
Discrete Optimization: Modelling

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes

1/52

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

2/52

Outline

1 Introduction to Integer Programming

2 Integer Programming Modeling and Formulation

3 Constraint Programming (CP)

3/52

Mixed Integer Linear Programming

Consider linear programming with additionally constraints

X = Zp
+ × Rn−p

+ .

The general form of such a mathematical optimization problem is

zIP = max{c⊤x | Ax ≤ b, x ∈ Zp
+ × Rn−p

+ },

where for A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

This type of optimization problem is called a mixed integer linear
programming (MILP) problem.

If p = n, then we have a pure integer linear optimization problem.

Special case: the integer variables are binary, i.e., 0 or 1.

4/52

The Geometry of Integer Programming

Let’s consider an integer linear program

max c⊤x

s.t. Ax ≤ b

x ∈ Zn
+

The feasible region is the integer points inside a polyhedron.

Why does solving the LP relaxation not necessarily yield a good
solution?

5/52

How Hard is Integer Programming?

Solving general integer programs can be much more difficult
than solving linear programs.

There in no known polynomial-time algorithm for solving general
MIPs.

Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

In general, solving the LP relaxation, an LP obtained by dropping
the integerality restrictions, does not tell us much.

Rounding to a feasible integer solution may be difficult.
The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.
Rounding may result in a solution far from optimal.
We can bound the difference between the optimal solution to the
LP and the optimal solution to the MIP (how?).

6/52

How Hard is Integer Programming?

Consider the integer
program

max 50x1 + 32x2,

s.t. 50x1 + 31x2 ≤ 250,

3x1 − 2x2 ≥ −4,

x1, x2 ≥ 0 and integer.

The linear programming
solution (376\193, 950\193)
is a long way from the
optimal integer solution
(5, 0).

7/52

The shortest path problem

Consider a network G = (N, A) with cost cij on each edge
(i, j) ∈ A. There is an origin node s and a destination node t.

Standard notation: n = |N|, m = |A|

cost of of a path: c(P) =
∑

(i,j)∈P cij

What is the shortest path from s to t?

8/52

The shortest path problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j

xsj = 1

∑
j

xij −
∑

j

xji = 0, for each i ̸= s or t

−
∑

i

xit = −1

xij ∈ {0, 1} for all (i, j)

9/52

Conjunction versus Disjunction

A more general mathematical view that ties integer programming
to logic is to think of integer variables as expressing disjunction.

The constraints of a standard mathematical program are
conjunctive.

All constraints must be satisfied.

g1(x) ≤ b1 AND g2(x) ≤ b1 AND · · · AND gm(x) ≤ bm

This corresponds to intersection of the regions associated with
each constraint.

Integer variables introduce the possibility to model disjunction.
At least one constraint must be satisfied.

g1(x) ≤ b1 OR g2(x) ≤ b1 OR · · · OR gm(x) ≤ bm

This corresponds to union of the regions associated with each
constraint.

10/52

Representability Theorem

The connection between integer programming and disjunction is
captured most elegantly by the following theorem.

Theorem
A set F ⊆ Rn is MIP representable if and only if there exist rational
polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn such that

F =

n⋃
i=1

Pi + intcone{r1, · · · , rt}.

where intcone{r1, · · · , rt} =
{∑t

i=1 λiri | λ ∈ Zt
+

}
Roughly speaking, we are optimizing over a union of polyhedra,
which can be obtained simply by introducing a disjunctive logical
operator to the language of linear programming.

11/52

Outline

1 Introduction to Integer Programming

2 Integer Programming Modeling and Formulation

3 Constraint Programming (CP)

12/52

Modeling with Integer Variables

From a practical standpoint, why do we need integer variables?

Integer variable essentially allow us to introduce disjunctive logic.

If the variable is associated with a physical entity that is
indivisible, then the value must be integer.

At its heart, integrality is a kind of disjunctive constraint.

0-1 (binary) variables are often used to model more abstract
kinds of disjunctions (non-numerical).

Modeling yes/no decisions.
Enforcing logical conditions.
Modeling fixed costs.
Modeling piecewise linear functions.

13/52

Modeling Binary Choice

We use binary variables to model yes/no decisions.

Example: Integer knapsack problem
We are given a set of items with associated values and weights.
We wish to select a subset of maximum value such that the total
weight is less than a constant K.
We associate a 0-1 variable with each item indicating whether it is
selected or not.

max

m∑
j=1

cjxj

s.t.
m∑

j=1

wjxj ≤ K

x ∈ {0, 1}n

14/52

Modeling Dependent Decisions

We can also use binary variables to enforce the condition that a
certain action can only be taken if some other action is also
taken.

Suppose x and y are binary variables representing whether or
not to take certain actions.

The constraint x ≤ y says "only take action x if action y is also
taken"

15/52

MIP reformulation of ℓ0-minimization

Big-M assumption: ∀i, |xi| ≤ M

min
x∈Rn

f (x) s.t. ∥x∥0 ≤ k, |xi| ≤ M

MIP formulation:

min
x∈Rn

f (x) s.t.
n∑

i=1

yi ≤ k, |xi| ≤ Myi, yi ∈ {0, 1}

16/52

Example: Facility Location Problem

We are given n potential facility locations and m customers.
There is a fixed cost cj of opening facility j.
There is a cost dij associated with serving customer i from facility
j.
We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.
xij is 1 if customer i is served by facility j, 0 otherwise.

Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yi ∈ {0, 1} ∀i, j

17/52

Selecting from a Set

We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that
at least one item should be chosen from a set T.

Similarly, we can also model that at most one or exactly one item
should be chosen.

Example: Set covering problem
A set covering problem is any problem of the form.

min {c⊤x | Ax ≥ 1, xj ∈ {0, 1}}

where A is a 0-1 matrix.
Each row of A represents an item from a set S.
Each column Aj represents a subset Sj of the items.
Each variable xj represents selecting subset Sj.
In other words, each item must appear in at least one selected
subset.

18/52

Modeling Disjunctive Constraints

We are given two constraints a⊤x ≥ b and c⊤x ≥ d with
nonnegative coefficients.
Instead of insisting both constraints be satisfied, we want at least
one of the two constraints to be satisfied.
To model this, we define a binary variable y and impose

a⊤x ≥ yb,

c⊤x ≥ (1 − y)d,

y ∈ {0, 1}.

More generally, we can impose that at least k out of m constraints
be satisfied with

a⊤i x ≥ yibi,
m∑

i=1

yi ≥ k,

yi ∈ {0, 1}.

19/52

Modeling Disjunctive Constraints (cont’d)

Consider the disjunctive constraints a⊤x ≥ b and c⊤x ≥ d where
the coefficients are allowed to be negative.

To model this, we use the Big-M Reformulation. we define a
binary variable y and impose

a⊤x ≥ b − My,

c⊤x ≥ d − M(1 − y),

y ∈ {0, 1}.

where M is a sufficiently large positive number.

20/52

Modeling a Restricted Set of Values

We may want variable x to only take on values in the set
{a1, · · · , am}.

We introduce m binary variables yj, j = 1, · · · ,m and the
constraints

x =

m∑
j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}.

21/52

Fixed-charge Problems

In many instances, there is a fixed cost and a variable cost
associated with a particular decision.

Example: Fixed-charge Network Flow Problem
We are given a directed graph G = (N,A).
There is a fixed cost cij associated with "opening" arc (i, j) (think of
this as the cost to "build" the link).
There is also a variable cost dij associated with each unit of flow
along arc (i, j).
Consider an instance with a single supply node.

Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).
Minimizing the variable cost by itself is a minimum cost network flow
problem (easy).
We want to minimize the sum of these two costs (difficult).

22/52

Modeling the Fixed-charge Network Flow Problem

To model the FCNFP, we associate two variables with each arc.
xij (fixed-charge variable) indicates whether arc (i, j) is open.
fij (flow variable) represents the flow on arc (i, j).
Note that we have to ensure that fij > 0 ⇒ xij = 1.

min
∑

(i,j)∈A

cijxij + dijfij

s.t.
∑

j∈O(i)

fij −
∑
j∈I(i)

fji = bi, ∀i ∈ N

fij ≤ Cxij, ∀(i, j) ∈ A

fij ≥ 0, ∀(i, j) ∈ A

xij ∈ {0, 1}, ∀(i, j) ∈ A

23/52

Alternative Formulations

A key concept in the rest of the course will be that every
mathematical model has many alternative formulations.

Many of the key methodologies in integer programming are
essentially automatic methods of reformulating a given model.

The goal of the reformulation is to make the model easier to
solve.

24/52

Simple Example: Knapsack Problem

We are given a set N = {1, · · · , n} of items and a capacity K.
There is a profit ci and a size wi associated with each item i ∈ N.
We want to choose the set of items that maximizes profit subject
to the constraint that their total size does not exceed the capacity.
The most straightforward formulation is to introduce a binary
variable xi associated with each item.
xi takes value 1 if item i is chosen and 0 otherwise.
Then the formulation is

min

n∑
j=1

cjxj

s.t.
n∑

j=1

wjxj ≤ K,

xi ∈ {0, 1}, ∀i

25/52

An Alternative Formulation

Let us call a set C ⊆ N a cover is
∑

i∈C wi > K.

Further, a cover C is minimal if
∑

i∈C\{j} wi ≤ K for all j ∈ C.

Then we claim that the following is also a valid formulation of the
original problem.

max

n∑
j=1

cjxj,

s.t.
∑
j∈C

xj ≤ |C| − 1, for all minimal covers C

xi ∈ {0, 1}, i ∈ N

Which formulation is "better"?

26/52

Back to the Facility Location Problem

Here is another formulation for the same problem:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1, ∀i,

xij ≤ yj, ∀i, j,

xij, yj ∈ {0, 1}, ∀i, j.

Notice that the set of integer solutions contained in each of the
polyhedra is the same (why?).
However, the second polyhedron is strictly included in the first
one (how do we prove this?).
Therefore, the second polyhedron will yield a better lower bound.
The second polyhedron is a better approximation to the convex
hull of integer solutions.

27/52

Formulation Strength and Ideal Formulations

Consider two formulations A and B for the same ILP.
Denote the feasible regions corresponding to their LP relaxations
as PA and PB.
Formulation A is said to be at least as strong as formulation B if
PA ⊆ PB

If the inclusion is strict, then A is stronger than B.
If S is the set of all feasible integer solutions for the ILP, then we
must have conv(S) ⊆ PA (why?).
A is ideal if conv(S) = PA.
If we know an ideal formulation, we can solve the IP (why?).
How do our formulations of the knapsack problem compare by
this measure?

28/52

Strengthening Formulations

Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

Example: given a graph G = (V, E), a perfect matching in G is a
subset M of edge set E, such that every vertex in V is adjacent to
exactly one edge in M.

We are given a set of n people that need to paired in teams of two.
Let cij represent the "cost" of the team formed by person i and
person j.
The nodes represent the people and the edges represent pairings.
We have xe = 1 if the endpoints of e are matched, xe = 0
otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E

29/52

Valid Inequalities for Matching

Consider the graph on the left above.
The optimal perfect matching has value L + 2.
The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.
Add the valid inequality x24 + x35 ≥ 1.
Every perfect matching satisfies this inequality.

30/52

The Odd Set Inequalities

We can generalize the inequality from the last slide.

Consider the cut S corresponding to any odd set of nodes.

The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ S, j ̸∈ S}.

An odd cutset is any δ(S) for which the |S| is odd.

Note that every perfect matching contains at least one edge from
every odd cutset.

Hence, each odd cutset induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.

31/52

Using the New Formulation

If we add all of the odd set inequalities, the new formulation is
ideal.

Hence, we can solve this LP and get a solution to the IP.

However, the number of inequalities is exponential in size, so this
is not really practical.

Recall that only a small number of these inequalities will be
active at the optimal solution.

Later, we will see how we can efficiently generate these
inequalities on the fly to solve the IP

32/52

Contrast with Linear Programming

In linear programming, the same problem can also have multiple
formulations.

In LP, however, conventional wisdom is that bigger formulations
take longer to solve.

In IP, this conventional wisdom does not hold.

We have already seen two examples where it is not valid.

Generally speaking, the size of the formulation does not
determine how difficult the IP is.

33/52

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L ∪ R, and weights wij on
edges (i,j), find a maximum weight matching.

Matching: a set of edges covering each node at most once

Let n=|N| and m = |A|.

Equivalent to maximum weight / minimum cost perfect matching.

34/52

The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

xij = 1 indicate that we include edge (i, j) in the matching

IP: non-convex feasible set

35/52

The Max-Weight Bipartite Matching

Integer program (IP)

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1, ∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

Solving LP is equivalent to solving the combinatorial problem

36/52

Primal-Dual Interpretation

Primal LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Dual

min
∑

i

yi

s.t. yi + yj ≥ wij,∀(i, j) ∈ A

y ≥ 0

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP

37/52

Primal-Dual Interpretation

Suppose edge weights wij = 1, then binary solutions to the dual are
node covers.

Dual

min
∑

i

yi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ≥ 0

Dual Integer Program

min
∑

i

yi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ∈ {0, 1}

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP

Consider IP formulation of the dual, then

P∗
IP ≤ P∗

LP = D∗
LP ≤ D∗

IP

38/52

Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A ∈ Rm×n is totally unimodular, and b is an integer vector,
then {x : Ax ≤ b; x ≥ 0} has integer vertices.

Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

xi =
det(A′

i | b′)
detA′

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.

39/52

The Minimum weight vertex cover

undirected graph G = (N, A) with node weights wi ≥ 0
A vertex cover is a set of nodes S such that each edge has at
least one end in S
The weight of a vertex cover is sum of all weights of nodes in the
cover
Find the vertex cover with minimum weight

Integer Program

min
∑

i

wiyi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ∈ {0, 1}

LP Relaxation

min
∑

i

wiyi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ≥ 0

40/52

LP Relaxation for the Minimum weight vertex cover

In the LP relaxation, we do not need y ≤ 1, since the optimal
solution y∗ of the LP does not change if y ≤ 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y∗i is strictly larger than one. Then, let y′ be a
vector which is same as y∗ except for y′i = 1 < y∗i . This y′ satisfies
all the constraints, and the objective function is smaller.

The solution of the relaxed LP may not be integer, i.e., 0 < y∗i < 1

rounding technique:

y′i =

{
0, if y∗i < 0.5
1, if y∗i ≥ 0.5

The rounded solution y′ is feasible to the original problem

41/52

LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

Note that y′i = min(⌊2y∗i ⌋, 1)

Let P∗
IP be the optimal solution for IP, and P∗

LP be the optimal
solution for the LP relaxation

Since any feasible solution for IP is also feasible in LP, P∗
LP ≤ P∗

IP

The rounded solution y′ satisfy∑
i

y′iwi =
∑

i

min(⌊2y∗i ⌋, 1)wi ≤
∑

i

2y∗i wi = 2P∗
LP ≤ 2P∗

IP

42/52

Outline

1 Introduction to Integer Programming

2 Integer Programming Modeling and Formulation

3 Constraint Programming (CP)

43/52

Difference with mathematical programming

Problem:
Solving combinatorial optimization problems (Decision
Optimization)

Modeling:
Declarative modeling paradigm
Logical constraints & global constraints
Integer, interval & boolean variables (maybe double variables)

Solving:
Constructive search & domain reduction (propagation)
Based on computer science (logic programming, graph theory,
...)

Solution:
Feasible solution & optimal solution

44/52

A simple example: n-Queen Problem

The classic queens problem: placing n queens on an nxn
checkerboard so that no two queens can attack each other, i.e., no
two queens are on the same row, column, or diagonals.

Integer variable params:
N: number of variables
0: minimum value
N-1: maximum value
"X": name prefix

constraints:
all_diff: xi ̸= xj,∀i ̸= j

DOcplex for n-Queen problem
Create model
mdl = CpoModel()

Create column index of each queen
x = mdl. integer_var_list (N, 0, N − 1, "X")

One queen per row
mdl.add(mdl. all_diff (x))

One queen per diagonal xi − xj != i − j
mdl.add(mdl. all_diff (x[i] + i for i in range(N)))

One queen per diagonal xi − xj != j − i
mdl.add(mdl. all_diff (x[i] − i for i in range(N)))

45/52

High-level constraints: Global constraints

Global constraint captures complex relationships among multiple
variables in a concise and efficient way.

alldifferent

All variables in a
set take distinct
values
Assignment
problems
alldifferent([x, y,
z])
x ̸= y, x ̸= z, y ̸= z

table

Tuple of variables
takes values from
predefined set
table([x, y, z], [(1,
2, 3), (4, 5, 6)])
(x, y, z) = (1, 2, 3)
or (4, 5, 6)

circuit

Sequence of
variables forms a
Hamitonian cycle
Routing problems
circuit(x)
x=[0, 1, 3, 2, 0]
means 0− > 1− >
3− > 2− > 0

46/52

Arithmetic expressions and constraints

CP Optimizer supports integer variables and is possible to contain
float-point expressions in constraints or objective function.

operator +, -, *, /
Sum
Diff
ScalProd
Div
Modulo(%)

StandardDeviation
Min
Max
Count
CountDifferent
Abs
Element

==
!=
<

>

<=

>=

47/52

Diff and Element

Diff & operator-

Automatic linearization by slack
variables
IloNumExpr e1 = x * y;
IloNumExpr e2 = z / w;
IloNumExpr diff = IloDiff (e1, e2);
model.add(diff == 0);

Element: y=array[x]
// Create the model
IloModel model(env);

// Define an array
IloIntArray array(env, 4);
array [0] = 10;
array [1] = 20;
array [2] = 30;
array [3] = 40;

// Define variables
IloIntVar x(env, 0, 3, "x") ;
IloIntVar y(env, 0, 100, "y") ;

// Add the element constraint
model.add(y == IloElement(array, x));

48/52

Logical and compatibility constraints

&&
||
Not
IfThen
AllowedAssignments

ForbiddenAssignments

IfThen
model.add(IloIfThen(x >= 5, y <= 3)) ;

// Nested structure
model.add(IloIfThen(x >= 5, IloIfThen (y <= 3, z == 0))) ;

// Combined with global constraints
model.add(IloIfThen(x != y, IloAllDiff (env, x, y, z))) ;

AllowedAssignments
IloIntTupleSet allowed(env);
allowed.add(IloIntArray (env, 2, 1, 2)) ;
allowed.add(IloIntArray (env, 2, 2, 3)) ;

model.add(IloAllowedAssignments(vars, allowed));

49/52

Special constraints on integer variables

Theoretically, these special constraints can be written from arithmetic
constraints and expressions, but they can also be designed and
implemented to reduce domains efficiently during a search.

AllDiff
AllMinDistance
Pack
Inverse
Lexicographic
Distribute

Pack
IloIntVarArray bin(env, 3, 0, 1); // 3 items, 2 bins
IloIntArray size(env, 3); // Size of each item
size [0] = 2;
size [1] = 3;
size [2] = 4;
IloIntVarArray load(env, 2, 0, 5); // Max capacity is 5

model.add(IloPack(bin, size, load)) ;

50/52

Interval variables

Interval variables

Static
StartOf
EndOf
LengthOf
SizeOf

Dynamic
StartEval
EndEval
LengthEval
SizeEval

StartOf
IloIntervalVar task(env, 10); // Task with duration 10
IloIntExpr start = IloStartOf (task) ; // Static start time
model.add(start >= 5); // Task must start after time 5

StartEval
IloIntervalVar task(env, 10);
IloIntVar condition(env, 0, 1); // 0 or 1

// Dynamic start time: if condition=1, start time increases by 5
IloIntExpr dynamicStart = IloStartEval(task) + condition * 5;

// Constraint depends on runtime value of ‘condition ‘
model.add(dynamicStart <= 20);

51/52

Special constraints on interval variables

Forbidden constraints

ForbidStart
ForbidEnd
ForbidExtent

Precedence
constraints

End/Start
+ Before/At
+ End/Start

e.g.
EndBeforeStart

Groups of interval
variables

PresenceOf
Isomorphism
Span
Alternative
Synchronize

Sequence constraints

First
Last
Before
Prev

52/52

Special constraints on interval variables

* CumulFunctionExpr
- AlwaysIn/AlwaysEqual
- AlwaysConstant
- AlwaysNoState
- operator<=, >=

Pulse
Step
StepAtStart
StepAtEnd
HeightAtStart
HeightAtEnd

Resource usage constraints
IloIntervalVar task1(env, 10, "Task1");
IloIntervalVar task2(env, 5, "Task2");

IloCumulFunctionExpr resourceUsage(env);
resourceUsage += IloPulse(task1, 2);
resourceUsage += IloPulse(task2, 1);
resourceUsage += IloStep(5, 3);
resourceUsage += IloStepAtStart(task1, 1);
resourceUsage += IloStepAtEnd(task2, −1);

model.add(resourceUsage <= 5);

	Introduction to Integer Programming
	Integer Programming Modeling and Formulation
	Constraint Programming (CP)

