
EXPLOITING FAST ALGORITHMS FOR SOLVING
NETWORKING RESOURCE ALLOCATION PROBLEMS

I. Scenario Description
We start to briefly introduce a network resource allocation problem by adopting some
notations from [1]. We consider a general network model with some interconnected
nodes. There are L uni-directional links indexed by l (l = 1, 2, . . . , L) connecting
the network nodes with link capacity cl (cl ∈ R+,∀l). Define c = (c1, c2, . . . , cL) to
be the link capacity vector of the overall network. The communication network is
used to deliver data flows from source nodes to destination nodes to facilitate end-
to-end data services. Specifically, we consider K flows in the network indexed by k
(k = 1, 2, . . . , K). For each flow k, there is a source-destination pair associated with
it and we assume that there are Pk (Pk ∈ Z+,∀k) available paths for this source-
destination pair indexed by pk (pk = 1, 2, . . . , Pk,∀k). We use the following L× Pk

routing matrix to represent the relationship between the links and the available paths
of flow k:
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where Rk
l,pk
∈ {0, 1}. When Rk

l,pk
= 1, it means that path pk transverses link l for

flow k and vice versa. We define the following L × P matrix (where we denote
P ,

∑K
k=1 Pk) to be the routing matrix of the overall network:

R = (R1,R2, . . . ,RK) (2)

Let xk = (xk,1, xk,2, . . . , xk,Pk
) be the rate allocation and path selection vector of

flow k, where each element xk,p (xk,p ≥ 0, ∀k, p) measures the rate allocation at
path p for flow k. xk,p also gives information about what paths to select for flow k.
Specifically, the path selected by flow k are those paths with xk,pk > 0 for any pk.
Define x = (x1,x2, . . . ,xK) to be the rate allocation and path selection vector of all
flows.

Furthermore, we want the network load to be balanced across links so as to avoid
network congestions and we consider to minimize the maximum (or worst-case) link
utilization ratio to achieve load balancing. We formally formulate the network resource
problem as follows

Problem 1.

min
x

max
l

R[l]x

cl
(3a)

s.t. Rx ≤ c (3b)
‖xk‖1 = dk (3c)
x ≥ 0 (3d)

where R[l] is the l-th row of R, dk > 0 is the bandwidth demand for flow k.

1



The nonlinear term maxl
R[l]x
cl

in the objective can be equivalently transformed to
linear objective and some constraints by introducing an auxiliary variable t. Specifi-
cally, we can replace maxl

R[l]x
cl

with t and add linear constraints R[l]x
cl
≤ t for all l

and t ≥ 0. The constraints ‖xk‖1 = dk and x ≥ 0 implies that 1>xk = dk and x ≥ 0.
Based on the above formulation, we ask three questions to achieve the goal of

efficiently solving it.

II. Q1: Comparison of Various Advanced Approaches
There are several ways to solve the network resource allocation problem. We are
interested in developing algorithms using the following two approaches:
• applying the Dantzig-Wolfe decomposition to the above linear programming

where the restricted master problem therein can solved using the open-source
packages.

• applying the Lagrangian relaxation technique (see also page 12 in the following
link) to solve the above linear programming where the primal problem therein
can solved using the open-source packages.
http://bicmr.pku.edu.cn/∼wenzw/opt2015/lect-dual.pdf

It is suggested to use Coin LP [3] to solve the linear programming problems
therein. After obtaining the two algorithms based on the above two approaches,
we are interested in the implementation of the two algorithms because the actual
performance heavily depends on how to implement the algorithms. Test dataset will
be provided and comparisons of the performance and computation time are required.
Interested students can refer to [4] for more details on similar approaches to solve
multi-commodity flow problems.

III. Q2: Learn to Pivot
It is well-know that the performance of a simplex-based LP implementation depends
on a well-designed pivot rule. There are many heuristics proposed in the past 50
years on how to choose the next neighboring vertex at each iteration and these vary
in accuracy and computational cost.

In [2], the authors use deep value-based reinforcement learning to learn a pivot
strategy that at each iteration chooses between two of the most popular pivot rules –
Dantzig and steepest edge. However, the size of the problem in the experiment section
is too small and the simulation results fail to convince the readers to adopt such an
approach in the advanced LP solvers.

We are interested in the following two tasks in this project:
• implemented the following three pivot rules, the Dantzig rule, the steepest edge

rule, and the AI-based pivot rule based on the framework in [2] and compare
their performance based on the provided test cases.

• the new pivot rule in [2] is constrained in the action space where either Dantzig
or steepest edge selected. The question is whether there is an opportunity to
break this rule and develop a new framework to learn a totally new pivot rule.
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IV. Q3: Learn to Crash
Study and implement the “Crash” technique in [7], and compare its performance with
the default “Crash” in the simplex solver. It is quite interesting to test how well
“Crash” in [7] performs on different data sets.

Study the most-obtuse-angle heuristics in [5], [6]. For a particular variable x in
the standard LP program, implement the algorithm to compute the associated obtuse
angle. Develop an heuristic for “Crash”. Here we provide a simple example with a
two-pass structure:
• Step 1: Compute the obtuse angle ak for each variable xk.
• Step 2: Classify the variables into different categories, and each category is

associated with a pre-determined weight. For variable xk, the weight is denoted
by wk ∈ [0, 1].

• Step 3: Choose the set of variables with largest wkak.
Standard machine learning techniques can be used to train the weights in the above

heuristic based on data sets (various network configurations and associated optimal
solutions). Compare the performance with that of default “Crash” in [5].

V. Q4: Learn to optimize
Study the learn to optimize framework in the following two papers.
• Vishal Monga, Yuelong Li, and Yonina C. Eldar, Algorithm Unrolling: Inter-

pretable, efficient deep learning for signal and image processing
https://ieeexplore.ieee.org/document/9363511

• Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, Wotao Yin, Learning to Optimize: A Primer and A Benchmark,
https://arxiv.org/abs/2103.12828

Tasks:
• Propose a first-order optimization method for Problem 1 and its “learn to opti-

mize” counterpart.
• Implement the above two algorithms and compare their performance.

VI. Dataset
Interested students can refer to the following website for generating problem instances:
http://groups.di.unipi.it/optimize/Data/MMCF.html#LinMMCF
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