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Manifold Optimization

Model problem

min
X

f(X), X ∈ M

Examples: Stiefel manifold, oblique manifold, Rank-p manifold, ...

important applications from machine learning, material science and
etc: eigenvalue decomposition, Quantum physics/chemisty, density
functional theory, Bose-Einstein condensates, low rank nearest
correlation matrix, Cryo-EM, phase retrieval, assignment matrix

Difficulty: nonconvexty, multiple local minimizers/saddle points

Recent progress
General first-order and second-order general algorithms/analysis
Algorithms/analysis for Linear and Nonlinear Eigenvalue Problem
Batch normalization from deep learning
Analysis of global optimal solution in maxcut type problems
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Minimizing p-Harmonic Flows into Sphere

Figure: input surface; the conformal map; the surfaces are color coded by the
corresponding u in the conformal factors.

min
F=(f1,f2,f3)

E(F) =
1
2

∫
M

‖∇Mf1‖2 + ‖∇Mf2‖2 + ‖∇Mf3‖2dM

s.t . ‖F‖ =
√

f2
1 + f2

2 + f2
3 = 1, ∀x ∈ M
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Minimizing p-Harmonic Flows into Sphere


min Êp(U) =

∫
Ω
|DU(x)|pF dx,

s.t . U ∈ {U ∈ W1,p(Ω,RN) | |U(x)| = 1 a.e.; U|∂Ω = n0}

Applications
directional diffusion, color image denoising, conformal mapping;
micromagnetics, i.e., describing magnetization patterns in
ferromagnetic media (Minimizing the Landau-Lifshitz energy);
Computing liquid crystal’s stable configuration

Exact Solution, p =2
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Maxcut type problems

Original: binary variable xi ∈ {−1, 1}.

max
x

1
2

∑
i<j

wij(1 − xixj), s.t. xi = {±1}, i = 1, . . . , n.

SDP relaxation: xx> → X � 0, drop rank(X) = 1.

max
X

tr(CX), s.t. Xii = 1, i = 1, · · · , n, X � 0.

NLP: write X = V>V where V = [v1, . . . , vn] ∈ Rp×n

max
V∈Rp×n

∑
i,j

cijv>i v j , s.t. ‖v i‖ = 1, i = 1, . . . , n.

Low-rank nearest correlation matrix estimation

min
1
2

∥∥∥W � (V>V − C)
∥∥∥2

F , s.t. ‖v i‖ = 1, i = 1, . . . , n.
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Partition Matrix from Community Detection

For any partition ∪k
a=1Ca = [n], define the partition matrix X

Xij =

1, if i, j ∈ Ca , for some a,

0, else .

Low rank solution

X =



1
1 1 1
1 1 1
1 1 1

1 1
1 1


=



1
1
1
1

1
1


×

1 1 1 1
1 1
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Modularity Maximization

The modularity (MEJ Newman, M Girvan, 2004) is defined by

Q = 〈A −
1

2λ
ddT ,X〉

where λ = |E |.
The Integral modularity maximization problem:

max 〈A − 1
2λddT ,X〉

s.t. X ∈ {0, 1}n×n is a partiton matrix.

where λ = |E |.
SDP Relaxation Yudong Chen, Xiaodong Li, Jiaming Xu

max 〈A − 1
2λddT ,X〉

s.t. X � 0
0 ≤ Xij ≤ 1
Xii = 1
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Assignment matrix

Optimization over permutation matrices (OptPerm)

min
X

f(X), s.t. ,X ∈ Πn = {X>X = I, X ≥ 0}. (1)

Quadratic assignment problem (QAP)

min
X∈Πn

f(X) B tr(A>XBX>), (2)

where A ,B ∈ Rn×n.

Graph matching problem

min
X∈Πn

f(X) = ‖AX − XB‖2F , (3)

- f(X) = ‖AX − XB‖2F = −tr(A>XBX>) + const.
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Linear eigenvalue problem

Given a symmetric n × n real matrix A

k−truncated decomposition (k � n):

AQk = Qk Λk .

Λk ∈ R
k×k contains k smallest/largest eigenvalues.

Qk ∈ R
n×k consists of the first/last k columns of Q .

Trace minimization:

min(max) tr(X>AX), s.t. X>X = I

A fundamental tool for many emerging optimization
semidefinite program, Low-rank matrix completion, Robust principal
component analysis, Sparse principal component analysis, Sparse
inverse covariance matrix estimation, DFT, High dimensional data
reduction
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Electronic Structure Calculation

Total energy minimization problem:

min
X∗X=I

Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X) + Efock (X),

where

Ekinetic(X) =
1
2

tr(X∗LX)

Eion(X) = tr(X∗VionX)

EHartree(X) =
1
2
ρ(X)>L†ρ(X)

Exc(X) = ρ(X)>µxc(ρ(X))

ρ(X) = diag(D(X)), D(X) = XX∗

Efock (X) =
〈
V(D)X ,X

〉
, fourth order tensor

Nonlinear eigenvalue problem (looks like the KKT condtions):

H(X)X = XΛ

X∗X = I
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Bose-Einstein condensates

The total energy in BEC is defined as

E(ψ) =

∫
Rd

[
1
2
|∇ψ(x)|2 + V(x)|ψ(x)|2 +

β

2
|ψ(x)|4 − Ωψ̄(x)Lz(x)

]
dx,

where x ∈ Rd is the spatial coordinate vector, ψ̄ denotes the complex
conjugate of ψ, Lz = −i(x∂ − y∂x), V(x) is an external trapping
potential, and β,Ω are given constants.

Using a suitable discretization, we can reformulate the BEC as

min
x∈CM

f(x) :=
1
2

x∗Ax +
β

2

M∑
j=1

|xj |
4, s.t. ‖x‖2 = 1,

where M ∈ N , β is a given real constant, and A ∈ CM×M is a
Hermitian matrix.
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Cryo-electron microscopy reconstruction

Find 3D structure given samples of 2D images. Thanks: Amit Singer

min
Ri

N∑
i=1

‖Ricij − Rjcji‖
2
2, s.t. R>i Ri = I2,Ri ∈ R

3×2
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Challenges

Toy Example Real Example
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Both Orthogonality and Nonnegative

S
n,k
+ B {X ∈ Rn×k : X>X = Ik , X ≥ 0}

Orthogonal NMF (ONMF): Data matrix A ∈ Rn×r
+ , n data samples,

each with r features, k clusters

min
X∈Sn,k

+ ,Y∈Rr×k
+

‖A − XY>‖2F

Orthonormal projective NMF (OPNMF) model, Yang & Oja (2010)

min
X∈Sn,k

+

‖A − XX>A‖2F

K-indicators model, Chen, Yang, Xu, Zhang & Zhang (2019)

min
X∈Sn,k

+ ,Y∈Sk ,k
‖UY − X‖2F s.t. ‖Xi,:‖0 = 1, i ∈ [n],

where U ∈ Sn,k is the features matrix extracted from the data matrix
A .
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Batch normalization (BN) from deep learning 1

Given weight vector w, the output x from the previous layer
Batch normalization transform on z := w>x

BN(z) =
z − E[z]√

Var[z]
=

w>(x − E[x])
√

w>Rxxw
=

u>(x − E[x])
√

u>Rxxu

where u = w/‖w‖, E[x] and Rxx are the mean and covariance of x.
Note that BN(w>x) = BN(u>x), then the wight vector satisfies

w ∈ G(1, n)

where G(1, n) is the set of 1-dimensional subspaces of Rn.
Deep networks with multiple layers and multiple units per layer

min
X∈M
L(X) whereM = G(1, n1) × · · · × G(1, nm) × Rl

dimensions of m weight vectors n1, . . . , nm, l remaining parameters.
1Cho, M., Lee, J. (2017). Riemannian approach to batch normalization. In Advances in

Neural Information Processing Systems (pp. 5225-5235).
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Weight normalization (WN) from deep learning 2

Neural network: given weight matrix w, bias term b, output x from
previous layer, elementwise nonlinear function φ

y = φ(w>x + b),

Weight normalization on w

‖w‖2 = 1.

Deep networks with multiple layers and multiple units per layer

min
X∈M
L(X) whereM = Sn1−1 × · · · × Snm−1 × Rl

where Sn−1 is the (n − 1)-dimensional sphere in Rn.
Benefits of BN and WN

Allow higher learning rates and train faster.
Make weights easier to initialize and more activation functions viable.
Provide a bit of regularization.
May give better results.

2Salimans, T., Kingma, D. P. (2016). Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems (pp. 901-909).Zaiwen Wen (BICMR, PKU) Optimization with Orthogonality Constraints 17 / 49
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Retraction

A retraction Rx on a manifoldM at a point x is a mapping from tangent
space TxM at x ontoM satisfying

Rx(0x) = x, where 0x denotes the zero tangent vector of TxM.
DRx(0x) = idTxM, where idTxM denotes the identity mapping on
TxM.
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Curvilinear search on Riemannian manifold

Curvilinear search updating formula

xk+1 = Rxk (tkηk ).

Rxk is a retraction at xk .

ηk is chosen as descent direction, i.e.,
〈
grad f(xk ), ηk

〉
xk
< 0.

tk as the step size is chosen properly
Non-monotone Armijio rule: Given ρ, δ ∈ (0, 1), find the smallest
integer h satisfying:

f(Rxk (tkηk )) ≤ Ck + ρtk
〈
grad f(xk ), ηk

〉
xk
,

where tk = γkδ
h and γk is the initial step size.

Ck+1 = (ηQk Ck + f(xk+1))/Qk+1, where C0 = f(x0),
Qk+1 = ηQk + 1 and Q0 = 1.
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Specialized Gradient-Type Methods

Wen and Yin: Let Gk = ∇F(Xk ), set H = Xk G>k − Gk X>k and solve

Y = X +
τ

2
H(X + Y)

for Y(τ). Using a step size τ, we update

Xk+1 ← Y(τ) =
(
I −

τ

2
H
)−1 (

I +
τ

2
H
)

Xk .

Jiang and Dai: Given Xk and Dk ∈ TXk ,

W = −(In − Xk X>k )Dk , J(τ) = Ip +
τ2

4
W>W +

τ

2
X>k Dk ,

Y(τ) = (2Xk + τW)J(τ)−1 − Xk .

Gao, Liu, Chen and Yuan: Given Xk and Gk = ∇F(Xk )

V = Xk − τGk , X̄ = (−In + 2V(V>V)†V>)Xk (or projSt(n,p)(V)),

Xk+1 =

X̄ , if X̄>Gk = G>k X̄

− X̄UT>, o.w.
(X̄>G = UΛT>)
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Classical Riemannian trust-region (RTR) method

Absil, Baker, Gallivan: Trust-region methods on Riemannian manifold.
Many other variants

Riemannian trust-region (RTR) method:
min

ξ∈TxkM
mk (ξ) := f(xk ) +

〈
grad f(xk ), ξ

〉
+

1
2

〈
Hess f(xk )[ξ], ξ

〉
,

s.t. ‖ξ‖ ≤ ∆k ,

where grad f(xk ) is the Riemannian gradient and Hess f(xk ) is the
Riemannian Hessian.

Use truncated PCG to solve the subproblem

Direct extension from Euclidean space to manifolds

Many applications: low rank matrix completion, phase retrieval,
eigenvalue computation

Packages: Manopt, Pymanopt
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Regularized Newton Method

Our new adaptively regularized Newton (ARNT) method: min mk (x) :=
〈
∇f(xk ), x − xk

〉
+

1
2

〈
Hk [x − xk ], x − xk

〉
+
σk

2
‖x − xk ‖

2,

s.t. x ∈ M,

where ∇f(xk ) and Hk are the Euclidean gradient Hessian.

Regularized parameter update (trust-region-like strategy):

ratio: ρk =
f(zk )−f(xk )

mk (zk )
.

regularization parameter σk :

σk+1 ∈


(0, σk ) if ρk > η2, ⇒ xk+1 = zk

[σk , γ1σk ] if η1 ≤ ρk ≤ η2, ⇒ xk+1 = zk

(γ1σk , γ2σk ] otherwise. ⇒ xk+1 = xk

where 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2.
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Modified CG for subproblem

Riemannian Gradient method with BB step size.

Stiefel manifold: implicitly preserve the Lagrangian multipliers

Hess mk (xk )[ξ] = Pxk (Hk [ξ] − Usym((xk )∗∇f(xk ))) + τkξ,

Newton system for the subproblem

grad mk (xk ) + Hess mk (xk )[ξ] = 0.

Modified CG method

ξk =

sk + τk dk if dk , 0,

sk if dk = 0,
with τk :=

〈
dk , grad mk (xk )

〉
xk〈

dk ,Hess mk (xk )[dk ]
〉

xk

dk represents and transports the negative curvature information
sk corresponds to the “usual” output of the CG method.
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Existing Riemannian quasi-Newton method

Focus on the whole approximation Bk to Riemannian Hessian

Hess f(Xk ) : TXkM→ TXkM.

Riemannian BFGS method

Bk+1 = B̂k −
B̂k Sk ((B̂k )∗Sk )[

((B̂k )∗Sk )[Sk
+

Yk (Yk )[

(Yk )[Sk
, TXk+1M → TXk+1M

where

B̂k = PXk+1

Xk ◦ Bk ◦ (PXk+1

Xk )−1, change domain and range to TXk+1M

Yk = β−1
k grad f(Xk+1) − PXk+1

Xk grad f(Xk ), difference on TXk+1M

Sk = PXk+1

Xk αkξk , transport to TXk+1M

with the last quasi-Newton direction ξk ∈ TXkM and stepsize αk .

PXk+1

Xk : TXkM→ TXk+1M is to transport the tangent vector from
TXkM to TXk+1M. βk is a scalar (can be 1).
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Adaptive regularized quasi-Newton method

Riemannian Hessian of f on Stiefel manifold:
Hess f(X)[U] = PX (∇2f(X)[U]) − Usym(X>∇f(X))

Keep the term Usym((Xk )>∇f(Xk )) of lower computational cost, and
construct an approximation Bk to expensive part ∇2f(Xk ).

After obtaining Bk , the subproblem is constructed asmin mk (X) :=
〈
∇f(Xk ),X − Xk

〉
+

1
2

〈
Bk [X − Xk ],X − Xk

〉
+
σk

2
‖X − Xk ‖2,

s.t. XT X = Ip .

The Riemannian Hessian of mk (X) at Xk

Hess mk (Xk )[U] = PX (Bk [U]) − Usym((Xk )>∇f(Xk )) + σk U.

The vector transport is not needed since we are working the ambient
Euclidean space.
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Construction of Bk with structured f

Assume the computational cost of He(X) is much more expensive
than that of H(X)

∇2f(X) = H(X) + He(X),

Quasi-Newton approximation:

Bk [Sk ] = Yk

where Sk := Xk − Xk−1 and Yk = ∇f(Xk ) − ∇f(Xk−1).

If we keep Hc(Xk ) and construct

Bk = Hc(Xk ) + Ck ,

then Ck is a quasi-Newton approximation to He(Xk ) with secant
condition

Ck [Sk ] = Yk − Hc(Xk )[Sk ]
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How to choose an initial quasi-Newton approximation?

For a linear operator A of high computational cost, the
limited-memory Nyström approximation3 Â is

Â := Y(Y∗Ω)†Y∗,

where Y = AΩ and Ω is a basis of a well-chosen subspace, e.g.,

orth({Xk ,Xk−1,AXk }), orth({Xk ,Xk−1,Xk−2, . . .}).

The compressed operator Â is of low rank, but consistent with A on
the subspace spanned by Ω.

Given some good approximation Ck
0 of He , the Nytröm approximation

Ĉk
0 can be utilized to further reduce the computational cost.

More effective than the BB-type initialization (αI) in practice.
3Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher, Fixed-rank

approximation of a positive-semidefinite matrix from streaming data, NIPS, 2017, pp.
1225-1234.
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Algorithms for linear eigenvalue problems

Task: Given large sparse A = AT ∈ Rn×n, compute k largest eigenpairs
(qj , λj), j = 1, · · · , k for “large” k � n.

Our Framework:
1 A block method for subspace update (SU)
2 Augmented RR (ARR) projection

2 Block Method Variants for SU:

Multi-power method

Gauss Newton method

Acceleration: replace A by ρ(A)
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Low-Rank Approximation For Eigenpair Computation

Nonlinear Least Squares:

X∗ = argmin
X∈Rn×k

‖XXT − A‖2F.

GN: Large nk × nk normal equations, but with a simple structure

SXTX + XSTX = AX − X(XTX)

Closed-form solution for GN direction
Let X ∈ Rn×k be full rank, and PX = X(XTX)−1XT. Then

S(X) = (I − PX/2)
(
AX(XTX)−1 − X

)
+ XC ,

where CT = −C, satisfies the normal equations. In particular, for C = 0,

S0(X) = (I − PX/2)
(
AX(XTX)−1 − X

)
is a minimum weighted-norm GN direction.
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Modularity Maximization

The modularity (MEJ Newman, M Girvan, 2004) is defined by

Q = 〈A −
1

2λ
ddT ,X〉

where λ = |E |.

The Integral modularity maximization problem:

max 〈A − 1
2λddT ,X〉

s.t. X ∈ {0, 1}n×n is a partiton matrix.

Probably hard to solve.
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A Nonconvex Completely Positive Relaxation

A nonconvex completely positive relaxation of modularity
maximization:

min〈−A +
1

2λ
ddT ,UUT 〉

s.t.U ∈ Rn×k

‖ui‖
2 = 1, ‖ui‖0 ≤ p, i = 1, . . . , n,

U ≥ 0

‖ui‖
2 = 1: helpful in the algorithm.

U ≥ 0: important in theoretical proof.

‖ui‖0 ≤ p: keep the sparsity.
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A Nonconvex Proximal RBR Algorithm

LetUi := {ui ∈ R
k | ui ≥ 0, ‖ui‖2 = 1, ‖ui‖0 ≤ p}. Rewrite:

min
U∈U

f(U) ≡ 〈C ,UUT 〉, U = [u1, u2, . . . , un]T

Proximal BCD reformulation:

ui = argmin
x∈Ui

f(u1, . . . , ui−1, x, ui+1, . . . , un) +
σ

2
‖x − ūi‖

2

Work in blocks:

C =

C11 C1i C1n

Ci1 cii Cin

Cn1 Cni Cnn

 , UUT =

U
T
1 U1 UT

1 x UT
1 Un

xT U1 xT x xT Un

UT
n U1 UT

n x UT
n Un


Note that ‖x‖ = 1. The problem is simplified to

ui = argmin
x∈Ui

bT x,

where bT = 2C i
−iU−i − σūi

T .
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An Asynchronous Proximal RBR Algorithm

Shared
Memory

Core 1

b ′
ūi

Core 2

b ′
ūi

Core 3

b ′
ūi

Core 1
Update

ui , d′U

Core 2
Update

ui , d′U

Core 3
Update

ui , d′U

Sync. when all rows processed

U

A

d′U
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Optimization with nonnegative orthogonality

Problem：
min

X∈Rn×k
f(X) s.t. X>X = Ik , X ≥ 0

f is continuously differentiable, Sn,k
+ B {X ∈ Rn×k : X>X = Ik , X ≥ 0}

Combinatorial property: each row of X has at most one nonzero
(positive) element, ‖X‖0 ≤ n

X =



√
2/2 0 0
√

2/2 0 0
0

√
2/2 0

0
√

2/2 0
0 0 1
0 0 0


Goal: find high quality orthogonal nonnegative martix
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An exact penalty approach

OB
n,k
+ =

{
X ∈ Rn×k : ‖xj‖ = 1, xj ≥ 0, j ∈ [k ]

}
“orth+” problem

min
X∈OBn,k

+

f(X) s.t. ‖XV‖F = 1

where V can be chosen as any V ∈ Rk×r
++ (1 ≤ r ≤ k ) with ‖V‖F = 1

Consider the partial penalty approach as follows:

min
X∈OBn,k

+

f(X) + σ‖XV‖2
F
.

Its global minimizer is also a global minimizer of the original problem.

A second-order approach for solving the above problem
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Convergence analysis of the SCF iteration

Let V := V(ρ) = L†ρ + µxc(ρ)Te and Hamiltonian:

H(V) :=
1
2

L + Vion + Diag(V) = Q(V)Π(V)Q(V)T eigen-decomp

Kohn-Sham equation:

H(V)X(V) = X(V)Λ, X(V)∗X(V) = I

SCF solves a system of nonlinear equations:

V = V(Fφ(V)), Fφ(V) = diag(X(V)X(V)T).

Key: spectral operator Fφ(V) = diag(Q(V)φ(Π(V))Q(V)T)

Suppose λp+1(V) > λp(V). Then the directional derivative:

∂V Fφ(V)[z] = diag
(
Q(V)

(
gφ(Π(V)) ◦

(
Q(V)TDiag (z) Q(V)

))
Q(V)T

)
,

Rigorous convergence analysis is established
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Convergence to global solutions

Add noise to the gradient flow:

dX(t) = −∇MF(X(t))dt + σ(t) ◦ dBM(t),

whereM is the Stiefel manifold, and BM(t)(t) is the Brownian motion
on manifold
One can

Derive and analyzed the extrinsic formulation

Design a numerically efficient SDE solver with strong convergence.

Establish overall global convergence.

Achieve promising numerical results in various problems.

Theorem (Convergence Results of ID)
Assuming that the local algorithm satisfies F(Xk ) ≤ F(X ′k ). Let the global
minimum be F∗, and suppose Xopt to be the optimal solution obtained by
ID. For any given ε > 0 and ζ > 0, ∃σ > 0, T(σ) > 0 and N0 > 0 such that
if σi ≤ σ, Ti > T(σi) and N > N0, P(F(Xopt ) < F∗ + ζ) ≥ 1 − ε.
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Modularity minimization for community detection

The modularity maximization problem X = Φ∗(Φ∗)>:

max 〈A − 1
2λddT ,X〉

s.t. X ∈ {0, 1}n×n is a partiton matrix.

Nonconvex completely positive relaxation:

min
U∈Rn×k

〈−A +
1

2λ
ddT ,UUT 〉

s.t.U ≥ 0, ‖ui‖
2 = 1, ‖ui‖0 ≤ p, i = 1, . . . , n

Theorem (Theoretical Error Bounds)

Define Ga =
∑

i∈C∗a θi ,Ha =
∑k

b=1 BabGb , fi = Haθi , Under the assumption
max1≤a<b≤k

Bab +δ
HaHb

< λ < min1≤a≤k
Baa−δ

H2
a

for some δ > 0. Let U∗ be the

global optimal solution, and define ∆ = U∗(U∗)> − Φ∗(Φ∗)>. Then with

high probability ‖∆‖1,θ ≤
C0
δ

(
1 +

(
max1≤a≤k

Baa
H2

a
‖f‖1

))
(
√

n‖f‖1 + n)
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Analysis on a quartic-quadratic optimization problem

Definition (Model Problem)
Suppose matrix A ∈ Cn×n is Hermitian and β > 0 is a constant. We consider the
following minimization problem.

min
z∈Cn

f(z) :=
1
2

z∗Az +
β

2

n∑
k=1

|zk |
4, s.t. ‖z‖ = 1.

Example: Non-rotating BEC Problem
The ground state of non-rotating Bose-Einstein Condensation (BEC) problem is
usually defined as the minimizer of the following dimensionless energy functional

E(φ) :=

∫
Rd

[
1
2
|∇φ(x)|2 + V(x)|φ(x)|2 +

β

2
|φ(x)|4

]
d x,

where d = 1, 2, 3 is the dimension, V(x) denotes the potential and β ∈ R is the
interaction coefficient. We also need the wave function to be normalized:
‖φ‖L2(Rd ) = 1.
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Landscape of the objective function

The red point marker: saddle points. Local and global minima are
indicated by non-filled and filled diamond markers. The location of local
and global maxima is marked by non-filled and filled squares.
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Diagonal Case

Theorem (An Inequality on Perturbation)

Denote fσ(z) = 1
2 z∗(A + σW)z + β

2‖zk ‖
4
4, where A is a diagonal matrix, W is the

Hermitian noise and σ > 0 is the magnitude of the noise. Suppose
zθ = (r1e iθ1 , . . . , rne iθn )T is a global minimizer of f0(z) and x = (s1e iφ1 , . . . , sne iφn )T

is a stationary point of fσ(z) that satisfies fσ(x) ≤ fσ(zθ). Then we have

‖x − zθ‖4 ≤
3
√

2σ‖W‖4/β ≤
3
√

2σ‖W‖2n1/4/β.

Remark
Further if we have W is a Gaussian random matrix, it has been proved that
‖W‖2 ≤ 3

√
n with probability at least 1 − 2n−5/4 − e−n/2. Then we know with the

same probability
‖x − zθ‖4 ≤

3
√

6σ/β · n1/4.
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Geometric Analysis In Real Case

Theorem
Suppose that the coefficient β satisfies β ≥ 8n

n−1 (1 + γ)ρn3/2 for some given
γ > 0. Then, the function f has the (Cγρ,

γ
√

2
ρ,Cγρ)-strict-saddle property

with Cγ := 4
n−1 (1 + γ)n3/2 − 1.

Three Regions

1. (Strong convexity). R1 = {z ∈ Sn−1 : max1≤k≤n |z2
k − 1/n| ≤ 1/2n}.

2. (Large gradient). R2 = {z ∈ Sn−1 :
max1≤k≤n |z2

k − 1/n| ≥ 1/2n,min1≤k≤n z2
k ≥ 1/12n}.

3. (Negative curvature). R3 = {z ∈ Sn−1 : min1≤k≤n z2
k ≤ 1/12n}.
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Geometric Analysis In Real Case

(a) β = 0.2 (b) β = 3.75

Figure (a): The overlap of the sets R1–R2 and R2–R3 is shown in green.
The set R1 is the union of the yellow and the two surrounding green areas,
while R2 is the union of all green and light blue areas. The region R3 is the
union of the dark blue sets and the enclosing green area. Figure (b): the
(disjoint) yellow, turquoise, and dark blue areas directly correspond to the
sets R1, R2, and R3, respectively. Non-filled and filled diamond markers
are used for local and global minima. Local and global maxima are
marked by non-filled and filled squares.
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Geometric Analysis In Real Case

Corollary

If β > 4ρn2, the problem has at least 2n local minima. Furthermore, if
β > 18n3

n−1 ρ, then the problem has exactly 2n local minima

Theorem

Suppose that β > 18n3

n−1 ρ. Then, it follows

f(y) − min
z∈Sn−1

f(z) ≤
1

18n
·

[
min

z∈Sn−1
f(z) − λn(A)

]
, (4)

for all local minimizer y ∈ Sn−1 where λn(A) denotes the smallest
eigenvalue of the matrix A.
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Geometric Analysis In Real Case

Theorem
Suppose that the gap between the two smallest eigenvalues of the matrix
A satisfies δ := λn−1 − λn > 0 and let γ > 0 be given. If
β ≤ [2( 7

3 + γ) + ( 2
3 + γ)ρδ ]−1δ =: bγ, then f has the

(γβ, γβ, γβ)-strict-saddle property.

Three Regions

1. (strong convexity) R1 = {z|a2
n ≥

3β+ρ
δ+ρ ,

∑
a2

k = 1},

2. (large gradient) R2 = {z|
∑
λ2

k a2
k − (

∑
λk a2

k )2 ≥ 9β2,
∑

a2
k = 1},

3. (negative curvature) R3 = {z|a2
n ≤

δ−5β
δ+ρ ,

∑
a2

k = 1},

where (a1, . . . , an)T are coordinates of vector z under the orthogonal basis
consisting of eigenvectors of matrix A .

Under the condition of the last theorem, the optimization problem has two
equivalent local minima and they are global minima.
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Estimation of the Kurdyka-Łojasiewicz Exponent

Find the largest θ ∈ (0, 1
2 ] such that for all stationary points z, the

Łojasiewicz inequality,

|f(y) − f(z)|1−θ ≤ ηz‖grad f(y)‖, ∀ y ∈ B(z, δz) ∩ CSn−1, (5)

holds with some constants δz, ηz > 0.

Let A = diag(a) ∈ Cn×n, a ∈ Rn, be a diagonal matrix. Then, the
largest KL exponent is at least 1

4 .

Suppose A ∈ Rn×n is a symmetric matrix and z is a stationary point
satisfying

H := A + 2βdiag(|z|2) − 2λI � 0,

where λ = z∗∇zf(z) = 1
2z∗Az + β‖z‖44. Then, the largest KL exponent

of (??) at z is at least 1
4 .
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E-mail: wenzw@pku.edu.cn

Office phone: 86-10-62744125
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