
Algorithms for Mixed Integer Linear Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes

1/52

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

2/52

Outline

1 Branch and Bound

2 Bounding

3 Branching

4 Cutting Plane

3/52

Computational Integer Optimization

Computationally, the most important aspects of solving integer
optimization problems are

A method for obtaining good bounds on the value of the optimal
solution (usually by solving a relaxation or dual; and
A method for generating valid disjunctions violated by a given
(infeasible) solution.

In this lecture, we will motivate this fact by introducing the branch
and bound algorithm.

We will then look at various methods of obtaining bounds.

Later, we will examine branch and bound in more detail.

4/52

Integer Optimization and Disjunction

The difficulty arises from the requirement that certain variables
take on integer values.
Such requirements can be described in terms of logical
disjunctions, constraints of the form

x ∈
⋃

1≤i≤k

Xi, Xi ⊆ Rn.

The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.
In fact, the MILP Representability Theorem tells us that any
MILP can be re-formulated as an optimization problem whose
feasible region is

F =
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}

is the disjunctive set F defined above, for some appropriately
chosen polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn.

5/52

Two Conceptual Reformulations

We have two conceptual reformulations of a given integer
optimization problem.
The first is in terms of disjunction:

max

c⊤x | x ∈
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}


The second is in terms of valid inequalities

max{c⊤x | x ∈ conv(S)}

where S is the feasible region.
In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.
Unfortunately, these reformulations are necessarily of
exponential size in general, so there can be no way of generating
them efficiently.

6/52

Valid Disjunctions

In practice, we dynamically generate parts of the reformulations
(CP) and (DIS) in order to obtain a proof of optimality for a
particular instance.

The concept of valid disjunction, arises from a desire to
approximate the feasible region of (DIS).

Definition 1. Let {Xi}k
i=1 be a collection of subset of Rn. Then if

S ⊆ ∪1≤i≤kXi, the disjunction associated with {Xi}k
i=1 is said to be

valid for an MILP with feasible set S.
Definition 2. Let {Xi}k

i=1 is a disjunction valid for S, and Xi is
polyhedral for all i, then we say the disjunction is linear.
Definition 3. Let {Xi}k

i=1 is a disjunction valid for S, and
Xi ∩ Xj = ∅ for all i, j then we say the disjunction is partitive.
Definition 4. Let {Xi}k

i=1 is a disjunction valid for S that is both
linear and partitive, we call it admissible.

7/52

Valid Inequalities

Likewise, we can think of the concept of a valid inequality as
arising from our desire to approximate conv(S) (the feasible
region of (CP)).

The inequality denoted by (π, π0) is called a valid inequality for S
if π⊤x ≤ π0, ∀x ∈ S.

Note (π, π0) is a valid inequality if and only if
S ⊆ {x ∈ Rn | π⊤x ≤ π0}.

8/52

Optimality Conditions

Let us now consider an MILP (A, b, c, p) with feasible set
S = P ∩ (Zp

+ × Rn−p
+), where P is the given formulation.

Further, let {Xi}k
i=1 be a linear disjunction valid for this MILP so

that Xi ∩ P ⊆ Rn is a polyhedral.

Then maxXi∩S c⊤x is an MILP for all i ∈ 1, . . . , k.

For each i, let Pi be a polyhedron such that Xi ∩ S ⊆ Pi ⊆ P ∩ Xi.

In other words, Pi is a valid formulation for subproblem i, possibly
strengthened by additional valid inequalities.

Note that {Pi} is itself a valid linear disjunction.

9/52

Optimality Conditions

From the disjunction on the previous slide, we obtain a relaxation
of a general MILP.

This relaxation yields a practical set of optimality conditions.

In particular,
max

i∈1,··· ,k
max

x∈Pi∩Rn
+

c⊤x ≥ zIP.

If we have x∗ ∈ S such that

max
i∈1,··· ,k

max
x∈Pi∩Rn

+

c⊤x = c⊤x∗

then x∗ must be optimal.

10/52

Branch and Bound

Branch and bound is the most commonly-used algorithm for
solving MILPs. It is a recursive, divide-and-conquer approach.
Suppose S is the feasible set for an MILP and we wish to
compute maxx∈S c⊤x.
Consider a partition of S into subsets S1, · · · ,Sk. Then

max
x∈S

c⊤x = max
1≤i≤k

{max
x∈Si

c⊤x}.

Idea: If we can’t solve the original problem directly, we might be
able to solve the smaller subproblems recursively.
Dividing the original problem into subproblems is called
branching.
Taken to the extreme, this scheme is equivalent to complete
enumeration.

11/52

Branching in Branch and Bound

Branching is achieved by selecting an admissible disjunction
{Xi}k

i=1 and using it to partition S, e.g., Si = S ∩ Xi.
We only consider linear disjunctions so that the subproblem
remain MILPs after branching.
The way this disjunction is selected is called the branching
method and is a topic we will examine in some depth.
Generally speaking, we want x∗ ̸∈ ∪iXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.
A typical disjunction is

X1 = {xj ≥ ⌈x∗j ⌉}
X2 = {xj ≤ ⌊x∗j ⌋}

where x∗ ∈ argmaxx∈Pc⊤x.

12/52

Bounding in Branch and Bound

The bounding problem is a problem solved to obtain a bound on
the optimal solution value of a subproblem maxSi c⊤x.

Typically, the bounding problem is either a relaxation or a dual of
the subproblem.

Solving the bounding problem serves two purposes.
In some cases, the solution x∗ to the relaxation may actually be a
feasible solution, in which case c⊤x∗ is a global lower bound l(S).
Bounding enables us to inexpensively obtain a bound b(Si) on the
optimal solution value of subproblem i.

If b(Si) ≤ l(S), then Si can’t contain a solution strictly better than
the best one found so far.

Thus, we may discard or prune subproblem i.

For the rest of the lecture, assume all variables have finite upper
and lower bounds.

13/52

LP-based Branch and Bound: Initial Subproblem

In LP-based branch and bound, we first solve the LP relaxation
of the original problem. The result is one of the following:

The LP is infeasible⇒ MILP is infeasible.
We obtain a feasible solution for the MILP⇒ optimal solution.
We obtain an optimal solution to the LP that is not feasible for the
MILP⇒ upper bound.

In the first two cases, we are finished.

In the third case, we must branch and recursively solve the
resulting subproblems.

14/52

Branching in LP-based Branch and Bound

In LP-based branch and bound, the most commonly used
disjunctions are the variable disjunctions, imposed as follows:

Select a variable i whose value x̂i is fractional in the LP solution.
Create two subproblems.
In one subproblem, impose the constraint xi ≤ ⌊x̂i⌋.
In the other subproblem, impose the constraint xi ≥ ⌈x̂i⌉.

What does it mean in a 0-1 problem?

15/52

LP-based Branch and Bound Algorithm

To start, derive a lower bound L using a heuristic method.

Put the original problem on the candidate list.

Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound b(S).

If the LP is infeasible⇒ node can be pruned.
Otherwise, if b(S) ≤ L⇒ node can be pruned.
Otherwise, if b(S) > L and the solution is feasible for the MILP⇒
set L← b(S).
Otherwise, branch and add the new subproblem to the candidate
list.

If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.

16/52

Branch and Bound Tree

17/52

The Geometry of Branching

18/52

The Geometry of Branching (cont’d)

19/52

The Geometry of Branching

20/52

Continuing the Algorithm After Branching

After branching, we solve each of the subproblems recursively.
As mentioned earlier, if the optimal solution value to the LP
relaxation is smaller than the current lower bound, we need not
consider the subproblem further. This is the key to the efficiency
of the algorithm.
Terminology

If we picture the subproblems graphically, they form a search tree.
Each subproblem is linked to its parent and eventually to its
children.
Eliminating a problem from further consideration is called pruning.
The act of bounding and then branching is called processing.
A subproblem that has not yet been considered is called a
candidate for processing.
The set of candidates for processing is called the candidate list.

21/52

Ensuring Finite Convergence

For LP-based branch and bound, ensuring convergence requires
a convergent branching method.

Roughly speaking, a convergent branching method is one which
will

produce a violated admissible disjunction whenever the solution to
the bounding problem is infeasible; and
if applied recursively, guarantee that at some finite depth, any
resulting bounding problem will either
- produce a feasible solution (to the original MILP); or
- be proven infeasible; or
- be pruned by bound.

Typically, we achieve this by ensuring that at some finite depth,
the feasible region of the bounding problem contains at most one
feasible solution.

22/52

Algorithmic Choices in Branch and Bound

Although the basic algorithm is straightforward, the efficiency of it
in practice depends strongly on making good algorithmic
choices.

These algorithmic choices are made largely by heuristics that
guide the algorithm.

Basic decisions to be made include
The bounding method(s).
The method of selecting the next candidate to process.

"Best-first" always chooses the candidate with the highest upper
bound.
This rule minimizes the size of the tree (why?).
There may be practical reasons to deviate from this rule.

The method of branching.
Branching wisely is extremely important.
A "poor" branching can slow the algorithm significantly.

23/52

An example solved by Gurobi

24/52

An example solved by Gurobi

25/52

Another example solved by Gurobi

26/52

Outline

1 Branch and Bound

2 Bounding

3 Branching

4 Cutting Plane

27/52

The Efficiency of Branch and Bound

The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

Typically, by spending more time in processing, we can achieve a
reduction in tree size by computing stronger bounds.

This highlights another of the many tradeoffs we must navigate.

Our goal in bounding is to achieve a balance between the
strength of the bound and the efficiency.

How do we compute bounds?
Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.
Duality: Formulate a "dual" problem and find a feasible to it.

In practice, we will use both of these two approaches.

28/52

Relaxation

As usual, we consider the MILP

zIP = max{c⊤x | x ∈ S}

where
P = {x ∈ Rn | Ax ≤ b}
S = P ∩ (Zp

+ × Rn−p
+).

Definition 1. A relaxation of IP is a maximization problem
defined as

zR = max{zR(x)|x ∈ SR}

with the following two properties:

S ⊆ SR

c⊤x ≤ zR(x), ∀x ∈ S

29/52

Importance of Relaxations

The main purpose of a relaxation is to obtain an upper bound on
zIP .
Solving a relaxation is one simple method of bounding in branch
and bound.
The idea is to choose a relaxation that is much easier to solve
than the original problem, but still yields a bound that is "strong
enough."
Note that the relaxation must be solved to optimality to yield a
valid bound.
We consider three types of "formulation-based" relaxations.

LP relaxation
Combinatorial relaxation
Lagrangian relaxation

Relaxations are also used in some other bounding schemes we’ll
look at.

30/52

Obtaining and Using Relaxations

Properties of relaxations
If a relaxation of (MILP) is infeasible, then so is (MILP).
If zR(x) = c⊤x, then for x∗ ∈ argmaxx∈SR

zR(x), if x∗ ∈ S, then x∗ is
optimal for (MILP).

The easiest way to obtain relaxations of IP is to drop some of the
constraints defining the feasible set S.

It is "obvious" how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.

31/52

Lagrangian Relaxation

The idea is again based on relaxing a set of constraints from the
original formulation.
We try to push the solution towards feasibility by penalizing
violation of the dropped constraints.
Suppose our IP is defined by

max c⊤x

s.t. A1x ≤ b1

A2x ≤ b2

x ∈ Zn
+

where optimizing over Q = {x ∈ Zn
+ | A2x ≤ b2} is "easy."

Lagrangian Relaxation:

LR(λ) : ZR(λ) = max
x∈Q
{(c− (A1)⊤λ)⊤x + λ⊤b1)}.

32/52

Properties of the Lagrangian Relaxation

For any λ ≥ 0, LR(λ) is a relaxation of IP (why?).

Solving LR(λ) yields an upper bound on the value of the optimal
solution.

Because of our assumptions, LR(λ) can be solved easily.

Recalling LP duality, one can think of λ as a vector of "dual
variables."

If the solution to the relaxation is integral, it is optimal if the
primal and dual solutions are complementary, as in LP.

33/52

Outline

1 Branch and Bound

2 Bounding

3 Branching

4 Cutting Plane

34/52

Disjunctions and Branching

Recall that branching is generally achieved by selecting an
admissible disjunction {Xi}k

i=1 and using it to partition S, e.g.,
Si = S ∩ Xi.

The way this disjunction is selected is called the branching
method.

Generally speaking, we want x∗ ̸∈ ∪1≤i≤kXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.

35/52

Split Disjunctions

The most easily handled disjunctions are those based on
dividing the feasible region using a given hyperplane.
In such cases, each term of the disjunction can be imposed by
addition of a single inequality.
A hyperplane defined by a vector π ∈ Rn is said to be integer if
πi ∈ Z for 0 ≤ i ≤ p and πi = 0 for p + 1 ≤ i ≤ n.
Note that if π is integer, then we have π⊤x ∈ Z whenever
x ∈ Zp × Rn−p.
Then the disjunction defined by

X1 = {x ∈ Rn | π⊤x ≤ π0},X2 = {x ∈ Rn | π⊤x ≥ π0 + 1},

is valid when π0 ∈ Z.
This is known as a split disjunction.

36/52

Variable Disjunctions

The simplest split disjunction is to take π = ei for 0 ≤ i ≤ p,
where ei is the ith unit vector.
If we branch using such a disjunction, we simply say we are
branching on xi.
For such a branching disjunction to be admissible, we should
have π0 < x∗i < π0 + 1.
In the special case of a 0-1 IP, this dichotomy reduces to

xj = 0 OR xj = 1

In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.
This is is the most common method of branching and is easily
handled implicitly in most cases.
What are the benefits of such a scheme?

37/52

The Geometry of Branching

38/52

The Geometry of Branching (Variable Disjunction)

39/52

The Geometry of Branching (Variable Disjunction)

40/52

The Geometry of Branching (General Split Disjunction)

41/52

The Geometry of Branching (General Split Disjunction)

42/52

Outline

1 Branch and Bound

2 Bounding

3 Branching

4 Cutting Plane

43/52

Describing conv(S)

We have seen that, in theory, conv(S) is a polyhedron and has a
finite description.

If we "simply" construct that description, we could turn our MILP
into an LP.

So why aren’t IPs easy to solve?
The size of the description is generally HUGE!
The number of facets of the TSP polytope for an instance with 120
nodes is more than 10100 times the number of atoms in the
universe.
It is physically impossible to write down a description of this
polytope.
Not only that, but it is very difficult in general to generate these
facets (this problem is not polynomially solvable in general).

44/52

Cutting Planes

Recall that the inequality denoted by (π, π0) is valid for a
polyhedron P if π⊤x ≤ π0,∀x ∈ P.
The term cutting plane usually refers to an inequality valid for
conv(S), but which is violated by the solution obtained by solving
the (current) LP relaxation.
Cutting plane methods attempt to improve the bound produced
by the LP relaxation by iteratively adding cutting planes to the
initial LP relaxation.
Adding such inequalities to the LP relaxation may improve the
bound (this is not a guarantee).
Note that when π and π0 are integer, then π, π0 is a split
disjunction for which X2 = ∅.

45/52

The Separation Problem

The problem of generating a cutting plane can be stated as:
Separation Problem: Given a polyhedron Q ∈ Rn and x∗ ∈ Rn

determine whether x∗ ∈ Q and if not, determine (π, π0), a valid
inequality for Q such that π⊤x∗ > π0.

This problem is stated here independent of any solution
algorithm.

However, it is typically used as a subroutine inside an iterative
method for improving the LP relaxation.

In such a case, x∗ is the solution to the LP relaxation (of the
current formulation, including previously generated cuts).

We will see later that the difficulty of solving this problem exactly
is strongly tied to the difficulty of the optimization problem itself.

46/52

Generic Cutting Plane Method

Let P = {x ∈ Rn | Ax ≤ b} be the initial formulation for

max{c⊤x | x ∈ S}, S = P ∩ Zp
+ × Rn−p

+ .

Algorithm 1: Cutting plane method
1 P0 ← P, k← 0.
2 while TRUE do
3 Solve the LP relaxation max{c⊤x|x ∈ Pk} to obtain solution xk.
4 Solve the problem of separating xk from conv(S).
5 if xk ∈ conv(S) then STOP;
6 else Get an inequality (πk, πk

0) valid for conv(S) but
(πk)⊤xk > πk

0 ;
7 Pk+1 ← Pk ∩ {x ∈ Rn | (πk)⊤x ≤ πk

0}.
8 k← k + 1.

47/52

Generating Valid Inequalities for conv(S)

Consider the MILP

zIP = max c⊤x, s.t. x ∈ S,

where P = {x ∈ Rn | Ax ≤ b} and S = P ∩ (Zp
+ × Rn−p

+)

All inequalities valid for P are also valid for conv(S), but they are
not cutting planes.

We need the following simple principle: if a ≤ b and a is an
integer, then a ≤ ⌊b⌋.

This simple fact is all we need to generate all valid inequalities
for conv(S)!

Example: suppose that 2x1 + x2 ≤ 3/2 is valid for P, then
2x1 + x2 ≤ 1 is also valid for conv(S).

48/52

Chvátal Inequalities

split A = [AI,AC] according to integer and continuous variables

Suppose we can find a u ∈ Rm
+ such that π = A⊤u is integer

(A⊤
I u ∈ Zp and A⊤

C u = 0) and π0 = u⊤b ̸∈ Z.

In this case, we have π⊤x ∈ Z for all x ∈ S, and so π⊤x ≤ ⌊π0⌋ for
all x ∈ S.

In other words, (π, ⌊π0⌋) is both a valid inequality and a split
disjunction

{x ∈ P | π⊤x ≥ ⌊π0⌋+ 1} = ∅

Such an inequality is called a Chvátal inequality

Note that we have not used the non-negativity constraints in
deriving this inequality

49/52

Chvátal-Gomory Inequalities

Assume that P ⊂ Rn
+ and let u ∈ Rn

+ be such that A⊤
C u ≥ 0

Since the variables are nonnegative, we have u⊤ACxC ≥ 0 and

p∑
i=1

(u⊤Ai)xi ≤ u⊤b, ∀x ∈ P

Again, because the variables are nonnegative, we have

p∑
i=1

⌊u⊤Ai⌋xi ≤ u⊤b, ∀x ∈ P

Finally, we have:

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋, ∀x ∈ S

This is the Chvátal-Gomory inequality

50/52

Chvátal-Gomory Inequalities: another derivation

We explicitly add the non-negativity constraints to the formulation
along the other constraints with associated multipliers v ∈ Rn

+

We cannot round the coefficients to make them integral, so we
require π integral

πi = u⊤Ai − vi ∈ Z for 1 ≤ i ≤ p

πi = u⊤Ai − vi = 0 for p + 1 ≤ i ≤ n

vi will be non-negative as as long as we have

vi ≥ u⊤Ai − ⌊u⊤Ai⌋, for 0 ≤ i ≤ p,

vi = u⊤Ai ≥ 0, for p + 1 ≤ i ≤ n.

Taking vi = u⊤Ai − ⌊uAi⌋ for 1 ≤ i ≤ p, we obtain
p∑

i=1

πixi =

p∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ = π0

is a C-G inequality for all u ∈ Rm
+ such that A⊤

C u ≥ 0

51/52

The Chvátal-Gomory Procedure

1 Choose a weight vector u ∈ Rm
+ such that A⊤

C u ≥ 0.
2 Obtain the valid inequality

∑p
i=1(u

⊤Ai)xi ≤ u⊤b.
3 Round the coefficients down to obtain

∑p
i=1⌊u⊤Ai⌋xi ≤ u⊤b.

4 Finally, round the right hand side down to obtain the valid
inequality

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋

This procedure is called the Chvátal-Gomory rounding
procedure, or simply the C-G procedure.

Surprisingly, for pure ILPs (p = n), any inequality valid for
conv(S) can be produced by a finite number of iterations of this
procedure!

This is not true for the general mixed case.

52/52

Gomory Inequalities

Consider the set of solutions to a pure ILP with one equation:

T =

x ∈ Zn
+ |

n∑
j=1

ajxj = a0


For each j, let fj = aj − ⌊aj⌋. Then equivalently

T =

x ∈ Zn
+ |

n∑
j=1

fjxj = f0 + ⌊a0⌋ −
n∑

j=1

⌊aj⌋xj


Since

∑n
j=1 fjxj ≥ 0 and f0 < 1, then ⌊a0⌋ −

∑n
j=1⌊aj⌋xj ≥ 0 and so

n∑
j=1

fjxj ≥ f0

is a valid inequality for S called a Gomory inequality.

	Branch and Bound
	Bounding
	Branching
	Cutting Plane

