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Abstract
We prove weak approximation for smooth cubic hypersurfaces of dimension at least 2
defined over the function field of a complex curve.

1. Introduction
Given an algebraic variety X over a number field or function field F , a natural ques-
tion is whether the set of rational points X.F / is nonempty. If it is nonempty, then
how many rational points are there? In particular, are they Zariski-dense? Do they
satisfy weak approximation?

In this article, we address the weak approximation question for cubic hypersur-
faces defined over the function field of a complex curve.

Smooth cubic hypersurfaces of dimension at least 2 belong to the class of “ra-
tionally connected varieties.” Roughly speaking, a smooth projective variety X is
rationally connected if for any two general points x and y, there is a rational curve
connecting them. For a more precise definition and properties of rationally connected
varieties, see [12, Chapter IV].

After the pioneering work of Graber, Harris, and Starr [5], which established the
existence of rational points for rationally connected varieties defined over the function
field of a curve, there has been much research centered around the arithmetic of such
varieties (see, e.g., [7]–[9], [11], [16], [19]).

In particular, Hassett and Tschinkel [7] conjectured that weak approximation
holds for all smooth projective rationally connected varieties defined over the function
field of a complex curve.

We first state the conjecture in the arithmetic form. Let B be a smooth projective
connected complex curve. For any closed point b 2B , denote by bOB;b the completion
of the local ring at the point b and Frac bOB;b the corresponding fraction field. Let
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be the adéles over the function field C.B/, where all but finitely many of the factors
in the product are in bOB;b . Finally let X� be a smooth rationally connected variety
defined over the function field C.B/. Then the weak approximation conjecture can be
formulated as saying that the set of rational points X�.C.B// is dense in X�.A/.

For our purpose, it is more useful to formulate the conjecture in the following
geometric form.

CONJECTURE 1.1 ([7, Conjecture 2])
Let � WX! B be a flat surjective morphism from a projective variety to a smooth
projective curve such that a general fiber is smooth and rationally connected (such a
map X! B is called a model of the generic fiber). Then the morphism � satisfies
weak approximation. That is, for every finite sequence .b1; : : : ; bm/ of distinct closed
points of B , for every sequence .bs1; : : : ;bsm/ of formal power series sections of � over
bi , and for every positive integer N , there exists a regular section s of � which is
congruent tobsi modulo mN

B;bi
for every i D 1; : : : ;m.

For the equivalence of the two formulations, see Section 1 of the survey arti-
cle [6], which provides a nice introduction and summary of known results of weak
approximation in the function field case (as of 2008).

Some special cases of the conjecture are known, for example:
� P

n, conic bundles over P1, del Pezzo surfaces of degree at least 4 (see [2]);
� low-degree complete intersections of degree .d1; : : : ; dc/ such that

P
d2i �

nC 1 (see [4], [6]);
� smooth cubic hypersurfaces in P

n; n� 6 (see [9]);
� isotrivial families (see [16]);
� at places of good reduction (for any family) (see [7]);
� a general family of del Pezzo surfaces of degree at most 3 (see [8], [11], [19]);

and
� a smooth hypersurface with square-free discriminant (see [9]).

We notice an interesting difference between the cases completely understood and
the other cases. Namely, the former cases are proved by studying the global geometry
over the function field while the latter cases are proved by studying the local singular
fibers and the singularities of the total space.

In some sense, our paper is a combination of the two approaches. The main the-
orem is the following.
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THEOREM 1.2
LetX be a smooth cubic hypersurface of dimension at least 2 defined over the function
field of a complex curve. Then weak approximation holds at all places.

We conclude this Introduction by explaining the idea of the proof. First of all, by
choosing a Lefschetz pencil and using standard facts about weak approximation, one
reduces to prove weak approximation for cubic surfaces.

There are two new ingredients in the proof. The first one is local. The observa-
tion is that when the central fiber is a cone over an irreducible plane cubic curve or
nonnormal (i.e., the worst degenerate case for families of cubic surfaces; see Defini-
tion 3.1), one can make a ramified base change and a birational modification so that
the new central fiber has at worst du Val singularities. One just needs to keep track
of the Galois action to get back to the original family. The singularities have been
greatly improved during this process.

The second new idea is global and geometric. Given a local formal section that
we want to approximate, saybs, we choose a section s, whose restriction to the formal
neighborhood gives a formal section bs0. Then the two formal sections determine a
unique line bL, which intersects the family at a third local formal sectionbs 0. One can
find a line L defined over the function field, which contains the rational point corre-
sponding to the section s, and approximate bL to order N (i.e., weak approximation
for the space of lines containing s). The line L (generally speaking) intersects the
family at s and a degree 2 multisection � .

The next step is to deform � so that it approximates the formal sectionsbs0 andbs 0.
This is equivalent to a special case of weak approximation after a degree 2 base
change. However, the multisection � already approximatesbs 0 (even though we have
no control on this formal section) to order N . Thus one only needs to approximatebs0,
which comes from the section and can be carefully chosen to lie in the smooth locus
of the fibration (Lemma 5.1) so that weak approximation is possible (by the local
approach, i.e., the study of singular fibers).

Once we approximate the formal sections bs 0 and bs0, we take the line spanned
by the degree 2 multisection and the third intersection point with the cubic surface is
what we need.

Both Swinnerton-Dyer [15] and Madore [14] have used the composition law of
the cubic surface to study weak approximation on cubic surfaces. However, the basic
strategy seems quite different. Their idea is to use a unirational parameterization
to approximate v-adic points, which only works for places of good reduction. Our
approach is to use the composition law to reduce the problem to a special and eas-
ier case, which can be proved via the deformation technique of Kollár, Miyaoka, and
Mori [13].
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2. Preliminaries

2.1. Everything with a cyclic group action
In this subsection we collect some useful results from [16]. Let k be any field and G
a cyclic group of order l such that l is invertible in k.

First, we are concerned with the following infinitesimal lifting problem. Let S
and R be k-algebras with a G-action and f W S ! R be an algebra homomorphism
compatible with the action. Let A be an Artinian k-algebra with aG-action, I �A an
invariant ideal such that I 2 D 0. Consider the following commutative diagram, where
p is a G-equivariant k-algebra homomorphism

S
f

����! R??y ??yp
A

�
����! A=I ����! 0

We want to know when one can find a G-equivariant lifting h W R! A. The
following lemma completely answers this question.

LEMMA 2.1
If we can lift the map p to a k-algebra homomorphism h WR!A such that � ıhD p,
then we can find an equivariant lifting Qh WR!A with the same property.

Proof
For every element g in G, define a map hg W R! A by hg.r/D g � h.g�1 � r/. This
is an S -algebra homomorphism and also a lifting of the map p WR!A=I . The map
h is G-equivariant if and only if hg.r/ D h.r/ for every g 2 G and every r 2 R.
The difference of any two such liftings is an element in Hom.�R=S ; I /, where �R=S
is the module of relative differentials. Therefore one has �.g/.r/D hg.r/ � h.r/ in
Hom.�R=S ; I /. Notice that Hom.�R=S ; I / is naturally a G-module with the action
of G on Hom.�R=S ; I / given by

G �Hom.�R=S ; I /! Hom.�R=S ; I /;

.g; �/ 7! g � �D
�
! 7! g � �.g�1 �!/

�
:

It is easy to check that

�.gh/D g � �.h/C �.g/:

Thus � defines an element Œ� � in H 1.G;Hom.�R=S ; I //. The existence of an equiv-
ariant lifting is equivalent to the existence of an element ‚ 2 Hom.�R=S ; I / such
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that g‚ �‚D � ; that is, the class defined by � is zero in H 1.G;Hom.�R=S ; I //.
Since the characteristic of the field is relatively prime to the order of G, all the higher
cohomology groups H i .G;Hom.�R=S ; I //; i � 1 of G vanish (see [17, Proposi-
tion 6.1.10, Corollary 6.5.9]). The vanishing can be proved by the usual averaging
argument.

COROLLARY 2.2
Let X and Y be two k-schemes with a G-action, and let f WX ! Y be a finite type
G-equivariant morphism. Let x 2 X be a fixed point, and y D f .x/ (hence also a
fixed point). Assume that f is smooth at x. Then there exists a G-equivariant section
s W Spec bOy;Y !X . In particular, assume that Y is irreducible and theG action on Y
is trivial. If there is a fixed point in X , then the set the fixed points of X dominates Y .

Proof
Let S be the local ring at y, and let R be the local ring at x. There is an obvious
G action on both of these k-algebras. We start with the section s0 W Speck.y/!
f �1.y/;Speck.y/ 7! x, which is clearly G-equivariant. By the smoothness assump-
tion, a section from Spec.bOy;Y =mny/ always lifts to a section from Spec.bOy;Y =
mnC1y /. Now apply Lemma 2.1 inductively to finish the proof.

We also need the following G-equivariant smoothing result, which is a slight
generalization of the corresponding results in [16].

LEMMA 2.3
Let X be a smooth quasi-projective rationally connected variety over C, and let G be
a cyclic group of order l acting on X . Fix an action of G on P

1 by z 7! �z, where �
is a primitive l th root of unity. Assume that there is a very free rational curve through
every point of X .
(1) Let f W P1! X be a G-equivariant map. Then there exists a G-equivariant

map Qf W P1!X such that Qf .0/D f .0/, Qf .1/D f .1/, and Qf is very free.
(2) Let fi W Ci ! X;1 � i � n be a chain of equivariant maps; that is, for each

i , Ci Š P
1, and fi is a G-equivariant map such that fi .1/ D fiC1.0/ for

1 � i � n � 1. Then there is a G-equivariant map Qf W P1 ! X such that
Qf .0/D f1.0/ and Qf .1/D fn.1/.

Recall that a quasi-projective complex variety is rationally connected if there is
a rational curve through a general pair of points. The assumption that there is a very
free rational curve through every point of X is saying that X is strongly rationally
connected in the sense of Hassett and Tschinkel [8].
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Proof
For part (1), we may assume that the equivariant map f is an embedding and dimX �
3 by replacing X with X � PM for some large M and projecting deformations to the
first factor X . Let C be the image of the morphism f .

We first attach very free curves Ci at general points pi 2 C along general tangent
directions at pi . LetD1 be the nodal curve assembled in this way. By [5, Lemma 2.5],
after attaching enough such curves, the twisted normal sheaf ND1=X .�0�1/ is glob-
ally generated andH 1.D1;ND1=X .�0�1/˝L1/D 0, where L1 is any line bundle
on D1 which has degree �l on C and 0 on all the other irreducible components Ci .

We then attach all the curves that are G-conjugate to Ci ’s (we may choose Ci ’s
such that the G-orbits do not intersect each other). The new nodal curve is denoted
by D. The map D! X is G-equivariant. As in the previous paragraph, D has the
property that H 1.D;ND=X .�0�1/˝L/D 0, where L is any extension of the line
bundle L1 on D which has degree �l on C and 0 on all the attached rational tails.
Denote by Rj the rational curve attached to C at the point pj .

We have the following two exact sequences:

0!
M
j

ND=X .�0�1/jRj .�nj /!ND=X .�0�1/!ND=X .�0�1/jC ! 0;

0!NC=X .�0�1/!ND=X .�0�1/jC !
M
j

Qj ! 0;

where nj ’s are the nodal points on Rj , andQj ’s are torsion sheaves supported on the
points pj 2 C . Every sheaf has a natural G-action and the G-equivariant deforma-
tions are given byG-invariant sections of ND=X . To find aG-equivariant deformation
smoothing all the nodes ofD and fixing 0 and1, one just needs to find a G-invariant
section in H 0.D;ND=X .�0�1//

G which, for any j , is not mapped to 0 under the
composition of maps

H 0
�
D;ND=X .�0�1/

�
!H 0

�
C;ND=X .�0�1/jC

�
!Qj

for all j .
Since H 1.D;ND=X .�0�1/˝L/D 0, we also have

H 1
�
C;ND=X .�0�1/˝L˝OC

�
D 0:

Let c1; : : : ; cl be an orbit of the G action on C . By the vanishing of H 1.C;

ND=X .�0�1/˝OC .�x1 � � � � � xl //, the map

H 0
�
C;ND=X .�0�1/˝OC .�c1 � � � � � cl�1/

�
!ND=X .�0�1/jcl

is surjective. Thus there is a section of ND=X .�0�1/jC which vanishes on c1; : : : ;
cl�1 but not on cl . Then taking the average over G gives a G-invariant section of
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ND=X .�0�1/jC which does not vanish on any of the points c1; : : : ; cl . In particular,
for any l nodes on C which lie in a G-orbit, we can find a G-invariant section of
ND=X .�0�1/ which does not vanish on them. Then a general G-invariant section
of ND=X .�0�1/jC does not vanish on any of the nodes pi .

We have a surjection map

H 0
�
D;ND=X .�0�1/

�
!H 0

�
C;ND=X .�0�1/jC

�
and (consequently)

H 0
�
D;ND=X .�0�1/

�G
!H 0

�
C;ND=X .�0�1/jC

�G
is also surjective. So a general G-invariant section inH 0.D;ND=X .�0�1//

G does
not vanish on the nodes. We take the G-equivariant deformation given by this sec-
tion, which necessarily smooths all the nodes of D with 0 and 1 fixed. A general
smoothing is very free since the normal bundle is ample by upper semicontinuity.

For the second part, we may assume that all the fi ’s are very free by the first part.
Let f be the G-equivariant map obtained by gluing the fi ’s.

Let .T; o/ be a pointed smooth curve with trivial G-action, and let Q† be P1 �

T with the natural diagonal action. There are two G-equivariant sections, s0 D 0 �
T; s1 D1� T . Now blow up the point s1.o/ and still denote the strict transforms
of the two sections by s0 and s1. The G-action extends to the blowup. We can make
the fiber over o 2 T a chain of rational curves with n irreducible components by
repeating this operation. Then we get a smooth surface † with a G-action such that
the projection to T is G-equivariant.

Let h0 W s0 ! X � T , and let h1 W s1 ! X � T be T -morphisms such that
h0.s0/D f1.0/ � T and h1.s1/D fn.1/ � T . Consider the relative Hom-scheme
HomT .†;X � T;h0; h1/ parameterizing T -morphisms from † to X � T fixing h0
and h1. It has a natural G action and the map 	 W HomT .†;X � T;h0; h1/! T

is G-equivariant. Now 	 is smooth at f . By Corollary 2.2, there is a G-equivariant
formal section. So there are G-equivariant smoothings of the morphism f .

Finally we quote the following theorem from [16]. For our purpose, we only need
to find equivariant rational curves in a few cubic surfaces, which, however, might be
singular. Furthermore we want the curve to lie in the smooth locus, so the proof in
[16] does not directly carry over. However, it is good to know that such curve exists
at least in a desingularization. We will discuss this problem in more detail later in
Proposition 3.4.

THEOREM 2.4
LetX be a smooth projective rationally connected variety, and letG be a cyclic group
of order l with an action on X . Choose a primitive l th root of unity �, and let G act
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on P
1 by ŒX0;X1� 7! ŒX0; �X1�. Then for each pair .x; y/ of fixed points in X , there

is a G-equivariant map f W P1!X such that f .0/D x and f .1/D y.

2.2. Iterated blowup
Let � WX! C be a flat proper family over a smooth projective connected curve C .
Let c 2 C be a closed point andbs0 W Spec bOc;C !X be a formal section. Assume thatbs0 lies in the smooth locus of X! C . The N th iterated blowup associated tobs0 is
defined inductively as follows.

The 0th iterated blowup X0 is X itself. Assume that the i th iterated blowup Xi

has been defined. Letbsi be the strict transform ofbs0 in Xi . Then XiC1 is defined as
the blowup of Xi at the pointbsi .c/.

We remark that if both X and C have a G-action such that
� the map � WX! C is G-equivariant.
� The point c is the fixed point of G andbs0 is G-equivariant,
then each Xi has aG-action such that the natural morphisms XiC1!Xi and the for-
mal sectionsbsi are G-equivariant. In particular, the intersection ofbsi with the central
fiber is a fixed point of G.

One can also do this at fibers over a G-orbit in C , provided the formal sections
over these points are conjugate to each other under the G-action. Then the iterated
blowup still has a G-action and every morphism is compatible with the action.

On XN , the fiber over the point c consists of the strict transform of Xjc and
exceptional divisors E1; : : : ;EN , and
� Ei ; i D 1; : : : ;N � 1, is the blowup of Pd at ri .Dbsi .c//, the point where the

proper transform ofbs0 (i.e.bsi ) meets the fiber over c of the .i � 1/th iterated
blowup;

� EN Š P
d ,

where d is the dimension of the fiber.
The intersection Ei \EiC1 is the exceptional divisor Pd�1 � Ei , and a proper

transform of a hyperplane in EiC1, for i D 0; : : : ;N � 1.
Furthermore, to find a section agreeing withbs0 to the N th order is the same as

finding a section in XNC1 intersecting the fiber over c at ENC1, or equivalently, a
section in XN which intersects the exceptional divisor EN at the point rN DbsN .c/
(see [7, Proposition 11]).

3. Standard models of cubic surfaces over a Dedekind domain

3.1. Standard models
Corti [3] developed a theory of standard models of cubic surfaces over Dedekind
domains. Let C be a smooth projective connected curve, and let p be a point in C .
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Denote by O the spectrum of OC;p or bOC;p andK the quotient field of OC;p or bOC;p .
Let XK be a cubic surface defined over K . A model of XK over O is a flat projective
family XO such that the generic fiber is XK .

Definition 3.1
A standard model of XK over O is a model XO over O such that
(1) XO has terminal singularities of index 1;
(2) the central fiber X0 is reduced and irreducible;
(3) the anticanonical system �KXO

is very ample and defines an embedding
XO � P

3
O

.

The main theorem of [3] is the following.

THEOREM 3.2 ([3, Theorem 1.10])
A standard model exists over O.

Gluing local models together one gets a standard model over the curve C .
Note that in dimension 3 terminal singularities of index 1 are isolated and have

multiplicity 2.
For the singularities of the central fiber, we have the following, proven in [1].

LEMMA 3.3 ([1, Section 2, Classes (A)–(F)])
An integral cubic surface is either a cubic surface with du Val (=ADE) singularities,
or a cone over an irreducible, possibly singular, plane cubic curve or a nonnormal
surface with only multiplicity 2 singularities (along a line).

To prove this lemma, one can look at the cases of singular cubic surfaces listed
in [1]. Note that an integral cubic surface is normal if and only if it has isolated
singularities. In the list of [1], classes (A)–(C) correspond to cubic surfaces with du
Val singularities, class (D) the cone over a smooth plance cubic, class (E) the case of
a nonnormal cubic surface which is not a cone, and class (F) the cone over a nodal or
cuspidal plane cubic.

In the following, we will analyze the local structure of the standard model over
the formal neighborhood X! SpecCŒŒt �� in the last 2 cases.

The main result is the following.

PROPOSITION 3.4
Let X be a standard model over SpecCŒŒt �� whose central fiber does not have du Val
singularities. Then after a ramified base change t D r l and a birational modification,
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we get a new family X0! SpecCŒŒr�� whose central fiber has du Val singularities.
Furthermore, the Galois group G Š Z=lZ acts on the new total space and the pro-
jection X0! SpecCŒŒr�� is G-equivariant.

Moreover, formal sections of the family X contained in the smooth locus induce
G-equivariant formal sections of X0! SpecCŒŒr�� contained in the smooth locus.

Finally, given two formal sections of the family X intersecting the central fiber
in the smooth locus, let x;y be the intersection points of the corresponding new G-
equivariant sections with the new central fiber. Then x;y are fixed points (under the
G action) in the smooth locus of the central fiber X00 of the new family. Moreover,
there is a G-equivariant map f W P1!X00 such that f .0/D x;f .1/D y and the
image of f lies in the smooth locus of X00. We may also assume that f is very free.

The proof of this proposition will be given in the following subsections. The
first two consist of explicit computations of the base change and the correspondences
between the sections. The last one proves the existence of equivariant very free curves
in the smooth locus.

3.2. Base change computation I: Cone over a plane cubic
In the following two subsections, we will always denote the defining polynomial of
the family as H.t;X0;X1;X2;X3/, which is a formal power series in t with coeffi-
cients in X0; : : : ;X3.

CONVENTION 3.5
We say that a monomial M.t;X0; : : : ;X3/ is in the defining polynomial H if after
taking the power series expansion of H , it appears as a monomial in H .

Assume that the central fiber is a cone over an irreducible plane cubic curve,
defined by equation F.X1;X2;X3/D 0. Then the total space has multiplicity 3 at ver-
tex Œ1; 0; 0; 0� unless we have tX30 ; t

2X30 , or tX20Xi ; i D 1; 2; 3 in the defining equation
of the family.

We first discuss how to find a ramified base change t D rn for some n and a
birational modification so that the central fiber has at worst du Val singularities.

Case (1): If tX30 is contained in the defining polynomial H , we assign weight
.0; 1; 1; 1; 1/ to .X0;X1;X2;X3; r/. Then the homogeneous polynomial F has weight
3. We make a degree 3 base change t D r3. There is exactly one more monomial
with weight 3 in H.r3;X0; : : : ;X3/; namely, r3X30 and the other monomials all have
weight strictly greater than 3. So after a degree 3 base change t D r3 and change of
variables

Y0 DX0; rY1 DX1; rY2 DX2; rY3 DX3;



WEAK APPROXIMATION FOR CUBIC HYPERSURFACES 1411

the new defining equation has the form

r3
�
Y 30 CF.Y1; Y2; Y3/

�
C r�4R.Y0; Y1; Y2; Y3; r/D 0;

or equivalently,

Y 30 CF.Y1; Y2; Y3/C r
�1R.Y0; Y1; Y2; Y3; r/D 0:

The new family X0 ! SpecCŒŒr�� has a Z=3Z-action on the total space com-
patible with Galois group action on SpecCŒŒr��. The central fiber of the new family
is

Y 30 CF.Y1; Y2; Y3/D 0:

Taking partial derivative with respect to Y0 shows that the only possible singu-
larities of the new central fiber lie in the plane Y0 D 0 and come from singulari-
ties of the elliptic curve. Such singularities are isolated and have multiplicity 2, and
thus are du Val singularities. Furthermore, the singularities of X0 lie in the curve
Y0 D F.Y1; Y2; Y3/D 0.

Case (2): If tX30 is not contained in the defining polynomial H , and tX20Xi
(for some i D 1; 2; 3) is contained in H , we again assign weight .0; 1; 1; 1; 1/ to
.X0;X1;X2;X3; r/. Then the homogeneous polynomial F has weight 3. One can
make a degree 2 base change t D r2, and the change of variables

Y0 DX0; rY1 DX1; rY2 DX2; rY3 DX3:

After a linear change of coordinates, one can write the equation for the new central
fiber as

Y 20 Y1CF
0.Y1; Y2; Y3/D 0;

where Y0 D F 0.Y1; Y2; Y3/D 0 defines an irreducible plane cubic C .
The singularities (if they exist) of the new central fiber are defined by equations

Y0Y1 D Y
2
0 C

@F 0

@Y1
D
@F 0

@Y2
D
@F 0

@Y3
D 0:

They are of two kinds. One possible singularity lies in the plane Y0 D 0 and comes
from singularities of the plane cubic C . The other singularities lie in the plane Y1 D 0.
If @F 0

@Y1
vanishes at the singularities, then so does Y0. Thus these singularities belong

to the previous kind. If @F 0

@Y1
does not vanish at the singularities, then Y0 is nonzero

and Y1 D 0 is tangent to the curve C at a smooth point. There are two singularities
of the second kind coming from two solutions of the equation Y 20 C

@F 0

@Y1
D 0, which
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satisfies the property Y0 ¤ 0, and the two singular points are conjugate to each other
under the Z=2Z action. Again the new central fiber has du Val singularities only.

Case (3): If neither tX30 nor tX20Xi ; i D 1; 2; 3 is contained in H , then t2X30 has
to be contained in H . So one can make a degree 3 base change t D r3 and change of
variables

Y0 DX0; r2Y1 DX1; r2Y2 DX2; r2Y3 DX3:

Then the central fiber is

Y 30 CF.Y1; Y2; Y3/D 0;

which has du Val singularities only.
Finally, a formal sectionbt W SpecCŒŒt ��!X induces a G-equivariant formal sec-

tionbr W SpecCŒŒr��!X0. Let Œa; b; c; d � be the intersection ofbt with the central fiber.
Assume that it is a smooth point. So in particular, one of b; c; d is nonzero. Then the
induced sectionbr intersects the new central fiber at Œ0; b; c; d �, which lies in the plane
elliptic curve C D ¹Y0 D F.Y1; Y2; Y3/ D 0º or ¹Y0 D F 0.Y1; Y2; Y3/ D 0º. More-
over, the point Œ0; b; c; d � is a smooth point of the elliptic curve, otherwise the point
Œa; b; c; d � is a singular point of the surface F.X1;X2;X3/D 0 since it lies in the line
spanned by the singular point in the curve C and the vertex Œ1; 0; 0; 0�.

3.3. Base change computation II: Nonnormal and not a cone
When the central fiber is nonnormal but not a cone, by [1, p. 252, case E], the equation
of the surface can be uniquely written as

X0X
2
2 CX1X

2
3 D 0;

or

X0X
2
2 CX1X2X3CX

3
3 D 0:

In both cases the singular locus is the line X2 DX3 D 0. Since the total space is
smooth along the generic point of the line, we have a term tF .X0;X1/ in the defining
polynomial H .

In the first case, make a degree 2 base change t D r2 and change of variables

Y0 DX0; Y1 DX1; rY2 DX2; rY3 DX3;

one can get a new family X0! SpecCŒŒr��, together with a Z=2Z-action on the total
space compatible with action r 7! �r . The central fiber of the family is defined by

F.Y0; Y1/C Y0Y
2
2 C Y1Y

2
3 D 0;
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which has only du Val singularities. One has a blow-up/blow-down description of this
change of variables similar to the previous case. As in the previous case, a formal
sectionbt induces a G-equivariant formal sectionbr W SpecCŒŒr��!X0. If the original
section intersects the central fiber in the smooth locus (i.e., one of the coordinates X2
or X3 is nonzero), then the new formal sectionbr intersects the new central fiber in the
line Y0 D Y1 D 0, which lies in the smooth locus.

In the second case, we need to make different base changes and list them as
follows.
(1) If tX30 is contained in the defining polynomial H , then make a degree 6 base

change t D r6.
(2) If tX30 is not in H and tX20X1 is in H , then make a degree 5 base change

t D r5.
(3) If neither tX30 nor tX20X1 is in H but tX0X21 is in H , then make a degree 4

base change t D r4.
(4) If none of tX30 ; tX

2
0X1; tX0X

2
1 is in H , and tX20X3 is in H , then make a

degree 3 base change t D r3.
(5) If none of tX30 ; tX

2
0X1; tX0X

2
1 is in H , but tX20X3 is in H , then make a

degree 4 base change t D r4.
After the base change, make the following change of variables

Y0 DX0; rY1 DX1; r3Y2 DX2; r2Y3 DX3:

After the base change and change of variables, the central fiber has the form

Y0Y
2
2 C Y1Y2Y3C Y

3
3 CG D 0;

where G is one of the polynomials Y 30 ; Y
2
0 Y1; aY0Y

2
1 C bY

2
0 Y3; Y

3
1 C cY

2
0 Y2. This

defines a cubic surface with at worst du Val singularities.
A formal section bt induces a new formal section br W SpecCŒŒr��! X0. If the

original sectionbt intersects the central fiber in the smooth locus (i.e., the coordinate
X2 is nonzero), then the new formal sectionbr intersects the new central fiber at the
point Œ0; 0; 1; 0�, which is a smooth point of the new central fiber.

3.4. Equivariant curves
We first show the following.

LEMMA 3.6
Let X be a smooth quasi-projective variety with an action of a finite cyclic group
G of order l , and let T be an irreducible component of the fixed point loci of G.
Assume that there is a very free curve thorough every point of X . Fix a G-action
on P

1 by ŒX0;X1� 7! ŒX0; �X1�, where � is a primitive l th root of unity. Then given
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any two fixed points x;y in T , there is a G-equivariant very free curve f W P1!X

connecting x and y.

Proof
Given a point x in T , the constant map P

1! x isG-equivariant. By assumption, there
is a very free rational curve in the smooth locus and passing through that point x. Then
Lemma 2.3 (1), applied to X , shows that there is a very free G-equivariant rational
curve mapping 0 and1 to x.

We can deform the curve with 0 mapped to x in a G-equivariant way to get a
very free G-equivariant map connecting x and a general point in T . To do this, first
define two morphisms

s0 W 0� T � P
1 � T ! X � T

.0; t/ 7! .x; t/

and

s1 W 1� T � P
1 � T ! X � T

.1; t / 7! .t; t/:

Consider the relative Hom-scheme over T fixing the two morphisms s0 and s1,

HomT .P
1 � T;X � T; s0; s1/:

There is aG-action on the relative Hom-scheme. The projection to T isG-equivariant
and smooth at the point represented by the very free curve mapping 0 and1 to x 2 T .
So by Corollary 2.2, the map from the Hom-scheme to T is dominant and one can
find such a deformation.

If y is another point in T , the same construction gives a G-equivariant very free
curve in the smooth locus connecting y and a general point in T . To connect x and y,
take a common general point z in T and two very free G-equivariant rational curves
connecting x (resp., y) to z. Then part two of Lemma 2.3 shows that there is a very
free G-equivariant rational curve connecting x and y.

By the description of the base change, and how the sections correspond to each
other, the fixed points we need to connect in Proposition 3.4 are contained in the
smooth locus of the central fiber and lie in a single irreducible component of the fixed
point loci. Furthermore, by [18] or by [8, Theorem 21], all cubic surfaces with at
worst du Val singularities satisfy the condition that for any point in the smooth locus
of the cubic surface, there is a very free rational curve in the smooth locus and passing
through that point. Thus the last statement in Proposition 3.4 follows from the above
lemma.
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4. Approximation in the smooth locus
This section is devoted to a special case of weak approximation.

4.1. Finding G-equivariant sections
We first develop the techniques in [7] in a G-equivariant setting.

THEOREM 4.1
Let G be a cyclic group of order l , and let X (resp., C ) be a smooth proper variety
(resp. a smooth projective curve) with a G-action. Let � WX! C be a flat family of
rationally connected varieties. Assume the following:
(1) the morphism � is G-equivariant;
(2) there is a G-equivariant section s W C !X;
(3) the G-action on C has a fixed point p and the action of G near p is given by

t 7! �t , where t is a local parameter and � is a primitive l th root of unity;
(4) the fiber of � WX! C over the point p is smooth.
Then for any positive integer N , and any G-equivariant formal section bs W
Spec bOp;C !X, there is a G-equivariant section s0 which agrees with the formal
sectionbs to order N .

The idea of the proof goes back to [7]. Namely, we would like to add suitable
rational curves to the given section and make G-equivariant deformations to produce
a new section with prescribed jet data. The only subtlety in the proof is that in general
we cannot choose the rational curves to be immersed. So instead of working with the
normal sheaf as is done in [7], we work with the complex �f defined as

�1 0

f ��X
df �

����! �C

and its derived dual in the derived category. All the tensor products, duals, pullbacks,
and pushforwards in the proof should also be taken as the derived functors in the
derived category.

The following is a general form of the commonly used short exact sequences (of
normal sheaves) which govern the deformation of a stable map from a nodal domain.

LEMMA 4.2
Let f W C [D!X be a morphism from a nodal curve C [D with a single node to
a smooth variety X , and let f0 (resp., f1) be the restriction of f to C (resp., D).
(1) We have the following distinguished triangles:

�_f ˝OD.�n/!�_f !�_f ˝OC !�_f ˝OD.�n/Œ1�;

�_f0 !�_f ˝OC ! 
Œ�1�!�_f0 Œ1�;
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where n is the preimage of the node in D, and 
 is a skyscraper sheaf sup-
ported at the preimage of the node in C .

(2) Let G be a cyclic group of order l . Assume that there is a G-action on C [D
fixing each irreducible component. Then the node is a fixed point of the action
and there is a natural G-action on all the complexes above. If locally around
the node, the action is given by

CŒx; y�=xy ����! CŒx; y�=xy;

.x;y/ ����! .�x; ��1y/;

where � is a primitive l th roots of unity, then the G-action on 
 is trivial.

Proof
The first distinguished triangle comes from restriction to the component C .

For the second distinguished triangle, consider the following distinguished trian-
gles and the map between them:

�C[D ˝OC ����! �f ˝OC ����! f ��X ˝OC Œ1� ����! �C[D ˝OC Œ1�??y ??y ��� ??y
�C ����! �f0 ����! f �0 �X Œ1� ����! �C Œ1�

Therefore we have distinguished triangles

�C[D ˝OC !�C !QŒ1�!�C[D ˝OC Œ1�;

�f ˝OC !�f0!Q0Œ1�!�f ˝OC Œ1�; (1)

QŒ1�!Q0Œ1�! 0!QŒ2�;

where Q is a skyscraper sheaf supported at the node. The last distinguished triangle
shows that Q ŠQ0. Taking dual of the distinguished triangle (1) gives the second
triangle in the lemma.

Part 2 of the lemma can be proved by a local computation. Or we can argue that
the sheaf 
 corresponds to a G-equivariant smoothing of the node. Therefore it has to
be G-invariant.

Now we begin the proof.

Proof of Theorem 4.1
The proof is divided into two steps.

Step 1: Approximation at 0th order.
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We may assume that

H 1
�
C;NC=X.�p/

�
D 0

by the same argument as in Lemma 2.3.
The section s and the formal sectionbs intersect the fiber Xp at two fixed points of

theG-action. Take a rational curveD Š P
1 with aG-action as ŒX0;X1� 7! Œ�X0;X1�,

where � is the primitive l th root of unity in the assumptions. By Theorem 2.4, there is
a G-equivariant very free curve D Š P

1!Xp!X which maps 0D Œ1; 0� to s.p/
and 1D Œ0; 1� tobs.p/. Let f W C [D! X be the nodal curve by combining the
section and the curve D and f0 (resp., f1) the restriction of f to C (resp., D).

By Lemma 4.2, we have the following distinguished triangles:

�_f .�1/˝OC .�p/!�_f .�1/!�_f .�1/˝OD!�_f ˝OC .�p/Œ1�;

�_f0.�p/!�_f ˝OC .�p/! 
Œ�1�!�_f0.�p/Œ1�;

�_f1 ˝OD.�1/!�_f ˝OD.�1/! 
0Œ�1�!�_f1 ˝OD.�1/Œ1�;

where 
 and 
0 are torsion sheaves supported at the node of C and D. Every complex
has a natural G-action, and the G-actions on 
 and 
0 are trivial. Also note that

�f .�1/˝OC Š�f ˝OC :

Taking hypercohomology gives long exact sequences

0!H
1
�
�_f ˝OC .�p/

�
!H

1
�
�_f .�1/

�
!H

1
�
�_f .�1/˝OD

�
!H

2
�
�_f ˝OC .�p/

�
!H

2
�
�_f .�1/

�
!H

2
�
�_f .�1/˝OD

�
! � � � ; (2)

0!H
1
�
�_f0 ˝OC .�p/

�
!H

1
�
�_f ˝OC .�p/

�
! 


!H
2
�
�_f0 ˝OC .�p/

�
!H

2
�
�_f ˝OC .�p/

�
! 0; (3)

and

0!H
1
�
�_f1 ˝OD.�1/

�
!H

1
�
�_f ˝OD.�1/

�
! 
0

!H
2
�
�_f1 ˝OD.�1/

�
!H

2
�
�_f ˝OD.�1/

�
! 0: (4)

Note that �_
f0

is quasi-isomorphic to NC=X Œ�1�. Thus by the second long exact
sequence,

H
2
�
�_f0 ˝OC .�p/

�
DH

2
�
�_f ˝OC .�p/

�
D 0:
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Note that �_
f1

is quasi-isomorphic to a shifted sheaf N Œ�1�, where N is defined
as the quotient in

0! TD! f �TX !N Š f �TX=TD! 0:

Since f �TX is globally generated, H2.�_
f1
˝OD.�1//D 0. Then by the third long

exact sequence,

H
2
�
�_f ˝OD.�1/

�
D 0:

Therefore by the long exact sequence (2),

H
2
�
�_f .�1/

�
D 0;

and thus the G-equivariant deformation of the nodal curve C [D with the point1
fixed is unobstructed.

Then by the long exact sequences (2), (4), and the vanishing, the composition of
maps

H
1
�
�_f .�1/

�G
!H

1
�
�_f .�1/˝OD

�G
! 
0

is surjective. Thus there is a G-equivariant deformation with1 fixed which smooths
the node between C and D.

Step 2: Approximation at higher order.
Assume that we have a section, still denoted by s, which agrees with bs to the

k.� 0/th order. We want to find a section agreeing withbs to order kC 1.
Now let XkC1 be the .k C 1/th iterated blowup of X associated to the formal

sectionbs. Then G also acts on XkC1 and the projective to C is G-equivariant. By
abuse of notations, still denote the strict transforms of s andbs by s andbs. Then they
both intersect the exceptional divisor EkC1 Š P

d at fixed points of G. Assume that
the intersection points are different, otherwise there is nothing to prove.

Again we assume that H 1.C;NC=XkC1.�p//D 0.
The key lemma is the following.

LEMMA 4.3
There is a comb f W C [D!XkC1 from a nodal domain consisting of the given
section s.C / and suitable rational curves in the fiber such that we have the following:
� D DDkC1 [

Sl
jD1Rj , where DkC1 Š P

1 and Rj D
Sk
iD1Dij is a chain of

rational curves. Denote by xj the node that connects DkC1 to Rj .
� There is a G-action on D in the following way. The G-action on DkC1 is

given by

ŒX0;X1� 7! ŒX0; �
�1X1�:
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The group G acts on Rj ; j D 1; : : : ; l via a cyclic permutation among them.
In particular, the points xj 2 DkC1 are conjugate to each other under the
G-action.

� The morphism f W C [D!X is G-equivariant.
� The G-fixed point 1D Œ0; 1� on DkC1 is mapped tobs.p/, and 0D Œ1; 0� on

DkC1 connects C .
� The morphism f W C [D is an immersion except at 0 and1 in DkC1.
� The complex �_

f
satisfies the following vanishing conditions,

H
2
�
�_f ˝OC .�p/

�
D H

2
�
�_f ˝ODkC1.�0�1/

�
D H

2
�
�_f ˝ODij .�1/

�
D 0; (5)

H
2
�
�_f .�1/

�
D 0; (6)

H
2
�
�_f ˝ODkC1.�1� x1 � � � � � xl/

�G
D 0: (7)

The construction is essentially the same as the one in [7], with the only difference
coming from the consideration of theG-action. For an illustration of the comb C [D,
see Figure 1 below, and for the configuration of the comb with respect to the iterated
blowup XkC1, see Figure 2.

Proof of Lemma 4.3
The line L in EkC1 Š P

d joining s.p/ andbs.p/ is invariant and intersects the excep-
tional divisor Ek of XkC1 at a unique point yk , which is necessarily a fixed point
of G. Then there are 3 fixed points in the line L and thus all points are fixed points
of G. Take a curve DkC1 Š P

1. We impose a G-action on it by

ŒX0;X1� 7! ŒX0; �
�1X1�:

Take an l-to-1 G-equivariant map from DkC1 to the line L such that 0 D Œ1; 0� is
mapped to s.p/ and 1D Œ0; 1� is mapped to bs.p/. There are l points x1; : : : ; xl ,
which lie in the same orbit of G, being mapped to the point yk 2Ek \EkC1, where
Ek and EkC1 are exceptional divisors of the .kC 1/th iterated blowup.

The exceptional divisor Ek is isomorphic to the blowup of P
d at a point, and

thus is a P
1-bundle over Pd�1. Let Dk;1; : : : ;Dk;l be l copies of P1 each mapped

isomorphically to the fiber curve P
1 containing the point yk .

Inductively, let yi be the intersection point of DiC1;1 with Ei , and let Di;1; : : : ;
Di;l be l copies of P

1 each mapped isomorphically to the fiber P
1 containing the

point yi for all i D k � 1; : : : ; 1.
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Figure 1. The comb C [D.

Finally let y0 be the point of the intersection of D1;1 with the strict transform of
Xjp , and letD0;1; : : : ;D0;l be l copies of P1 mapped to a very free curve in the strict
transform of Xp intersecting E1 at the point y0. We may also assume that the maps
are immersions.

Let Rj be the chain of rational curves
Sk
iD1Di;j connected toDkC1 at the point

xj for j D 1; : : : ; l , and let D be the curve DkC1 [
Sl
jD1Rj . There is a natural

G-action on D, which permutes the l-chains of rational curves Rj and acts on the
irreducible component DkC1 as specified above.

The restriction of the complex �_
f

to each curve Di;j is quasi-isomorphic to the
normal sheaf with a shiftNf Œ�1� (since the comb is an immersion along such curves).
One can compute the restriction of Nf to each curve Di;j as follows (see the proof
of [7, Lemma 27]):

Nf jDi;j D

´
O˚d 1� i � k;Ld�1
nD1O.an/˚O an � 1; i D 0:

(8)
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Figure 2. Construction of the comb C [D.

We now compute �_
fkC1

on DkC1, where fkC1 is the restriction of the map to

DkC1 (i.e., the degree l multiple cover of the line in P
d�1). This complex is quasi-

isomorphic to the complex

0 1

TDkC1 ŠO.2/ ����! f �
kC1

TXkC1 ŠO.2l/˚
Ld�2
iD1 O.l/˚O.�l/:

Also note that the sheaf map TDkC1! f �
kC1

TXkC1 is injective and is the composition
of maps O.2/!O.2l/! f �

kC1
TXkC1 .

We have a distinguished triangle

�_fkC1!�_f ˝ODkC1! 
Œ�1�˚

lM
jD1


j Œ�1�!�_fkC1 Œ1�; (9)

where 
 is a torsion sheaf supported at the node connecting DkC1 and C , and 
j is a
torsion sheaf supported at the node connecting DkC1 and Dk;j . The group G acts on

 by the trivial action and acts on 
j by permutation.

So the restriction of �_
f

to DkC1 is quasi-isomorphic to the complex
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0 1

O.2/ ����! O.2l/˚
Ld�2
iD1 O.l/˚O.1/:

Since the above map maps the sheaf O.2/ injectively into the sheaf O.2l/, this com-
plex is quasi-isomorphic to the shifted sheaf

Q˚

d�2M
iD1

O.l/˚O.1/Œ�1�;

where Q is the torsion sheaf defined as the quotient of O.2/!O.2l/. Note that the
O.1/ direction is the normal direction of the fiber.

Finally, the restriction of �_
f

to C fits into the distinguished triangle

NC=XkC1 Œ�1�!�_f ˝OC ! 
0!NC=XkC1 ;

where 
0 is a torsion sheaf supported at the node.
Then the vanishing conditions (5) are immediate from the identifications above.
By the distinguished triangle

�_f ˝OC .�p/!�_f .�1/!�_f ˝OD.�1/!�_f ˝OC .�p/Œ1�

and the three vanishing results in (5), we know that

H
2
�
�_f .�1/

�
D 0:

This is the vanishing in (6).
The vanishing in (7) needs a little bit more work since it is only the G-invariant

part of the hypercohomology group that vanishes. First, notice the following.

LEMMA 4.4
Assume only that the comb C [D satisfies vanishing results (5) and (6). Then a gen-
eral G-equivariant deformation of C [D with1 fixed is unobstructed and smooths
the node connecting C and DkC1.

Proof
The vanishing result (6) implies that the G-equivariant deformation of C [D with
1 fixed is unobstructed.

We first consider the following distinguished triangles

�_f ˝OD.�1� 0/!�_f .�1/!�_f .�1/˝OC !�_f ˝OD.�1� 0/Œ1�

(10)
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and

lM
jD1

�_f ˝ORj .�xj /!�_f ˝OD.�1� 0/!�_f ˝ODkC1.�1� 0/

!

lM
jD1

�_f ˝ORj .�xj /Œ1�: (11)

Recall that �_
f
˝ ORj is quasi-isomorphic to a shifted normal sheaf Nf ˝

ORj Œ�1�, and the sheaves N ˝ORj are locally free and globally generated by (8).
Therefore

H
2
� lM
jD1

�_f ˝ORj .�xj /
�
D 0;

and thus by the distinguished triangle (11),

H
2
�
�_f ˝OD.�1� 0/

�
D 0;

which, combined with the long exact sequence of hypercohomology of the distin-
guished triangle (10), implies that the map

H
1
�
�_f .�1/

�G
!H

1
�
�_f .�1/˝OC

�G
(12)

is surjective.
Then we look at the distinguished triangle

�_f0!�_f ˝OC ! 
0Œ�1�!�_f0 Œ1�;

where f0 is the restriction of f to C and 
 is a skyscraper sheaf supported at the
point p.

By the vanishing results (5), the map

H
1
�
�_f .�1/˝OC

�G
! .
0/

G D 
0 (13)

is surjective.
Note that �_

f
˝ OC Š �

_
f
.�1/˝ OC . Combining this identification and the

surjectivity of maps in (13) and (12), we have proved that a general G-equivariant
deformation with1 fixed smooths the node connecting C and DkC1.

We have a distinguished triangle

�_fkC1.�1/!�_f ˝ODkC1.�1/! 
Œ�1�˚

lM
jD1


j Œ�1�!�_fkC1.�1/Œ1�;
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where 
 is a torsion sheaf supported at 0 2DkC1. This induces a map

H
1
�
�_f ˝ODkC1.�1/

�G
! 
: (14)

By Lemma 4.4, a general deformation of C [D with 1 fixed is unobstructed and
smooths the node connecting C and DkC1. (Note that the proof of this result is inde-
pendent of the vanishing (7).) Thus the composition

H
1
�
�_f .�1/

�
!H

1
�
�_f ˝ODkC1.�1/

�G
! 


is surjective. So the map in (14) is also surjective.
Recall that �_

f
˝ODkC1.�1/ is quasi-isomorphic to the shifted sheaf

�
Q˚

d�2M
iD1

O.l/˚O.1/
�
˝ODkC1.�1/Œ�1�;

and the O.1/ direction is the normal direction of the fiber.
Moreover, the map in (9) can be written as

Q˚

d�2M
iD1

O.l/˚O.�l/Œ�1�!Q˚

d�2M
iD1

O.l/˚O.1/Œ�1�

! 
Œ�1�˚

lM
jD1


j Œ�1�!Q˚

d�2M
iD1

O.l/˚O.�l/:

Thus only the O.1/˝ODkC1.�1/ summand may have a nonzero map to 
 in
the above evaluation map in (14). Thus the unique section in this summand (i.e., the
section ofH 0.O.1/˝ODkC1.�1//DH

0.ODkC1/) is mapped to a nonzero element
in 
. Furthermore, this unique section, thought of as a section in

H
1.�_f ˝ODkC1/

G

via the inclusion

H
1
�
�_f ˝ODkC1.�1/

�G
!H

1.�_f ˝ODkC1/
G

only vanishes at12DkC1. Therefore the map

H 0
�
O.1/˝ODkC1.�1/

�G
!
� lM
jD1


j

�G
(15)

is surjective.
To prove the vanishing in (7), we only need to consider the O.1/ summand since

all the other summands have enough positivity to kill the higher cohomology H
2. For

the O.1/ summand, consider the short exact sequence
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0!O.1/˝ODkC1.�1� x1 � � � � � xl /!O.1/˝ODkC1.�1/!

lM
jD1


j ! 0;

which induces a map on the G-invariant part of cohomology

H 0
�
O.1/˝ODkC1.�1/

�G
!
� lM
jD1


j

�G
!H 1

�
O.1/˝ODkC1.�1� x1 � � � � � xl /

�G
!H 1

�
O.1/˝ODkC1.�1/

�G
:

Since the map (15) is surjective and H 1.O.1/˝ODkC1.�1//
G vanishes, we have

H 1
�
O.1/˝ODkC1.�1� x1 � � � � � xl/

�G
D 0;

and thus

H
2
�
�_f ˝ODkC1.�1� x1 � � � � � xl/

�G
D 0:

We now finish the proof of step 2. Consider the distinguished triangles

�_f .�1/˝ OC .�p/! �_f .�1/! �_f .�1/˝ OD ! �_f ˝ OC .�p/Œ1�;

�_f ˝ODkC1.�1� x1 � � � � � xl/!�_f ˝OD.�1/

!

lM
jD1

�_f ˝ORj

!�_f ˝ODkC1.�1� x1 � � � � � xl/Œ1�:

The vanishings in (5) and (7) imply that the map

H
1
�
�_f .�1/

�G
!H

1
�
�_f ˝OD.�1/

�G
!H

1
� lM
jD1

�_f ˝ORj

�G
(16)

is surjective (note that �_
f
˝ORj Š�

_
f
.�1/˝ORj ).

Since the G-action on the chain of rational curves Rj is permutation. There is a
section of

H
1
� lM
jD1

�_f ˝ORj

�G
which is mapped to a nonzero element in the G-invariant part of the torsion sheaf
supported at the nodes on Rj ; j D 1; : : : ; l if and only if there is a section of
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H
1.�_f ˝ORj /

which is mapped to a nonzero element in the torsion sheaf supported at the nodes on
Rj and for some (and hence for all) j .

Since the restriction of �_
f

to Rj is quasi-isomorphic to Nf ˝ ORj Œ�1� and
Nf ˝ ORj is locally free and globally generated by the vanishing (5) or (8), this
follows from the same argument as in [7] (in particular, the bottom of pp. 187 and
188).

So combining this observation with the surjectivity of the map in (16) and Lem-
ma 4.4, we have proved that a general G-equivariant deformation with 1 fixed
smooths all the nodes and produces a new section which agrees with bs to order
kC 1.

4.2. Weak approximation in the smooth locus
The following is a special case of weak approximation, which turns out to be all one
needs to finish the proof. The basic idea is that when the central fiber is very singular,
a base change and a birational modification will greatly improve the singularities.
Then one just need to keep track of the Galois group action to get back to the original
family.

LEMMA 4.5
Let � W X ! B be a standard model of families of cubic surfaces over a smooth
projective curve B , and let s W B !X be a section. Let b1; : : : ; bk ; bkC1; : : : ; bm be
finitely many points in B , andbsj , k C 1� j �m be formal sections over the points
bj ; k C 1 � j � m, which lie in the smooth locus of � WX ! B . Assume that the
section s intersects the fibers over bkC1; : : : ; bm in the smooth locus. Then given a
positive integerN , there is a section s0 WB!X such that s0 is congruent to s modulo
mN
B;bi

for all 1� i � k, and congruent tobsj modulo mN
B;bj

, for all kC 1� j �m.

Proof
By the iterated blow-up construction, keeping the jet data is the same as keeping the
section intersecting certain exceptional divisors in the iterated blowup, which, in turn,
is equivalent to keeping the intersection numbers of the section with exceptional divi-
sors in the iterated blowup. In the following we will only use a deformation/smoothing
argument and we will only use a general deformation (i.e. without specialization)
to prove the weak approximation result. Thus the intersection numbers are always
kept. Since we start with a section which intersects the fibers over given points in the
smooth locus, the section we produce by adding curves in the smooth locus of � and
smoothing also intersect the fibers over the given points in the smooth locus. There-
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fore we can reduce the general case to the case that bkC1; : : : ; bm is just a single point
b 2B .

First of all we may approximate the formal section if the fiber over b has at worst
du Val singularities. Indeed the section s and the formal section we need to approxi-
mate lie in the smooth locus over b by assumption. So the statement follows from [8,
Theorem 1] and the fact that the smooth locus of log del Pezzo surfaces are strongly
rationally connected (see [18] or [8, Theorem 21] for the case of cubic surfaces).

From now on we assume that the fiber over the point b is either a cone over a
plane cubic curve or nonnormal. By Proposition 3.4, at least for the formal neighbor-
hood, we can find a ramified base change and a birational modification so that the
new central fibers have du Val singularities only and the Galois group acts on the total
space of the formal neighborhood.

The next goal is to show that we can make the base change globally on the
curve B .

Given finitely many points x1; x2; : : : ; xn in B , and any positive integer l , there
is a cyclic cover of degree l of B which is totally ramified over x1; : : : ; xn (and
other points). To see this, take a general Lefschetz pencil which maps x1; : : : ; xn
(and other points) to 0 2 P1 and is unramified over these points. Take a degree l
map B1 D P

1! P
1; ŒX0;X1� 7! ŒX l0;X

l
1� and let C DB �P1 B1 be the fiber product.

Then C is the desired cyclic cover. We may also choose the cover C !B so that the
preimages of b1; : : : ; bk are l distinct points.

Let C !B be a cyclic cover of degree l (which is determined in Sections 3.2 and
3.3 according to the type of singularities), totally ramified at the point b (and other
points). There is a new family over the curve C by base change. The cyclic group
G D Z=lZ acts on C and the total space of the new family over C in such a way that
the projection to C is G-equivariant. Let c be the points in C which is mapped to b.
One can modify the family locally around c as in Sections 3.2 and 3.3.

Let X0! C be the family after the base change and birational modifications.
The group G still acts on the total space X0, and the projection to C is G-equivariant.

The section s induces a G-equivariant section of the new family X0! C and
has the desired jet data at all points mapped to b1; : : : ; bk . Still denote the new section
by s. Moreover, the new G-equivariant section s intersects the fiber over the point c
in the smooth locus (Proposition 3.4). So do the new formal sections we want to
approximate.

Now the argument in Theorem 4.1 proves weak approximation in this case. The
theorem needs the assumption that the fiber over c is smooth. But this can be weak-
ened as the following:
� the section and the formal sections intersect the fibers over c in the smooth

locus, and
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� there are G-equivariant very free curves in the smooth locus connecting the
intersection points of the central fiber with the G-equivariant section and for-
mal sections over the points c.

The second condition is proved in Proposition 3.4.

5. Proof of the main theorem
We first show that there are “nice” sections for a standard model of a family of cubic
surfaces. The idea goes back to an argument of Keel and McKernan [10, Section 5],
in particular, the proof of Corollary 5.6. Hassett and Tschinkel [9] also used the idea
of Keel and McKernan to study strong rational connectedness, which is very similar
to the argument presented here.

LEMMA 5.1
Let � WX!B be a standard model of a family of cubic surfaces over a smooth pro-
jective curve B , and let s WB!X be a section. Given finitely many points b1; : : : ; bk
in B , and a positive integer N , there is a section s0 WB!X such that s0 is congruent
to s modulo mN

B;bi
and s0.B �

S
bi / lies in the smooth locus of � WX!B .

Proof
One first resolves the singularities of X along the fibers over bi in such a way that the
partial resolution is an isomorphism except along these fibers. Then use the iterated
blow-up construction according to the jet data of s near the points bi . After suffi-
ciently many iterated blowups, fixing the jet data is the same as passing through fixed
components. Call the new space X1.

Then the lemma is reduced to showing that there is a section of the new family
X1! B which has desired intersection number with irreducible components of the
fibers over b1; : : : ; bk in B and lies in the smooth locus of X1!B .

In the following proof, we will show that the given section s, after adding very
free rational curves in general fibers, deforms away from the singular locus of the total
space. Since the deformation will not change the intersection numbers with divisors,
we get a deformation into the smooth locus with the jet data fixed.

Take a resolution of singularities X2!X1 which is an isomorphism over the
smooth locus such that the exceptional locus in X2 consists of simple normal crossing
divisors Ei ; i D 1; : : : ; n. After adding very free curves in general fibers and smooth-
ing, we may assume the strict transform of the section s, denoted by f W B !X2,
passes through gC 1 very general points p1; : : : ; pgC1 in X2, where g is the genus
of B .

First consider the Kontsevich moduli space of stable maps M g;gC1.X1/ param-
eterizing stable maps from genus g curves with g C 1 marked points to X1, which
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pass through gC 1 very general points p1; : : : ; pgC1 in X1. Let V be an irreducible
component containing the point represented by the map f WB!X1.

Next consider the Kontsevich moduli space of stable maps M g;gC1.X2/ param-
eterizing stable maps from genus g curves with g C 1 marked points to X2, which
pass through p1; : : : ; pgC1. There is a natural forgetful map fromM g;gC1.X2/ to the
corresponding moduli space of stable maps to X1. Take U to be the inverse image
of V , and write the restriction of the forgetful map as F W U ! V .

Note that U has at most countably many irreducible components. Clearly the
forgetful map F surjects onto an open dense subset of V since we can always lift a
section from X1 to X2, with all the conditions still satisfied. Thus there is an irre-
ducible component U0 of U which dominates V . (Here we are using the fact that C
is uncountable.) By the following lemma (to be proved later), dimU0 D�KX2 �D �

2.gC 1/, where f 0 WD!X2 is general point (hence D is irreducible) in U0.

LEMMA 5.2
Let X be a smooth 3-fold. Assume that given gC 1 very general points x1; : : : ; xgC1
in X , there is an embedding f W C ! X of a smooth projective curve of genus g in
X which maps g C 1 points c1; : : : ; cgC1 in C to x1; : : : ; xgC1. Let f 0 W .D;d1; : : : ;
dgC1/ ! .X;x1; : : : ; xgC1/ be a general deformation of C . Then H 1.D;

ND=X .�d1�� � ��dgC1//D 0. In particular, every irreducible component containing
the morphism

f W .C; c1; : : : ; cgC1/! .X;x1; : : : ; xgC1/

has dimension �KX �C � 2.gC 1/.

The standard model has isolated du Val singularities, that is, 3-fold terminal and
local complete intersection singularities. So does the new total space X1 by construc-
tion. Therefore every irreducible component containing the point f 0 WD!X2!X1

has dimension at least�KX1 �2.gC1/ since X1 has local complete intersection sin-
gularities. Furthermore, by definition of terminal singularities, we have

�KX1 D�KX2 C

nX
iD1

aiEi ; ai > 0:

Thus if the image ofD in X1 intersects the singular locus, �KX1 �D is strictly larger
than �KX2 �D, which is impossible.

Therefore we have a section s0 WB!X1 which has the desired intersection num-
bers and lies in the smooth locus of the total space X1. Finally note that if a section
lies in the smooth locus of the total space X1, then the section lies in the smooth locus
of the morphism � WX1!B .
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Proof of Lemma 5.2
LetM be an irreducible component of the Kontsevich moduli space of genus g stable
maps with gC1marked points toX containing f W C !X . Then the evaluation map

ev WM !X � � � � �X„ ƒ‚ …
gC1

is dominant. (Here we use the fact that C is uncountable.) Let

f 0 W .D;d1; : : : ; dgC1/!X

be a general point in the moduli space M . Then D is also embedded and one can fix
g.� 0/ general points in the curveD and deform the curve along the normal direction
at a general point. This implies that we have an exact sequence of sheaves,

H 0
�
D;ND=X .�d1 � � � � � dg/

�
˝OD!ND=X .�d1 � � � � � dg/!Q! 0;

where Q is a torsion sheaf on D and d1; : : : ; dg are general points in D. It follows
from the exact sequence that H 1.D;ND=X /D 0 since a general degree g line bundle
has no H 1.

We also have short exact sequences

0!ND=X .�d1 � � � � � dkC1/!ND=X .�d1 � � � � � dk/

!ND=X .�d1 � � � � � dk/jdkC1! 0;

for all k D 0; : : : ; g.
Again, if the points di are general, then the maps on global sections

H 0
�
D;ND=X .�d1 � � � � � dk/

�
!ND=X .�d1 � � � � � dk/jdkC1 ; 0� k � g;

are surjective. Thus we have

H 1.D;ND=X /DH
1
�
D;ND=X .�d1/

�
D � � �

DH 1
�
D;ND=X .�d1 � � � � � dgC1/

�
D 0:

Now we have all the results needed for the proof of Theorem 1.2.

Proof of Theorem 1.2
Given a smooth cubic hypersurface X over the function field C.B/ of a smooth pro-
jective curve B , one can find a Lefschetz pencil over P1

C.B/
whose general fiber is

a smooth cubic hypersurface of one dimension lower. If weak approximation holds
for general fibers, then weak approximation holds for the total family (cf. [6, Theo-
rem 3.1]). Thus it suffices to prove weak approximation for all smooth cubic surfaces.

Let X ! B be a standard model for a smooth cubic surface defined over the
function field C.B/.
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By Lemma 5.1, one may choose a section s of � W X ! B which lies in the
smooth locus of � . Given a finite number of formal sectionsbsi ; 1� i �m over bi 2
B;1 � i �m, let bLi be the line in the formal neighborhood XbOB;bi which joins the

formal sectionsbsi and s. Letbs 0i be the third intersection point of bLi with the formal
neighborhood. Up to perturbing the formal sectionsbsi , we may assume that the three
local formal sections are not the same.

Choose an integer N large enough. We claim that there is a line L defined over
the field C.B/, which contains the rational point p corresponding to s, intersects
the generic fiber X� at a cycle of degree 3, and agrees with bLi to order N . This is
equivalent to weak approximation for the space of lines through the rational point p.
Since the space is isomorphic to P

2, weak approximation holds.
If the line L intersects the generic fiber at two other rational points, then we

connect the two sections corresponding to the two rational points with rational curves
in general fibers and smooth them with the jet data fixed.

So we may assume that there is a degree 2 multisection C !X such that the
formal sections induced by C agree withbsi andbs 0i to order N . See Figure 3 for an

Figure 3. Producing the multisection C .
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illustration of the situation. (We draw the section s and its restriction to the formal
neighborhood differently so that it is easier to visualize.)

Make the base change C ! B , which is étale over the points bi . Denote the
preimages of bi to be ci and c0i . The formal sectionsbsi andbs 0i induce formal sections
over ci and c0i , which will still be denoted bybsi andbs 0i . The section s also induces
a section of the new family, still denoted by s. The degree 2 multisection C induces
another section sC of the new family, which agrees withbs 0i to order N .

We may arrange the degree 2 cover C !B to be étale over all the points whose
fibers are singular. So the étale neighborhood of singular fibers of the new family
over C is isomorphic to the étale neighborhood of the corresponding singular fibers
over B . As a consequence, the family over C is a standard model over C in the sense
of Definition 3.1.

By Lemma 5.1, there is a section QsC of the family over C , which agrees withbs 0i to
order N and otherwise lies in the smooth locus of the fibration. Then by Lemma 4.5,
there is a section �C of the new family which agrees with bothbs 0i and the restriction
of s to the formal fibers over ci to order N . See Figure 4 for an illustration of the
situation.

Figure 4. Weak approximation for the family over C .
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Figure 5. Producing the section with desired jet data.

The section �C gives a degree 2 multisection, still denoted by �C .C /, of the
original family � W X ! B , which agrees with s and bs 0i to order N in the formal
neighborhood of the points bi . Take the family of lines spanned by the degree 2 mul-
tisection �C .C /. This family corresponds to a line QL defined over the generic fiber,
that is, the function field C.B/. The line QL agrees with the line L to order N over the
points bi by construction. We have a third intersection point of QL with the cubic sur-
face, necessarily defined over C.B/. The section corresponding to this rational point
will agree with the formal sectionsbsi to order N by construction, thus completing the
proof (cf. Figure 5).
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