
Primal-Dual Hybrid Gradient Algorithm for Linear Programming

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2025.html

Acknowledgement: this slides is Prepared by Zhonglin Xie

1 / 29

http://bicmr.pku.edu.cn/~wenzw/bigdata2025.html 


Mathematical Formulation: LP Problem
General LP Problem:

min
x∈Rn

c⊤x

s.t. ℓc ≤ Ax ≤ uc

ℓv ≤ x ≤ uv

Deriving the Lagrangian:
▶ Introduce dual variables for constraints to form unconstrained problem
▶ Rewrite constraints: Ax − uc ≤ 0, ℓc − Ax ≤ 0, x − uv ≤ 0, ℓv − x ≤ 0
▶ Associate non-negative multipliers y−, y+, r−, r+ with each inequality

Lagrangian Function:

L(x , y−, y+, r−, r+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) (1)
+ (r−)⊤(x − uv ) + (r+)⊤(ℓv − x) (2)

where all multipliers are non-negative
2 / 29



Deriving the Dual Problem

Derivation: Group x terms and form the dual function

L(x , y−, y+, r−, r+) =x⊤(c + A⊤(y− − y+) + (r− − r+)) (3)
− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv (4)

The minimum over x is −∞ unless c + A⊤(y− − y+) + (r− − r+) = 0

Dual Problem: Using substitutions y = y+ − y− and r = r+ − r−

max
y∈Rm,r∈Rn

− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv

s.t. c − A⊤y = r
y−, y+, r−, r+ ≥ 0

3 / 29



Dual Problem Formulation
Simplified notation: Define p(y ; ℓ, u) := u⊤y+ − ℓ⊤y− where y+ = max(y , 0) and
y− = max(−y , 0)

Rewriting the dual:

max
y∈Rm,r∈Rn

− p(−y ; ℓc , uc) − p(−r ; ℓv , uv )

s.t. c − A⊤y = r
y ∈ Y, r ∈ R

Dual feasible sets Y and R: Based on constraint types

Yi :=


{0} (ℓc)i = −∞, (uc)i = ∞ (unconstrained)
R− (ℓc)i = −∞, (uc)i ∈ R (upper bound)
R+ (ℓc)i ∈ R, (uc)i = ∞ (lower bound)
R otherwise (both upper and lower bounds)

Ri :=


{0} (ℓv )i = −∞, (uv )i = ∞
R− (ℓv )i = −∞, (uv )i ∈ R
R+ (ℓv )i ∈ R, (uv )i = ∞
R otherwise

4 / 29



Saddle Point Formulation of LP
▶ Keeping the bounds on x , we obtain the Lagrangian function:

L(x , y−, y+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax)

▶ Using the notation y = y+ − y− and the function p(y ; ℓ, u) = u⊤y+ − ℓ⊤y−:

(y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) = −((y−)⊤uc − (y+)⊤ℓc) + (y− − y+)⊤(Ax)
= −p(−y ; ℓc , uc) − y⊤(Ax)

▶ Then the saddle point problem is:

min
x

max
y

{c⊤x + y⊤(Ax) − p(−y ; ℓc , uc)} s.t. ℓv ≤ x ≤ uv

Final saddle point formulation:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

where X := {x ∈ Rn : ℓv ≤ x ≤ uv }
5 / 29



Problems with Classical Solvers for Large-Scale LP

▶ Simplex Method:
▶ Iterations potentially exponential in problem size
▶ Poor parallelization on modern hardware

▶ Interior Point Methods (IPMs):
▶ Memory requirements: O(nnz(A)) for matrix factorization
▶ Often exceeds 1TB for problems with billions of nonzeros

▶ First-Order Methods:
▶ Low memory requirements
▶ Highly parallelizable matrix-vector operations
▶ But historically struggle with achieving high accuracy
▶ Small constraint violations can lead to significant errors

6 / 29



First-Order Methods for LP

▶ State-of-the-art First-Order Method Solvers:
▶ SCS: ADMM-based solver with homogeneous self-dual embedding
▶ OSQP: ADMM-based for convex quadratic programming
▶ ECLIPSE: Gradient descent on smoothed dual formulation
▶ ABIP/ABIP+: Interior-point solvers using ADMM

▶ PDHG (Primal-Dual Hybrid Gradient) Advantages:
▶ Requires only matrix-vector products: Ax and A⊤y
▶ No matrix factorization or systems of equations
▶ Form of operator splitting (related to ADMM)
▶ Linear convergence for LP established in theory

7 / 29



Generic Convex-Concave Saddle Point Problems

General Form:
min
x∈X

max
y∈Y

L(x , y) = ⟨Kx , y⟩ + g(x) − f ∗(y)

Key components:
▶ K : Linear operator (matrix) mapping primal to dual space
▶ g(x): Convex function (often includes constraints on x)
▶ f ∗(y): Convex conjugate of function f (handles dual constraints)

Convex Conjugate Definition: For any convex function f

f ∗(y) = sup
x

{⟨x , y⟩ − f (x)}

This transforms constraints into penalties in the optimization

8 / 29



PDHG: Abstract Form

Primal-Dual Hybrid Gradient Algorithm:

xk+1 = proxτg(xk − τK ∗yk) (5)
yk+1 = proxσf ∗(yk + σK (2xk+1 − xk)) (6)

Proximal Operator: A generalization of projection

proxτg(z) = arg min
x

{
g(x) + 1

2τ
∥x − z∥2

}
Moreau Decomposition: Allows computing proximal operator of f ∗ using f

proxσf ∗(y) = y − σ · proxf /σ(y/σ)

This is crucial for implementing PDHG efficiently without explicitly forming the conjugate
function!

9 / 29



Applying PDHG to LP Problems
For LP saddle point problem:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

We identify:
▶ K = A (linear constraint matrix)
▶ g(x) = c⊤x + δX (x) (objective + variable bounds)
▶ f ∗(y) = p(y ; −uc , −ℓc) (constraint bounds)

Computing proximal operators:

proxτg(z) = projX (z − τc) (7)
proxσf ∗(y) = y − σ · proj[−uc ,−ℓc ](y/σ) (8)

where projections enforce the constraints efficiently
10 / 29



PDHG Algorithm for LP

PDHG iterations for LP:

xk+1 = proj[ℓv ,uv ](xk − τ(c + A⊤yk)) (9)
ỹk+1 = yk + σA(2xk+1 − xk) (10)
yk+1 = ỹk+1 − σproj[−uc ,−ℓc ](ỹk+1/σ) (11)

Key benefits:
▶ Only requires matrix-vector products (Ax and A⊤y)
▶ Projections computed element-wise (highly parallelizable)
▶ No matrix factorization or linear systems to solve
▶ Memory-efficient for very large-scale problems

11 / 29



Convergence Theory for PDHG on LP
Step Size Parameterization:
▶ τ = η/ω and σ = ωη with η ∈ (0, ∞), ω ∈ (0, ∞)

▶ Convergence guaranteed when η < 1/∥A∥2

▶ ω: primal weight, controls scaling between primal and dual iterates

Special Norm for Convergence Analysis:

∥z∥ω :=

√
ω∥x∥2

2 + ∥y∥2
2

ω

for z = (x , y) - Used in convergence theory, restart criteria, and primal-dual balance

Linear convergence: Under certain conditions, PDHG converges linearly for LP:

∥zk − z∗∥ω ≤ C(1 − γ)k

where γ ∈ (0, 1) depends on problem structure
12 / 29



Main Algorithm

Algorithm PDLP (Main Structure)
1: Input: Initial solution z0,0

2: Initialize outer loop counter n← 0, total iterations k ← 0
3: Initialize step size η̂0,0 ← 1/∥A∥∞, primal weight ω0 ← InitializePrimalWeight
4: repeat
5: t ← 0 {Inner restart loop counter}
6: repeat
7: zn,t+1, ηn,t+1, η̂n,t+1 ← AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
8: z̄n,t+1 ← 1∑t+1

i=1
ηn,i

∑t+1
i=1 ηn,i zn,i {Step-size weighted average}

9: zn,t+1
c ← GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0)

10: t ← t + 1, k ← k + 1
11: until restart or termination criteria holds
12: restart the outer loop: zn+1,0 ← zn,t

c , n← n + 1
13: ωn ← PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
14: until termination criteria holds
15: Output: zn,0

13 / 29



PDLP Key Improvements Overview

▶ Adaptive step sizes: Dynamic adjustment based on convergence conditions

▶ Restart strategies: Reset algorithm when progress slows

▶ Primal weight updates: Balance progress in primal and dual spaces

▶ Special Norm for Convergence Analysis:

∥z∥ω :=

√
ω∥x∥2

2 + ∥y∥2
2

ω

for z = (x , y) - Used in convergence theory, restart criteria, and primal-dual balance

14 / 29



Adaptive Step Size

Traditional PDHG: Fixed step size η = 1
∥A∥2

▶ Overly pessimistic

▶ Requires estimation of ∥A∥2

PDLP Approach: Adaptive step size based on convergence condition
▶ Calculate maximum allowable step size:

η̄ = ∥zk+1 − zk∥2
ω

2(yk+1 − yk)⊤A(xk+1 − xk)

▶ This ensures the iteration remains convergent

15 / 29



Adaptive Step Size Algorithm

Algorithm One step of PDHG with adaptive step size
1: function AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
2: (x , y)← zn,t , η ← η̂n,t

3: for i = 1, . . . ,∞ do
4: x ′ ← projX (x − η

ωn (c − A⊤y))
5: y ′ ← y − A(2x ′ − x)− ηωnproj[ℓc ,uc ]

(
(ηωn)−1y − A(2x ′ − x)

)
6: η̄ ← ∥(x′−x,y′−y)∥2

ωn
2(y′−y)⊤A(x′−x)

7: η′ ← min
(

(1− (k + 1)−0.3)η̄, (1 + (k + 1)−0.6)η
)

8: if η ≤ η̄ then
9: return (x ′, y ′), η, η′

10: end if
11: η ← η′

12: end for

Key Properties:
▶ Guarantee convergence: Only accept step if η ≤ η̄

▶ Aggressive adaptation: Next step size η′ can grow up to factor of (1 + (k + 1)−0.6)
▶ Conservative decay: If step rejected, reduce by approximately factor (1 − (k + 1)−0.3)

16 / 29



Normalized Duality Gap and Adaptive Restarts

Normalized Duality Gap Definition:

ρn
r (z) := 1

r max
∥ẑ−z∥ω≤r

{L(x , ŷ) − L(x̂ , y)}

where L(x , y) = c⊤x + y⊤Ax − p(y ; −uc , −ℓc) is the Lagrangian.

Key Properties:
▶ Always finite (bounded by search radius)

▶ Zero if and only if solution is optimal

▶ Provides a meaningful measure of progress toward optimality

Notation: µn(z , zref) := ρn
∥z−zref∥ωn (z), where zref is a user-chosen reference point (typically

start of current restart)

17 / 29



Adaptive Restart Criteria
PDLP Parameters:

βnecessary = 0.9, βsufficient = 0.1, βartificial = 0.5

Restart triggered when any of these criteria hold:
▶ Sufficient decay:

µn(zn,t+1
c , zn,0) ≤ βsufficientµn(zn,0, zn−1,0)

Guarantees linear convergence on LP problems

▶ Necessary decay + no progress:

µn(zn,t+1
c , zn,0) ≤ βnecessaryµn(zn,0, zn−1,0)

and µn(zn,t+1
c , zn,0) > µn(zn,t

c , zn,0)

Detects when progress begins to stall

▶ Long inner loop: t ≥ βartificialk
18 / 29



Restart Mechanism - Implementation Details

Restart Candidate Selection:

GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0) =
{

zn,t+1 if µn(zn,t+1, zn,0) < µn(z̄n,t+1, zn,0)
z̄n,t+1 otherwise

Implementation Note:
▶ Restart criteria evaluated every 64 iterations to reduce overhead

▶ Makes minimal impact on total iteration count

▶ Running averages z̄n,t+1 weighted by step sizes

19 / 29



Primal Weight Updates
Motivation: Balance progress in primal and dual spaces
▶ For optimal convergence, we want equal progress in both spaces:

∥(xn,t − x∗, 0)∥ωn = ∥(0, yn,t − y∗)∥ωn

▶ This yields the ideal primal weight:

ωn = ∥yn,t − y∗∥2
∥xn,t − x∗∥2

Implementation:
▶ Estimate using consecutive iterates:

∆n
x = ∥xn,0 − xn−1,0∥2, ∆n

y = ∥yn,0 − yn−1,0∥2

▶ Apply log-scale exponential smoothing:

ωn = exp
(

θ log
(∆n

y
∆n

x

)
+ (1 − θ) log(ωn−1)

)
20 / 29



Primal Weight Update Algorithm

Algorithm Primal weight update
1: function PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
2: ∆n

x = ∥xn,0 − xn−1,0∥2, ∆n
y = ∥yn,0 − yn−1,0∥2

3: if ∆n
x > ε0 and ∆n

y > ε0 then

4: return exp
(

θ log
(

∆n
y

∆n
x

)
+ (1− θ) log(ωn−1)

)
5: else
6: return ωn−1

7: end if

Key innovation: Updates only occur after restarts
▶ Allows larger weight changes without causing instability

▶ Focuses on balancing distance traveled rather than residuals

▶ Significantly improves performance compared to per-iteration updates

21 / 29



GPU vs. CPU Architecture

CPU Design:
▶ Few cores (16-64) with deep pipelines

▶ Optimized for sequential processing

▶ Sophisticated branch prediction

▶ Limited memory bandwidth (100-200
GB/sec)

GPU Design:
▶ Thousands of cores (7296 on NVIDIA

H100)

▶ Single Instruction Multiple Data (SIMD)

▶ Optimized for parallel computation

▶ Very high memory bandwidth (2 TB/sec)

Why GPUs for LP?
▶ Previous attempts failed with simplex/IPM methods

▶ First-order methods like PDHG rely on matrix-vector operations

▶ PDLP’s core operations highly parallelizable

22 / 29



GPU Thread Hierarchy and Execution Model
Thread Hierarchy:
▶ Thread: Basic execution unit

▶ Warp: 32 threads executing in lockstep

▶ Block: Group of threads with shared memory

▶ Grid: Collection of blocks executing same
kernel

Implications for PDLP:
▶ Matrix-vector operations highly parallelizable

▶ Each thread can process individual vector
elements

▶ Challenge: Reducing CPU-GPU
communication overhead

23 / 29



cuPDLP.jl: Design Principles

Minimizing CPU-GPU Communication:
▶ Initial transfer: Problem instance from CPU

to GPU

▶ Final transfer: Solution from GPU to CPU

▶ All iterations computed entirely on GPU

Implementation Framework:
▶ Implemented in Julia using CUDA.jl

▶ Custom CUDA kernels for PDHG updates

▶ cuSPARSE library for sparse matrix operations

Read

Preconditioning

Return

Restarted PDHG 

Evaluate 
progress metric 

Solution

LP instance

Scaled LP

Solution

CPU

GPU

Infeasibility 
detection 

24 / 29



Key Acceleration Points

Matrix and Vector Operations:
▶ Sparse matrix stored in Compressed Sparse Row (CSR) format

▶ Matrix-vector multiplication via cuSPARSE library

▶ Custom CUDA kernels for vector operations and projections

▶ One thread per vector element for maximum throughput

KKT-Based Restart Scheme:
▶ Original PDLP: Trust-region algorithm for normalized duality gap

▶ Sequential nature - poor fit for GPU architecture

▶ cuPDLP.jl innovation: KKT error-based restart
▶ Highly parallelizable computation
▶ Maintains convergence properties

25 / 29



KKT-Based Restart Details
KKT Error Definition:

KKTω(z) =

√
ω2

∥∥∥∥(
Ax − b

[h − Gx ]+
)∥∥∥∥2

2
+ 1

ω2 ∥c − K⊤y − λ∥2
2 + (q⊤y + l⊤λ+ − u⊤λ− − c⊤x)2

Restart Candidate Selection:

zn,t+1
c =

{
zn,t+1 if KKTωn(zn,t+1) < KKTωn(z̄n,t+1)
z̄n,t+1 otherwise

Restart Conditions: Algorithm restarts if any of these holds:
▶ Sufficient decay: KKTωn(zn,t+1

c ) ≤ 0.2 · KKTωn(zn,0)

▶ Necessary decay + no progress: KKTωn(zn,t+1
c ) ≤ 0.8 · KKTωn(zn,0) and no

improvement

▶ Long inner loop: Iteration count exceeds threshold
26 / 29



Primal and Dual Updates on GPU

Primal Update CUDA Kernel:
▶ Input: xk , yk , c, A, τ , lower/upper bounds

▶ Parallel operations:
▶ Matrix-vector product: A⊤yk (via cuSPARSE)
▶ Vector addition: c − A⊤yk

▶ Projection onto bounds: projX (xk − τ(c − A⊤yk))

Dual Update CUDA Kernel:
▶ Input: xk+1, xk , yk , A, σ, constraint bounds

▶ Parallel operations:
▶ Extrapolation: 2xk+1 − xk

▶ Matrix-vector product: A(2xk+1 − xk) (via cuSPARSE)
▶ Projection onto bounds for constraint relaxation
▶ Final dual update computation

27 / 29



Performance vs. Gurobi: Moderate Accuracy (10−4)

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
Primal simplex 268 12.56 69 188.81 11 3145.49 348 39.81
Dual simplex 268 8.75 84 66.67 15 591.63 367 21.75

Barrier 268 5.30 88 45.01 18 415.78 374 14.92

Key Observations:
▶ cuPDLP.jl solves 377/383 instances (98.4%)

▶ Clear advantage on medium and large instances:
▶ 3x faster than simplex on medium instances
▶ 3.7x faster than barrier on large instances

▶ Especially strong for problems with complex structures
28 / 29



Performance vs. CPU PDLP

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21 347 66.67

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91 356 43.81
PDLP (4 threads) 260 24.03 91 42.94 15 736.20 366 34.57
PDLP (16 threads) 238 104.72 84 142.79 15 946.24 337 127.49

GPU Speedup vs. CPU:
▶ vs. FirstOrderLp.jl: 4x on small, 10x on medium, 18x on large instances

▶ vs. PDLP with 4 threads: 2.9x overall speedup

▶ Solved 30 more instances than FirstOrderLp.jl at tolerance 10−4

▶ Speedup increases with problem size
29 / 29


	Introduction: PDHG for LP
	PDHG Algorithm
	PDLP: Practical Improvements
	GPU Implementation
	GPU Performance Results

