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Manifold Optimization

Model problem

mXin f(X), XeM

Examples: Stiefel manifold, oblique manifold, Rank-p manifold, ...

@ important applications from machine learning, material science and
etc: eigenvalue decomposition, Quantum physics/chemisty, density
functional theory, Bose-Einstein condensates, low rank nearest
correlation matrix, Cryo-EM, phase retrieval, assignment matrix

@ Difficulty: nonconvexty, multiple local minimizers/saddle points

@ Recent progress

General first-order and second-order general algorithms/analysis
Algorithms/analysis for Linear and Nonlinear Eigenvalue Problem
Batch normalization from deep learning

Analysis of global optimal solution in maxcut type problems
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@ Avplications
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Minimizing p-Harmonic Flows into Sphere

Figure: input surface; the conformal map; the surfaces are color coded by the
corresponding u in the conformal factors.

. 1
min  E(F) = f IV AP + IV mfall® + IV mf3lIPdM
F=(f1.fa.f3) 2 JIm

st |IFll= P+ +f2=1, VYxeM
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Minimizing p-Harmonic Flows into Sphere

min Ep(U):meU(x)V;dx,

s.t. Ue(Ue W'"P(QRY)|U(X)| = 1a.e.;Ulsqg = ng}

@ Applications
o directional diffusion, color image denoising, conformal mapping;
@ micromagnetics, i.e., describing magnetization patterns in
ferromagnetic media (Minimizing the Landau-Lifshitz energy);
o Computing liquid crystal’s stable configuration

2|
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Maxcut type problems

@ Original: binary variable x; € {-1,1}.

max—Zw,, -Xxx), st.xi={x1}, i=1,...,n
i<j

@ SDP relaxation: xx™ — X > 0, drop rank(X) = 1.
m)?x tr(CX), st. Xj=1,i=1,---,n, X >0.
@ NLP: write X = VTV where V = [v4,...,v,] € RP*"

max > cvlvj, stlvill=1,i=1...n.
VeRPxn L !

@ Low-rank nearest correlation matrix estimation

min%”W@(VTV—C)HIZ__, stllvill =1, i=1,....n.
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Partition Matrix from Community Detection

@ For any partition U_, C, = [n], define the partition matrix X

1, ifi,j € C,, for some a,
ij =
0, else.

@ Low rank solution

1 1
D1 L
X:111 :1><11111
1 1 1
1 1 1
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Modularity Maximization

@ The modularity (MEJ Newman, M Girvan, 2004) is defined by
1
=(A-—dd', X
Q =« 2Add’ )

where A4 = |E|.
@ The Integral modularity maximization problem:

max (A — 5ddT,X)
s.t. X €{0,1}™" is a partiton matrix.

where A = |E|.
@ SDP Relaxation Yudong Chen, Xiaodong Li, Jiaming Xu
max (A - g7dd", X)
st. X>=0

0<Xj<A1
Xii =1
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Assignment matrix

@ Optimization over permutation matrices (OptPerm)

m)gn f(X), st. ,.XeM,={X"X=1 X=>0}. (1)
@ Quadratic assignment problem (QAP)

min f(X) := tr(ATXBXT), )
Xell,

where A, B € R™",

@ Graph matching problem

in f(X) = ||AX — XBJ]2
[in (X) =l Iz, (3)

- f(X) = |AX = XBJ2 = ~tr(ATXBXT) + const,
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Linear eigenvalue problem

Given a symmetric n x n real matrix A
@ k-truncated decomposition (k < n):

AQx = Qk/k.

e A, € Rk contains k smallest/largest eigenvalues.
e Q € R™ consists of the first/last k columns of Q.

@ Trace minimization:
min(max) (XTAX), s.t. X' X =1

@ A fundamental tool for many emerging optimization
o semidefinite program, Low-rank matrix completion, Robust principal
component analysis, Sparse principal component analysis, Sparse
inverse covariance matrix estimation, DFT, High dimensional data
reduction

Zaiwen Wen (BICMR, PKU) Optimization with Orthogonality Constraints



Electronic Structure Calculation

@ Total energy minimization problem:
Xr*n)igl Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X) + Etock (X),

where
Ernetc(X) = %tr(X*LX)
Eion(X) = tI‘(X*V,'onX)
Enartree(X) = %p(X)TLTp(X)
Exc(X) = p(X) pxc(p(X))
p(X) = diag(D(X)), D(X)=XX"

Ewek(X) = (V(D)X,X), fourth order tensor

@ Nonlinear eigenvalue problem (looks like the KKT condtions):
HX)X = XA
XX =1

Zaiwen Wen (BICMR, PKU) Optimization with Orthogonality Constraints



Bose-Einstein condensates

@ The total energy in BEC is defined as
_ 1 2 2, B 4 o7
EW) = | | [3IV0 00 + VWP + S0l - Q0(x)L-(x) | dx

where x € R9 is the spatial coordinate vector, ¢ denotes the complex
conjugate of y, L, = —i(xd — ydx), V(x) is an external trapping
potential, and 3, Q2 are given constants.

@ Using a suitable discretization, we can reformulate the BEC as

1
min f(x) = 5X°Ax + Z|x,|4 st Xl =1,

xeCM

where M € N, B is a given real constant, and A € C¥M s g
Hermitian matrix.
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Cryo-electron microscopy reconstruction

Find 3D structure given samples of 2D images. Thanks: Amit Singer

Projection P;

Molecule ¢ @

| |
W =| r Bf ESO(S)
| |

El ton

Z ||R,‘C,'j - RjCjng, S.t. RiTR,' =1l,R; € R3X2
i=1
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Challenges

-

. ? w :
OOO@O‘,:.&

Toy Example
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Both Orthogonality and Nonnegative

o ST = {XeR™: XTX =, X >0}
@ Orthogonal NMF (ONMF): Data matrix A € R, n data samples,
each with r features, k clusters

min  [|A - XYT|2
XeSTK, YeRr

@ Orthonormal projective NMF (OPNMF) model, Yang & Oja (2010)

min [IA - XXTA|2
XeSTk

@ K-indicators model, Chen, Yang, Xu, Zhang & Zhang (2019)
min |y - X||,2: st |Xi:llo=1,i€[n],
XeSTK yeSkk

where U € 8™ is the features matrix extracted from the data matrix
A.
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Batch normalization (BN) from deep learning

@ Given weight vector w, the output x from the previous layer
@ Batch normalization transform on z := w' x

_z-E[z] w'(x-E[x]) u'(x-E[x])
BN(z) = JVarlzl  VWTRew VU Ryu

where u = w/||w||, E[x] and Ry are the mean and covariance of x.
@ Note that BN(w™x) = BN(u' x), then the wight vector satisfies

we G(1,n)

where G(1, n) is the set of 1-dimensional subspaces of R".
@ Deep networks with multiple layers and multiple units per layer

min £(X) where M = G(1,n1) x---x G(1,np) xR/

@ dimensions of m weight vectors ny, ..., ny,, | remaining parameters.

'Cho, M., Lee, J. (2017). Riemannian approach to batch normalization. In Advances in
Neural Information Processing Systems (pp. 5225-5235).
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Weight normalization (WN) from deep learning 2

@ Neural network: given weight matrix w, bias term b, output x from
previous layer, elementwise nonlinear function ¢

y =¢(w'x +b),
@ Weight normalization on w
lIwllz = 1.
@ Deep networks with multiple layers and multiple units per layer

min £(X) where M = 8" x ... x 8"~ x R/
XeM
where S"' is the (n - 1)-dimensional sphere in R".
@ Benefits of BN and WN
o Allow higher learning rates and train faster.
o Make weights easier to initialize and more activation functions viable.
@ Provide a bit of regularization.
o May give better results.
2Salimans, T., Kingma, D. P. (2016). Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in-Neural Information
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@ Algorithms
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A retraction Ry on a manifold M at a point x is a mapping from tangent
space TyM at x onto M satisfying
@ Rx(0x) = x, where 04 denotes the zero tangent vector of TyM.
@ DR, (0x) = idr, A, Where 1dTXM denotes the identity mapping on
TxM.

geoflesic
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Curvilinear search on Riemannian manifold

Curvilinear search updating formula

Xk+1 = Ry (tk)-

@ Ry, is aretraction at x.
@ 7 is chosen as descent direction, i.e., (grad f(xk),nk)xk < 0.

@ f as the step size is chosen properly
Non-monotone Armijio rule: Given p,§ € (0, 1), find the smallest
integer h satisfying:

f(Ry (titk)) < Cic + ptic grad f(Xi ), 7 )y, »

where t, = yxd" and y is the initial step size.
Ck+1 = (nQkCx + f(Xk+1))/Qk+1, where Co = f(xo),
Q1 =nQk +1and Qy = 1.
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Specialized Gradient-Type Methods

@ Wen and Yin: Let Gk = VF(Xk), set H = Xx G, — Gk X,/ and solve
Y =X+ gH(X +Y)
for Y(r). Using a step size 7, we update
T A\ T
Xyt < Y(7) = (/— EH) (l+ EH)Xk.
@ Jiang and Dai: Given Xx and Di € Tx,,
2
W = —(lh— XX )Dx, J(7) = Ip + TZWTW + gkaDk,
Y(r) = (X +TW)J(r)! = Xk.
@ Gao, Liu, Chen and Yuan: Given Xi and Gx = VF(Xx)
V = Xq = 7Gx, X = (=In +2V(VT V)" VT) Xk (or projgy(np) (V).
X, if XTGx = G X
X1 =

_ XTG = UNTT
- XUTT, o.w. ( )
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Classical Riemannian trust-region (RTR) method

@ Absil, Baker, Gallivan: Trust-region methods on Riemannian manifold.

Many other variants
Riemannian trust-region (RTR) method:
i 1
min  m(&) = f(xk) + (grad f(xk), &) +  (Hess f(xk)[¢]. &) ,
£eTE M 2
st el < A,

where grad f(x) is the Riemannian gradient and Hess f(xx ) is the
Riemannian Hessian.

@ Use truncated PCG to solve the subproblem

@ Direct extension from Euclidean space to manifolds

@ Many applications: low rank matrix completion, phase retrieval,

eigenvalue computation
Packages: Manopt, Pymanopt
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Regularized Newton Method

@ Our new adaptively regularized Newton (ARNT) method:

. 1 o
min - mg(x) := (VF(Xk), X — xx) + > (Hk[x = xk], x = xx) + ?kllx - XkllP,
st. xeM,

where Vf(xx) and Hy are the Euclidean gradient Hessian.

@ Regularized parameter update (trust-region-like strategy):

o ratio: px = %

e regularization parameter o:

@) Mmool
O I ey
(y10k.y20%]  otherwise. -

where 0 <ni <me<tland1 <y <vyo.
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Modified CG for subproblem

@ Riemannian Gradient method with BB step size.

@ Stiefel manifold: implicitly preserve the Lagrangian multipliers
Hess mi (X )[€] = Py, (Hi[¢] = Usym((x)"V(xc))) + 7ké,
@ Newton system for the subproblem
grad my(xx) + Hess my(xx)[£] = 0.

@ Modified CG method

with 7 =

g 5 + 7k ifdk #0, (., grad my(xk)),,
T sk if dhe = 0, = (k. Hess mi(x)[0k]),

@ dj represents and transports the negative curvature information
e s¥ corresponds to the “usual” output of the CG method.
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Existing Riemannian quasi-Newton method

@ Focus on the whole approximation B¥ to Riemannian Hessian
Hess f(XX) : Ty M — Ty M.

@ Riemannian BFGS method

BRSK((BK)*SK)r  yK(YKY

Bk+1 — Bk _ (B st Viys Tyt p = Tt pg
where
Bk = Pﬁ“ oBfo (Pf,?r1 )71, change domain and range to Tyk+1
YK = Blerad f(XK1) — PX grad f(XK), difference on Tywi1
sk = Pﬁ“ k&, transport to Tyi+1

with the last quasi-Newton direction &k € Tyx M and stepsize ak.

° Pﬁ“ : Tyk M — Tyk+1. M is to transport the tangent vector from
Tyx M to Tyk+1 M. Bk is a scalar (can be 1).
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Adaptive regularized quasi-Newton method

@ Riemannian Hessian of f on Stiefel manifold:
Hess f(X)[U] = PX(VZf(X)[U]) — Usym(XTV£(X))

@ Keep the term Usym((X¥)TVf(X¥)) of lower computational cost, and
construct an approximation B¥ to expensive part V2f(X*).

@ After obtaining B¥, the subproblem is constructed as
{min mi(X) = (TH(X<), X = X<) + % (BFX = XK X = X<) + ZE QX - X¥|P
st XTX = Ip.
@ The Riemannian Hessian of my(X) at X*
Hess mi(X*)[U] = Px(B"[U]) = Usym((X*)TV£(X¥)) + oy U.

@ The vector transport is not needed since we are working the ambient
Euclidean space.
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Construction of B¥ with structured f

@ Assume the computational cost of H®(X) is much more expensive
than that of H(X)

V2f(X) = H(X) + H%(X),
@ Quasi-Newton approximation:
BX[S¥] =YX
where Sk := XK — Xk~ and Yk = Vf(X¥) - Vi(Xk).
o If we keep H°(X¥) and construct
Bf = H°(X¥) + C¥,

then CK is a quasi-Newton approximation to H®(X¥) with secant
condition
Ck[Sk] — yk _ HC(XK)[SK]
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How to choose an initial quasi-Newton approximation?

@ For a linear operator A of high computational cost, the
limited-memory Nystrém approximation® A is

A=Y(YQ'y,
where Y = AQ and Q is a basis of a well-chosen subspace, e.g.,
orth({X*, X1, AXK}), orth({X*, Xk, x*=2 ).

@ The compressed operator A is of low rank, but consistent with A on
the subspace spanned by Q.

@ Given some good approximation C(’)‘ of H®, the Nytrém approximation
é(‘)‘ can be utilized to further reduce the computational cost.

@ More effective than the BB-type initialization (a/) in practice.

3Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher, Fixed-rank
approximation of a positive-semidefinite matrix from streaming data, NIPS, 2017, pp.
1225-1234.
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Algorithms for linear eigenvalue problems

Task: Given large sparse A = AT € R™", compute k largest eigenpairs
(g, 4)),j=1,--- ,k for “large” k < n.

Our Framework:
@ A block method for subspace update (SU)
@ Augmented RR (ARR) projection

2 Block Method Variants for SU:
@ Multi-power method
@ Gauss Newton method

Acceleration: replace A by p(A)
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Low-Rank Approximation For Eigenpair Computation

Nonlinear Least Squares:

X* = argmin ||IXXT - A||12:.
XER”XK

GN: Large nk x nk normal equations, but with a simple structure
SXTX 4+ XSTX = AX - X(X'X)

Closed-form solution for GN direction

Let X € R™k be full rank, and Px = X(XTX)~'XT. Then

S(X) = (I-Px/2) (AX(X"X)™" - X) + XC,
where CT = —C, satisfies the normal equations. In particular, for C = 0,
So(X) = (I-Px/2) (AX(XTX)™" - X)

is @ minimum weighted-norm GN direction.

Zaiwen Wen (BICMR, PKU) Optimization with Orthogonality Constraints



Modularity Maximization

@ The modularity (MEJ Newman, M Girvan, 2004) is defined by
1
=(A-—dd", X
Q=(A-5dd". X)
where A = |E|.
@ The Integral modularity maximization problem:

max (A — ﬁddT,X)
s.t. X €{0,1}™" is a partiton matrix.

@ Probably hard to solve.
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A Nonconvex Completely Positive Relaxation

@ A nonconvex completely positive relaxation of modularity

maximization:
1
in(-A + —ad’, uu’
min{ + 51 )
s.t.U e R™K
luill® =1, lluillo < pi=1,....n,
U=>0
@ |luill® = 1: helpful in the algorithm.

@ U > 0: important in theoretical proof.
@ |luillo < p: keep the sparsity.
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A Nonconvex Proximal RBR Algorithm

@ Let U :={ujeRF|u;>0,lluilla =1, luillo < p}. Rewrite:
min f(U) = (C, uu™y,  U=Jusup,...,un)"

@ Proximal BCD reformulation:

. g —
ui = argmin f(U1, ..., Ui—1, X, Uir1, .., Up) + EIIX — Gjl)2
XeU;
@ Work in blocks:
C11 C1,’ C1n U1TU1 U1TX U1TUn
C= C,‘1 Ciji C,'n s UUT = XTU1 XTX XTUn
Cni Cni Cm U,-’,-U1 U,7,—X U,-I;Un

@ Note that ||x|| = 1. The problem is simplified to

u; = argmin bTX,
XeU;

where bT =2C" U_; - oG-

Optimization with Orthogonality Constraints
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An Asynchronous Proximal RBR Algorithm

Shared
Memory

Update Update Update
uj, d'U uj, d'U uj, d’'U

Sync. when all rows processed
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Optimization with nonnegative orthogonality

@ Problem:

min f(X) st X'X=I, X>0
XeRnxk

f is continuously differentiable, S7* := (X e R™* : XTX = I, X > 0}

@ Combinatorial property: each row of X has at most one nonzero
(positive) element, || X|lo < n

(V2/2 0 0]
v2/2 0 0
x_| o V2/2 0
0 +V2/2 0

0 0 1

0 0 0

@ Goal: find high quality orthogonal nonnegative martix
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An exact penalty approach

@ 0BT ={X e R™k :||x| =1,x20,j € [K]}
@ “orth+” problem

min f(X) st |[XV|=1
XeOBZ’r‘k

where V can be chosen as any V € Rk” (1 <r<k)with ||V =1
@ Consider the partial penalty approach as follows:

min f(X) + 0'||XV||¢
XeOB”

Its global minimizer is also a global minimizer of the original problem.
@ A second-order approach for solving the above problem
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e Theory
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Convergence analysis of the SCF iteration

@ Let V:=V(p) = L'p + pxe(p) e and Hamiltonian:
H(V) = %L + Vion + Diag(V) = Q(V)N(V)Q(V)T eigen-decomp
@ Kohn-Sham equation:
H(V)X(V) = X(V)A,  X(V)'X(V) =1
@ SCF solves a system of nonlinear equations:
V=V(Fs(V)), Fs(V) = diag(X(V)X(V)T).

@ Key: spectral operator F4(V) = diag(Q(V)gp(M(V))Q(V)")
@ Suppose Ap41(V) > Ap(V). Then the directional derivative:

dvFs(V)[z] = diag (Q(V) (gs(M(V)) o (Q(V)"Diag (2) Q(V))) Q(V)").

@ Rigorous convergence analysis is established
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Convergence to global solutions

@ Add noise to the gradient flow:
dX(t) = =VpF(X(t))dt + o (t) o dBpm(t),

where M is the Stiefel manifold, and By(t)(t) is the Brownian motion
on manifold

@ One can

Derive and analyzed the extrinsic formulation

Design a numerically efficient SDE solver with strong convergence.
Establish overall global convergence.
Achieve promising numerical results in various problems.

Theorem (Convergence Results of ID)

Assuming that the local algorithm satisfies F(Xx) < F(X; ). Let the global
minimum be F*, and suppose Xopt to be the optimal solution obtained by

ID. For any givene > 0 and{ > 0, do- > 0, T(o7) > 0 and Ny > 0 such that
ifoi <o, Ti > T(o7) and N > No, P(F(Xopt) < F* +2) =1 —e.
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Modularity minimization for community detection

@ The modularity maximization problem X = &*(®*)T:
max (A - 57dd", X)
s.t. X €{0,1}™" is a partiton matrix.
@ Nonconvex completely positive relaxation:

min (-A + —ddT uu™y
UeRnxk

s.t.U> o,||u,-||2 =1,llullo <p,i=1,...,n

Theorem (Theoretical Error Bounds)

Define G, = Z,ec 0, Ha = X _, Bab Gb, fi = Ha8j, Under the assumption
Max{<a<b<k H H % < 1 < minf<a<k aa ~ for some § > 0. Let U* be the
global optimal solution, and defmeA U*(U*)" — &*(¢*)T. Then with

high probability || Ally ¢ < (1 n (maX1<a<k B ||f||1)) (vl + n)
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Analysis on a quartic-quadratic optimization problem

Definition (Model Problem)

Suppose matrix A € C™" is Hermitian and 8 > 0 is a constant. We consider the
following minimization problem.

. 1 * B 4 4
minf(2) == 52°Az + é|zk| stz =1.

Example: Non-rotating BEC Problem

The ground state of non-rotating Bose-Einstein Condensation (BEC) problem is
usually defined as the minimizer of the following dimensionless energy functional

E(6) = [ |70 + VIo0P + S0 ax,

where d = 1,2, 3 is the dimension, V(x) denotes the potential and 8 € R is the
interaction coefficient. We also need the wave function to be normalized:

llpll 2(ray = 1.
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Landscape of the objective function

(@) =0.25 (b) B =0.75

(0B =125 (d) B =325

The red point marker: saddle points. Local and global minima are
indicated by non-filled and filled diamond markers. The location of local
and global maxima is marked by non-filled and filled squares.
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Diagonal Case

Theorem (An Inequality on Perturbation)

Denote f,(z) = 1§z*(A +oW)z+ §||zk||j, where A is a diagonal matrix, W is the
Hermitian noise and o > 0 is the magnitude of the noise. Suppose

2, = (rne",..., r,e™)7 is a global minimizer of fy(z) and x = (s1€"", ..., s,e%)T
is a stationary point of f,(z) that satisfies f,(x) < f,(zy). Then we have

X = Zolla < Y201 WIla/B < /20| W(l2n'/4/B.

Remark

Further if we have W is a Gaussian random matrix, it has been proved that
[IW]l> < 3 +/n with probability at least 1 — 2n=%/4 — e="/2, Then we know with the

same probability
X = 2Zqlla < \/6o/B - n'/*.

| A\
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Geometric Analysis In Real Case

Theorem

Suppose that the coefficient 8 satisfies g > 22-(1 + y)pn®/2 for some given

y > 0. Then, the function f has the (C,p, %p, C,p)-strict-saddle property
with C, := 2= (1 +y)n*2 - 1.

v

1. (Strong convexity). Ry = {z € S™' : maxy<k<nlzZ — 1/n| < 1/2n}.
2. (Large gradient). R = {z € S :

maxi<k<nlZE — 1/nl > 1/2n, miny<k<n 22 > 1/12n}.
3. (Negative curvature). R = {z € S™ : minj<x<p 22 < 1/12n).

\
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Geometric Analysis In Real Case

T 0 z T E 2

@ =02 (b) B =3.75

Figure (a): The overlap of the sets R1—R> and R>—R3 is shown in green.
The set Ry is the union of the yellow and the two surrounding green areas,
while R5 is the union of all green and light blue areas. The region Rj is the
union of the dark blue sets and the enclosing green area. Figure (b): the
(disjoint) yellow, turquoise, and dark blue areas directly correspond to the
sets Ry, Ro, and R3, respectively. Non-filled and filled diamond markers
are used for local and global minima. Local and global maxima are
marked by non-filled and filled squares.
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Geometric Analysis In Real Case

Corollary

If B > 4pn?, the problem has at least 2" local minima. Furthermore, if
B> 181, then the problem has exactly 2" local minima

Theorem

| A\

Suppose that > 1;%"13,0. Then, it follows

:
— mi - . i - 4
fy) = min f(Z)i= 220 - | min #(z)i= A A) (4)

for all local minimizery € S™~' where 1,(A) denotes the smallest
eigenvalue of the matrix A.

A\
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Geometric Analysis In Real Case

Theorem

Suppose that the gap between the two smallest eigenvalues of the matrix
A satisfies 6 :== Ap—1 — An > 0 and lety > 0 be given. If

B<2(3+7v)+ (5+7)5]7 "6 =: by, then f has the

(vB,¥B. yB)-strict-saddle property.

Three Regions

| A\

1. (strong convexity) Ry = {zla? > 22,3 a2 = 1),

2. (large gradient) R, = {z| ¥, 2222 — (¥ Aka2)? > 96, ¥ a2 = 1},

3. (negative curvature) Rs = {z|a? < %,2 af =1},

where (ay, ..., an)T are coordinates of vector z under the orthogonal basis
consisting of eigenvectors of matrix A.

v

Under the condition of the last theorem, the optimization problem has two
equivalent local minima and they are global minima,
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Estimation of the Kurdyka-tojasiewicz Exponent

e Find the largest 6 € (0, }] such that for all stationary points z, the
Lojasiewicz inequality,

If(y) — f(2)|" < nyllgrad f(y)ll, YyeB(z,6,)nCS"", (5

holds with some constants 62,7, > 0.

@ Let A = diag(a) € C™", a € R", be a diagonal matrix. Then, the
largest KL exponent is at least 3—1.

@ Suppose A € R™" is a symmetric matrix and z is a stationary point
satisfying

H := A + 2Bdiag(|z|?) — 241 > 0,

where A = 2'V,f(z) = 1z*Az + fljz|}. Then, the largest KL exponent
of (??) at zis at least 5.
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