
Lecture: Introduction to Integer Programming

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on Prof. Ted Ralphs’s lecture notes

1/96

https://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

2/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

3/96

Mixed Integer Linear Programming

Consider linear programming with additionally constraints

X = Zp
+ × Rn−p

+ .

The general form of such a mathematical optimization problem is

zIP = max{c⊤x | Ax ≤ b, x ∈ Zp
+ × Rn−p

+ },

where for A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

This type of optimization problem is called a mixed integer linear
programming (MILP) problem.

If p = n, then we have a pure integer linear optimization problem.

Special case: the integer variables are binary, i.e., 0 or 1.

4/96

The Geometry of Integer Programming

Let’s consider an integer linear program

max c⊤x

s.t. Ax ≤ b

x ∈ Zn
+

The feasible region is the integer points inside a polyhedron.

Why does solving the LP relaxation not necessarily yield a good
solution?

5/96

How Hard is Integer Programming?

Solving general integer programs can be much more difficult
than solving linear programs.

There in no known polynomial-time algorithm for solving general
MIPs.

Solving the associated linear programming relaxation results in
an upper bound on the optimal solution to the MIP.

In general, solving the LP relaxation, an LP obtained by dropping
the integerality restrictions, does not tell us much.

Rounding to a feasible integer solution may be difficult.
The optimal solution to the LP relaxation can be arbitrarily far
away from the optimal solution to the MIP.
Rounding may result in a solution far from optimal.
We can bound the difference between the optimal solution to the
LP and the optimal solution to the MIP (how?).

6/96

How Hard is Integer Programming?

Consider the integer
program

max 50x1 + 32x2,

s.t. 50x1 + 31x2 ≤ 250,

3x1 − 2x2 ≥ −4,

x1, x2 ≥ 0 and integer.

The linear programming
solution (376\193, 950\193)
is a long way from the
optimal integer solution
(5, 0).

7/96

The shortest path problem

Consider a network G = (N, A) with cost cij on each edge
(i, j) ∈ A. There is an origin node s and a destination node t.

Standard notation: n = |N|, m = |A|

cost of of a path: c(P) =
∑

(i,j)∈P cij

What is the shortest path from s to t?

8/96

The shortest path problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j

xsj = 1

∑
j

xij −
∑

j

xji = 0, for each i ̸= s or t

−
∑

i

xit = −1

xij ∈ {0, 1} for all (i, j)

9/96

Conjunction versus Disjunction

A more general mathematical view that ties integer programming
to logic is to think of integer variables as expressing disjunction.

The constraints of a standard mathematical program are
conjunctive.

All constraints must be satisfied.

g1(x) ≤ b1 AND g2(x) ≤ b1 AND · · · AND gm(x) ≤ bm

This corresponds to intersection of the regions associated with
each constraint.

Integer variables introduce the possibility to model disjunction.
At least one constraint must be satisfied.

g1(x) ≤ b1 OR g2(x) ≤ b1 OR · · · OR gm(x) ≤ bm

This corresponds to union of the regions associated with each
constraint.

10/96

Representability Theorem

The connection between integer programming and disjunction is
captured most elegantly by the following theorem.

Theorem
A set F ⊆ Rn is MIP representable if and only if there exist rational
polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn such that

F =

n⋃
i=1

Pi + intcone{r1, · · · , rt}.

where intcone{r1, · · · , rt} =
{∑t

i=1 λiri | λ ∈ Zt
+

}
Roughly speaking, we are optimizing over a union of polyhedra,
which can be obtained simply by introducing a disjunctive logical
operator to the language of linear programming.

11/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

12/96

Modeling with Integer Variables

From a practical standpoint, why do we need integer variables?

We have seen in the last lecture that integer variable essentially
allow us to introduce disjunctive logic.

If the variable is associated with a physical entity that is
indivisible, then the value must be integer.

At its heart, integrality is a kind of disjunctive constraint.

0-1 (binary) variables are often used to model more abstract
kinds of disjunctions (non-numerical).

Modeling yes/no decisions.
Enforcing logical conditions.
Modeling fixed costs.
Modeling piecewise linear functions.

13/96

Modeling Binary Choice

We use binary variables to model yes/no decisions.

Example: Integer knapsack problem
We are given a set of items with associated values and weights.
We wish to select a subset of maximum value such that the total
weight is less than a constant K.
We associate a 0-1 variable with each item indicating whether it is
selected or not.

max

m∑
j=1

cjxj

s.t.
m∑

j=1

wjxj ≤ K

x ∈ {0, 1}n

14/96

Modeling Dependent Decisions

We can also use binary variables to enforce the condition that a
certain action can only be taken if some other action is also
taken.

Suppose x and y are binary variables representing whether or
not to take certain actions.

The constraint x ≤ y says "only take action x if action y is also
taken"

15/96

MIP reformulation of ℓ0-minimization

Big-M assumption: ∀i, |xi| ≤ M

min
x∈Rn

f (x) s.t. ∥x∥0 ≤ k, |xi| ≤ M

MIP formulation:

min
x∈Rn

f (x) s.t.
n∑

i=1

yi ≤ k, |xi| ≤ Myi, yi ∈ {0, 1}

16/96

Example: Facility Location Problem

We are given n potential facility locations and m customers.
There is a fixed cost cj of opening facility j.
There is a cost dij associated with serving customer i from facility
j.
We have two sets of binary variables.

yj is 1 if facility j is opened, 0 otherwise.
xij is 1 if customer i is served by facility j, 0 otherwise.

Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yi ∈ {0, 1} ∀i, j

17/96

Selecting from a Set

We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that
at least one item should be chosen from a set T.

Similarly, we can also model that at most one or exactly one item
should be chosen.

Example: Set covering problem
A set covering problem is any problem of the form.

min {c⊤x | Ax ≥ 1, xj ∈ {0, 1}}

where A is a 0-1 matrix.
Each row of A represents an item from a set S.
Each column Aj represents a subset Sj of the items.
Each variable xj represents selecting subset Sj.
In other words, each item must appear in at least one selected
subset.

18/96

Modeling Disjunctive Constraints

We are given two constraints a⊤x ≥ b and c⊤x ≥ d with
nonnegative coefficients.
Instead of insisting both constraints be satisfied, we want at least
one of the two constraints to be satisfied.
To model this, we define a binary variable y and impose

a⊤x ≥ yb,

c⊤x ≥ (1− y)d,

y ∈ {0, 1}.

More generally, we can impose that at least k out of m constraints
be satisfied with

a⊤i x ≥ yibi,
m∑

i=1

yi ≥ k,

yi ∈ {0, 1}.

19/96

Modeling Disjunctive Constraints (cont’d)

Consider the disjunctive constraints a⊤x ≥ b and c⊤x ≥ d where
the coefficients are allowed to be negative.

To model this, we use the Big-M Reformulation. we define a
binary variable y and impose

a⊤x ≥ b−My,

c⊤x ≥ d −M(1− y),

y ∈ {0, 1}.

where M is a sufficiently large positive number.

20/96

Modeling a Restricted Set of Values

We may want variable x to only take on values in the set
{a1, · · · , am}.

We introduce m binary variables yj, j = 1, · · · ,m and the
constraints

x =

m∑
j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}.

21/96

Fixed-charge Problems

In many instances, there is a fixed cost and a variable cost
associated with a particular decision.

Example: Fixed-charge Network Flow Problem
We are given a directed graph G = (N,A).
There is a fixed cost cij associated with "opening" arc (i, j) (think of
this as the cost to "build" the link).
There is also a variable cost dij associated with each unit of flow
along arc (i, j).
Consider an instance with a single supply node.

Minimizing the fixed cost by itself is a minimum spanning tree
problem (easy).
Minimizing the variable cost by itself is a minimum cost network flow
problem (easy).
We want to minimize the sum of these two costs (difficult).

22/96

Modeling the Fixed-charge Network Flow Problem

To model the FCNFP, we associate two variables with each arc.
xij (fixed-charge variable) indicates whether arc (i, j) is open.
fij (flow variable) represents the flow on arc (i, j).
Note that we have to ensure that fij > 0⇒ xij = 1.

min
∑

(i,j)∈A

cijxij + dijfij

s.t.
∑

j∈O(i)

fij −
∑
j∈I(i)

fji = bi, ∀i ∈ N

fij ≤ Cxij, ∀(i, j) ∈ A

fij ≥ 0, ∀(i, j) ∈ A

xij ∈ {0, 1}, ∀(i, j) ∈ A

23/96

Alternative Formulations

A key concept in the rest of the course will be that every
mathematical model has many alternative formulations.

Many of the key methodologies in integer programming are
essentially automatic methods of reformulating a given model.

The goal of the reformulation is to make the model easier to
solve.

24/96

Simple Example: Knapsack Problem

We are given a set N = {1, · · · , n} of items and a capacity W.
There is a profit pi and a size wi associated with each item i ∈ N.
We want to choose the set of items that maximizes profit subject
to the constraint that their total size does not exceed the capacity.
The most straightforward formulation is to introduce a binary
variable xi associated with each item.
xi takes value 1 if item i is chosen and 0 otherwise.
Then the formulation is

min

n∑
j=1

pjxj

s.t.
n∑

j=1

wjxj ≤ W,

xi ∈ {0, 1}, ∀i

25/96

An Alternative Formulation

Let us call a set C ⊆ N a cover is
∑

i∈C wi > W.

Further, a cover C is minimal if
∑

i∈C\{j} wi ≤ W for all j ∈ C.

Then we claim that the following is also a valid formulation of the
original problem.

max

n∑
j=1

pjxj,

s.t.
∑
j∈C

xj ≤ |C| − 1, for all minimal covers C

xi ∈ {0, 1}, i ∈ N

Which formulation is "better"?

26/96

Back to the Facility Location Problem

Recall our earlier formulation of this problem.
Here is another formulation for the same problem:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1, ∀i,

xij ≤ yj, ∀i, j,

xij, yj ∈ {0, 1}, ∀i, j.

Notice that the set of integer solutions contained in each of the
polyhedra is the same (why?).
However, the second polyhedron is strictly included in the first
one (how do we prove this?).
Therefore, the second polyhedron will yield a better lower bound.
The second polyhedron is a better approximation to the convex
hull of integer solutions.

27/96

Formulation Strength and Ideal Formulations

Consider two formulations A and B for the same ILP.
Denote the feasible regions corresponding to their LP relaxations
as PA and PB.
Formulation A is said to be at least as strong as formulation B if
PA ⊆ PB

If the inclusion is strict, then A is stronger than B.
If S is the set of all feasible integer solutions for the ILP, then we
must have conv(S) ⊆ PA (why?).
A is ideal if conv(S) = PA.
If we know an ideal formulation, we can solve the IP (why?).
How do our formulations of the knapsack problem compare by
this measure?

28/96

Strengthening Formulations

Often, a given formulation can be strengthened with additional
inequalities satisfied by all feasible integer solutions.

Example: given a graph G = (V, E), a perfect matching in G is a
subset M of edge set E, such that every vertex in V is adjacent to
exactly one edge in M.

We are given a set of n people that need to paired in teams of two.
Let cij represent the "cost" of the team formed by person i and
person j.
The nodes represent the people and the edges represent pairings.
We have xe = 1 if the endpoints of e are matched, xe = 0
otherwise.

min
∑

e={i,j}∈E

cexe

s.t.
∑

{j|{i,j}∈E}

xij = 1, ∀i ∈ N

xe ∈ {0, 1}, ∀e = {i, j} ∈ E

29/96

Valid Inequalities for Matching

Consider the graph on the left above.
The optimal perfect matching has value L + 2.
The optimal solution to the LP relaxation has value 3.
This formulation can be extremely weak.
Add the valid inequality x24 + x35 ≥ 1.
Every perfect matching satisfies this inequality.

30/96

The Odd Set Inequalities

We can generalize the inequality from the last slide.

Consider the cut S corresponding to any odd set of nodes.

The cutset corresponding to S is

δ(S) = {{i, j} ∈ E|i ∈ S, j ̸∈ S}.

An odd cutset is any δ(S) for which the |S| is odd.

Note that every perfect matching contains at least one edge from
every odd cutset.

Hence, each odd cutset induces a possible valid inequality.∑
e∈δ(S)

xe ≥ 1, S ⊂ N, |S| odd.

31/96

Using the New Formulation

If we add all of the odd set inequalities, the new formulation is
ideal.

Hence, we can solve this LP and get a solution to the IP.

However, the number of inequalities is exponential in size, so this
is not really practical.

Recall that only a small number of these inequalities will be
active at the optimal solution.

Later, we will see how we can efficiently generate these
inequalities on the fly to solve the IP

32/96

Contrast with Linear Programming

In linear programming, the same problem can also have multiple
formulations.

In LP, however, conventional wisdom is that bigger formulations
take longer to solve.

In IP, this conventional wisdom does not hold.

We have already seen two examples where it is not valid.

Generally speaking, the size of the formulation does not
determine how difficult the IP is.

33/96

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L ∪ R, and weights wij on
edges (i,j), find a maximum weight matching.

Matching: a set of edges covering each node at most once

Let n=|N| and m = |A|.

Equivalent to maximum weight / minimum cost perfect matching.

34/96

The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

xij = 1 indicate that we include edge (i, j) in the matching

IP: non-convex feasible set

35/96

The Max-Weight Bipartite Matching

Integer program (IP)

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1, ∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

Solving LP is equivalent to solving the combinatorial problem

36/96

Primal-Dual Interpretation

Primal LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Dual

min
∑

i

yi

s.t. yi + yj ≥ wij,∀(i, j) ∈ A

y ≥ 0

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP

37/96

Primal-Dual Interpretation

Suppose edge weights wij = 1, then binary solutions to the dual are
node covers.

Dual

min
∑

i

yi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ≥ 0

Dual Integer Program

min
∑

i

yi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ∈ {0, 1}

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗
LP = D∗

LP

Consider IP formulation of the dual, then

P∗
IP ≤ P∗

LP = D∗
LP ≤ D∗

IP

38/96

Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A ∈ Rm×n is totally unimodular, and b is an integer vector,
then {x : Ax ≤ b; x ≥ 0} has integer vertices.

Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

xi =
det(A′

i | b′)
detA′

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.

39/96

The Minimum weight vertex cover

undirected graph G = (N, A) with node weights wi ≥ 0
A vertex cover is a set of nodes S such that each edge has at
least one end in S
The weight of a vertex cover is sum of all weights of nodes in the
cover
Find the vertex cover with minimum weight

Integer Program

min
∑

i

wiyi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ∈ {0, 1}

LP Relaxation

min
∑

i

wiyi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ≥ 0

40/96

LP Relaxation for the Minimum weight vertex cover

In the LP relaxation, we do not need y ≤ 1, since the optimal
solution y∗ of the LP does not change if y ≤ 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y∗i is strictly larger than one. Then, let y′ be a
vector which is same as y∗ except for y′i = 1 < y∗i . This y′ satisfies
all the constraints, and the objective function is smaller.

The solution of the relaxed LP may not be integer, i.e., 0 < y∗i < 1

rounding technique:

y′i =

{
0, if y∗i < 0.5
1, if y∗i ≥ 0.5

The rounded solution y′ is feasible to the original problem

41/96

LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

Note that y′i = min(⌊2y∗i ⌋, 1)

Let P∗
IP be the optimal solution for IP, and P∗

LP be the optimal
solution for the LP relaxation

Since any feasible solution for IP is also feasible in LP, P∗
LP ≤ P∗

IP

The rounded solution y′ satisfy∑
i

y′iwi =
∑

i

min(⌊2y∗i ⌋, 1)wi ≤
∑

i

2y∗i wi = 2P∗
LP ≤ 2P∗

IP

42/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

43/96

Computational Integer Optimization

Computationally, the most important aspects of solving integer
optimization problems are

A method for obtaining good bounds on the value of the optimal
solution (usually by solving a relaxation or dual; and
A method for generating valid disjunctions violated by a given
(infeasible) solution.

In this lecture, we will motivate this fact by introducing the branch
and bound algorithm.

We will then look at various methods of obtaining bounds.

Later, we will examine branch and bound in more detail.

44/96

Integer Optimization and Disjunction

The difficulty arises from the requirement that certain variables
take on integer values.
Such requirements can be described in terms of logical
disjunctions, constraints of the form

x ∈
⋃

1≤i≤k

Xi, Xi ⊆ Rn.

The integer variables in a given formulation may represent logical
conditions that were originally expressed in terms of disjunction.
In fact, the MILP Representability Theorem tells us that any
MILP can be re-formulated as an optimization problem whose
feasible region is

F =
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}

is the disjunctive set F defined above, for some appropriately
chosen polytopes P1, · · · ,Pk and vectors r1, · · · , rt ∈ Zn.

45/96

Two Conceptual Reformulations

We have two conceptual reformulations of a given integer
optimization problem.
The first is in terms of disjunction:

max

c⊤x | x ∈
⋃

1≤i≤k

Pi + intcone{r1, · · · , rt}

The second is in terms of valid inequalities

max{c⊤x | x ∈ conv(S)}

where S is the feasible region.
In principle, if we had a method for generating either of these
reformulations, this would lead to a practical method of solution.
Unfortunately, these reformulations are necessarily of
exponential size in general, so there can be no way of generating
them efficiently.

46/96

Valid Disjunctions

In practice, we dynamically generate parts of the reformulations
(CP) and (DIS) in order to obtain a proof of optimality for a
particular instance.

The concept of valid disjunction, arises from a desire to
approximate the feasible region of (DIS).

Definition 1. Let {Xi}k
i=1 be a collection of subset of Rn. Then if

S ⊆ ∪1≤i≤kXi, the disjunction associated with {Xi}k
i=1 is said to be

valid for an MILP with feasible set S.
Definition 2. Let {Xi}k

i=1 is a disjunction valid for S, and Xi is
polyhedral for all i, then we say the disjunction is linear.
Definition 3. Let {Xi}k

i=1 is a disjunction valid for S, and
Xi ∩ Xj = ∅ for all i, j then we say the disjunction is partitive.
Definition 4. Let {Xi}k

i=1 is a disjunction valid for S that is both
linear and partitive, we call it admissible.

47/96

Valid Inequalities

Likewise, we can think of the concept of a valid inequality as
arising from our desire to approximate conv(S) (the feasible
region of (CP)).

The inequality denoted by (π, π0) is called a valid inequality for S
if π⊤x ≤ π0, ∀x ∈ S.

Note (π, π0) is a valid inequality if and only if
S ⊆ {x ∈ Rn | π⊤x ≤ π0}.

48/96

Optimality Conditions

Let us now consider an MILP (A, b, c, p) with feasible set
S = P ∩ (Zp

+ × Rn−p
+), where P is the given formulation.

Further, let {Xi}k
i=1 be a linear disjunction valid for this MILP so

that Xi ∩ P ⊆ Rn is a polyhedral.

Then maxXi∩S c⊤x is an MILP for all i ∈ 1, . . . , k.

For each i, let Pi be a polyhedron such that Xi ∩ S ⊆ Pi ⊆ P ∩ Xi.

In other words, Pi is a valid formulation for subproblem i, possibly
strengthened by additional valid inequalities.

Note that {Pi} is itself a valid linear disjunction.

49/96

Optimality Conditions

From the disjunction on the previous slide, we obtain a relaxation
of a general MILP.

This relaxation yields a practical set of optimality conditions.

In particular,
max

i∈1,··· ,k
max

x∈Pi∩Rn
+

c⊤x ≥ zIP.

If we have x∗ ∈ S such that

max
i∈1,··· ,k

max
x∈Pi∩Rn

+

c⊤x = c⊤x∗

then x∗ must be optimal.

50/96

Branch and Bound

Branch and bound is the most commonly-used algorithm for
solving MILPs. It is a recursive, divide-and-conquer approach.
Suppose S is the feasible set for an MILP and we wish to
compute maxx∈S c⊤x.
Consider a partition of S into subsets S1, · · · ,Sk. Then

max
x∈S

c⊤x = max
1≤i≤k

{max
x∈Si

c⊤x}.

Idea: If we can’t solve the original problem directly, we might be
able to solve the smaller subproblems recursively.
Dividing the original problem into subproblems is called
branching.
Taken to the extreme, this scheme is equivalent to complete
enumeration.

51/96

Branching in Branch and Bound

Branching is achieved by selecting an admissible disjunction
{Xi}k

i=1 and using it to partition S, e.g., Si = S ∩ Xi.
We only consider linear disjunctions so that the subproblem
remain MILPs after branching.
The way this disjunction is selected is called the branching
method and is a topic we will examine in some depth.
Generally speaking, we want x∗ ̸∈ ∪iXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.
A typical disjunction is

X1 = {xj ≥ ⌈x∗j ⌉}
X2 = {xj ≤ ⌊x∗j ⌋}

where x∗ ∈ argmaxx∈Pc⊤x.

52/96

Bounding in Branch and Bound

The bounding problem is a problem solved to obtain a bound on
the optimal solution value of a subproblem maxSi c⊤x.

Typically, the bounding problem is either a relaxation or a dual of
the subproblem.

Solving the bounding problem serves two purposes.
In some cases, the solution x∗ to the relaxation may actually be a
feasible solution, in which case c⊤x∗ is a global lower bound l(S).
Bounding enables us to inexpensively obtain a bound b(Si) on the
optimal solution value of subproblem i.

If b(Si) ≤ l(S), then Si can’t contain a solution strictly better than
the best one found so far.

Thus, we may discard or prune subproblem i.

For the rest of the lecture, assume all variables have finite upper
and lower bounds.

53/96

LP-based Branch and Bound: Initial Subproblem

In LP-based branch and bound, we first solve the LP relaxation
of the original problem. The result is one of the following:

The LP is infeasible⇒ MILP is infeasible.
We obtain a feasible solution for the MILP⇒ optimal solution.
We obtain an optimal solution to the LP that is not feasible for the
MILP⇒ upper bound.

In the first two cases, we are finished.

In the third case, we must branch and recursively solve the
resulting subproblems.

54/96

Branching in LP-based Branch and Bound

In LP-based branch and bound, the most commonly used
disjunctions are the variable disjunctions, imposed as follows:

Select a variable i whose value x̂i is fractional in the LP solution.
Create two subproblems.
In one subproblem, impose the constraint xi ≤ ⌊x̂i⌋.
In the other subproblem, impose the constraint xi ≥ ⌈x̂i⌉.

What does it mean in a 0-1 problem?

55/96

LP-based Branch and Bound Algorithm

To start, derive a lower bound L using a heuristic method.

Put the original problem on the candidate list.

Select a problem S from the candidate list and solve the LP
relaxation to obtain the bound b(S).

If the LP is infeasible⇒ node can be pruned.
Otherwise, if b(S) ≤ L⇒ node can be pruned.
Otherwise, if b(S) > L and the solution is feasible for the MILP⇒
set L← b(S).
Otherwise, branch and add the new subproblem to the candidate
list.

If the candidate list in nonempty, go to Step 2. Otherwise, the
algorithm is completed.

56/96

Branch and Bound Tree

57/96

The Geometry of Branching

58/96

The Geometry of Branching (cont’d)

59/96

The Geometry of Branching

60/96

Continuing the Algorithm After Branching

After branching, we solve each of the subproblems recursively.
As mentioned earlier, if the optimal solution value to the LP
relaxation is smaller than the current lower bound, we need not
consider the subproblem further. This is the key to the efficiency
of the algorithm.
Terminology

If we picture the subproblems graphically, they form a search tree.
Each subproblem is linked to its parent and eventually to its
children.
Eliminating a problem from further consideration is called pruning.
The act of bounding and then branching is called processing.
A subproblem that has not yet been considered is called a
candidate for processing.
The set of candidates for processing is called the candidate list.

61/96

Ensuring Finite Convergence

For LP-based branch and bound, ensuring convergence requires
a convergent branching method.

Roughly speaking, a convergent branching method is one which
will

produce a violated admissible disjunction whenever the solution to
the bounding problem is infeasible; and
if applied recursively, guarantee that at some finite depth, any
resulting bounding problem will either
- produce a feasible solution (to the original MILP); or
- be proven infeasible; or
- be pruned by bound.

Typically, we achieve this by ensuring that at some finite depth,
the feasible region of the bounding problem contains at most one
feasible solution.

62/96

Algorithmic Choices in Branch and Bound

Although the basic algorithm is straightforward, the efficiency of it
in practice depends strongly on making good algorithmic
choices.

These algorithmic choices are made largely by heuristics that
guide the algorithm.

Basic decisions to be made include
The bounding method(s).
The method of selecting the next candidate to process.

"Best-first" always chooses the candidate with the highest upper
bound.
This rule minimizes the size of the tree (why?).
There may be practical reasons to deviate from this rule.

The method of branching.
Branching wisely is extremely important.
A "poor" branching can slow the algorithm significantly.

63/96

An example solved by Gurobi

64/96

An example solved by Gurobi

65/96

Another example solved by Gurobi

66/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

67/96

The Efficiency of Branch and Bound

The overall solution time is the product of the number of nodes
enumerated and the time to process each node.

Typically, by spending more time in processing, we can achieve a
reduction in tree size by computing stronger bounds.

This highlights another of the many tradeoffs we must navigate.

Our goal in bounding is to achieve a balance between the
strength of the bound and the efficiency.

How do we compute bounds?
Relaxation: Relax some of the constraints and solve the resulting
mathematical optimization problem.
Duality: Formulate a "dual" problem and find a feasible to it.

In practice, we will use both of these two approaches.

68/96

Relaxation

As usual, we consider the MILP

zIP = max{c⊤x | x ∈ S}

where
P = {x ∈ Rn | Ax ≤ b}
S = P ∩ (Zp

+ × Rn−p
+).

Definition 1. A relaxation of IP is a maximization problem
defined as

zR = max{zR(x)|x ∈ SR}

with the following two properties:

S ⊆ SR

c⊤x ≤ zR(x), ∀x ∈ S

69/96

Importance of Relaxations

The main purpose of a relaxation is to obtain an upper bound on
zIP .
Solving a relaxation is one simple method of bounding in branch
and bound.
The idea is to choose a relaxation that is much easier to solve
than the original problem, but still yields a bound that is "strong
enough."
Note that the relaxation must be solved to optimality to yield a
valid bound.
We consider three types of "formulation-based" relaxations.

LP relaxation
Combinatorial relaxation
Lagrangian relaxation

Relaxations are also used in some other bounding schemes we’ll
look at.

70/96

Obtaining and Using Relaxations

Properties of relaxations
If a relaxation of (MILP) is infeasible, then so is (MILP).
If zR(x) = c⊤x, then for x∗ ∈ argmaxx∈SR

zR(x), if x∗ ∈ S, then x∗ is
optimal for (MILP).

The easiest way to obtain relaxations of IP is to drop some of the
constraints defining the feasible set S.

It is "obvious" how to obtain an LP relaxation, but combinatorial
relaxations are not as obvious.

71/96

Lagrangian Relaxation

The idea is again based on relaxing a set of constraints from the
original formulation.
We try to push the solution towards feasibility by penalizing
violation of the dropped constraints.
Suppose our IP is defined by

max c⊤x

s.t. A1x ≤ b1

A2x ≤ b2

x ∈ Zn
+

where optimizing over Q = {x ∈ Zn
+ | A2x ≤ b2} is "easy."

Lagrangian Relaxation:

LR(λ) : ZR(λ) = max
x∈Q
{(c− (A1)⊤λ)⊤x + λ⊤b1)}.

72/96

Properties of the Lagrangian Relaxation

For any λ ≥ 0, LR(λ) is a relaxation of IP (why?).

Solving LR(λ) yields an upper bound on the value of the optimal
solution.

Because of our assumptions, LR(λ) can be solved easily.

Recalling LP duality, one can think of λ as a vector of "dual
variables."

If the solution to the relaxation is integral, it is optimal if the
primal and dual solutions are complementary, as in LP.

73/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

74/96

Disjunctions and Branching

Recall that branching is generally achieved by selecting an
admissible disjunction {Xi}k

i=1 and using it to partition S, e.g.,
Si = S ∩ Xi.

The way this disjunction is selected is called the branching
method.

Generally speaking, we want x∗ ̸∈ ∪1≤i≤kXi, where x∗ is the
(infeasible) solution produced by solving the bounding problem
associated with a given subproblem.

75/96

Split Disjunctions

The most easily handled disjunctions are those based on
dividing the feasible region using a given hyperplane.
In such cases, each term of the disjunction can be imposed by
addition of a single inequality.
A hyperplane defined by a vector π ∈ Rn is said to be integer if
πi ∈ Z for 0 ≤ i ≤ p and πi = 0 for p + 1 ≤ i ≤ n.
Note that if π is integer, then we have π⊤x ∈ Z whenever
x ∈ Zp × Rn−p.
Then the disjunction defined by

X1 = {x ∈ Rn | π⊤x ≤ π0},X2 = {x ∈ Rn | π⊤x ≥ π0 + 1},

is valid when π0 ∈ Z.
This is known as a split disjunction.

76/96

Variable Disjunctions

The simplest split disjunction is to take π = ei for 0 ≤ i ≤ p,
where ei is the ith unit vector.
If we branch using such a disjunction, we simply say we are
branching on xi.
For such a branching disjunction to be admissible, we should
have π0 < x∗i < π0 + 1.
In the special case of a 0-1 IP, this dichotomy reduces to

xj = 0 OR xj = 1

In general IP, branching on a variable involves imposing new
bound constraints in each one of the subproblems.
This is is the most common method of branching and is easily
handled implicitly in most cases.
What are the benefits of such a scheme?

77/96

The Geometry of Branching

78/96

The Geometry of Branching (Variable Disjunction)

79/96

The Geometry of Branching (Variable Disjunction)

80/96

The Geometry of Branching (General Split Disjunction)

81/96

The Geometry of Branching (General Split Disjunction)

82/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

83/96

Describing conv(S)

We have seen that, in theory, conv(S) is a polyhedron and has a
finite description.

If we "simply" construct that description, we could turn our MILP
into an LP.

So why aren’t IPs easy to solve?
The size of the description is generally HUGE!
The number of facets of the TSP polytope for an instance with 120
nodes is more than 10100 times the number of atoms in the
universe.
It is physically impossible to write down a description of this
polytope.
Not only that, but it is very difficult in general to generate these
facets (this problem is not polynomially solvable in general).

84/96

Cutting Planes

Recall that the inequality denoted by (π, π0) is valid for a
polyhedron P if π⊤x ≤ π0,∀x ∈ P.
The term cutting plane usually refers to an inequality valid for
conv(S), but which is violated by the solution obtained by solving
the (current) LP relaxation.
Cutting plane methods attempt to improve the bound produced
by the LP relaxation by iteratively adding cutting planes to the
initial LP relaxation.
Adding such inequalities to the LP relaxation may improve the
bound (this is not a guarantee).
Note that when π and π0 are integer, then π, π0 is a split
disjunction for which X2 = ∅.

85/96

The Separation Problem

The problem of generating a cutting plane can be stated as:
Separation Problem: Given a polyhedron Q ∈ Rn and x∗ ∈ Rn

determine whether x∗ ∈ Q and if not, determine (π, π0), a valid
inequality for Q such that π⊤x∗ > π0.

This problem is stated here independent of any solution
algorithm.

However, it is typically used as a subroutine inside an iterative
method for improving the LP relaxation.

In such a case, x∗ is the solution to the LP relaxation (of the
current formulation, including previously generated cuts).

We will see later that the difficulty of solving this problem exactly
is strongly tied to the difficulty of the optimization problem itself.

86/96

Generic Cutting Plane Method

Let P = {x ∈ Rn | Ax ≤ b} be the initial formulation for

max{c⊤x | x ∈ S}, S = P ∩ Zp
+ × Rn−p

+ .

Algorithm 1: Cutting plane method
1 P0 ← P, k← 0.
2 while TRUE do
3 Solve the LP relaxation max{c⊤x|x ∈ Pk} to obtain solution xk.
4 Solve the problem of separating xk from conv(S).
5 if xk ∈ conv(S) then STOP;
6 else Get an inequality (πk, πk

0) valid for conv(S) but
(πk)⊤xk > πk

0 ;
7 Pk+1 ← Pk ∩ {x ∈ Rn | (πk)⊤x ≤ πk

0}.
8 k← k + 1.

87/96

Generating Valid Inequalities for conv(S)

Consider the MILP

zIP = max c⊤x, s.t. x ∈ S,

where P = {x ∈ Rn | Ax ≤ b} and S = P ∩ (Zp
+ × Rn−p

+)

All inequalities valid for P are also valid for conv(S), but they are
not cutting planes.

We need the following simple principle: if a ≤ b and a is an
integer, then a ≤ ⌊b⌋.

This simple fact is all we need to generate all valid inequalities
for conv(S)!

Example: suppose that 2x1 + x2 ≤ 3/2 is valid for P, then
2x1 + x2 ≤ 1 is also valid for conv(S).

88/96

Chvátal Inequalities

split A = [AI,AC] according to integer and continuous variables

Suppose we can find a u ∈ Rm
+ such that π = A⊤u is integer

(A⊤
I u ∈ Zp and A⊤

C u = 0) and π0 = u⊤b ̸∈ Z.

In this case, we have π⊤x ∈ Z for all x ∈ S, and so π⊤x ≤ ⌊π0⌋ for
all x ∈ S.

In other words, (π, ⌊π0⌋) is both a valid inequality and a split
disjunction

{x ∈ P | π⊤x ≥ ⌊π0⌋+ 1} = ∅

Such an inequality is called a Chvátal inequality

Note that we have not used the non-negativity constraints in
deriving this inequality

89/96

Chvátal-Gomory Inequalities

Assume that P ⊂ Rn
+ and let u ∈ Rn

+ be such that A⊤
C u ≥ 0

Since the variables are nonnegative, we have u⊤ACxC ≥ 0 and

p∑
i=1

(u⊤Ai)xi ≤ u⊤b, ∀x ∈ P

Again, because the variables are nonnegative, we have

p∑
i=1

⌊u⊤Ai⌋xi ≤ u⊤b, ∀x ∈ P

Finally, we have:

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋, ∀x ∈ S

This is the Chvátal-Gomory inequality

90/96

Chvátal-Gomory Inequalities: another derivation

We explicitly add the non-negativity constraints to the formulation
along the other constraints with associated multipliers v ∈ Rn

+

We cannot round the coefficients to make them integral, so we
require π integral

πi = u⊤Ai − vi ∈ Z for 1 ≤ i ≤ p

πi = u⊤Ai − vi = 0 for p + 1 ≤ i ≤ n

vi will be non-negative as as long as we have

vi ≥ u⊤Ai − ⌊u⊤Ai⌋, for 0 ≤ i ≤ p,

vi = u⊤Ai ≥ 0, for p + 1 ≤ i ≤ n.

Taking vi = u⊤Ai − ⌊uAi⌋ for 1 ≤ i ≤ p, we obtain
p∑

i=1

πixi =

p∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ = π0

is a C-G inequality for all u ∈ Rm
+ such that A⊤

C u ≥ 0

91/96

The Chvátal-Gomory Procedure

1 Choose a weight vector u ∈ Rm
+ such that A⊤

C u ≥ 0.
2 Obtain the valid inequality

∑p
i=1(u

⊤Ai)xi ≤ u⊤b.
3 Round the coefficients down to obtain

∑p
i=1⌊u⊤Ai⌋xi ≤ u⊤b.

4 Finally, round the right hand side down to obtain the valid
inequality

p∑
i=1

⌊u⊤Ai⌋xi ≤ ⌊u⊤b⌋

This procedure is called the Chvátal-Gomory rounding
procedure, or simply the C-G procedure.

Surprisingly, for pure ILPs (p = n), any inequality valid for
conv(S) can be produced by a finite number of iterations of this
procedure!

This is not true for the general mixed case.

92/96

Gomory Inequalities

Consider the set of solutions to a pure ILP with one equation:

T =

x ∈ Zn
+ |

n∑
j=1

ajxj = a0

For each j, let fj = aj − ⌊aj⌋. Then equivalently

T =

x ∈ Zn
+ |

n∑
j=1

fjxj = f0 + ⌊a0⌋ −
n∑

j=1

⌊aj⌋xj

Since

∑n
j=1 fjxj ≥ 0 and f0 < 1, then ⌊a0⌋ −

∑n
j=1⌊aj⌋xj ≥ 0 and so

n∑
j=1

fjxj ≥ f0

is a valid inequality for S called a Gomory inequality.

93/96

Outline

1 Introduction

2 Modeling and Formulation

3 Branch and Bound

4 Bounding

5 Branching

6 Cutting Plane

7 Branch and Cut

94/96

Branch and Cut

Branch and cut is an LP-based branch-and-bound scheme in
which the linear programming relaxations are augmented by
valid inequalities.

The valid inequalities are generated dynamically using
separation procedures.

We iteratively try to improve the current bound by adding valid
inequalities.

In practice, branch and cut is the method typically used for
solving difficult mixed-integer linear programs.

It is a very complex amalgamation of techniques whose
application must be balanced very carefully.

95/96

Computational Components of Branch and Cut

Modular algorithmic components
Initial preprocessing and root node processing
Bounding
Cut generation
Primal heuristics
Node pre/post-processing (bound improvement, conflict analysis)
Node pre-bounding

Overall algorithmic strategy
Search strategy
Bounding strategy
Branching strategy

96/96

Tradeoffs

Control of branch and cut is about tradeoffs.

We are combining many techniques and must adjust levels of
effort of each to accomplish an end goal.

Algorithmic control is an optimization problem in itself!

Many algorithmic choices can be formally cast as optimization
problems.

What is the objective?
Time to optimality
Time to first "good" solution
Balance of both?

	Introduction
	Modeling and Formulation
	Branch and Bound
	Bounding
	Branching
	Cutting Plane
	Branch and Cut

