Discrete Optimization: Modelling

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes

1/5892

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Outline

e Introduction to Integer Programming

2/52

Mixed Integer Linear Programming

@ Consider linear programming with additionally constraints
X=7 xR".
@ The general form of such a mathematical optimization problem is
zp = max{c x| Ax < b,x € Z, x R "},
where forA € Q™" b € Q™,c € Q".

@ This type of optimization problem is called a mixed integer linear
programming (MILP) problem.

@ If p = n, then we have a pure integer linear optimization problem.

@ Special case: the integer variables are binary, i.e., 0 or 1.

3/52

The Geometry of Integer Programming

@ Let’s consider an integer linear program

max c'x
st Ax<b
n
xe

@ The feasible region is the integer points inside a polyhedron.

— Polyhedron P

- Convex Hull of Integer Points

7
6
5
4
3
2
1
0
1

@ Why does solving the LP relaxation not necessarily yield a good

ion?
solution’ w52

How Hard is Integer Programming?

@ Solving general integer programs can be much more difficult
than solving linear programs.

@ There in no known polynomial-time algorithm for solving general
MIPs.

@ Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

@ In general, solving the LP relaxation, an LP obtained by dropping
the integerality restrictions, does not tell us much.

e Rounding to a feasible integer solution may be difficult.

e The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.

e Rounding may result in a solution far from optimal.

e We can bound the difference between the optimal solution to the
LP and the optimal solution to the MIP (how?).

5/52

How Hard is Integer Programming?

Consider the integer
program

max 50x; + 32x,,

s.t. 50x; + 31xy <250,
3x) — 2xp > —4,
x1,x > 0 and integer.

The linear programming
solution (376\193,950\193)
is a long way from the
optimal integer solution
(5,0).

6/52

The shortest path problem

@ Consider a network G = (N, A) with cost ¢;; on each edge
(i,j) € A. There is an origin node s and a destination node t.

@ Standard notation: n = |[N|, m = |A|
@ cost of of a path: c¢(P) = >_(; cp cij

@ What is the shortest path from s to t?

7/52

The shortest path problem

min E CijXij

(i)eA

st Y xy=1
j
inj—Zxﬁzo, for eachi #sor¢

J J
_E X = —1
i

x;; € {0, 1} for all (i, /)

8/52

Conjunction versus Disjunction

@ A more general mathematical view that ties integer programming
to logic is to think of integer variables as expressing disjunction.

@ The constraints of a standard mathematical program are
conjunctive.
@ All constraints must be satisfied.

g1(x) < b; AND gy(x) < b; AND --- AND g, (x) < by,

e This corresponds to intersection of the regions associated with
each constraint.

@ Integer variables introduce the possibility to model disjunction.
o At least one constraint must be satisfied.

gl(x) S bl OR gg(x) S b] OR et OR gm(x) S bm

e This corresponds to union of the regions associated with each

constraint. 952

Representability Theorem

The connection between integer programming and disjunction is
captured most elegantly by the following theorem.

A set F C R" is MIP representable if and only if there exist rational
polytopes Py, - -- , P, and vectors r',--- ¥ € 7" such that

n
JF = UPl- + intcone{r!,--- ,r'}.
i=1

where intcone{r',--- '} = {37 Niri | A\ € Z!, }

Roughly speaking, we are optimizing over a union of polyhedra,
which can be obtained simply by introducing a disjunctive logical
operator to the language of linear programming.

10/52

Outline

e Integer Programming Modeling and Formulation

11/52

Modeling with Integer Variables

@ From a practical standpoint, why do we need integer variables?
@ Integer variable essentially allow us to introduce disjunctive logic.

@ If the variable is associated with a physical entity that is
indivisible, then the value must be integer.

@ Atits heart, integrality is a kind of disjunctive constraint.

@ 0-1 (binary) variables are often used to model more abstract
kinds of disjunctions (non-numerical).

Modeling yes/no decisions.

Enforcing logical conditions.

Modeling fixed costs.

Modeling piecewise linear functions.

12/52

Modeling Binary Choice

@ We use binary variables to model yes/no decisions.

@ Example: Integer knapsack problem
e We are given a set of items with associated values and weights.
o We wish to select a subset of maximum value such that the total
weight is less than a constant K.
o We associate a 0-1 variable with each item indicating whether it is

selected or not.
m
max Z Cij
j=1

m
j=1

x e {0,1}"

13/52

Modeling Dependent Decisions

@ We can also use binary variables to enforce the condition that a
certain action can only be taken if some other action is also
taken.

@ Suppose x and y are binary variables representing whether or
not to take certain actions.

@ The constraint x < y says "only take action x if action y is also
taken"

14/52

MIP reformulation of ¢y-minimization

@ Big-M assumption: Vi, |x;| <M

min f(x) st |xljo <k || <M

@ MIP formulation:

n
min f(x) st Y i <k |ul < Myy; € {0,1}
i=1

15/52

Example: Facility Location Problem

@ We are given n potential facility locations and m customers.
@ There is a fixed cost ¢; of opening facility ;.
@ There is a cost d;; associated with serving customer i from facility

]
@ We have two sets of binary variables.
e y; is 1 if facility j is opened, 0 otherwise.
@ x; is 1 if customer i is served by facility j, 0 otherwise.

@ Here is one formulation:

n m n
min Y eyt Y Y dig

j=1 i=1 j=1

n
s.t. ZX,:/' =1 Vi
=1

m
> xy < my; vj
i=1

xij,yi € {0, 1} Vi, j

16/52

Selecting from a Set

@ We can use constraints of the form .., x; > 1 to represent that
at least one item should be chosen from a set 7.

@ Similarly, we can also model that at most one or exactly one item
should be chosen.

@ Example: Set covering problem
@ A set covering problem is any problem of the form.

min {c'x|Ax > 1,x € {0,1}}

where A is a 0-1 matrix.

Each row of A represents an item from a set S.
Each column A; represents a subset S; of the items.
Each variable x; represents selecting subset ;.

In other words, each item must appear in at least one selected
subset.

17/52

Modeling Disjunctive Constraints

@ We are given two constraints a'x > b and ¢ "x > d with
nonnegative coefficients.

@ Instead of insisting both constraints be satisfied, we want at least
one of the two constraints to be satisfied.

@ To model this, we define a binary variable y and impose

a'x > yb,
x> (1—-y)d,
y € {0, 1},

@ More generally, we can impose that at least k out of m constraints
be satisfied with

18/52

Modeling Disjunctive Constraints (cont’d)

@ Consider the disjunctive constraints a"x > b and ¢'x > d where
the coefficients are allowed to be negative.

@ To model this, we use the Big-M Reformulation. we define a
binary variable y and impose

a'x>b — My,
c'x>d—M(1-y),
y €40, 1}.

where M is a sufficiently large positive number.

19/52

Modeling a Restricted Set of Values

@ We may want variable x to only take on values in the set
{ar, -+ am}.

@ We introduce m binary variables y;, j = 1,--- ,m and the

constraints .
x=) ay,
j=1

20/52

Fixed-charge Problems

@ In many instances, there is a fixed cost and a variable cost
associated with a particular decision.

@ Example: Fixed-charge Network Flow Problem
e We are given a directed graph G = (N, A).
e There is a fixed cost ¢; associated with "opening” arc (i,;) (think of
this as the cost to "build" the link).
e There is also a variable cost d; associated with each unit of flow
along arc (i,j).
e Consider an instance with a single supply node.
@ Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).
@ Minimizing the variable cost by itself is a minimum cost network flow
problem (easy).
@ We want to minimize the sum of these two costs (difficult).

21/52

Modeling the Fixed-charge Network Flow Problem

@ To model the FCNFP, we associate two variables with each arc.

e x; (fixed-charge variable) indicates whether arc (i,) is open.
e f; (flow variable) represents the flow on arc (i,).
o Note that we have to ensure that f;; > 0 = x; = 1.

min E CcijXij + d,}f,]

(ij)eA

st. D fi— > fi=b, VieEN
Jjeo(i) JEI(i)
fi < Cxy, V(i,j) € A
fi >0, Y(i,j) € A

Xij € {Oa 1}7 V(l,]) €A

22/52

Alternative Formulations

@ A key concept in the rest of the course will be that every
mathematical model has many alternative formulations.

@ Many of the key methodologies in integer programming are
essentially automatic methods of reformulating a given model.

@ The goal of the reformulation is to make the model easier to
solve.

23/52

Simple Example: Knapsack Problem

@ We are givenaset N = {1,--- ,n} of items and a capacity K.
@ There is a profit ¢; and a size w; associated with each item i € N.

@ We want to choose the set of items that maximizes profit subject
to the constraint that their total size does not exceed the capacity.

@ The most straightforward formulation is to introduce a binary
variable x; associated with each item.

@ x; takes value 1 if item i is chosen and 0 otherwise.
@ Then the formulation is

n
min E ijj'
J=1

n
s.t. ijxj <K,
J=1

X; € {O,]}, Vi

24/52

An Alternative Formulation

@ Letuscallaset C C Nacoveris) ,.-w; > K.
@ Further, a cover C is minimal if Ziec\{j} w; < K forallj e C.

@ Then we claim that the following is also a valid formulation of the
original problem.

n

max E CjXxj,

j=1

st. Y x<|C|—1, forall minimal covers C
jec
X; € {0, 1}, ieN

@ Which formulation is "better"?

25/52

Back to the Facility Location Problem

@ Here is another formulation for the same problem:

Z ciyj + Z Z djjx;j

i=1 j=l1

s.t. le:]‘ =1, Vi,
j=1

Xii < yj, Vi, j,
xij,yj € {0, 1}, Vi, j.

@ Notice that the set of integer solutions contained in each of the
polyhedra is the same (why?).

@ However, the second polyhedron is strictly included in the first
one (how do we prove this?).

@ Therefore, the second polyhedron will yield a better lower bound.

@ The second polyhedron is a better approximation to the convex

hull of integer solutions.
26/52

Formulation Strength and Ideal Formulations

@ Consider two formulations A and B for the same ILP.

@ Denote the feasible regions corresponding to their LP relaxations
as P4 and Ps.

@ Formulation A is said to be at least as strong as formulation B if
Py € Pp
@ If the inclusion is strict, then A is stronger than B.

@ If S is the set of all feasible integer solutions for the ILP, then we
must have conv(S) C P4 (why?).

@ Aisideal if conv(S) = Py.
@ If we know an ideal formulation, we can solve the IP (why?).

@ How do our formulations of the knapsack problem compare by
this measure?

27/52

Strengthening Formulations

@ Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

@ Example: given a graph G = (V, E), a perfect matching in G is a
subset M of edge set E, such that every vertex in V is adjacent to
exactly one edge in M.

o We are given a set of n people that need to paired in teams of two.

o Let ¢; represent the "cost" of the team formed by person i and
person j.

e The nodes represent the people and the edges represent pairings.

o We have x, = 1 if the endpoints of ¢ are matched, x, =0

otherwise.
min Z CeXe
e={ij}€E
st. Y oxi=1, Vie N
{il{ij}eE}

x. € {0, 1}, Ve ={i,j} €E

28/52

Valid Inequalities for Matching

@ Consider the graph on the left above.

@ The optimal perfect matching has value L + 2.

@ The optimal solution to the LP relaxation has value 3.
@ This formulation can be extremely weak.

@ Add the valid inequality xp4 + x35 > 1.

@ Every perfect matching satisfies this inequality.

29/52

The Odd Set Inequalities

@ We can generalize the inequality from the last slide.
@ Consider the cut S corresponding to any odd set of nodes.

@ The cutset corresponding to S is

o(8) = {{ijt € Eli € 5,j & S}

@ An odd cutset is any §(S) for which the |S| is odd.

@ Note that every perfect matching contains at least one edge from
every odd cutset.

@ Hence, each odd cutset induces a possible valid inequality.

> x> 1,5 CN,|S| odd.
e€d(S)

30/52

Using the New Formulation

@ If we add all of the odd set inequalities, the new formulation is
ideal.

@ Hence, we can solve this LP and get a solution to the IP.

@ However, the number of inequalities is exponential in size, so this
is not really practical.

@ Recall that only a small number of these inequalities will be
active at the optimal solution.

@ Later, we will see how we can efficiently generate these
inequalities on the fly to solve the IP

31/52

Contrast with Linear Programming

@ In linear programming, the same problem can also have multiple
formulations.

@ In LP, however, conventional wisdom is that bigger formulations
take longer to solve.

@ In IP, this conventional wisdom does not hold.
@ We have already seen two examples where it is not valid.

@ Generally speaking, the size of the formulation does not
determine how difficult the IP is.

32/52

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L U R, and weights w;; on
edges (i,j), find a maximum weight matching.

@ Matching: a set of edges covering each node at most once
@ Let n=|N| and m = |A|.

@ Equivalent to maximum weight / minimum cost perfect matching.

33/52

The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max E WiiXij
i

st. > x<LViel
j

Y x<1YjER
i

xij € {Oa 1},V(l,_]) €A

@ x; = 1 indicate that we include edge (i, j) in the matching

@ IP: non-convex feasible set

34/52

The Max-Weight Bipartite Matching

Integer program (IP) LP relaxation
max z WiiXij max Z WijXij
ij ij
st. > x<LViel st. > x<LViel
j J
S <1LYjieRr Y x<1VjeR
i i
xj € {0,1},Y(i,j) € A xj > 0,Y(i,j) €A

@ Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

@ This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

@ Solving LP is equivalent to solving the combinatorial problem

35/52

Primal-Dual Interpretation

Primal LP relaxation

max Z WijXij Dual
ij

st Y m<Lviel win zl:y"

J s.t.y; +y; > Wl]7v<l7.]) €A

D ox<LYVjeR y>0
l_ >
Xij > O,V(l,J) €A

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge isin S

@ From strong duality theorem, we know P}, = Djp

36/52

Primal-Dual Interpretation

Suppose edge weights w;; = 1, then binary solutions to the dual are
node covers.

Dual Dual Integer Program
min Z)’i min Zyi
i i
s.t. yi—i-ijl,V(i,j)GA S.t. yi—i-ijl,V(i,j)EA
y=0 ye{0,1}

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge isin S

@ From strong duality theorem, we know P;, = Djp
@ Consider IP formulation of the dual, then

Pip < Prp = Dip < Dip

37/52

Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant O, +1 or -1.

Theorem: If A € R™*" ig totally unimodular, and b is an integer vector,
then {x : Ax < b;x > 0} has integer vertices.

@ Non-zero entries of vertex x are solution of A’x’ = ' for some
nonsignular square submatrix A’ and corresponding sub-vector 4’

@ Cramer’s rule:
det (Al |)
Xi=————
! det A’

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.

38/52

The Minimum weight vertex cover

@ undirected graph G = (N, A) with node weights w; > 0

@ A vertex cover is a set of nodes S such that each edge has at
least one end in S

@ The weight of a vertex cover is sum of all weights of nodes in the

cover
@ Find the vertex cover with minimum weight
Integer Program LP Relaxation
min Z Wiy min Z Wii
i i
stoyi+y >1,9(,j) €A styi+y >1,9(,j) €A

y€{0,1} y=0

39/52

LP Relaxation for the Minimum weight vertex cover

@ In the LP relaxation, we do not need y < 1, since the optimal
solution y* of the LP does not change if y < 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y} is strictly larger than one. Then, let y’ be a
vector which is same as y* except for y; = 1 < yf. This)’ satisfies
all the constraints, and the objective function is smaller.

@ The solution of the relaxed LP may not be integer, i.e., 0 < yf < 1

@ rounding technique:

. 0, ify; <05
‘ L, ifyr >05

)

@ The rounded solution y’ is feasible to the original problem

40/52

LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

@ Note that y/ = min([2y/], 1)

@ Let P}, be the optimal solution for IP, and P;, be the optimal
solution for the LP relaxation

@ Since any feasible solution for IP is also feasible in LP, P}, < Pjp

@ The rounded solution y’ satisfy

Sy = S min((23), Dws < 3 250w = 2P;, < 2P}

41/52

Outline

Q Constraint Programming (CP)

42/52

Difference with mathematical programming

Problem:

@ Solving combinatorial optimization problems (Decision

Optimization)

Modeling:

@ Declarative modeling paradigm

@ Logical constraints & global constraints

@ Integer, interval & boolean variables (maybe double variables)
Solving:

@ Constructive search & domain reduction (propagation)

@ Based on computer science (logic programming, graph theory,

)

Solution:
@ Feasible solution & optimal solution

43/52

A simple example: n-Queen Problem

The classic queens problem: placing n queens on an nxn
checkerboard so that no two queens can attack each other, i.e., no
two queens are on the same row, column, or diagonals.

DOcplex for n-Queen problem
Integer variable params: # Create model
. md| = CpoModel()
@ N: number of variables

Create column index of each queen

@ 0: minimum value x = mdl.integer_var_list (N, 0, N -1, "X")
@ N-1: maximum value
One queen per row
@ "X": name prefix mdl.add(mdl. all_diff (x))
constraints: # One queen per diagonal xi — xj = i — j

o all_diff: x; # x;,Vi £ mdl.add(mdl. all_diff (x[i] + i for i in range(N)))
One queen per diagonal xi — xj = j — i
mdl.add(mdl. all_diff (x[i] — i for i in range(N)))

44/52

High-level constraints: Global constraints

Global constraint captures complex relationships among multiple
variables in a concise and efficient way.

alldifferent

@ All variables in a
set take distinct
values

@ Assignment
problems

@ alldifferent([x, v,

z])
@ XA VXA, YVFZ

table

@ Tuple of variables
takes values from
predefined set

e table([x, y, z], [(1,

2,3),(4,5,06)])
@ (x,y,2)=(1,2,3)
or (4,5, 6)

circuit

@ Sequence of
variables forms a
Hamitonian cycle

@ Routing problems

@ circuit(x)

@ x=[0, 1, 3, 2, 0]
means 0— > 1— >
3—>2—>0

45/52

Arithmetic expressions and constraints

CP Optimizer supports integer variables and is possible to contain
float-point expressions in constraints or objective function.

°
@ operator +, -, ¥,/ StandardDeviation @ ==
@ Sum @ Min o =
o Diff @ Max 0 <
@ ScalProd @ Count o>
@ Div @ CountDifferent 0 <=
@ Modulo(%) @ Abs o >=

@ Element

46/52

Diff and Element

Diff & operator-

Automatic linearization by slack
variables

Element: y=array[Xx]

lloNumExpr e1 =x » y;
lloNumExpr e2 =z / w;
lloNumExpr diff = lloDiff (e1, e2);
model.add(diff == 0);

/I Create the model
lloModel model(env);

/I Define an array
lloIntArray array(env, 4);

array[0] = 10;
array[1] = 20;
array[2] = 30;
array [3] = 40;

/I Define variables
lloIntVar x(env, 0, 3, "x");
lloIntVar y(env, 0, 100, "y");

/I Add the element constraint
model.add(y == lloElement(array, x));

47/52

Logical and compatibility constraints

IfThen
model.add(llolfThen(x >= 5, y <= 3));

&& /I Nested structure
|| model.add(llolfThen(x >= 5, llolfThen(y <=3, z ==0)));

Not /I Combined with global constraints
model.add(llolfThen(x !=y, lloAlDiff (env, x, y, z)));
IfThen

AllowedAssignments

AllowedAssignments

. . lloIntTupleSet allowed(env);
ForbiddenAssignmentsaliowed.add(lloIntArray (env, 2, 1, 2)):

allowed.add(lloIntArray (env, 2, 2, 3));

model.add(lloAllowedAssignments(vars, allowed));

48/52

Special constraints on integer variables

Theoretically, these special constraints can be written from arithmetic
constraints and expressions, but they can also be designed and
implemented to reduce domains efficiently during a search.

@ AlIDiff

@ AllMinDistance
@ Pack

@ Inverse

@ Lexicographic
@ Distribute

Pack

lloIntVarArray bin(env, 3, 0, 1); // 3 items, 2 bins
lloIntArray size(env, 3); // Size of each item

size[0] = 2;
size[1] = G;
size[2] = 4;

lloIntVarArray load(env, 2, 0, 5); // Max capacity is 5

model.add(lloPack(bin, size, load));

49/52

Interval variables

Interval variables

Static
@ StartOf
@ EndOf
@ LengthOf
@ SizeOf
Dynamic
@ StartEval
@ EndEval
@ LengthEval
@ SizeEval

StartOf

lloIntervalVar task(env, 10); // Task with duration 10
llolntExpr start = lloStartOf (task); // Static start time
model.add(start >= 5); // Task must start after time 5

StartEval

llointervalVar task(env, 10);
lloIntVar condition(env, 0, 1); // 0 or 1

/I Dynamic start time: if condition=1, start time increases by 5
lloIntExpr dynamicStart = lloStartEval(task) + condition « 5;

/I Constraint depends on runtime value of ‘condition*
model.add(dynamicStart <= 20);

50/52

Special constraints on interval variables

Forbidden constraints

e + + ©

ForbidStart
ForbidEnd
ForbidExtent

Precedence
constraints

End/Start
Before/At
End/Start

e.g.
EndBeforeStart

Groups of interval

variables Sequence constraints
@ PresenceOf @ First
@ Isomorphism @ Last
@ Span @ Before
@ Alternative @ Prev

@ Synchronize

51/52

Special constraints on interval variables

* CumulFunctionExpr
- AlwaysIn/AlwaysEqual

_ AlwaysConstant Resource usage constraints

llointervalVar taski(env, 10, "Task1");
- AIwaysNoState llointervalVar task2(env, 5, "Task2");
) Operator<:’ >= lloCumulFunctionExpr resourceUsage(env);
resourceUsage += lloPulse(task1, 2);

@ Pulse resourceUsage += lloPulse(task2, 1);

) Step resourceUsage += lloStep(5, 3);
resourceUsage += lloStepAtStart(task1, 1);

@ StepAtStart resourceUsage += lloStepAtEnd(task2, —1);

@ StepAtEnd model.add(resourceUsage <= 5);

@ HeightAtStart
@ HeightAtEnd

52/52

	Introduction to Integer Programming
	Integer Programming Modeling and Formulation
	Constraint Programming (CP)

