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Eigenvalue Computations in Matrix Optimization

@ Consider matrix optimization problems with eigenvalue
decompositions (EVD).

e Commonly used algorithm (formal):
xk+1 = T(xk EVD of B(x¥)),

where B : D — S".

Problem EVD type

Semi-definite opt. All positive / negative eigenvalues
Nuclear norm r largest eigenvalues/singular values
Maximal eigenvalue opt. | Max eigenvalue in magnitude

Table: Eigenvalue computation in matrix optimization.
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Application: Matrix Rank Minimization

@ nuclear norm minimization:
min || X]« s.t. A(X)=0b

where || X||, = >;0; and o; = ith singular value of matrix X.
Linearized Bregman method:

VAL = vE 7 A*(A(XR) - b)
XK+ = proxw(VkH)
@ Unconstrained Nuclear Norm Minimization:
. 1
min F(X) = ][ X[l + S[IAX) - b5
Proximal gradient method (g is the gradient of 3| A(X) — b|3):
1
XMt =argmin | X[l + (g%, X = X¥) + |1 X = X¥||;

T

_ : 1 K ky |12
= argmin g Xl + —[[X = (X* — g%l
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Application: Maximal Eigenvalue Problem

@ Maximal eigenvalue problem:
min A\p (A* .
min 1(A*(y))

@ Widely used in: phase recovery, blind deconvolution, and
max-cut problems.

@ The (sub-)gradient is
g = A(USUT),

where U spans the eigenspace of \1(A*(x)), S »= 0 and Tr(S) = 1.
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Application: Max cut

@ Max-cut problem:
maxx' Cx, s.t.x; € {—1,+1}.
@ Max-cut SDP:

(P) max (C, X), (D) min nA+17y,
st. Xi=1,X=0 s.t. A = Amax(C — Diag(y))

@ Graphs are HUGE! Is it possible to solve huge-scale SDPs?

o lIdea: attack the dual problem — Requires EVD.
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Application: Nearest Correlation Matrix (NCM)

@ NCM problem (primal)
min 316 — X2,
s.t. Xi=1,
X > 0.

e NCM problem (dual)
1
min 2 [Px(G + Diag(x)) 2 —17x,

where IC is the PSD matrix cone.

@ The gradient is

VF(x) = Px(G + Diag(x)) — 1,
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Application: ADMM for SDP

@ Consider the standard SDP in the dual form:

miny s bTy7
st. S=A*y) - C,
S >=0.

o ADMM method for dual SDP
y 1= argmin L(y, S*, X¥),
y
Sk = argmin L(y*¥*1, 5, X5),
5>0

Xk+1 = Xk —1—,u(5k+1 _ A*(yk+1) + C)

e To update S* one needs all positive eigenvalues and corresponding
eigenvectors.
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Motivation

Possible Issues:
@ At least 1 EVD/Update on a different matrix.

e High EVD cost (~ 90%).

e Not all eigenvalues are needed — all positive/negative ones, first p
eigenvalues, maximal one, etc.

Room for Improvement:

@ The update information usually lies in a low-dimensional subspace.

Can we find the space?

@ The matrices in two consecutive iterations are quite close: the
eigenvalues & eigenvectors should be similar?
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Subspace Assumption

@ Original method
Xkt = T(xk EVD of B(x*)),
@ Assumption: the update information lies in an eigen-subspace
X1 = T(xk EVD of Py«(B(x"))).
@ Projection of A onto a subspace spanned by orthogonal V € R™":
Py(A) = WTAWT,

o If V¥ is known and r is small, the EVD on the projected matrix is
quite simple.
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Polynomial-filtered Update

’ Opt step‘ ’ Opt step‘

@ How to approximate V¥ — By subspace

extraction. _
EVD iter

e From any starting matrix U, the

polynomial-filtered subspace extraction (of
B(x¥)) is:

EVD iter | | PF update
Uk+1 _ Ol’th(p(B(Xk))Uk). -
@ Polynomial-filtered update (formal): : :

T BV of P (B

UKL = orth(p(B(x*T1))UX).

’ Opt step‘ ‘ PF update‘
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Composite Convex Program

@ Optimization model:
min F(x) + R(x).

e F(x) = f oA(B(x)) and the outer function is a spectral function.
This means given x, first use B to obtain a matrix. Then the
function value only depends on the eigenvalues of B(x).

e R(x) is a convex regularizer.

e B:R™— 8™ matrix-valued operator
B(x) = G + A*(x),

where A4*(x) is a linear operator.
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Proximal Gradient method

@ The gradient of F is
VF(x) = A(V(B(x))).
V is a matrix-valued operator:
W(X) = VDiag(VF(AX)VT.

V contains all eigenvectors of X, W is assumed to be Lipschitz
continuous.

@ proximal mapping:
_ 1
prox,,(x) := arg min {h(u) + Z”U —x|?}.
u
@ Proximal Gradient method:

xk+ = prokaR(xk — T VF(x¥))),
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Low-rank Assumption

Suppose Q C R™ is a subset and x* € Q. Let Z(x) C [n] be an integer
set with Z(x) = {s,s + 1,...,t}. For all x € Q, VF(x) has the form

VF(x) = A(W(VzV B(x)VzV])),

where V7 € R™ | contains all v;,i € Z(x).

@ This assumption essentially means that computing f and V£ only
involves a small number of eigenvalues of B(x) for some x € R™.

o VrV/ B(x)Vz V] is actually the projection of B(x) on the subspace
spanned by V7. Thus another interpretation is that if one feeds
either B(x) or the projection of B(x) on Vz, he will get the same
result.
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Polynomial Filtered Proximal Gradient (PFPG) Method

@ Under the low-rank assumption, the proximal gradient method is
X4 = prox, g (x* = T AWV (V) TB(x)VE(VI)T))),

o How to compute V¥ (contains all eigenvalues in Z(x¥))? By
Chebyshev polynomial filters.

UK = orth(pi(B(x¥))U1).

We use UX instead of V¥ because U¥ is only an approximation of
Vk.
@ The polynomial-filtered proximal gradient method (PFPG) is
XL = prox,, g(x* — T A(W(UK(UN)TB(x*)UF(U)T))),
URTL = orth(p*(B(x**1))U¥).
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Chebyshev Polynomials
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@ Chebyshev polynomials suppress all eigenvalues in an interval to
[—1, 1] while greatly amplifying the eigenvalues beyond the interval.
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Evaluating the Gradient

o In practice, never evaluate W(UX(UX)T B(x*)UK(U¥)T) directly by
its definition.

o Evaluating W on projected B(x*) is essentially a Rayleigh-Ritz (RR)
procedure inserted with a single V£ evaluation.

@ Compute Hx = (UX)TB(x¥)U*.

@ Compute full eigenvalue decomposition on HK = WkDkK(WH)T.
Note: H* is a small matrix thus full EVD is fine.
(UKW )DR(UKW*)T is just exact EVD of projected B(x).

© Feed d* := diag(D¥) into Vf to obtain a truncated Vf(d*).

© Finally evaluate

(USW*)Diag(Vf(d)(UKW )T,
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The Polynomial-filtered ADMM (PFAM) Method

o Consider the standard SDP:
min  (C, X),
st. AX=5bH,X*>0.
o Let F(X) = 1{X§O}(X) and G(X) = 1{AX:b}(X) + <C,X>
@ The Douglas-Rachford Splitting (DRS) method can be written as

ZM = Tpgrs(Z25),
where
Tprs = prox,g(2proxs — ) — prox, + 1/,
which is equivalent to the ADMM on the dual problem.
@ The explicit forms of prox,r(Z) and prox,;(Y)

prox.(Z) = P(2),
prox,s(Y) = (Y +tC)— A*(AA")HAY + tAC — b),

where P, (Z) is the projection operator onto {X > 0}.
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PLAM

o DRS/ADMM:
Tprs = prox,g(2proxs — ) — prox, + 1/,

@ The the polynomial-filtered alternating direction method of
multipliers (PFAM) can be written as

ZKL = prox,e (2P (UK (UR)T(ZK)(UR(UF)T) — Z¥)
P ((UUT(ZF)URWUNT) + Z5,
Ukt — orth(pZ’j:“ll(ZkH)Uk),

where UX € R"*P is an orthogonal matrix and g, > 1 is a small
integer.
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Convergence Analysis of the PFPG Method

Assumption
o [|sin®(VL T, UR)lla <, ¥V k with y < L.
o The iteration sequence are bounded, i.e., [|x*|» < C, V k.

@ The relative gap has a lower bound, i.e., Gy > I, V k.

Conclusion

olfy=7< % and let xx = % Zle xk then to achieve the
convergence limy_ o h(XX) = h(x*), we only need that the degree

of polynomials satisfies
log k
=0 ——=.
“ (min{/,1}>
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Convergence Analysis of the PFPG Method

Assumption
o [|sin@(VL, VE )2 < aflx* T — XKy for all k.

If the exact proximal gradient method on h(x) has a linear convergence
rate, i.e.,

dist(prox, g(x* — T VF(x¥)), X) < vdist(x*, X),v € (0, 1).

If k11 satisfies

VNG (V a3
2 2

) + nZil(qucz; —va)<p<l,

pk()\sp+1 (B(x*))

where ¢, ¢3, ¢4 are constants and 7, = m < 1 is the ratio of

the (p + 1)-th and the p-th eigenvalue of px(B(x¥)), then the PFPG
method has a linear convergence rate.
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Convergence Analysis of the PFAM Method

Assumption
e |sin @(Vll'(kﬁ’ UN|lF <7, ¥ k with y < 1.
o The iteration sequence is bounded, i.e., || Z¥||r < C, V k.
@ The relative gap has a lower bound, i.e., Gy > [, V k.

To achieve the convergence ||Z¥ — Tprs(Z¥)||F = o(1/Vk), we only

need that
log k

% Mgy
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Nearest Correlation Matrix Problem

@ Find a correlation matrix X nearest to G:

st. X;=1,X*=0.

Grad PFPG (Ours) Newton

time iter |lg|| |time iter |lg|| |time iter | g

500 | 0.9 33 7.4e-08| 0.7 43 1.3e-08| 0.6 8 1.8e-07
1000| 3.8 43 2.0e-08| 1.1 54 3.0e-08| 1.6 9 1.3e-07
1500 | 11.3 54 2.6e-08| 2.4 65 7.1e-08| 4.0 10 1.0e-07
2000 | 22.6 54 4.3e-08| 5.0 76 8.3e-08| 7.2 10 9.0e-08
2500 | 60.9 87 3.6e-08|10.6 120 4.2e-08|12.1 10 8.0e-08
3000 | 104.0 87 6.2e-08|16.1 129 7.8e-08|19.3 10 7.4e-08
4000 | 278.0 91 7.9e-08 |32.8 142 7.3e-08|44.2 10 6.4e-08

n

Table: Results of Grad/PFPG/Newton on random-generated data.
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Matrix Completion

@ Penalized form of the matrix completion problem:

@ Use NNLS algorithm (essentially an accelerated proximal gradient

_ 1
min [| X[ + ZHPQ(X) — Pa(M)|#.

method). The main cost is the truncated SVD of a matrix

AR = BLUK(VA)T — U1 (VAT — 336Gk,

No. Name (m, n) Non-zeros | sparsity
1 Jester-1 (24983, 100) 249830 10%
2 jester-2 (23500, 100) 235000 10%
3 jester-3 (24938, 100) 249380 10%
4 | moive-100K (943, 1682) 49918 3.2%
5 moive-1M (6040, 3706) 498742 2.2%
6 | moive-10M | (71567, 10677) | 4983232 | 0.7%

Table: Matrix completion test data.




Matrix Completion (Result)

NNLS-LANSVD

NNLS-SLRP

PFNNLS (Ours)

.|iter svp time mse

iter svp time mse

iter svp time mse

26 93 10.5 1.64e-1

27 69 4.6 1.76e-1

24 84 2.3 1.80e-1

26 93 9.1 1.65e-1

26 79 4.3 1.72-1

25 88 2.1 1.80e-1

24 83 7.1 1.16e-1

27 74 4.6 1.24e-1

24 84 2.0 1.30e-1

34 100 4.2 1.28e-1

35 100 0.8 1.26e-1

36 100 0.6 1.23e-1

OB WIN| -

50 100 40.6 1.42e-1

50 100 10.8 1.43e-1

51 100 7.4 1.42e-1

54 100 620.1 1.26e-1

57 100 179.9 1.27e-1

52 100 92.7 1.27e-1

Figure: Results of NNLS on real examples.
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Phase Retrieval

@ Phase retrieval as constrained maximal eigenvalue problem

miny,  A1(A*(x)),
st. (b,x) —||x]|« > 1.

No. name size No. name size
1 | giantbubble(L) | 1200x1140 || 2 | nebula(L) | 1600x1350

Table: Image data for 2D signals.

GAUGE PFGAUGE (Ours)

No.| time iter DFT  gap time iter DFT  gap
1 |119610.56 8 1le+06 6.0e-01|3892.26 6 2e+05 4.7e-06
21958.19 5 8e+05 1.7e-01[4042.50 24 1e+05 4.8e-06

Table: Phase retrieval comparisons on 2D real signal. GAUGE solver by M. P.
Friedlander (essentially PG). Note: GAUGE does not converge in 18000s!
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ADMM for SDP: 2-RDM Problems

0.75 -

108

108

| [lmADMM

lo ADMM
In PFAM

|18 PFAM

SRR

Figure: Time consumption (seconds): ADMM v.s. PFAM (Ours).

@ ADMM and PFAM attain similar accuracy.
@ PFAM has ~ 2x speedup. More effective on large & low-rank data.
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© Low-Nonnegative-Rank Approximation for State Aggregation
@ Motivation
@ Problem Setup
@ Low-Nonnegative-Rank Approximation
@ Numerical Results
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Motivation

@ Control theory, reinforcement learning, etc.
Model real-world systems by Markov chains.

@ Markov chain with a discrete state space

plj = [I:D(XH-l = Sj | Xt == Si)

) - .
N A &

S={s1,%, " ,54}

The ambient dimention d is too large!
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Model Reduction by State Aggregation

pl] = I]:D()(Hl = Sj | Xt = Si)

o . C . . .j

Aggregation ' “‘ Disggregation
probablllty : : probability

Uik ™, " =Py, = Sl | Z, = Sk)

......
PR

S={s1,5, - ,54} + meta-statesin S = {5,---,5}
Aggregation probability u = P(Zy =5k | Xe = si)
Disaggregation probability vjj = P(Ziy1 = § | Xe41 = 5))
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Model Reduction by State Aggregation
pi=PX i =s51X=s)

'l . . °.. . o]

Aggregation /
probability

Disggregation
probability
Uik ™, Pu=PZn=512=5) Vi

_____
- ~
- ~e

\
1
1
1
l

¢

pij = Z Uixpr vy = Martrix form P = upv’
k=1
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Problem Setup

Observe a trajectory (g, i1, + , in)

}

82{517527”' y Sd

Driven by an unknown probability
transition matrix P* € R9*d

33/51



Problem Setup

Observe a trajectory (ig, i1, ,In)

}

52{51752,"' y Sd

Driven by an unknown probability
transition matrix P* € R9*d

Recover

(up to linear
transformation).
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Problem Setup

Observe a trajectory (ip, i1, "+ , ip)

/_\ Recover |
) (up to linear

S — S S o e S H
{51, %, ) 5d transformation).

Driven by an unknown probability
transition matrix P* € R9*d
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Problem Setup

Observe a trajectory (ig, i1, ,In)

/\ Recover
' C,:Zf(_%—/ _, U
}

- (up to linear
S={s,% ) d transformation).
Driven by an unknown probability

transition matrix P* € R9xd

T
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Problem Setup

Observe a trajectory (ig, i1, ,In)

/7\ Recover

T [ e— 5(n) (1T

C,\«f(_;—/ PO ~ OV
}

(up to linear

S: S$1,S8.,+ .S 1
{s1. %2, »2d transformation).

Driven by an unknown probability
transition matrix P* € R9*d /(

1

An empirical probability transition matrix p(n).
ngl ]l{it 1=5;,it=5;} n
= — 1 , if ﬂ- .7 _ I 2 17
ﬁl(Jn) = Zg:]_ :H-{itf]_:s/‘} ; {It 1 5}
1/d, otherwise.
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Nonnegative Rank

P~ OV,  UeR¥ VeR

Aggregation probabilities U satisfy U >0, U15 = 14.
Disggregation probabilities V satisfy VV >0, V14 = 1.
It is desirable to have s < d.

State aggregation structure < Low nonnegative rank

If Ae R{Y,
rank(A) := min{m | A= BCT,B € R{*", C e R{*™};
If A ¢RI rank(A) := +oo.
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Formulating an Optimization Problem
g(X) + xe(X) + Arank. (X)

minimizey cgdxd

o g(X) measures the discrepancy between X and P("):
12, a0n 2

g(X) = 3| 2(B™ - X)|I2.

% Z?:l ]]-{it:sj}v J = 1527 : ad-

where = = diag{f(”)}, éj(") =
if X145 =14, VX € RIXd

+ o0,

0,
' otherwise,
The implicit constraints xg(X) < 400 and rank,(X) < 400 imply that

X1, =14 and X > 0, forcing X to be a stochastic matrix.
e rank_(X) is non-convex. = A convex surrogate function?
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Atomic Norm Relaxation of rank

Atomic set A, = {A € R |rank(A) = 1,]|Al]2 = 1}.
For all X € R9x9,

m
rank(X) = min{m ‘ X =Y cAiwith ¢; > 0,A; € A*}.
i=1

ﬂ atomic norm relaxation
Nuclear norm

m

| Xl :min{ Ci

X = ZC,‘A,‘ with ¢; > 0, A; € A*}
i=1

i=1

d
= Z oi(X). (oi(X) is the i-th largest singular value of X)
i=1

40/51



Atomic Norm Relaxation of rank .

Atomic set A, ={A¢c Re*d ’ rank. (A) =1, ||All2 = 1}.
For all X € RY*9,
rank . (X) = min{m ’ X = ZC,'A,’ with ¢; > 0,A; € A+}.
i=1

H “atomic norm relaxation”
Atomic regularizer

m

Q(X) :inf{z Gi

i=1

=it { S 1 1Y

j=1

m
X = ZC,‘A,‘ with ¢; > 0, A; € A+}
i=1

Optimal factorization (w.r.t. Q):
a factorization X = UV T that achieves the infimum.

X =UVT with U,V € Ri“}.
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Convexifed Formulation

minimizeycgaxa  H(X) 1= g(X) + xe(X) + AQ2(X) (1)

Theorem (Sufficient and necessary conditions for global optimality)

X is globally optimal for (1) with an optimal factorization X=0VT iff
Ju € RY sit.

T(ul] —vg(X))v <A, Vu,veR? with |Julla = |v]2 =1,

[11] = Vg(X)V], = \0di ag{ ” f||2}
1Gill2 ] j=1’

[1dlﬂ0 - (Vg(fo)TU]+ = )\\7diag{ ”(ffib} .
=1

~ I Vill2 ) j=

e Q(X) does not have an explicit form.
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Factorized Optimization Model

S
minimizey yegaxs  Fa(U, V) = g(UVT) + 2D [[Ujl12]l Vjll2,
j=1
s.t. Ul, =14, V71,=1,, U>0,V>0
@ s: the rank of model, a parameter to be adjusted.

e When s is sufficiently large, the factorized optimization model (2) is
equivalent to the convexifed problem (1).

Theorem (KKT conditions of (2))
Suppose that (U, \7) is a local solution to (2). Then, 3u € R? s.t.

o . Villa)*®
1] —ve(X)V], = )\Udiag{ ” 3”2}
1Ujll2 ) j=1

[lduTO — (Vg()A())TU}Jr = )\leag{ | JH2} N

JH2
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Global Optimality Certificate

Sufficient and necessary conditions for global optimality of (1):

u” (u1] = Vg(X))v <A, Vu,ve RS with [lulla = [v]2 =1,

[u1] — vg(X)V], _AUdlag{ ” JHZ}
2) j= 1

3 S
[LWTU — (Veg(X)) TUL = )\\7diag{ ” 3”2} .
j=1

1Vill2

KKT conditions for local solutions to (2):

44 /51



General Idea of the Algorithm

@ Solve the factorized optimization model (2) and obtain a local
solution (U, V).

@ Calculate a vector 1 € R? according to the KKT conditions:

- (Vg()A()\A/) + Adj——=-=, for any j such that d; > 0.

© Determine whether p satisfies

T(u1g — Vg()A())v <), Vu,veR?with [|ulla = |lv[2 = 1.
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Remaining Issues

@ How to verify the global optimality certificate?

u” (u1] —vg(X))v <A, Vu,veR? with [lulla = [v]]2 = 1.

o How to refine a local solution (U, V) if it does not represent a
global minimum to the convexified problem?

@ A subroutine to solve the factorized optimization model?
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Criteria to Determine Global Optimality

@ Exact stopping rule: Gradient projection method to solve
maximizey v uT(ulg - Vg()A())v
s.t. lull2 =1, |lv]2 =1,
u>0,v>0.
If the objective value < (1 + epxa)A, then X is considered to be
global optimal.

o Early stopping rule: Define a function

o(v) == H [(p1] - Vg(X))v]+H2 for v € RY with |||} = 1.

Global optimality certificate & Ly = {v | o(v) > )\} = (.

Test vectors {v}N_; ig Uniform ({v € RY | [lv[2 = 1}).
If (V) < A for each k, then we say X is global optimal.
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Successive Refinements to Escape from Local Solutions

@ Appending a New Column:
If (U, \7) is not globally optimal, there exist ¥ and @ such that

il (pl] —Vg(X)v > A, 6,v>0, [jul2=|v| = 1.

Intuitively, v " approximates the negative subgradient directions of
f\ at )%

Theorem (Escaping local minima)
Take

U= [diag{1, — rt}U,xa], V=V, (¥714)"'7]
for some sufficiently small x > 0.

Then F\(O,V) < FA(0, V).
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Experiments with Manhattan Taxi Data

@ Partition Manhattan transportation network into different regions.

@ Datasets: 1.1 x 10” NYC Yellow cab trips in January 2016. Each
record includes passenger pick-up and drop-off information
(coordinates, time, etc.) of one trip. The movements of taxis are
nearly memoryless. We divide the map into a fine grid and merge
the locations in the same cell into one state. Each trip is a sampled
one-step state transition between cells.

@ Each point in the map represents a valid state of the Markov chain.
The figures in one pair have exactly the same number of regions,
where the left one is produced by the state aggregation model and
the right one is provided by the SVD-based method. In some
figures, there are less than s regions appearing on the map, because
some points are plotted beyond the boundaries.
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Contact Information
Many Thanks For Your Attention!
o b RRAZ . REESM P L, LLHREK

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

o HAt: REH, P, £FH XAEL, RGAHES
#http://bicmr.pku.edu.cn/~wenzw/optbook.html

@ Looking for Ph.D students and Postdoc
Competitive salary as U.S and Europe

@ http://bicmr.pku.edu.cn/~wenzw
@ E-mail: wenzw@pku.edu.cn

@ Office phone: 86-10-62744125
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