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WHICH ARE THE SIMPLEST ALGEBRAIC VARIETIES?

JÁNOS KOLLÁR

Abstract. This paper is a slightly revised version of the notes prepared in
connection with the AMS Colloquium Lectures delivered in New Orleans,
January 2001.
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1. Introduction

An algebraic variety is a subset of Cn defined by polynomial equations. It is
rather clear that the higher the degree of the defining equations, the more com-
plicated the corresponding variety can be. There have been various approaches to
define what the “most complicated” varieties are, but it is only recently that a good
definition and theory were developed for the “simplest” varieties. These are called
rationally connected varieties.

The first 4 sections are devoted to motivating the general definition with classical
examples of curves and surfaces.

Rationally connected varieties are finally defined in section 5. A list of their
known good properties is also given. In dimension 3, rationally connected varieties
are known to have all the expected properties. In higher dimensions some of the
hoped for results are still open, but no counter examples are known.

Section 6 studies a conjecture of Nash about the real topology of rationally
connected varieties. Finally, several open problems are stated in section 7.

Received by the editors February 7, 2001.
2000 Mathematics Subject Classification. Primary 14-01, 14E08, 14E30, 14G05, 14J26, 14P25;

Secondary 11D25, 11G35, 30F10, 57N10.

c©2001 American Mathematical Society

409
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2. Algebraic curves

The study of polynomial equations in 2 variables

f(x, y) = 0

has a long and distinguished history. As motivation for the higher dimensional
theory, I would like to concentrate on a few aspects of it that have attracted a lot
of attention.

1 (Number theory). Several well known problems of number theory are equivalent
to a question about rational solutions of an equation f(x, y) = 0. For instance,
solving the Fermat equation

xn + yn = zn

in integers is equivalent to solving

xn + yn − 1 = 0

in rationals.

2 (Complex analysis and topology). If we let x and y be complex variables, the
solutions of f(x, y) = 0 in C2 give a Riemann surface. This is the beginning of
complex manifold theory and one of the starting points of topology.

3 (Real topology). The real solutions of f(x, y) = 0 give a real curve in R2. Un-
derstanding the complexity of these curves is Hilbert’s 16th problem.

4 (Integration). Integrals of algebraic functions have been a major subject of study
in the XIXth century. For instance, integrals of the form∫

h(x)
n
√
g(x)

dx

lead to the study of the curve yn − g(x) = 0. From the modern perspective, these
results are the beginnings of global differential geometry of complex manifolds.

As an illustration, I would like to analyze in some detail the equations

y2 = fm(x) where fm is a polynomial of degree m.

These are called hyperelliptic curves or equations. We assume that fm has no
multiple roots. For most questions this can be achieved easily. Indeed, if f(x) =
(x− a)2g(x), then a substitution y1 = y/(x− a) gives the simpler equation

y2
1 = g(x).

The main point that I would like to stress is the following.

Claim 5. The equations y2 = fm(x) naturally break up into 3 groups of quite
different flavor:

1. (Simple cases) m = 1, 2
2. (Intermediate cases) m = 3, 4
3. (Hard cases) m ≥ 5.

A key element of this claim is that all 4 of the above viewpoints result in the
same division into groups. Let us begin with the most transparent aspect.
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6 (Topology of the complex solutions). Here we start with the set

Hm := {(x, y) ∈ C2 : y2 = fm(x)}.
For large values of x, Hm is like (y2 = xm). If m is odd, then the latter is a
connected set, parametrized by the unit disc via t 7→ (t−m, t−2). Thus

H̄m := Hm ∪ {one point at infinity}
is a compact topological surface.

If m is even, then (y2 = xm) is disconnected near infinity, parametrized by 2
copies of the unit disc via t 7→ (±t−m/2, t−1). Thus

H̄m := Hm ∪ {two points at infinity}
is a compact topological surface.

The projection to the x-axis establishes H̄m as a 2-sheeted ramified cover of the
Riemann sphere S2 = C∪{∞}. The points in the Riemann sphere with 1 preimage
are the roots of fm and the point at infinity for m odd.

Choose a triangulation of the Riemann sphere where the roots of fm and the
point at infinity are vertices. The Euler characteristic formula gives that

2 = χ(S2) = v − e+ r,

where v is the number of vertices, e is the number of edges and r the number of
regions in the triangulation. Pulling this back to H̄m, we obtain a triangulation
with r′ = 2r regions, e′ = 2e edges and v′ = 2v −m− (0 or 1) vertices (depending
on the parity of m). Thus

χ(H̄m) =

{
1−m if m is odd
2−m if m is even.

It is easy to see that H̄m is orientable. From the classification of compact topological
surfaces we obtain that H̄m is S2 with bm−1

2 c handles attached. The number of
handles is called the genus; it is usually denoted by g = g(H̄m). Thus, topologically,

H̄m ∼


sphere if m = 1, 2
torus if m = 3, 4
surface of genus ≥ 2 if m ≥ 5.

Relying on more complex analysis, we can conclude that the universal cover of H̄m

is biholomorphic to 
Riemann sphere if m = 1, 2
complex plane if m = 3, 4
complex unit disc if m ≥ 5.

Next we look at the real topology. This is easy but the division into groups is
less convincing.

7 (Real topology). Let a1 ≤ · · · ≤ an be the real roots of fm. If fm is positive in
the interval (ai, ai+1), then the graph of y2 = fm over this interval is a circle. It is
also easy to see what happens near infinity. The end result is that the real points
of H̄m form at most bm+1

2 c circles. Thus here we cannot determine m from the
topology of the real solutions, but we have an inequality

#(connected components of H̄m(R)) ≤ g + 1 = bm+ 1
2
c.
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8 (Rational solutions). If m = 1, then y2 = ax + b can be solved for x and we
always have plenty of rational solutions parametrized as

t 7→ ( t
2−b
a , t).

If m = 2, then y2 = ax2 + bx + c may not have any rational solutions. (For
instance, y2 = −x2 − 1 has no solutions even over R; y2 = −x2 + 3 has real
solutions but no rational solutions, as a simple mod 3 argument shows.) I claim,
however, that as soon as we have one rational solution, there are plenty more.
Look for instance at y2 + 2x2 = 3. One obvious solution is (1, 1). Let Lt be the line
connecting (1, 1) with (1 + t, 0). Lt intersects the ellipse (y2 + 2x2 = 3) in 2 points;
one of these is (1, 1). The coordinates of the other point give rational solutions
parametrized as

t 7→ p(t) =
(
−2t2 + 2t+ 1

2t2 + 1
,

2t2 + 4t− 1
2t2 + 1

)
.

We get Figure 1.

1 + t 

p(t) 

(1,1) 

Figure 1. Parametrization of y2 + 2x2 = 3

We may summarize these results as follows:

Stereographic projection of a conic q(x, y) = 0 from a point P on the
conic gives a one–to–one correspondence between the points on the conic
and the points of a line.

The inverse is given by quotients of polynomials of degree 2. The
coefficients of these polynomials are in the same field as the coefficients
of q(x, y) and the coordinates of P .
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(1,0.5) 

Figure 2. Tangent method for 4y2 = x3 − 2x2 − 2x+ 4

If m = 3, then there is an interesting method to get further solutions from any
given one. This relies on the observation that

H3 = (y2 = x3 + ax2 + bx+ c) ⊂ C2

is a degree 3 curve, so any line intersects it in at most 3 points. If (x′, y′) and
(x′′, y′′) are points on H3, the line connecting them intersects H3 in a unique third
point, (φx(x′, x′′), φy(y′, y′′)). Moreover, if a, b, c, d, x′, y′, x′′, y′′ are rational num-
bers, then so are φx(x′, x′′) and φy(y′, y′′). We can even allow (x′′, y′′) = (x′, y′) by
using the tangent line at (x′, y′) to H3. See Figure 2.

Thus, starting with a point (x0, y0) ∈ H3 we obtain

(x1, y1) = (φx(x0, x0), φy(y0, y0)) ∈ H3.

By explicit computation we obtain that

x1 = x0 −
1
4

4 x3
0 a+ 6 x2

0 b+ 12 x0 c+ 4 a c+ 3 x4
0 − b2

y2
0

y1 = y0 −
1
8

(4 x3
0 a+ 6 x2

0 b+ 12 x0 c+ 4 a c+ 3 x4
0 − b2) (3 x2

0 + 2 a x0 + b)
y3

0

.

This procedure can be iterated to obtain points

(xi+1, yi+1) = (φx(x0, xi), φy(y0, yi)) ∈ Hm.

In some cases we get back to (x0, y0) and then we just go around in circles, but
in most cases we do get an infinite sequence of points. By looking carefully at the
above formulas we find that

The numerators and denominators of (xi, yi) grow exponentially with i.
If m = 4, then a line intersects

H4 = (y2 = x4 + ax3 + bx2 + cx+ d)
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 (1,0.5) 

Figure 3. Tangent method for 4y2 = x4 − 5x2 + 5

in 4 points; thus the above tangent method does not work. One can, however,
modify it as follows. It is easy to see that every parabola of the form y = x2+Ax+B
intersects H4 in at most 3 points, and for every (x0, y0) ∈ H4 there is a unique
parabola y = x2 +Ax+B which is tangent to H4 at (x0, y0). The 3rd intersection
point is then (x1, y1), as shown by Figure 3.

I actually computed the general formula for (x1, y1) in terms of x0, y0, a, b, c, d.
The expression for x1 involves about 100 monomials, so I do not reproduce it
here. Such a result seems nearly useless for most purposes. A few years ago I
would have dismissed it too. Nevertheless, I would like to emphasize that symbolic
manipulation programs have no difficulty handling polynomials of degree several
hundred, so computationally these formulas can be quite useful.

For m ≥ 5 one can try variants of the above tricks to get new solutions out of old
ones, but no general method was ever found. In fact, there can be no such method
as shown by the following theorem of [Faltings83].

Theorem 9. If g(x, y) = 0 defines a curve of genus ≥ 2, then g(x, y) = 0 has only
finitely many rational solutions. In particular, if m ≥ 5 and fm has no multiple
roots, then y2 = fm(x) has only finitely many rational solutions.

10 (Differential forms without poles). Already Euler was aware of the curious
property of ∫

dx√
x3 + ax2 + bx+ c

(10.1)

that the value of the integral on any curve in the complex domain is finite. He also
knew that the integrals∫

p(x)
q(x)

dx and
∫
P (x,

√
x2 + bx+ c)

Q(x,
√
x2 + bx+ c)

dx

where p(x), q(x), P (x, y), Q(x, y) are polynomials never have this property. Indeed,
integrals of rational functions diverge near the poles, and if there are no poles, then
they diverge near infinity. The seemingly more complicated second case can be



WHICH ARE THE SIMPLEST ALGEBRAIC VARIETIES? 415

reduced to the first one by a suitable substitution x = X(t), y = Y (t) where X,Y
are rational functions. (In fact, these are exactly the coordinates of the inverse
function of the stereographic projection of the conic (y2 = x2 + bx+ c) from one of
its points.)

It is somewhat annoying that the integral (10.1) is 2–valued, and Riemann sug-
gested the following way to correct this.

Instead of looking at (10.1) as an integral over the x-axis, we look at this as an
integral over the curve C = (y2 = x3 + ax2 + bx+ c). This has the great advantage
that √

x3 + ax2 + bx+ c|C = y|C ;

hence we get the much simpler looking expression∫
dx

y
, where we integrate over a path in C.

It seems now that this integral should diverge where y = 0, that is, at the roots of
x3 + ax2 + bx+ c. However, we integrate over y2 = x3 + ax2 + bx+ c; thus

2ydy|C = (3x2 + 2ax+ b)dx|C ,

and so ∫
Γ⊂C

dx

y
=
∫

Γ⊂C

2dy
3x2 + 2ax+ b

.

Since x3 +ax2 + bx+ c has no multiple roots, 3x2 + 2ax+ b is not zero at the roots,
so either y or 3x2 + 2ax+ b is nonzero for every point (x, y) ∈ C.

Near infinity the integrand grows like x−
3
2 ; hence there we have convergence.

A generalization of this observation to the higher degree cases is given by the
following theorem which was already known to Abel.

Theorem 11. Let f(x) be a polynomial of degree m without multiple roots and
Φ(x, y) a meromorphic function on C2. The integral∫

Φ(x,
√
f(x))dx

is finite on every path Γ ⊂ (y2 = f(x)) iff it is identical to∫
p(x)√
f(x)

dx

where p is a polynomial of degree ≤ m−3
2 .

In particular, the number of linearly independent integrals with this finiteness
property is precisely the genus of the curve y2 = f(x).

12 (Summary). The results explained above all generalize to arbitrary plane curves,
and even to algebraic space curves. I formulate them in the genus zero case, since
this is the one that we would like to understand in higher dimensions.

First we need some definitions.

Definition 13. We start with some polynomials

f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)
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in n (complex) variables. Viewed as a system of polynomial equations, their com-
mon zero set is the affine algebraic variety

X = (f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0).

Affine refers to the circumstance that we look at solutions in affine n-space An.
We can always look at all complex solutions, denoted by X(C). If the fi have real
coefficients, then it is sensible to consider all real solutions, denoted by X(R). If
the fi have rational coefficients, then we have a system of Diophantine equations
and the set of rational solutions is denoted by X(Q).

A rational map from An (with coordinates x1, . . . , xn) to Am (with coordinates
y1, . . . , ym) is given by m rational functions

Φ : (x1, . . . , xn) 7→ (φ1(x), . . . , φm(x)).

Note that Φ may not be everywhere defined. We say that Φ is a morphism if it is
everywhere defined. If X ⊂ An and Y ⊂ Am are varieties and Φ(X) ⊂ Y , then we
say that Φ gives a rational map of X to Y .

In what follows, I make two simplifying assumptions. It is known that these do
not result in any loss of generality.

1. X is smooth. This is equivalent to assuming that X(C) ⊂ Cn ∼= R2n is a
differentiable submanifold.

2. X is irreducible. This is equivalent to assuming that X(C) is connected.
As a topological space, X(C) is always even dimensional, and we define the (com-
plex) dimension dimX of X to be one half of the (real) topological dimension of
X(C). Thus dimCn = n. It is easy to see that X(R) is either empty or of (real)
dimension dimX .
X is a curve, surface, 3-fold, etc., if dimX is 1,2,3, etc.
Already in the curve case we saw that it is convenient to throw in some points at

infinity. This can be done for any variety X , though the resulting compactification
is not unique in dimensions ≥ 2. For now this ambiguity does not matter; any of
these will be denoted by X̄.

Theorem 14. Let

X = (f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0)

be a (smooth and irreducible) algebraic curve. The following are equivalent.
1. X̄(C) is homeomorphic to S2.
2. There are rational functions h1(t), . . . , hn(t) such that

t 7→ (h1(t), . . . , hn(t))

is a one–to–one map from the Riemann sphere to X̄(C).
3. Let Φ1(x), . . . ,Φn(x) be arbitrary meromorphic functions on Cn. Then∫

Φ1(x)dx1 + · · ·+ Φn(x)dxn

diverges along some path in X(C).
If the fi have real coefficients, then (1–3) imply:

4. X(R) is either empty or S1.
If the fi have rational coefficients, then (1–3) imply:

5. If the system of equations f1(x) = · · · = fk(x) = 0 has a rational solution,
then it has infinitely many.
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6. The system of equations f1(x) = · · · = fk(x) = 0 always has a solution in a
field Q(

√
d) for some d ∈ Q.

It may be a little surprising, but in practice condition (14.3) is the easiest to
verify. This is especially so with its higher dimensional analogs.

It is possible to formulate the last 2 assertions so that they become equivalent
to (14.1–3).

7. The system of equations f1(x) = · · · = fk(x) = 0 has a sequence of solutions
(xi1, . . . , xin) in a field Q(

√
d) where the denominators and numerators of the

xij grow polynomially in i.

Definition 15. An algebraic curve X is called geometrically rational if it satisfies
the equivalent conditions (14.1–3).

Many authors simply refer to these as rational curves. This is one of the standard
terminological sources of confusion in algebraic geometry.

Let me also emphasize that while a real algebraic variety is a variety defined by
real equations, a rational curve (or variety) has nothing to do with its equations
having rational coefficients.

Theorem 16. Let k be a field with algebraic closure k̄ and

X = (f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0)

be a (smooth and irreducible) algebraic curve over k. The following are equivalent.
1. X̄ is isomorphic to P1 over k̄.
2. There is a plane conic Q = (q(s, t) = 0) defined over k and rational functions
h1(s, t), . . . , hn(s, t) (with coefficients in k) such that

Q 3 (s, t) 7→ (h1(s, t), . . . , hn(s, t)) ∈ X
is an isomorphism from the conic Q̄ to X̄.

3. Rational surfaces

After the successful division of curves into 3 broad classes, one should naturally
attempt a similar classification for surfaces. This turns out to be a much bigger un-
dertaking, and instead I would like to focus on generalizing the detailed description
of rational curves obtained in theorems (14) and (16):

Find the 2-dimensional analogs of rational curves.

Keep in mind that we want to do at least two different things at the same time.
The easier part is to classify all algebraic surfaces over C that behave like C2. The
second, harder, part is to perform a similar classification over any field. The differ-
ence between these is illustrated by quadrics. In order to streamline the discussion,
we need to say a few words about projective varieties.

Definition 17. In dimension 2 and up it is harder and harder to ignore the precise
compactification X̄ of a variety X . The natural compactification of Cn is the
projective space CPn. As a set this is the collection of nonzero n + 1-tuples (x0 :
· · · : xn) modulo the equivalence relation

(x0 : · · · : xn) ∼ (cx0 : · · · : cxn) for 0 6= c ∈ C.

Despite this ambiguity, the zero set of a homogeneous polynomial is still well defined.
Thus, proceeding as in (13) we end up with projective varieties.
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Example 18 (Quadrics in P3).
Every smooth quadric surface Q ⊂ P3 is given by a diagonal equation

a0x
2
0 + · · ·+ a3x

2
3 = 0 with a0 · · · a3 6= 0

(except in characteristic 2). Further simplifications of the equation depend on the
field:

1. Over C the substitutions yi =
√
aixi give the equation

y2
0 + · · ·+ y2

3 = 0.

2. Over R the substitutions yi =
√
|ai|xi give an equation

±y2
0 ± · · · ± y2

3 = 0,

giving 3 types up to isomorphisms.
3. Over Q there are many more cases. For instance, if the pi are different primes,

then the isomorphism class of the quadric

Q(p1, . . . , pk) := (x2
0 − x2

1 + x2
2 −

∏
ipix

2
3 = 0)

determines the primes p1, . . . , pk. (This can be seen, for instance, by not-
ing that the discriminant of a quadratic form changes by a square under a
coordinate change.)

Although the quadrics Q(p1, . . . , pk) are pairwise nonisomorphic, they all are
very much like P2. Noting that P = (1 : 1 : 0 : 0) is a solution of each of them, let
us project Q(p1, . . . , pk) from P to the (x0 = 0) plane:

π : (x0 : x1 : x2 : x3) 7→
(
x1 − x0 − x3

x3
+ 1 :

x2

x3
: 1
)
.

The inverse is

(u + 1 : v : 1) 7→ (1− λ : 1 + λu : λv : λ) λ =
2(1 + u)

1− u2 + v2 −
∏
i pi

.

Notice, however, that strictly speaking π and π−1 are not inverses of each other.
Indeed, π is not defined at P , and two lines L± in Q(p1, . . . , pk) are mapped to
points

π : (1 : 1 : ±t
√∏

i pi : t)→ (0 : ±
√∏

i pi : 1).

Similarly, π−1 is not defined at the points (0 : ±
√∏

i pi : 1), and the line M =
(0 : u : 1) is mapped to the point P . Thus the best we can say is that

π and π−1 give isomorphisms between the
open sets Q \ L± ⊂ Q and P2 \M ⊂ P2.

From the point of view of diophantine problems this is entirely satisfactory. We
get a complete description of the rational points of Q which lie outside L±. The
remaining question of describing all rational points on L± is a lower dimensional
one and very easy in this case.

The situation is not so clear topologically. It is not straightforward to use π to
get good information about the topology of the complex or real points of Q. We
will see, however, that similar ideas can be used very effectively.

For now we establish a general definition.
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Definition 19. Let X and Y be projective varieties. We say that X and Y are
birational if there are dense open sets X0 ⊂ X and Y 0 ⊂ Y such that X0 and Y 0

are isomorphic (as algebraic varieties).
If X and Y are defined over a field k (for instance Q or R), then we insist that

X0, Y 0 and the isomorphism X0 ∼= Y 0 be defined by polynomials with coefficients
in that field.

If K ⊃ k is a field extension, we say that X and Y are birational over K if we
want to use K as the coefficient field.

Definition 20. Let X be a variety defined over a field k. We say that X is rational
if X is birational to PdimX . As above we can define the notion rational over K if
we want to use a larger field K ⊃ k as the coefficient field.

In many diophantine problems, rationality is the ideal state of affairs. If X is
rational over Q, then we understand all the Q-points in a dense subset X0. The
remaining questions about X \X0 pose a lower dimensional problem.

With these definitions in mind, we are ready to try to classify all algebraic
surfaces which behave like rational curves. The main claim is summarized in the
following thesis:

Over C, the correct 2-dimensional analog of rational curves is the class
of rational surfaces.

21 (Supporting evidence). In dimension 1, the simple topological characterization
of rational curves is very appealing. There is no similarly simple topological char-
acterization of rational surfaces. In fact, this turned out to be a rather subtle
question. There are nonrational surfaces which are homeomorphic to a rational
surface [Dolgachev66]. In the C∞-setting the question was settled by Donaldson’s
theory of differentiable 4–manifolds:

1. Let X be a smooth projective surface over C such that X(C) is diffeomorphic
to a rational surface. Then X is also rational.

A characterization using convergent integrals also gets more complicated. First
of all, we need to use both line integrals and surface integrals∫ ∑

i

Φi(x)dxi and
∫ ∑

ij

Φij(x)dxi ∧ dxj .

Furthermore, in the surface integral case we have to allow Φij to be a 2-valued holo-
morphic function (that is, locally like the square root of a holomorphic function).

2. A smooth projective surface X ⊂ Cn is rational iff every line integral diverges
along some path and every 2-valued holomorphic surface integral diverges
along some surface.

The question of saying something about the real topology X(R) is left till (49).

The surface analogs of (16) are more complicated. We start by describing some
examples.

22 (Easy examples).
The projective plane P2 and quadrics Q ⊂ P3.
Stereographic projection from any point of the quadric as in (8) shows that

quadrics in any dimension behave very much like plane conics.
(There is one technical point here that should be mentioned. There are many

algebraic surfaces over Q which are isomorphic to P2 over C but not overQ. It turns
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out that these never have any rational points and they are rather easy to understand
using Galois cohomology (cf. [Serre79]). It is rather awkward to describe them by
equations, so I will ignore them in the sequel. Fortunately, similar problems do not
appear with the other examples.)

Next we get to the most famous example of surface theory:

23 (Cubic surfaces). These are smooth surfaces S ⊂ P3 defined by a single cubic
equation.

At first these seem unlikely to behave like rational curves since degree 3 plane
curves are not rational. Nonetheless, we see below that cubics in 4 variables are
simpler than cubics in 3 variables.

Let us first look at the equation

T := (x2y + y2z + z2v + v2x = 0) ⊂ P3.

The surface T contains several lines; for instance

L1 = (t : 0 : 1 : 0) and L2 = (0 : s : 0 : 1)

are skew lines on T . The line connecting P1(t) = (t : 0 : 1 : 0) and P2(s) =
(0 : s : 0 : 1) intersects T in one more point,

P (s, t) = (t (s2 + t) : s(s t2 + 1) : s2 + t : s t2 + 1).

It is easy to see that

A2 99K T : (s, t) 7→ P (s, t)

is a birational map between the plane and the points of T .
One can prove that every cubic surface over C contains a pair of skew lines. This

leads to the first substantial result in the birational geometry of surfaces:

Theorem 24. [Clebsch1866] A smooth cubic surface over C is always rational.

The situation is more complicated over other fields. As another example, let us
look at the cubics

Sa := (x3 + y3 + z3 = av3) ⊂ P3.

There are plenty of pairs of skew complex lines in Sa, but is easy to check that
Sa does not contain a pair of skew real lines.

If a ∈ Q and we want to work over Q, the problem becomes even more compli-
cated. The answer is, however, completely known due to the following beautiful
theorem:

Theorem 25. [Segre51] Assume that a ∈ Q. Then Sa is rational (over Q) iff a is
a cube.

If a = b3, then v 7→ b−1v reduces us to the case a = 1. This case is indeed
rational, as shown by the next result which I state in two equivalent forms:
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Proposition 26. Let S1 be the cubic surface (x3 + y3 + z3 = v3) ⊂ P3 and Φ :
(s, t) 7→ (x, y, z) the map given by

x = −1
3
t4 + 3 t2 s2 − 2 t3 s− 2 t s3 + s4 + 9 t

2 t2 s− 2 t s2 − t3 + s3 + 3

y =
1
3
t4 + 3 t2 s2 − 2 t3 s− 2 t s3 + s4 + 9 s− 9 t

2 t2 s− 2 t s2 − t3 + s3 + 3

z =
−t2 s+ t s2 + t3 + 3

2 t2 s− 2 t s2 − t3 + s3 + 3
.

Then
1. Φ gives a birational map A2 99K S1 via (s, t) 7→ (x : y : z : 1).
2. The general rational solution of x3 + y3 + z3 = 1 can be uniquely written as

Φ(s, t) for some rational s, t.

27 (Explanation of the formulas). We started with the conjugate pair of lines Li =
(t : −εit : εi : 1) in S1 where εi for i = 1, 2 are the complex cube roots of 1. As in
(23) we obtain a birational map L1 × L2 99K S1.

We obtain another birational map A2 99K L1 × L2 by choosing the line pair
(t, εit) as the coordinates in A2.

Both of these maps are defined only over Q(εi), but the composite, our Φ, is
defined over Q. (This is not an accident but a consequence of the theory of Galois
descent; cf. [Serre79].) The actual computations were carried out by Maple.

Most cubics are not rational overQ, but in many cases there is a map Φ : P2 99K S
defined over Q which is nondegenerate, meaning that the image of Φ does not lie
in any curve. This notion is quite useful in general:

Definition 28. A variety X of dimension n is unirational if there is a rational map
Φ : Pn 99K X whose image is not contained in any smaller closed algebraic subset.

As before, if X is defined over a field k, then we want Φ to be defined over k as
well.

Let Φ : Pn 99K X be a map whose image is not contained in any smaller closed
algebraic subset. It is good to get an idea how big Φ(Pn) is.

1. Φ(CPn) contains a dense open subset of X(C).
2. Φ(RPn) contains an open subset of X(R), but it may not be dense.
3. Φ(QPn) may be a rather sparse subset of X(Q).

These possibilities are illustrated by the example

Φ : A1 → A1 Φ(x) = x2.

Despite these shortcomings unirationality is an important and useful notion.

Theorem 29. [Segre42] Let S ⊂ P3 be a smooth cubic surface defined by an equa-
tion (F = 0) with rational coefficients. Then S is unirational over Q iff S has at
least one rational point.

The proof of Segre works over any field of characteristic zero and also for higher
dimensional cubics satisfying a certain genericity assumption. It is, however, only
recently that the result has been extended to all cubics and to all fields. (The key
missing cases were finite fields.)

Theorem 30. [Kollár00b] Let k be a field, n ≥ 3 and X ⊂ Pn a smooth cubic
hypersurface over k. Then X is unirational over k iff X has a k-point.
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We go through the other “rational like” examples at a faster pace.

31 (Relatives of cubics). There are two other classes of equations which have been
studied classically and which behave very much like cubic surfaces. These are

1. (Quartic double planes) These can be given as

x2 = f(y, z) ⊂ A3 where deg f = 4.

2. (Intersections of 2 quadrics) Defined by 2 quadratic equations

Q1(x, y, z, t) = Q2(x, y, z, t) = 0 ⊂ A4.

The basic theory of these is very similar to that of cubic surfaces.

The following is a much larger class, though less studied classically.

32 (Conic bundles). These are surfaces which can be given by an equation which
is quadratic in 2 of the variables. As a typical example consider

(q(x, y) = f(z)) ⊂ A3 where q is a quadric.

In analogy with the curve case it would seem that these are rational only if f has
low degree. The appearance of 2 quadratic variables, however, changes the situation
completely. Indeed, over C by a change of the x, y variables we can assume that
q(x, y) = x2 − y2. Then

(u, v) 7→
(
f(v) + u2

2u
,
f(v)− u2

2u
, v

)
gives a rational map between the plane and the points of x2 − y2 = f(z).

For other cases of q(x, y) the situation is quite different. For instance, x2 + y2 =
f(z) is rational over R iff f has at most 2 real roots of odd multiplicity. This is
rather easy to see topologically. Assume for simplicity that there are no multiple
roots. If f has 2d real roots, then f is positive on d disjoint intervals and so the
real points of x2 + y2 = f(z) consist of d connected components. It is easy to see
(though not quite obvious) that the number of connected components of X(R) is a
birational invariant over R (for smooth varieties).

There are a few more examples which do not fit neatly into the above patterns.
They also do not appear very frequently.

33 (Esoteric examples).
1. Surfaces defined by equations

x2 + y3 + yg4(z) + g6(z) = 0

where deg gi ≤ i. These are quite a bit more complicated than quartic double
planes.

2. Let M be a 5 × 5 matrix whose entries are linear forms in 6 variables. The
skew-symmetric 4 × 4 subdeterminants are degree 4 polynomials, which are
squares Q2

1, . . . , Q
2
5. The equations

(Q1 = · · · = Q5 = 0) ⊂ P5

define a rational surface. These surfaces are actually quite easy to understand.
3. Compactifications of homogeneous spaces under the group GL(1) × GL(1).

Here the general methods of group cohomology work very well.
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It is not at all clear, but we ran out of examples. This is the main theorem of
the theory of rational surfaces over any field which will be given in a much stronger
form in the next section.

4. Minimal models

As we have seen, it is quite reasonable to study algebraic varieties up to birational
equivalence. This raises the question:

Is there a particularly simple variety in every birational equivalence
class? If yes, how can we find it?

We start answering these questions by first finding ways to make a variety more
complicated.

Definition 34 (Blowing up).
Let X be a smooth variety and x ∈ X a point. Embed X in a large projective

space X ⊂ PN such that no 3 of its points are on a line. (As usual in algebraic
geometry, we also assume the degenerate versions of this. That is, no secant line is
tangent and there are no inflection tangents.)

For p ∈ PN let πp : PN 99K PN−1 denote the projection from p.
If p ∈ PN is outside X , then πp : X → πp(X) is an isomorphism. If p ∈ X , then

πp : X \ {x} → πp(X \ {x})
is still an isomorphism, but the closure of πp(X \ {x}) is bigger than X . To be
precise, the point p is replaced by all the tangent directions of X at p.

That is, given X of dimension n and a point x ∈ X , we constructed a variety
BxX such that

BxX = (X \ {x}) ∪ Pn−1.

It turns out that this construction does not depend on the embedding X ⊂ PN .
X and BxX are clearly birational, and it is quite reasonable to say that BxX is
“more complicated” than X .

The natural map BxX → X is everywhere defined. This map, or BxX itself, is
called the blow up of x ∈ X .

35 (The topology of blow ups). We compute a local model for blow ups.
Let 0 ∈ Cn be the origin and B ⊂ Cn the unit ball. Let π : B0Cn → Cn be the

blow up of the origin. We would like to understand π−1(B). By our construction,
this looks like

(B \ {0}) ∪ (a point for every line through 0).

Inversion on the unit sphere shows that Cn \ B̄ is diffeomorphic to B \ {0} and the
hyperplane

CPn−1 ∼= H = CPn \ Cn ⊂ CPn

has one point for every line through 0. Thus it is a reasonable guess that π−1(B)
is diffeomorphic to CPn \ B̄. This is indeed true, but this diffeomorphism reverses
orientation. We let CPn denote CPn with opposite orientation. (This is a bit unfair
since I have not told you what the “standard” orientation of CPn is, but luckily
this will not matter in these lectures.)

The same argument applies over R, but here the orientation reversal does not
matter. (In fact RPn is not orientable for n even.) Thus we obtain:
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Proposition 36. Let X be a smooth complex variety and x ∈ X a point. Then

BxX(C) is diffeomorphic to X(C)#CPn,
where # denotes the connected sum operation. If X is a real variety and x ∈ X is
a real point, then

BxX(R) is diffeomorphic to X(R)#RPn.

Definition 37 (Minimal models of surfaces). Let S be a smooth projective sur-
face. In trying to find simple birational models of S, first we want to undo all blow
ups. That is, if S is isomorphic to BxS1 for some S1, then we replace S by S1 and
continue. Thus we get a sequence of contractions

S → S1 → · · · → Sk = S∗

where S∗ is not the blow up of anything else. (There are many ways to see that
the process will stop. For instance, the second Betti number of the complex points
drops by 1 at each step.) S∗ is called a minimal model of S.

A basic result of the birational geometry of surfaces (cf. [BPV84]) asserts that a
minimal model is almost always unique.

Theorem 38. Let S be a smooth projective surface over C.
1. If S is not birational to P1 × (curve), then S has a unique minimal model.
2. If S is birational to P1 × (curve), then every minimal model of S is either

(a) P2, or
(b) a P1-bundle over a curve.

If a surface S is defined over a field k, then we are especially interested in
birational maps that are defined over k. First we have to see which blow ups make
sense over k. Let us look for instance at the case k = R.

It is clear that we can blow up a real point p ∈ S(R) and BxS is still defined
by real equations. It may be a little less clear that if p ∈ S(C) is a complex point
with conjugate p̄ ∈ S(C), then the 2 point blow up Bp,p̄S is again definable by real
equations.

Similarly, for any field k we can blow up either points in S(k) or Galois invariant
finite subsets of S(k̄).

This leads to an analog of the minimal model theory over any fields, giving the
following result which was gradually developed by Castelnuovo, Comessatti, Segre,
Iskovskikh and Mori.

Theorem 39. Let S be a smooth projective surface over any field k.
1. If Sk̄ is not birational to P1 × (curve), then S has a unique minimal model

over k.
2. If Sk̄ is rational, then every minimal model of S is among those listed in

(22)–(33). (I am cheating again since I have not fully described the projective
versions of several of these examples.)

5. Rationally connected varieties

Already in the surface case it is not easy to show that all low degree surfaces
are rational. Therefore it did not come as a big surprise that in higher dimensions
rational varieties are too special. By now we should expect that a cubic hypersurface
Xn

3 ⊂ Pn+1 is analogous to rational curves. M. Noether knew that every smooth
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cubic hypersurface of dimension at least 2 is unirational over C, but nobody was
able to prove that Xn

3 is rational for n ≥ 3. (And indeed, smooth cubic 3–folds are
not rational by [ClemensGriffiths72].)

Unfortunately, it seems that the class of unirational varieties is still too re-
strictive. For instance, extrapolating from plane conics and cubic surfaces, we
should expect that hypersurfaces X ⊂ Pn behave analogously to rational curves iff
degX ≤ n. (There are also much better reasons to believe this.)

[Morin40] proved that a degree d hypersurface in Pn is unirational if d is very
small (less that an iterated logarithm of n), but the general case seems hopeless.
The smallest unknown example is degree 4 hypersurfaces in P4. In fact, it is believed
that a general degree 4 hypersurface in P4 is not unirational.

To remedy the situation, a new concept was proposed in [KoMiMo92]. Instead
of trying to emulate global properties of CPn, we concentrate on rational curves.
CPn has lots of rational curves (lines, conics and many higher degree ones), all of
which are images of maps CP1 → CPn. This leads us to the following informal
definition.

A variety X is rationally connected iff there are plenty of rational curves
on X.

The main thesis of [KoMiMo92] is that the above definition is the right one:

Rationally connected varieties are the correct higher dimensional analogs
of rational curves.

Before we can even start arguing the above thesis, the informal definition has to
be made precise.

There are several a priori sensible ways of defining what “plenty of rational
curves” should mean. Fortunately, many of these are equivalent. The equivalence
of the various versions was the first strong evidence that the proposed definition is
interesting.

Theorem 40. [KoMiMo92], [Kollár98a] Let X be a smooth projective variety over
C. The following are equivalent:

1. There is a rational curve through any 2 points of X.
2. There is an open subset ∅ 6= X0 ⊂ X such that there is a rational curve

through any 2 points of X0.
3. There is a rational curve through any (finite) number of points of X.
4. Let p1, . . . , pn ∈ CP1 be distinct points. For each i let fi : D(pi) → X(C) be

a holomorphic map from a small disc around pi to X(C). Let ni be natural
numbers. Then there is a morphism f : CP1 → X such that the Taylor series
of fi and of f |D(pi) coincide up to order ni for every i.

5. There is a morphism f : CP1 → X such that f∗TX is ample. (Over P1 this
is equivalent to being a direct sum of positive degree line bundles).

Now we can make our definition precise:

Definition 41. A smooth projective variety X over C is called rationally connected
if it satisfies the equivalent properties in (40).

The class of rationally connected varieties is stable under many operations:

1. If X is birational to a rationally connected variety, then X itself is rationally
connected. This easily follows from (40.2).
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2. More generally, the (closure of the) image of a rationally connected variety is
rationally connected.

3. A smooth hypersurface X ⊂ Pn is rationally connected iff degX ≤ n.
Rational connectedness also behaves well in families. This was implicit in our

earlier results on surfaces. Once the shape of the equation was specified, the actual
coefficients did not matter in deciding rationality over C. Being rational is probably
not deformation invariant in dimensions 3 and up, but rational connectedness is:

Theorem 42. [KoMiMo92] Let Xt : t ∈ [0, 1] be a continuously varying family of
smooth varieties. If X0 is rationally connected, then so is X1.

Ideally one would like an even stronger form of this result. The spaces Xt(C)
are all diffeomorphic, so (42) would be a consequence of a topological characteriza-
tion of rationally connected varieties. It turns out that diffeomorphism alone does
not characterize rationally connected varieties. One has to look at the symplectic
structure as well. In the symplectic setting we get a conjectural analog of (21.1),
but it is not even known in dimension 3. See [Kollár98a] for details.

A characterization via convergent integrals is also interesting. It turns out that
such an X does not carry holomorphic differential forms of any kind:

Theorem 43. [KoMiMo92] Let X be a smooth, projective, rationally connected
variety. Then

H0(X, (Ω1
X)⊗m) = 0 for every m ≥ 1.

It is conjectured that the converse also holds, but this is proved only in dimension
3.

The above result is about 1–forms, but in fact it covers all other differential
forms as well. Indeed, the bundle of i-forms ΩiX can be identified with a subbundle
of (Ω1

X)⊗i; thus we get that

H0(X,
⊗
i

(ΩiX)⊗mi) ⊂ H0(X, (Ω1
X)⊗

∑
imi) = 0

for every mi ≥ 0 (not all zero).
The number theoretic aspects of rationally connected varieties are very poorly

understood. The situation is rather unclear already for hypersurfaces in Pn. For
instance, in analogy with (14.7) one can ask the following:

Question 44. Let X be a rationally connected variety defined over Q. Is there a
finite degree extension K ⊃ Q such that X(K) is dense in X(C)? (One can ask
this both for the Zariski and the Euclidean topology.)

This is almost completely open even for hypersurfaces. The case of degree 4
hypersurfaces was settled recently in [HarrisTschinkel00], but the question is open
already for quintics in P5.

One should also note that (44) is not the optimal question. As pointed out in
[FMT89], one would expect to get solutions whose coordinates grow polynomially.
This stronger form is open already for quartics.

6. Rationally connected varieties over R

We have already seen that the topology of the real part does not always determine
the place of a curve in the rough classification. If C has genus 0, then C(R) is either
empty or S1, but there are many higher genus curves with this property.
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Our aim here is to look for similar results in higher dimensions. That is, we try
to prove theorems in one of the following equivalent forms:

1. If the set of real points of X is “complicated” topologically, then X is “com-
plicated” algebraically.

2. If X is “special” algebraically, then X(R) is “special” topologically.

A general result of this flavour is due to [Milnor64]:

Theorem 45. Let X ⊂ Rn be a set defined by polynomial equations of degrees ≤ d.
Then the sum of the Betti numbers of X is at most d(2d− 1)n−1.

Proof in case X ⊂ Rn is compact, smooth and is defined by a single equation
X = (F = 0).

Take a general linear function L =
∑
aixi and view L : X → R as a Morse

function. A point p ∈ X is a critical point of L iff(
∂F

∂x1
(p), . . . ,

∂F

∂xn
(p)
)

= λ(a1, . . . , an)

for some λ. This in turn is equivalent to the set of equations F = 0 and

aj
∂F

∂xi
(p) = ai

∂F

∂xj
(p) ∀i, j.

The Bézout theorem tells us that we have at most d(d − 1)n−1 solutions, which
is slightly better than the general case. It is also not hard to see that all critical
points are nondegenerate for general L.

By a basic result of Morse theory (cf. [Milnor63]), the sum of the Betti numbers
is at most the number of critical points of a Morse function.

This is, however, not exactly what we want since being rationally connected is
not much related to the degree of the defining equations.

Before going further, let us see if there is anything special about real algebraic
varieties topologically. The complete answer is given by the following.

Theorem 46. [Nash52], [Tognoli73] For every compact differentiable manifold Mn

there is a real algebraic variety Xn such that X(R) is diffeomorphic to M .

Let me illustrate this with a special case that was earlier treated by Seifert.

Proposition 47. Let Mn ⊂ Rn+1 be a smooth hypersurface. Then there is a
polynomial F such that its zero set (F = 0) is a “good approximation” of M .

Proof. We start with a topological result: M divides Rn+1 into 2 parts (inside M
and outside M) and M has a bicollar. (That is, an embedding j : [−1, 1]×M ↪→
Rn+1 such that j maps {0} ×M identically to M .)

This allows us to write down a C∞-function Φ (C1 would be enough) whose zero
set (Φ = 0) is precisely M . We may also assume that Φ is negative inside M and
positive outside it.

Pick a large ball B of radius R containing M in its interior.
By Weierstrass, there is a polynomial F which is a good approximation of Φ

inside B. If, moreover, ∂F/∂xi are also good approximations of ∂Φ/∂xi, then the
zero set (F = 0) is also a good approximation of M . This stronger form of the
Weierstrass theorem still holds.
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We are almost done, except that by accident F may have some zeros outside B.
To kill these, we replace F by

F + (R−2
∑

x2
i )
m

for some m� 1.

[Nash52] then went on to speculate that, aside from connectedness, rationality
might not impose any topological restriction on X(R):

Conjecture 48. [Nash52, p. 421] Let Mn be a compact, connected differentiable
manifold. Then there is a smooth real algebraic variety Xn such that X is birational
to Pn and X(R) is diffeomorphic to Mn.

Unbeknownst to Nash, this question had been settled for surfaces much earlier:

Theorem 49. [Comessatti14] Let S be a smooth real algebraic surface. Assume
that S is birational to P2 and S(R) is orientable.

Then S(R) is either a sphere or a torus.

Remark 50. The sphere and the torus both occur, for instance for the quadrics
x2 + y2 ± z2 = t2.

All nonorientable surfaces do occur. Blowing up k − 1 real points of P2 gives a
real surface whose real part is homeomorphic to the connected sum of k copies of
RP2.

Proof. Let us run the minimal model program over R starting with S. We obtain

S = S0 → S1 → · · · → Sm = S∗,

where each Si → Si+1 is either the blow up of a real point or the blow up of a
conjugate pair of complex points. In the latter case Si(R) = Si+1(R). In the former
case Si(R) ∼ Si+1(R)#RP2, but this can happen only if Si(R) is not orientable.

Hence if S(R) is orientable, then S(R) ∼ S∗(R).
If S is rational, we have a complete description of all the possible surfaces S∗.

We have to consider 2 cases.
If S∗ is a conic bundle, it is given by an affine equation x2 + y2 = f(z). We see

that S∗(R) is the union of spheres. (Or a torus if f is everywhere positive.)
Otherwise S∗ is somewhere on the rest of our list, (22)–(33), all of which can be

defined by polynomials of degree at most 6. Thus the sum of the Betti numbers is
bounded by (45).

This already shows that the Nash conjecture fails for topological surfaces of very
high genus. [Comessatti14] went on to completely determine the possible topological
types for all rational surfaces S∗. There are 23 cases, and the sphere and the torus
are the only orientable ones.

In higher dimensions the conjecture of Nash remained open, and only positive
partial results were known for a while. [BenedettiMarin92] showed that for every
3–manifoldM3 there is a singular real algebraic varietyX3 such that X is birational
to P3 andX(R) is homeomorphic to M3. [Mikhalkin97] shows that a weaker variant,
the so called “topological Nash conjecture”, is true in all dimensions.

The answer to the Nash conjecture in dimension 3 turned out to be very curious.
On the one hand, it fails completely (51), but on the other hand it is almost true
(54).
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The failure of the Nash conjecture is the content of the next theorem, proved in
the series of papers [Kollár98b], [Kollár99a], [Kollár99b], [Kollár00a]. (I state the
precise result; see [Hempel76], [Rolfsen76], [Scott83] for the topological definitions.)

Theorem 51 (The Nash conjecture fails in dimension 3).
Let X be a smooth, projective, real algebraic 3–fold. Assume that X is rationally

connected and that X(R) is orientable. Then X(R) is very special among topological
3–manifolds.

More precisely, every connected component of X(R) is diffeomorphic to a
3–manifold

M#aRP3#b(S1 × S2) for some a, b ≥ 0,

where M is one of the following:
1. connected sum of lens spaces,
2. Seifert fibered,
3. S1 × S1-bundle over S1 or a Z2-quotient of such,
4. finitely many other possibilities.

The proof establishes a tight connection between certain algebraic properties of
X(C) and geometric structures of X(R). In some cases such a relationship has
not been proved, and this accounts for the finitely many unknown cases. I believe,
however, that there are no exceptions:

Conjecture 52. The cases (51.3–4) do not occur.

The main outline of the proof is similar to the 2–dimensional case. First we run
a 3–dimensional version of the minimal model program

X = X0 → X1 → · · · → Xm = X∗.

A substantial difficulty is that there are infinitely many different possible steps and
their complete description is not known, not even over C. Fortunately, the ori-
entability imposes strong restrictions. This still leaves infinitely many possibilities,
but it is feasible to classify them topologically.

After that we have to understand the real points of X∗. The analogs of conic
bundles are more complicated, so this takes some effort. At the end we are down
to a finite list of more or less explicitly given varieties. A finiteness result is easy
to obtain, but a complete description seems quite hard.

A similar result was obtained in all dimensions by Viterbo, using stronger con-
ditions on the Betti numbers and rational curves.

Theorem 53. [Viterbo98] Let X be a smooth, projective, real algebraic variety of
dimension n ≥ 3. Assume that H2(X(C),Z) ∼= Z and that X(C) is covered by
rational curves Cλ such that [Cλ] ∈ H2(X(C),Z) is a generator. Then X(R) does
not carry any metric with negative sectional curvature.

It has been known for some time that the inverse of a blow up may result in a
nonprojective variety. Still, these more general spaces, called Artin algebraic spaces
or Moishezon manifolds, proved to be very close relatives of algebraic varieties. (I
do not know of any good general introduction to algebraic spaces or Moishezon
varieties. The foundations of the theory are written up in [Knutson71].) It was
quite a surprise to me that the Nash conjecture holds for them [Kollár00c].
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Theorem 54 (The Nash conjecture holds in dimension 3).
For every compact, connected, differentiable 3–manifold M there is a compact

complex manifold X which can be obtained from P3 by a sequence of smooth, real
blow ups and downs such that M is diffeomorphic to X(R).

7. Open problems

In this section I list the main open problems in this area. The formulations
are intentionally general. It is more important to understand “nice” examples of
rationally connected varieties, but I want to emphasize the rather complete lack of
good examples of the theory.

For me the most vexing open problem of the theory over C is the following:

Problem 55. Find examples of rationally connected varieties which are not uni-
rational.

The classical candidates are general quartic 3–folds in P4. It may be, however,
easier to deal with hypersurfaces of degree n in Pn for large n. These may have an
even stronger property:

Problem 56. Find examples of rationally connected varieties which do not contain
rational surfaces through every point. There may even be examples which do not
contain any rational surface.

Our knowledge about rationality of hypersurfaces is also very limited. I formulate
two of the strongest questions, though there is little evidence for them.

Problem 57. Prove that the general cubic 4-fold is not rational.

The rationality of many special cubic 4-folds is known; see [Hassett00].

Problem 58. Prove that a smooth hypersurface of degree at least 4 is never
rational.

The best known result is that a general hypersurface of degree at least 2dn+3
3 e

is not rational [Kollár95].
The topological characterization of rationally connected varieties is also open:

Problem 59. Let X be a smooth projective variety. Assume that X(C) is sym-
plectomorphic to a rationally connected variety. Prove that X is also rationally
connected.

A similar result on uniruled varieties is proved in [Kollár98a]. It is also of interest
to study particular cases of this question. For instance, if X(C) is symplectomorphic
to a Fano hypersurface, is X deformation equivalent to a Fano hypersurface?

On the arithmetic side, it is embarrassing that the following is still not known:

Problem 60. Find examples of smooth varieties X over a field k such that Xk̄ is
rationally connected, X has a k-point but X is not unirational.

The simplest candidates are surfaces of the form x2 + y3 + az6 = b for suitable
a, b ∈ Q. (These always contain the point at infinity (1 : −1 : 0 : 0).)

The solution of the 3–dimensional Nash conjecture does not seem to shed much
light on the higher dimensional problem. Thus I consider the following completely
open:

Problem 61. Is the Nash conjecture true in higher dimensions?
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In dimension 3, the main question is to extend (51) to other classes of vari-
eties. Because of its connection with mirror symmetry, the following is especially
interesting:

Problem 62. What are the possible topological types of real Calabi–Yau 3–folds?

Even in very special cases it is hard to describe the topology of real varieties.
For instance, very little is known about the following special case:

Problem 63. What are the possible topological types of a degree 4 hypersurface
in RP4?
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Scott83. P. Scott, The geometries of 3–manifolds, Bull. London Math. Soc., 15 (1983) 401-487
MR 84m:57009

Segre42. B. Segre, The non-singular cubic surfaces, Clarendon Press, 1942 MR 4:254b
Segre51. B. Segre, The rational solutions of homogeneous cubic equations in four variables,

Notae Univ. Rosario 11 (1951) 1-68 MR 13:678d

http://www.ams.org/mathscinet-getitem?mr=93b:14059
http://www.ams.org/mathscinet-getitem?mr=95f:14025
http://www.ams.org/mathscinet-getitem?mr=98c:14001
http://www.ams.org/mathscinet-getitem?mr=98m:14075
http://www.ams.org/mathscinet-getitem?mr=2000c:14078
http://www.ams.org/mathscinet-getitem?mr=2000c:14079
http://www.ams.org/mathscinet-getitem?mr=2000h:14049
http://www.ams.org/mathscinet-getitem?mr=2001c:14087
http://www.ams.org/mathscinet-getitem?mr=2000b:14018
http://www.ams.org/mathscinet-getitem?mr=93i:14014
http://www.ams.org/mathscinet-getitem?mr=57:343
http://www.ams.org/mathscinet-getitem?mr=87d:11037
http://www.ams.org/mathscinet-getitem?mr=29:634
http://www.ams.org/mathscinet-getitem?mr=28:4547
http://www.ams.org/mathscinet-getitem?mr=55:13428
http://www.ams.org/mathscinet-getitem?mr=84e:14032
http://www.ams.org/mathscinet-getitem?mr=14:403b
http://www.ams.org/mathscinet-getitem?mr=80j:10031
http://www.ams.org/mathscinet-getitem?mr=58:24236
http://www.ams.org/mathscinet-getitem?mr=84m:57009
http://www.ams.org/mathscinet-getitem?mr=4:254b
http://www.ams.org/mathscinet-getitem?mr=13:678d


WHICH ARE THE SIMPLEST ALGEBRAIC VARIETIES? 433

Serre79. J.-P. Serre, Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New
York-Berlin, 1979 MR 82e:12016

Shafarevich72. I. R. Shafarevich, Basic Algebraic Geometry (in Russian), Nauka, 1972. English
translation: Springer, 1977, second expanded edition, 1994 MR 51:3163; MR
95m:14001/14002

Tognoli73. A. Tognoli, Su una congettura di Nash, Ann. Sci. Norm. Sup. Pisa 27 (1973) 167-185
MR 53:434

Viro90. O. Ya. Viro, Real plane algebraic curves, Leningrad Math. J. 1 (1990) 1059-1134
MR 91b:14078

Viterbo98. C. Viterbo, Symplectic real algebraic geometry, to appear
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