which only depend on the numbers N and L, and a

bounded family MN ,L parameterizing sections in the smooth locus of π with H-degree

at most dN ,L, such that the following is true:

For every m ≥ CN ,L, every collection of closed points (b1, . . . ,bl) ⊂ B\S defined

over Fqm , with the property that
∑

i deg[κ(bi) : Fqm ] = L, and every sequence (̂s1, . . . , ŝl)

of formal power series sections of π over Spec ÔB,b1 , . . . , Spec ÔB,bl , there is a section

s : B → X sm, parameterized by an Fqm-point of MN ,L such that the section s of π is

congruent to ŝi modulo mN+1
B,bi

for i = 1, . . . , l. �

Proof. Unless otherwise specified, all degrees discussed in our proof are taken with

respect to H. We use induction on N and adopt notations of iterated blow-ups from

Section 2.2.
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The case where N = 0 follows from Proposition 3 [11], that is there exists a lower

bound C0,L, an upper bound d0,L, and a bounded family M0,L of sections σ0 : B → X sm of

degree at most d0,L , such that for every m ≥ C0,L, weak approximation at order N = 0

holds at any finite sequence of distinct closed points (b1, . . . ,bl)L ⊂ B\S defined over Fqm .

Assume the statement is true for n = N − 1.

For n = N and m ≥ CN−1,L , consider the jet data,

JN = (N ; (b1, . . . ,bl) ; ŝ1, . . . , ŝl) ,

where (b1, . . . ,bl) ⊂ B\S are closed points defined over Fqm ,
∑

i deg[κ(bi) : Fqm ] = L, and

(̂s1, . . . , ŝl) is a sequence formal power series sections of π over Spec ÔB,bi over Fqm . As in

Section 2.2, we consider the iterated blow-up

β(JN) : X (JN) → X (JN−1) → . . . → X

associated with the jet data.

By the assumption of induction, we have a bounded family MN−1,L of sections

σN−1 : B → X sm of degree at most dN−1,L, such that

σN−1 ≡ ŝi mod mN−1+1
B,bi

for i = 1, . . . , l.

In terms of the iterated blow-up shown in Figure 1, this is equivalent to the following:

in the (N − 1)th iterated blow-up X (JN−1) → X , the strict transform of σN−1 meets the

strict transforms of ŝi in the exceptional divisors E ′
i,N−1

∼= P
n , for i = 1, . . . , l. We denote

these intersection points by ri,N−1 for i = 1, . . . , l. Then X (JN) is obtained by blowing up

X (JN−1) at ri,N−1 ∈ E ′
i,N−1 for i = 1, . . . , l.

The fiber X (JN)bi decomposes into irreducible components

X (JN)bi = Ei,0 ∪ Ei,1 ∪ . . . ∪ Ei,N−1 ∪ Ei,N .

Let ri ∈ Ei,N\Ei,N−1 be the intersection of the strict transform of ŝi and Ei,N , let σ̃N−1 denote

the strict transform of σN−1 in X (JN), and let H̃ ⊂ X (JN) denote the pullback of the ample

divisor H.

Over Fqm ,m ≥ max(CN−1,L,m0), where m0 = m0(dN−1,N ,L) is the number m0

given in Lemma 3.3, we can construct a comb TJN with an immersion fJN : TJN → X (JN)

as follows.

Figure 2 depicts the construction of a teeth of TJN .
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Fig. 1. From (N − 1)th iterated blow-up to the Nth iterated blow-up.

Step 1: Take B as the handle and f restricted to B is the section σ̃N−1(B).

Step 2: For the pair of points ri and σ̃N−1(bi), connect themwith a line Li,N ⊂ Ei,N ∼= P
n,

and Li,N intersects the exceptional divisor P
n−1 ⊂ Ei,N−1 at a point Pi,N−1 .

Step 3: Since Ei,N−1 is a P
1-bundle over P

n−1 = Ei,N−1 ∩ Ei,N , we have a P
1 passing

through Pi,N−1 and intersects the exceptional divisor P
n−1 ⊂ Ei,N−2 at a point

Pi,N−2.

Step 4: Rep eating the previous step till Ei,1, we obtain a chain of P
1’s starting from

Ei,N−1 and arriving in Ei,1. Let Pi be the intersection of the P
1 in Ei,1 and the

exceptional divisor of Ei,0, the proper transform of Xbi .
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Fig. 2. Consider the fiber X (JN )b1 of the Nth iterated blow of X (Figure 1), the solid chain of

curves—with C1 at one end, the line L1,N at the other end-forms a teeth of bounded degree of TJ .

Step 5: Attach a very free curve Ci at Pi in Ei,0, with degH̃(Ci) bounded by some d0,

such that Ci meets the exceptional divisor P
n−1 of Ei,1 transversely at Pi.

The number d0 is independent of the points bi. This can be achieved by [15,

Theorem 2].

Step 6: Take a chain of N + 1 P
1’s as a teeth Ti attached to B at bi. Map the teeth Ti

to the union of Li,N , P
1’s, and Ci obtained from the above steps. We have the

bound degH̃(Ti) ≤ d0.

Let pi ∈ TJN be points mapped to ri. Since NσN−1

(−N (∑
bi

)) = Nσ̃N−1 , the calculation

of [10, Lemma 26], combined with Lemma 3.3, shows that as long as m is at least
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max(m0,CN−1,L), we can assemble a new comb over Fqm with a morphism to XJN , still

denoted by TJN with a little abuse of notations, such that NTJN

(− ∑
pi

)
is globally gener-

ated and has no H1. The new comb TJN is constructed by attaching r very free immersed

(or embedded if the fiber dimension is at least three) rational curves with bounded

H̃-degree (≤ d0) in fibers outside b1, . . . ,bl, The H̃-degree of TJN is bounded from above

by dN ,L := dN−1,L + (r + L)d0.

Now let us consider the space B parameterizing the following data:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a collection of L distinct points (b1, . . . ,bL) ∈ B× · · · × B︸ ︷︷ ︸
L

;

a sequence (̂s1|Spec (ÔB,b1
/mN+1

B,b1
)
, . . . , ŝL|Spec (ÔB,b1

/mN+1
B,b1

)
)

of N-jet of formal sections ŝi;

iterated blow-up X (JN), JN = (N , (b1, . . . ,bL), (̂s1, . . . , ŝL));

sequence of points (r1, . . . , rL) ∈ (E1,N , . . . ,EL,N),

where ri is the intersection of strict transform of ŝi and Ei,N ;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let M be a family of sections over B, with the fiber Mb over each point b ∈ B parameter-

izing the collection of all sections σ : B → X (JN) passing through (r1, . . . , rL) such that

β(JN) ◦ σ is in the smooth locus of π and σ has H̃-degree at most dN ,L together with an

immersion f to X (JN), where JN is the jet data parameterized by the point b . Each moduli

space Mb has finitely many components. Consider the closure Mb of Mb in the moduli

space of stable maps. LetM b denote the coarse moduli space of Mb . Since a section has

no automorphisms, M is an open subset of M .

For anym ≥ max(m0,CN−1,L), and any Fqm-point b ∈ B, our construction of comb

TJN gives a smooth and non-stacky Fqm-point of Mb , which has a smoothing so that a

general member of the smoothing lies in M. This indicates that there is a geometrically

irreducible component of Mb defined over Fqm . Furthermore, this component contains

an open subset that is a geometrically irreducible component of Mb defined over Fqm .

Now we are ready to apply the Lang–Weil estimate and the strategy is the same

as Lemma 3.3. Namely, as b ∈ B varies,M b forms a bounded family. There is a universal

bound for the dimension, degree, and deg
(
∂M b

)
of each fiber. Then Lang–Weil estimate

indicates that there exists CN ,L > 0 such that whenm ≥ CN ,L, there is an Fqm-point of Mb .

Finally, we take the family MN ,L of sections of X sm to be the family of sections

whose degree is at most dN ,L. �

In the following, we show that we can go back to a smaller field using the special

geometry of cubic hypersurfaces. The first is a result on “lifting" formal sections.
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Lemma 3.5. Assume that q is at least eleven. Given a finite sequence (b1, . . . ,bk) of

distinct closed points of B, such that each fiber Xbi is a smooth cubic hypersurface,

and a sequence (̂s1, . . . , ŝk) of formal power series sections of π over Spec ÔB,bi , there

is a sequence (̂s1′, . . . , ŝk ′) of formal power series sections of π over Spec ÔB,bi ⊗ Fq2 but

not over Spec ÔB,bi , and a sequence (̂L1, . . . , L̂k) of lines defined over Spec ÔB,bi such that

L̂i ∩ X = {̂si, ŝ′
i, ŝ

′′
i }, where ŝ

′′
i is the conjugate of ŝ

′
i under Gal(Fq2/Fq). �

Proof. Let xi be the intersection of ŝi with Xbi .

By Lemma 9.4 [13], given any smooth cubic hypersurface X ⊂ P
n,n ≥ 2 over

Fq,q ≥ 11, and any Fq-point xi ∈ X(Fq), there is a point yi ∈ X(Fq2) − X(Fq) and a line Li

defined over Fq such that Li ∩ X = {xi,yi,yσ
i }, where yσ

i is the conjugate point of yi under

Gal(Fq2/Fq).

So there are lines L̂i defined over Spec ÔB,bi such that L̂i×Spec κ(bi) = Li and such

that ŝi ∈ L̂i ∩ X . Take ŝ
′
i and ŝ

′′
i to be the intersection of L̂i with X . �

Now we prove the key reduction lemma.

Lemma 3.6. Let X be a smooth cubic hypersurface defined over Fqk (B). Assume that q

is at least eleven. If weak approximation at order N holds for places of good reduction

over Fq2k (B), then weak approximation at order N holds for places of good reduction

over Fqk (B). �

Proof. By Lemma 3.5, given a finite sequence (b1, . . . ,bl) of distinct closed points of

B such that the fiber Xbi is smooth, and a sequence (̂s1, . . . , ŝl) of formal power series

sections of π over Spec ÔB,bi , there is a sequence (̂s′
1, . . . , ŝ

′
l) of formal power series

sections of π over Spec ÔB,bi ⊗ Fq2k but not over Spec ÔB,bi , and a sequence (̂L1, . . . , L̂l)

of lines defined over Spec ÔB,bi such that L̂i ∩ X = {̂si, ŝ′
i, ŝ

′′
i }, where ŝ′′

i is the conjugate of

ŝ′
i under Gal(Fq2k/Fqk ).

By assumption, there is a section s′ defined over Fq2k such that

s′ ∼= ŝ′
i ⊗ Fq2k mod mN+1

B,bi
.

By the choice of ŝ
′
i, s

′ is not defined over Fqk . Let s
′′ be the conjugate section of s′. Then it

satisfies

s′′ ∼= ŝ′′
i ⊗ Fq2k mod mN+1

B,bi
.
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Take the family of line L spanned by s′ and s′′. The family L is necessarily defined

over Fqk . Let s be the third section in the intersection of L and X . Then this section s

meets the approximation requirement by construction. �

Wenowfinish the proof of Theorem 1.1. For any cubic hypersurface of dimension

at least two defined over Fq(B), there is a model π : X → B over B such that for each

closed point b ∈ B, if the corresponding place is a place of good reduction, then the fiber

of X over b is a smooth cubic hypersurface of dimension at least two. By using Néron

desingularization [20, Corollary 2.4], we may assume that for the model π : X → B,

there is a section B → X sm in the smooth locus of X . Any smooth cubic hypersurface of

dimension at least two is separably rationally connected. Thus the set S ⊂ B in Lemma

3.4 is just the set of points over which the fibers are singular. Given the collection of

closed points b1, . . . ,bl and the order N ≥ 0 we want to approximate, there is a number

M such that weak approximation at order N holds over these points over Fq2m for any

m ≥ M by the Lemma 3.4. Hence, weak approximation at order N for q ≥ 11 at these

points of good reduction follows from Lemma 3.6.

4 Proof of Theorem 1.2

In this section, we will discuss weak approximation for del Pezzo surfaces of degree 4

at places of good reduction whose residue fields have at least thirteen elements (assum-

ing the existence of rational points) by applying ideas similar to the case of cubic

hypersurfaces (cf. Section 3).

By Lemma 3.4, the set of rational points of a del Pezzo surface of degree at least

four (in fact any smooth projective separably rationally connected variety) defined over

a global function field is either Zariski dense or empty. The classical geometry of degree

4 del Pezzo surfaces naturally suggests that one may blow up a point not contained in

the sixteen lines and get a smooth cubic surface with a line, and thus one may reduce

the weak approximation problem to the case of cubic surfaces. However, in our case

we cannot use this strategy, at least not in this simple-minded way. The reason is the

following: for a place ν of good reduction, we do not know after the blow-up it is a place

of good reduction if there is rational point over the function for the cubic surface under

our definition (cf. Section 1). More precisely, it is possible that the central fiber of the

family only becomes a weak Fano surface and the linear system of the anti-canonical

bundle contracts some (−2)-curves. This could happen if all the Fq-rational points of

the fiber are contained in one of the sixteen lines.
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Hence, instead of using the reduction to cubic surfaces as the above, we will

prove the following proposition, then weak approximation for del Pezzo surfaces of

degree 4 at places of good reductions follows by the same argument as in the proof of

Theorem 1.1 in Section 3.

Throughout the rest of this section, letX be a smoothdel Pezzo surface of degree 4

defined over a finite fieldFq, and letX ↪→ P
4 be the embedding given by the anti-canonical

bundle of X .

Proposition 4.1. If q ≥ 13, then given a smooth Fq-rational point x of X , there exists a

plane 
 defined over Fq such that the intersection of 
 with X consists of x and three

other points, each of which is defined over Fq3 . �

We need the following lemmas.

Lemma 4.2. If q ≥ 7, then given any smooth Fq-rational point x of X , there exists a

hyperplane H ⊂ P
4 containing x defined over Fq such that the intersection of H with X

is a geometrically integral genus 1 curve which is smooth at x. �

Proof. The intersectionH∩X fails to be geometrically integral if and only ifH contains

a line or a conic in X . In the case where H contains a conic not passing through x, there

is a “residual" conic (or a chain of two lines) passing through the point x.

The geometry of del Pezzo surfaces of degree 4 provides us with the following

information.

• Given a line contained in X , if the point x does not lie in the line, then there

are q+ 1 hyperplanes containing the point x and the line.

• If the point x lies in a line, then there are q2 + q+ 1 hyperplanes containing

x and the line.

• Since there are sixteen lines in X and a point in X can lie in at most three

lines, we have at most 3(q2 + q + 1) + 13(q + 1) Fq-hyperplanes containing a

line and the point x.

• Since there are at most five conics containing x, and any hyperplane contain-

ing a conic also contains the plane spanned by the conic, we have at most

5(q+ 1) hyperplanes containing such a conic.

• There are q+ 1 tangent hyperplanes at x.

There are q3 + q2 + q+ 1 hyperplanes defined over Fq containing x. As long as q ≥ 7, we

can find a hyperplane over Fq with desired properties. �
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Lemma 4.3. Let E ⊂ P
2 be a geometrically integral degree 3 curve over a finite field Fq.

If q ≥ 13, then given any smooth Fq-rational point x of X , there exists a line L defined

over Fq such that the intersection of L with E consists three Galois conjugate points, all

of which are defined over Fq3 . �

Proof. We first consider the case E is smooth.

Denote by n (respectively, m) the number of Fq (respectively, Fq2 ) points of E.

There are three types of lines we want to avoid.

• There are n tangent lines to E.

• There are at most m−n
2 lines which intersect E at one Fq point and two Fq2 (but

not Fq) points.

• There are at most 1
3

(n
2

)
lines which intersect E at three Fq points.

Thus there are at most n(n+2)

6 + m
2 lines to avoid. By the Hasse–Weil estimate, n ≤ 1+q+

2
√
q,m ≤ 1 + q2 + 2q. So when q ≥ 13, there is at least one line which is not of the three

types listed above.

If E is singular, then it is either a nodal or a cupidal cubic. In either case there is

a unique singular point. Assume the number of Fq (respectively, Fq2 ) points of E is 1+n

(respectively, 1 +m). Then n = q− 1,q or q+ 1, m = q2 or q2 − 1.

There are q+1 lines containing the unique singular point, n lines tangent to E at

an Fq point, m−n
2 lines which intersect E at one Fq point and two Fq2 (but not Fq) points,

at most 1
3

(n
2

)
lines which intersect E at three Fq points. By a simple computation, for any

q we can find the desired line L. �

Proposition 4.1 now follows easily.

Proof of Proposition 4.1. We use the hyperplane H ⊂ P
4 given by Lemma 4.2, and take

the intersection H ∩ X to get a genus one curve in H ∼= P
3. Projecting the curve from x

yields a degree 3 curve in P
2 ⊂ H ⊂ P

4. Take the plane in H spanned by x and the line

given by Lemma 4.3. This is the plane we want. �

5 Proof of Theorem 1.3

The general idea of the proof is first to approximate the ν-adic points by a rational point

p in a degree 2 field extension K ′ of K, then produce a rational curve over the original

field K containing all the Galois conjugate points of p. Since weak approximation holds
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for P
1
K , we prove weak approximation over the original field K. This strategy depends

closely on the existence of rational curves connecting two general rational points over

a global field, which we discuss below.

The following lemma is essentially [18, Lemma 1.3]. The only difference is that

in our situation it is crucial to have a single rational curve, as opposed to the situation

in loc. cit., where the author studies R-equivalence. The proof is adapted from the proof

in loc. cit..

Lemma 5.1. Let K be a purely imaginary number field or the function field of a smooth

irreducible curve B defined over a finite field. Let V be a singular cubic hypersurface of

dimension at least four with an ordinary double point P which is a K-rational point.

Then given any other K-rational point R, there is a K-morphism f : P
1
K → V such that

f (0) = P, f (∞) = R. �

Proof. We may assume that the line PR spanned by the two points P and R is not

contained in V , otherwise there is nothing to prove.

Without loss of generality, we can assume P is the point [1, 0, . . . , 0] ∈ P
n
[X0,...,Xn].

Then we can write the equation of the cubic hypersurface V as X0Q(X1, . . . ,Xn) +
C(X1, . . . ,Xn) = 0, where Q is a quadratic form and C is a cubic form. Denote the coordi-

nate of R by [r0, r1, . . . , rn]. Since the line PR is not in V , Q(r1, . . . , rn) �= 0. In particular at

least one of r1, . . . , rn is non-zero.

Since the point P is an ordinary double point, the equation Q(X1, . . . ,Xn) = 0

defines a smooth quadric hypersurface of dimension at least three in P
n−1. By the

assumption on the field K, the set of rational points of this smooth quadric hypersur-

face is Zariski dense. In particular, there is a K-point S = [s1, . . . , sn] in P
n−1 such that

Q(s1, . . . , sn) = 0 and C(s1, . . . , sn) does not vanish.

Now consider the K-rational map

φ : P
n−1 ��� V

[X1, . . . ,Xn] �→ [−C(X1, . . . ,Xn),X1Q(X1, . . . ,Xn), . . . ,XnQ(X1, . . . ,Xn)].

This gives a birational isomorphism between P
n−1 and V . Furthermore, the birational

map φ is a morphism near the points S and [r1, . . . , rn] by the above discussion. In par-

ticular, φ(S) = P,φ([r1, . . . , rn]) = R. Then φ maps the line in P
n−1 connecting S and

[r1, . . . , rn] to a rational curve connecting P and R in V . �
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The following lemma is essentially proved in [18, Proposition 1.4]. Our version

has stronger hypothesis and stronger result.

Lemma 5.2. Let K be either a purely imaginary number field or a global function field

and let X be a smooth cubic hypersurface of dimension n ≥ 10 defined over K. Let x

and y be two K-rational points such that the line L spanned by x and y intersects X

at three distinct points x,y, z. Denote by Hx ,Hy ,Hz, respectively, the projective tangent

hyperplane at x,y, z. Assume the following conditions.

(1) The family of lines passing through x is geometrically irreducible and has

dimension n− 3.

(2) The intersection Hz ∩ X is a singular cubic hypersurface with only one

ordinary double point z.

(3) The intersection Hx ∩ Hz ∩ X is a smooth cubic hypersurface of dimension

n− 2.

Then there is a K-morphism f : P
1
K → X such that f (0) = x, f (∞) = y. �

Proof. By assumption neither x nor y is contained in Hz.

Let tx : X ��� X be the birational involution defined by sending a general point p

to the point q such that x,p,q are colinear. For a point p in Hx ∩X , not equal to the point

x, such that the line spanned by p and x is not contained in X , the birational map tx is

defined near p and tx(p) = x.

The intersection Hx ∩ Hz ∩ X is a divisor in Hx ∩ X . By the assumption ((1)), the

locus of points swept out by the family of lines through x,

Line(x) = {w|w �= x, and the line spanned by x and w is contained in X} ∪ {x}

is an irreducible divisor and contains the point x by definition. SinceHz does not contain

x, the intersection Hx ∩Hz ∩X is not completely contained in Line(x). By the assumption

on the field K, there is a K-rational point u in the intersection Hx ∩Hz ∩X . If K is a global

function field, this follows from the fact that K is a C2-field in the sense of Lang. In the

case of number fields, this is proved in [1]. By [12, Theorem 1], the intersectionHx∩Hz∩X
is then K-unirational and thus has a Zariski dense set of rational points. In particular,

there is a K-rational point u such that the birational involution tx is defined around u.

Lemma 5.1 shows that there is a K-rational curve in Hz ∩ X , thus also in X , containing

the two points z and u. Then we can take f to the restriction of tx to this curve. �
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Recall the statement of Theorem 1.3.

Theorem 1.3 Let X be a smooth cubic hypersurface in P
n,n ≥ 11 defined over a global

field K, which is either a purely imaginary field or Fq(B), the function field of a curve B

defined over a finite field Fq of characteristic not equal to 2, 3, 5. Then X satisfies weak

approximation.

Proof of Theorem 1.3. Under the assumptions, X is K-unirational and has a Zariski

dense set of K-rational points, as explained in the proof of Lemma 5.2. Choose x to be a

general K-point such that

• The family of lines through x is geometrically irreducible and has dimension

n− 4.

• Denote by Hx the projective tangent hyperplane at x. Then the projective

tangent cone of Hx ∩ X has an ordinary double point at x.

These two properties can be achieved since the set of points in X satisfying these

properties is non-empty and Zariski dense [26, Lemma 5.4, 5.7].

Denote by xν the Kν-rational point induced by x for each place ν. Given finitely

many places ν1, . . . , νk and any νi-adic points yνi
which we want to approximate, let Mi

be the line spanned by xνi
and yνi

for each i. Without loss of generality, we may assume

that the line Mi intersect the cubic hypersurface at a third point zνi
different from xνi

and yνi
. We may also assume that the points zνi

are general points having the following

properties:

• The family of lines through zνi
is geometrically irreducible and has dimension

n− 4.

• Let Hzνi
be the tangent hyperplane at zνi

. Then Hzνi
∩ X is a singular cubic

hypersurface with an ordinary double point zνi
.

• The intersection Hxνi
∩ Hzνi

∩ X is a smooth cubic hypersurface of dimension

n− 2.

For any pre-specified order of weak approximation, there is a line M defined over K

which approximates all the Mi’s to that order and contains the point x. This follows

from weak approximation for the space of lines containing x, which holds as this space

is isomorphic to P
d
K for some d.

If the line M intersect X at two other K-rational points y, z, then by Lemma

5.2, there is a rational curve containing them (note that our assumptions on zνi
imply
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the assumptions of the lemma). In particular, the base change of this rational curve to

Kνi
contains Kνi

points which approximate the points yνi
to order N . Then the theorem

follows since we know weak approximation for P
1
K and thus can find a rational point in

P
1
K which approximates the νi-adic points yνi

.

Now assume the line M intersect X at two points y, z which are defined over a

separable degree 2 field extension L/K. By construction, the irreducible (over K) degree

2 zero cycle y + z is sufficiently close to the degree 2 zero cycle yνi
+ zνi

in the νi-adic

topology for each νi.

In the following we will show that there is a rational curve defined over K which

contains the degree 2 zero cycle y + z. Once we know this, the theorem follows for the

same reason as above.

Consider the Weil restriction of scalars ResL/KXL and the K-rational dominant

map ResL/KXL ��� X . After base change to L, the Weil restriction is isomorphic to XL ×XL

and the rational mapmaps a general pair of points (u,v) to the pointw such that u,v,w

are colinear (c.f. [19, Section 15, Proposition 15.1], [13, Example 3.8, Exercise 3.11], and

a detailed discussion of the former two in [25, Construction 2.1]).

Recall that by the universal property of Weil restrictions, a K-morphism f :

P
1
K → ResL/KXL is the same as an L-morphism g : P

1
L → XL; and an L-point of ResL/KXL is

the same as two L-points of XL.

There are two L-rational points u,v of ResL/KXL, which are mapped to z and

y, respectively, that is the points corresponding to the pairs of L-rational points (x,y)

and (x, z). Moreover, these two points are conjugate to each other by the Galois group

Gal(L/K).

So it suffices to show that there is a rational curve over K which contains one of

the two Galois conjugate L-rational points u,v of ResL/KXL. This is equivalent to showing

that there is a rational curve defined over L containing x and y (or a rational curve defined

over L containing x and z), which follows from Lemma 5.2. �
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