
Machine Learning for Solving Large-scale Integer
Programming Problems

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

1/58

2/58

Outline

1 Introduction

2 Machine learning for binary optimization

3 Machine learning for general MILPs

4 Machine learning for routing problems

3/58

Maxcut: 0.878 bounds

For graph (V,E) and weights wij = wji ≥ 0, the maxcut problem is

(Q) max
x

∑
i<j

wij(1 − xixj), s.t. xi ∈ {−1, 1}

SDP relaxation

(SDP) max
X∈Sn

∑
i<j

wij(1 − Xij), s.t. Xii = 1,X ⪰ 0

Compute the decomposition X = V⊤V, where V = [v1, v2, . . . , vn]
Rounding: generate a vector r uniformly distributed on the unit sphere, i.e.,
∥r∥2 = 1, set

xi =

{
1 v⊤i r ≥ 0
−1 otherwise

Let Z∗
(SDP) and Z∗

(Q) be the optimal values of (SDP) and (Q)

E(W) ≥ 0.878Z∗
(SDP) ≥ 0.878Z∗

(Q)

4/58

Reinforcement Learning

Consider an infinite-horizon discounted
Markov decision process (MDP), usually
defined by a tuple (S,A,P,R, ρ0, γ);

The policy is supposed to maximize the total expected reward:

max
π

Eπ

[∞∑
t=0

γtr(st, at)

]
, with s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at).

5/58

Erdos Goes Neural

The probability distribution D in Erdos is learned by a GNN.
A "good" probability distribution leads to higher quality solutions.

Figure: Illustration of the "Erdos goes neural" pipeline.

Optimization on explicit formulation of the expectation.
Maximum clique problem:

ℓ(D) = γ − (β + 1)
∑

(vi,vj)∈E

wijpipj +
β

2

∑
vi ̸=vj

pipj.

6/58

Parameterized Probabilistic Model

MCPG: construct a parameterized model with parameter θ to output pθ and
generate x ∼ pθ by Monte Carlo sampling

MCPG: optimization over the probabilistic space.
Erdos: optimization on the expectation of objective function.

7/58

Outline

1 Introduction

2 Machine learning for binary optimization

3 Machine learning for general MILPs

4 Machine learning for routing problems

8/58

Binary Optimization

Let f be arbitrary (even non-smooth) cost function:

min f (x), s.t. x ∈ Bn = {−1, 1}n.

Example: maxcut problem on G = (V,E)

max
∑

(i,j)∈E

wij(1 − xixj), s.t. x ∈ {−1, 1}n.

Example: maxSAT problem:

max
x∈{−1,1}n

∑
ci∈C1

max{ci
1x1, ci

2x2, · · · , ci
nxn, 0},

s.t. max{ci
1x1, ci

2x2, · · · , ci
nxn, 0} = 1, for ci ∈ C2

Binary optimization is NP-hard due to the combinatorial structure.

9/58

Probabilistic Approach

Let X ∗ be the set of optimal solutions and consider the distribution,

q∗(x) =
1

|X ∗|
1X ∗(x) =

{
1

|X ∗| , x ∈ X ∗,

0, x ̸∈ X ∗.

Motivation: Searching for optimal points X ∗ ⇒ Constructing a distribution pθ(x)
converging to q∗(x).

A universal approach for various binary optimization problems.
Algorithms for continuous optimization can be applied.
The optimal points set X ∗ is unknown.

10/58

Gibbs distributions

To approximate q∗, we introduce Gibbs distributions,

qλ(x) =
1

Zλ
exp

(
− f (x)

λ

)
, x ∈ Bn,

where Zλ =
∑

x∈Bn
exp

(
− f (x)

λ

)
is the normalizer.

Given the optimal objective value f ∗, for any x ∈ Bn,

qλ(x) =
exp

(
f ∗−f (x)

λ

)
∑

x∈Bn
exp

(
f ∗−f (x)

λ

) =
exp

(
f ∗−f (x)

λ

)
|X ∗|+

∑
x∈Bn/X ∗ exp

(
f ∗−f (x)

λ

)
→ 1

|X ∗|
1X ∗(x) = q∗, as λ → 0.

The calculation of qλ does not require knowledge of X ∗.

11/58

Parameterized Probabilistic Model

KL divergence:

KL (pθ ∥ qλ) =
∑
x∈Bn

pθ(x) log
pθ(x)
qλ(x)

.

In order to reduce the discrepancy between pθ and qλ, the KL divergence is
supposed to be minimized:

KL (pθ ∥ qλ) =
1
λ

∑
x∈Bn

pθ(x)f (x) +
∑
x∈Bn

pθ(x) log pθ(x) + log Zλ

=
1
λ
(Epθ [f (x)] + λEpθ [log pθ(x)]) + log Zλ.

Loss Function (Zλ is a constant):

minθ Lλ(θ) = Epθ [f (x)] + λEpθ [log pθ(x)]

12/58

Gradient for the Loss Function

Lemma 1

Suppose for any x ∈ Bn, pθ(x) is differentiable with respect to θ. For any constant c ∈ Re,
we denote the advantage function

Aλ(x; θ, c) := f (x) + λ log pθ(x)− c.

Then, the gradient of the loss function is given by

∇θLλ(θ) = Epθ [Aλ(x; θ, c)∇θ log pθ(x)] .

One candidate for c is
c = Epθ [f (x)].

Very similar to the policy gradient in reinforcement learning!

13/58

Extension: general constrained problem

Consider
x∗ = argmin

x
f (x), s.t. c(x) = 0, x ∈ Bn

L1 exact penalty problem

x∗σ = argmin
x∈Bn

fσ(x) := f (x) + σ∥c(x)∥1

Let ϖ := minx∈Bn{∥c(x)∥1 | ∥c(x)∥1 ̸= 0} and f ∗ = minx∈Bn f (x). Define
σ̄ = (fσ(x∗)− f ∗)/ϖ ≥ 0.

For all σ ≥ σ̄, x∗ is a global minima of the penalty problem and x∗σ is also a global
minima of the constrained problem.

14/58

Pipeline of MCPG

15/58

Filter Function

The filter function T projects x to a better one in the neighborhood.
Applied with the filter function, f (T(x)) has fewer local minima and the same global
minimum as the original one.

f(x) f(T1(x)) f(T2(x)) f(T3(x)) f(T4(x))f(TLS(x))
10000

10500

11000

11500

12000

12500

Th
e

ex
pe

ct
at

io
n

of
 th

e
ob

j

10000

10500

11000

11500

12000

12500

10000

10500

11000

11500

12000

12500

(a) Expectation of the objective function.

x1 x3 x5 x7 x9 x11 x13 x15 x17 x19
11000

11020

11040

11060

11080

11100

11120

f(T
(x
))

f(x)
f(T1(x))
f(T2(x))
f(T3(x))
f(T4(x))
f(TLS(x))

(b) A selected sequence of solutions.

16/58

Filter Function

Definition 2 (Filter Function)

For each x ∈ Bn, let N (x) ⊂ Bn be a neighborhood of x such that x ∈ N (x), |N (x)| ≥ 2
and any point in N (x) can be reached by applying a series of “simple" operations to x. A
filter function T(x) is defined as

T(x) ∈ argmin
x̂∈N (x)

f (x̂),

where T(x) is arbitrarily chosen if there exists multiple solutions.

Projection to the best solution on the neighborhood:

Tk(x) = argmin
∥x̂−x∥1≤2k

f (x̂), N (x) = {x̂ | ∥x̂ − x∥1 ≤ 2k}.

Algorithms serves as the filter function:

TLS(x) = LocalSearchf (x).

17/58

Local Search

Local Search:
Generality: Local search works for various kinds of problem.
Efficiency: GPUs allow parallel access to the same indexed variable for a large
number of samples.

Pipeline of Local Search with flipping operation:
1 Choose a single variable from the current solution x.
2 Flip the variable to its opposite value.
3 Evaluate the new solution to determine if it is improvement.
4 If it is, the variable is flipped to its opposite value
5 Back to Step 1 and continues to the next index in I.

18/58

Large-Scale Parallel Sampling on GPU

GPU: quick for parallel accessing but slow for memory copying.
Sampling in MCPG

constructs large number of short chains,
discards all previous states in transition (no memory copying),
outputs the last states for all chains.

19/58

Probabilistic Model Applied with Filter Function

MCPG focuses on the following modified binary optimization:

min f (T(x)), s.t. x ∈ Bn.

The probabilistic model is equivalent to

min
θ

Lλ(θ;P) = Epθ [f (T(x))] + λEpθ [log pθ(x|P)].

Empirical gradient:

ḡλ(θ) =
1
|S|
∑
x∈S

Aλ(x; θ)∇θ log p(x|θ;P).

where S is the sample set extracted from distribution pθ(·|P) and

Aλ(x; θ) := f (T(x)) + λ log pθ(x|P)− 1
|S|
∑
x∈S

f (T(x)).

20/58

Binary Optimization and Probabilistic model

For an arbitrary function f on Bn, we define the B as

G(f) = min
x∈Bn\X ∗

f (x)− f ∗. (1)

Proposition 1

For any 0 < δ < 1, suppose Lλ(θ)− f ∗ < (1 − δ)G(f), then

P(x ∈ X ∗) > δ.

Therefore, for x1, . . . , xm independently sampled from pθ, mink f (xk) = f ∗ with probability
at least 1 − (1 − δ)m.

The above proposition shows that with a optimized probabilistic model, the obtained
probability from the optimal solutions is linearly dependent on the gap between the
expectation and the minimum of f .

21/58

Impact of the Filter Function

When T(x) = x, it means that x is a local minimum point.
For any given x ∈ Bn, there exists a corresponding local minimum point by applying
the filter function T to x for many times.
We can divide the set Bn into subsets with respect to the classification of local
minima.

Let X1,X2, ...,Xr be a partition of Bn such that for any j ∈ {1, . . . , r}, every x ∈ Xj has the
same corresponding local minimum point.

Proposition 2

If there exists some x ∈ Bn such that pθ(x) > 0 and f (x) > f (T(x)), then for any
sufficiently small λ > 0 satisfying

Epθ [f (x)− f (T(x))] ≥ λ log(max
1≤i≤r

|Xi|),

it holds that
KL (pθ ∥ q̂λ) ≤ KL (pθ ∥ qλ) .

22/58

Boundedness of f (T(x))

Denote N = 2n and sort all possible points in Bn = {s1, . . . , sN} such that
f (s1) ≤ f (s2) ≤ · · · ≤ f (sN). The bounds of f (T(x)) and Epθ [f (T(x))], for a large probability,
are not related to samples sM+1, sM+2, ..., sN for an integer M.

Proposition 3
Suppose that the cardinality of each neighborhood N (si) is fixed to be
|N (si)| ≥ X ≥ n + 1 and all elements in N (si) except si are chosen uniformly at random
from Bn\{si}. For δ ∈ (0, 1), let M =

⌈
log(N/δ)

X−1 N
⌉
+ 1. Then, with probability at least 1 − δ

over the choice of T(x), it holds:
1) f (T(x)) ∈ [f (s1), f (sM)], ∀x ∈ Bn;
2) Epθ [f (T(x))] ≤

∑M−1
i=1 pθ(si)f (si) + (1 −

∑M−1
i=1 pθ(si))f (sM) ≤ f (sM).

23/58

Convergence of MCPG

Assumption: Let ϕ(x; θ) = log pθ(x|P). There exists some constants M1,M2,M3 > 0
such that, for any x ∈ Bn,

1 supθ∈Red |ϕ(x; θ)| ≤ M1,
2 supθ∈Red ∥∇θϕ(x; θ)∥ ≤ M2,
3 ∥∇θ1ϕ(x; θ)−∇θ2ϕ(x; θ)∥ ≤ M3 ∥θ1 − θ2∥ ,∀θ1, θ2,∈ Red.

Theorem 3
Let the assumption holds and {θt} be generated by MCPG. If the stepsize is chosen as
ηt = c

√
mk√
t with c ≤ 1

2l , then we have

min
1≤t≤τ

E
[
∥∇θLλ(θ

t)∥2
]
≤ O

(
log τ√

mkτ
+

1
m2

)
.

24/58

Parameterization of sampling policy

Mean field (MF) approximation:

pθ(x|P) =

n∏
i=1

µ
(1+xi)/2
i (1 − µi)

(1−xi)/2, µi = ϕi(θ;P)

Parameterization of µi:

µi = ϕi(θi) =
1 − 2α

1 + exp(−θi)
+ α, 1 ≤ i ≤ n.

The probability is scaled to the range (α, 1 − α), where 0 < α < 0.5 is given.

For problems graph structures, combining advanced neural networks such as GNN
can also be a good choice.

25/58

Maxcut

We use the results reported by BLS as benchmark. Denoting UB as the results
achieved by BLS and obj as the cut size, the gap reported is defined as follows:

gap =
UB − obj

UB
× 100%.

Graph Nodes Edges BLS MCPG DSDP RUN-CSP PI-GNN EO EMADM
G14 800 4,694 3,064 3,064 2,922 2,943 3,026 3047 3045
G15 800 4,661 3,050 3,050 2,938 2,928 2,990 3028 3034
G22 2,000 19,990 13,359 13,359 12,960 13,028 13,181 13215 13297
G49 3,000 6,000 6,000 6,000 6,000 6,000 5,918 6000 6000
G50 3,000 6,000 5,880 5,880 5,880 5,880 5,820 5878 5870
G55 5,000 12,468 10,294 10,296 9,960 10,116 10,138 10107 10208
G70 10,000 9,999 9,541 9595 9,456 - 9,421 8513 9557

Table: Computational results on selected Gset instances. The result is sourced from references.

26/58

Outline

1 Introduction

2 Machine learning for binary optimization

3 Machine learning for general MILPs

4 Machine learning for routing problems

27/58

Mixed integer linear program

Mixed-Integer Linear Programs (MILPs) are utilized to solve a myriad of
decision-making problems across various practical applications.

min cTx,

s.t. Ax ≤ b,

l ≤ x ≤ u,

x ∈ Rn−p × Zp.

Feasibility: The feasible region is discrete and non-convex, which makes it difficult
to analyze and optimization methods hard to design.

Complexity: Even with a relatively small number of variables, the solution space
can be exponentially vast due to the integer constraints.

Algorithmic strategy: Preprocessing, Branching Strategies, Bounding Strategies,
Cut Generation, Heuristic ...

28/58

Graph Representation of MILP Instances
An MILP instance can be represented as a bipartite graph G = (V ∪ W,E):

Variable nodes wj ∈ W: correspond to variables xj, each with features:
Type of variable (e.g., binary, integer, continuous);
Objective coefficient cj;
Bounds [lj, uj].

Constraint nodes vi ∈ V: represent constraints δi, each with features:
Constraint type (≤, =, or ≥);
Right-hand side value bi.

Edges (vi,wj) ∈ E: exist if xj appears in constraint δi, with weight aij.

29/58

Branch and bound

30/58

Learning the exact methods

Branching Variable Selection:
Branch variable selection determines which fractional variables (also known as
candidates) to branch the current node into two child nodes.
Nair et al.(2021) encode MIP to the GCN as a bipartite graph and compute an initial
feasible solution (Neural Diving), then train a GCN to imitate ADMM-based policy for
branching (Neural Branching).

Node Selection:
The branch-and-bound algorithm recursively divides the feasible set of a problem into
disjoint subsets, organized in a tree structure.
He et al.(2014) uses imitation learning to train a node selection and a node pruning
policy to speed up the tree search in the B&B process.

Cutting Plane:
Cuts serve as the purpose of reducing the LP solution space, which might lead to a
smaller tree in the branch-and-cut algorithm.
Tang et al. (2020) train a RL agent for sequentially selecting cutting planes.

31/58

Outline

1 Introduction

2 Machine learning for binary optimization

3 Machine learning for general MILPs

4 Machine learning for routing problems

32/58

Routing problems

Travelling Salesman Problem (TSP)
Given a fully connected graph with node coordinates {xi}n

i=1, the goal is to find a tour
that visits each node exactly once and returns to the starting point, while minimizing
the total travel distance.
Permutaion formulation

min
π

L(π) :=
n−1∑
i=1

∥xπ(i+1) − xπ(i)∥+ ∥xπ(1) − xπ(n)∥.

Capacitated Vehicle Routing Problem (CVRP)
There are n customers, each with a demand δi, to be served by a fleet of identical
vehicles with capacity D, all starting and ending at a common depot. The objective
is to find the shortest possible set of routes such that every customer is visited
exactly once, and the total demand on each route does not exceed the vehicle
capacity.

33/58

Example tours

Travelling Salesman Problem (TSP) Vehicle Routing Problem (VRP)

NP-hard combinatorial problem with a wide range of applications!

34/58

Overview: machine learning for routing problems

Learning to construct: iteratively add nodes to the partial solution.
Pointer Network was first proposed by Vinyals et al. based on Recurrent Neural
Networks and supervised learning.

The Graph Neural Networks were then leveraged for graph embedding (Dai et al.) and
faster encoding (Drori et al.) under reinforcement learning framework.

Later, the Attention Model (AM) was proposed by Kool et al.

Policy Optimization with Multiple Optima (POMO) significantly improved AM with
diverse rollouts and data augmentations (Kwon et al.).

Efficient Active Search (EAS) helps to get out of local optima by updating a small
subset of pre-trained model parameters on each test instance (Hottung et al.), which
could be further boosted if coupled with Simulation Guided Beam Search (SGBS) by
Choo et al., achieving better generalization performance.

Light Encoder and Heavy Decoder (LEHD) model is proposed by Luo et al. with
stronger generalization to large-scale instances sizes.

35/58

Overview: machine learning for routing problems

Learning to search: iteratively refine a solution to a new one — a search process.
NeuRewriter (Chen et al.) and L2I (Lu et al.) relied heavily on traditional local search
algorithms with long run time.

Hottung and Tierney proposed the Neural large neighborhood search (NLNS) solver
improving upon them by controlling a ruin-and-repair process using a deep model.

Several L2S solvers focused on controlling k-opt heuristic within RL training:
self-attention-based policy (Wu et al.), Dual-Aspect Collaborative Attention (Ma et al.),
Synthesis Attention (Ma et al.) , GNN+RNN-based policy (Costa et al.).

Learning to predict: guide the search by predicting critical information.
Joshi et al. proposed using GNN models to predict heatmaps that indicate probabilities
of the presence of an edge, which then uses beam search to solve TSP.

The GLS solver (Hudson et al.) used GNN to guide the local search heuristics.

The DIFUSCO solver (Sun et al.) proposed to replace those GNN models with
diffusion models in generating heatmaps.

36/58

Comparison

The L2C solvers can produce high-quality solutions within seconds using greedy
rollouts; however, they are shown to get trapped in local optima, even when
equipped with post-hoc methods, such as sampling, beam search, etc.

Although L2S solvers strive to surpass L2C solvers by directly learning to search,
they are still inferior to those state-of-the-art L2C solvers even when given
prolonged run time.

Compared to L2C or L2S solvers, L2P solvers exhibit better scalability for large
instances; however, L2P solvers are mostly limited to supervised learning and TSP
only, due to challenges in preparing training data and the ineffectiveness of
heatmaps in handling VRP constraints.

37/58

Construct a path

A solution π = (π1, . . . , πn) is a permutation of the nodes {1, . . . , n}.

Given a problem instance s, the stochastic policy for selecting a solution π is
parameterized by θ as

pθ(π|s) =
n∏

t=1

pθ(πt|s, π1:t−1).

The encoder produces embeddings of all input nodes, where an instance s is
encoded by features xi on each node i.

The decoder produces the sequence π of input nodes, one nodes at a time, which
takes as input the encoder embeddings and a problem specific mask and context.

38/58

Multi-head attention mechanism

The multi-head attention mechanism starts by linearly projecting input sequences
Q,K,V into H distinct subspaces using learned projection matrices WQ

j ,WK
j ,WV

j :

Qj = QWQ
j , Kj = KWK

j , Vj = VWV
j , j = 1, . . . ,H.

Attention weights are obtained via a scaled dot-product between projected queries
and keys, followed by a softmax operation:

Aj = Softmax

(
QjKT

j√
dk

+ M

)
, j = 1, . . . ,H,

where dk represents the dimension of the keys and M is an optional attention mask
that can be used to prevent attending to certain positions.

39/58

Multi-head attention mechanism

Using these attention weights, the mechanism computes a weighted sum of the
projected values, yielding the output of each attention head:

Zj = AjVj, j = 1, 2, . . . ,H.

Finally, the outputs from all attention heads are concatenated and linearly projected
using a learned output matrix WO, forming the final multi-head attention output:

MHA(Q,K,V;M) = Concat(Z1, . . . ,ZH)WO.

40/58

Encoder

The encoder computes the initial embeddings h(0)i ∈ Rdh from node features xi using
a linear transformation:

h(0)i = W(0)xi + b(0), i = 1, . . . , n.

Stacking these embeddings forms h(0) ∈ Rn×dh . The encoder then refines them
through L attention layers, each consisting of a multi-head attention (MHA) layer
and a node-wise fully connected feed-forward (FF) layer:

ĥ
(ℓ)

= BNl
(

h(ℓ−1) + MHA(ℓ)
(

h(ℓ−1),h(ℓ−1),h(ℓ−1)
))

,

h(ℓ) = BNℓ
(

ĥ
(ℓ)

+ FF(ℓ)
(

ĥ
(ℓ)
))

.

The graph-level representation is the mean of the final node embeddings:

h̄(L) =
1
n

n∑
i=1

h(L)i .

41/58

Encoder

42/58

Decoder

During decoding, the graph is augmented with a special context node (c) to
represent the decoding context.

The decoder computes an attention (sub)layer on top of the encoder, but with
messages only to the context node for efficiency.

The final probabilities are computed using a single-head attention mechanism.

43/58

Context embedding

The context vector of the decoder at time t consists of the embedding of the graph
h̄(L), the previous (last) node πt−1 and the first node π1:

h(c) =

{
[h̄(L), h(L)πt−1

, h(L)π1
], t > 1,

[h̄(L), v1, v2] t = 1.

The context embedding h′(c) is computed using a single masked cross-attention
layer, where the context vector serves as the query, while the node embeddings
provide the keys and values:

h′(c) = MHA(h(c),h,h;Mt).

The mask vector Mt encodes node availability at time t, with Mt(i) = 0 for unvisited
nodes and Mt(i) = −∞ for visited nodes.

44/58

Calculation of probabilities

The logits are obtained by a single attention head:

z =
(h(L)WK)h′(c)√

dk
,

where the matrix h(L)WK is precomputed only once as cache during the overall
decoding process.
The conditional probability distribution over available nodes is computed using a
softmax:

pθ(· | s, π1:t−1) = Softmax (C · tanh(z) + Mt) ,

where the tanh clipping constant C > 0 serves in improving the exploration.

45/58

Attention model for the CVRP

Encoder: Let δ̂i be the normalized demand of the node i.

h(0)i =

{
W(0)

0 xi + b0
0, i = 0,

W(0)[xi, δ̂i], i = 1, . . . , n.

Capacity constraints: Keep track of the remaining demands δ̂i,t for the nodes
i ∈ {1, . . . , n} and remaining vehicle capacity D̂t at time t. At t = 1, these are
initialized as δ̂i,t = δ̂i and D̂t = 1.

δ̂i,t+1 =

{
max(0, δ̂i,t − D̂t), πt = i,

δ̂i,t, πt ̸= i.
D̂t+1 =

{
max(0, D̂t − δ̂πt,t), πt ̸= 0,

1, πt = 0.

46/58

Attention model for the CVRP

Decoder context: The context for the decoder for the VRP at time t is the
current/last location πt−1 and the remaining capacity D̂t.

h(c) =

{
[h̄(L), h(L)πt−1

, D̂t], t > 1,

[h̄(L), h(L)0 , D̂t] t = 1.

Masking: In the decoder layers, the masking rules are defined as follows: for the
depot node 0, it is masked (i.e., Mt(0) = −∞) if and only if the current step t = 1 or
the previous node πt−1 is the depot itself. For any customer node j ̸= 0, it is masked
(i.e., Mt(j) = −∞) if it has been visited (δ̂i,t = 0) or its demand exceeds the
remaining capacity (δ̂i,t > D̂t).

47/58

Reinforcement learning

Loss function:
L(θ|s) = Epθ(π|s)[L(π)],

where L(π) is the tour length for TSP.

Policy gradient:

∇θL(θ|s) = Epθ(π|s)[(L(π)− b(s))∇θ log pθ(π|s)].

Rollout baseline:
b(s) = L(πBL),

where πBL is a solution from a deterministic greedy rollout of the policy pθ.

Optimizer: Adam.

48/58

Policy Optimization with Multiple Optima

Symmetry in solving CO problems leads to multiple optima.

A routing problem contains a loop rather than a sequence, where (π1, π2, π3, π4) is
the same as (π2, π3, π4, π1).

Let a solution trajectory denoted by π = (π1, . . . , πn) and the policy

pθ(π|s) =
n∏

t=1

pθ(πt|s, π1:t−1).

In the above equation, the starting nodes π1 heavily influences the rest of the
sequence (π2, . . . , πn), when in fact any choice for π1 should be equally good.

49/58

Explorations from multiple starting nodes

Designate N different nodes {π1
1, . . . , π

N
1 } as starting points for exploration.

Sample N different solution trajectories π1, . . . , πN from the policy.

Apply entropy maximization techniques to improve exploration of the first moves.

50/58

Policy gradient with a shared baseline

A set of solution trajectories π1, . . . , πN is sampled from the policy pθ(π|s).

The policy gradient is approximated by

∇̂θL(θ|s) =
1
N

N∑
i=1

(
L(πi)− b(s)

)
∇θ log pθ(πi|s),

where pθ(πi|s) =
∏n

t=2 pθ(πi
t|s, πi

1:t−1).

The shared baseline is taken as the approximation of Epθ(π|s)[L(π)],

b(s) =
1
N

N∑
j=1

L(πj).

The shared baseline makes RL training highly resistant to local minima.

51/58

Instance augmentation

Drawback: N, the number of greedy rollouts one can utilize, cannot be arbitrarily
large, as it is limited to a finite number of possible starting nodes.

Reformulate the problem: meet a different problem but arrive at the same solution.

One can flip or rotate the coordinates of all the nodes in a 2D routing problem and
generate another instance, from which more greedy trajectories can be acquired.

52/58

Multi-Task vehicle routing problems

Prevailing neural solvers still need network structures tailored and trained
independently for each specific VRP.
Several VRP variants involve additional practical constraints:

Open route (O): The vehicle does not need to return to the depot after visiting
customers.
Backhaul (B): We name the customer nodes with δi > 0 as linehauls and the ones
with δi < 0 as backhauls. VRP with backhaul allows the vehicle traverses linehauls and
backhauls in a mixed manner, without strict precedence between them.
Duration Limit (L): To maintain a reasonable workload, the cost (i.e., length) of each
route is upper bounded by a predefined threshold.
Time Window (TW): Each node vi ∈ V is associated with a time window [ei, li] and a
service time si. A vehicle must start serving customer vi in the time slot from ei to li.

53/58

Mixture of Experts

An MoE layer consists of
1 m experts {E1,E2, . . . ,Em}, each of which is a linear layer or FFN with independent

trainable parameters.
2 A gating network G parameterized by WG, which decides how the inputs are distributed

to experts.

MoE(x) =
m∑

j=1

G(x)jEj(x).

A sparse vector G(x) only activates a small subset of experts with partial model
parameters, and hence saves the computation.
A TopK operator can achieve such sparsity by only keeping the K-largest values
while setting others as the negative infinity.

G(x) = Softmax(TopK(x · WG)).

54/58

MVMoE

It jointly optimizes all trainable parameters θ, with the objective formulated as follows

min
θ

L = La + αLb.

La = Eπ∼pθ [L(π)] denotes the original loss function of the VRP solver.
Lb denotes the the auxiliary loss used to ensure load-balancing in MoEs.

I(X) =
∑
x∈X

G(x),

D(X)j =
∑
x∈X

Φ

(
(x · WG)− ϕ(H′

x, k, j)
Softplus((x · Wnoise)j)

)
,

Lb = Var(I(X))2 + Var(D(X))2.

55/58

MVMoE

Despite MVMoE presents the first attempt towards a large VRP model, the scale of
parameters is still far less than LLMs.

56/58

Failure in TSPTW

The success of the masking mechanism in routing problems relies on
the feasibility of the entire solution can be properly decomposed into the feasibility of
each node selection step;
ground truth masks are easily obtainable for each step.

However, such assumptions may fail in some routing problems, such as travelling
salesman problem with time windows (TSPTW).
Once a node is selected, the decision becomes irreversible, potentially leading to
infeasible situations after several steps.

Figure: No node can be selected to satisfy the time windows.

57/58

LMask

58/58

Numerical results

	Introduction
	Machine learning for binary optimization
	Machine learning for general MILPs
	Machine learning for routing problems

