Infinite-Horizon Dynamic Programming

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Acknowledgement: this slides is based on Prof. Mengdi Wang'’s and Prof. Dimitri
Bertsekas’ lecture notes
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(i

1) M4 T % ¥ . Richard S. Sutton and Andrew G. Barto,
Reinforcement Learning: An Introduction,
http://incompleteideas.net/book/the-book-2nd.html

@ Chapter 2: Multi-armed Bandits
@ Chapter 3: Finite Markov Decision Processes
@ Chapter 4: Dynamic Programming
@ Chapter 5: Monte Carlo Methods
@ Chapter 6: Temporal-Difference Learning
@ Chapter 9: On-policy Prediction with Approximation
@ Chapter 10: On-policy Control with Approximation
@ Chapter 13: Policy Gradient Methods
2) 2V AEHEFH = Example. mRALF, MAXEALLS .
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Outline

6 Infinite-Horizon DP: Theory and Algorithms
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Infinite-Horizon Discounted Problems/Bounded Cost

@ Stationary system

Xk+1 :f(xkaukawk)7 k=0,1,...
@ Cost of a policy m = {uo, pt1, .-}

N—1

Jr(xo) = lm By, i=o,1,... > aF g, i), wi)
k=0

with a < 1, and g is bounded [for some M , we have
lg(x, u,w)| < M for all (x,u,w)]

@ Optimal cost function is defined as
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Infinite-Horizon Discounted Problems/Bounded Cost

@ Boundedness of g guarantees that all costs are well-defined and
bounded:

M
‘Jﬂ'('x) S l_a

@ All spaces are arbitrary - only boundedness of g is important
(there are math fine points, e.g. measurability, but they don’t
matter in practice)

@ Important special case with finite space: Markovian Decision
Problem

@ All algorithms ultimately work with a finite spaces MDP
approximating the original problem
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Shorthand notation for DP mappings

@ For any function J of x, denote

(TT)(x) = ugll/i&) E.{¢(x,u,w) + aJ(f(x,u,w))}, Vx

@ TJ is the optimal cost function for the one-stage problem with
stage cost g and terminal cost function a.J.

@ T operates on bounded functions of x to produce other bounded
functions of x

@ For any stationary policy p, denote

(TyuT) (x) = Ey{g(x, u(x), w) + aJ (£ (x, u(x), W)}, Vx
@ The critical structure of the problem is captured in T and 7},
@ The entire theory of discounted problems can be developed in
shorthand using 7 and 7,
@ True for many other DP problems.
@ T and T, provide a powerful unifying framework for DP. This is

the essence of the book “Abstract Dynamic Programming” y
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Express Finite-Horizon Cost using T

@ Consider an N-stage policy ) = {10, p1, - - -, iv—1} With @
terminal cost J and 7 = {1, pia, . .., pv—1}:

Jv(x) = E

N—1
aMNI(x) + Y alg(xe, pelxo), Wﬁ)]
=0

= E |:g(x07 po(x0), wo) + QJ”TV()C])]
= (TMOJW?/)(XO)

@ By induction, we have JWSJ(XO) = (TyuoTpy - Tuy_J)(x), Vx

@ For a stationary policy i the N-stage cost function (with terminal
cost J) is Toy = Tﬁ’J, where Tﬁ’ is the N-fold composition of 7,

@ Similarly the optimal N-stage cost function (with terminal cost J)
is TVJ

e TVJ = T(TV~'J) is just the DP algorithm
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Markov Chain

@ A Markov chain is a random process that takes values on the
state space {1,...,n}.

@ The process evolves according to a certain transition probability
matrix P € R"*" where

P(ixg1 =7 | ik, ig—1,--.,00) = Plixg1 =Jj | ik = 1) = Pjj
@ Markov chain is memoryless, i.e., further evolvements are
independent with past trajectory conditioned on the current state.
@ The “memoryless” property is equivalent to “Markov.”
@ A stateiis recurrent if it will be visited infinitely many times with
probability 1.
@ A Markov chain is said to be irreducible if its state space is a

single communicating class; in other words, if it is possible to get
to any state from any state.

@ When states are modeled appropriately, all stochastic processes

are Markov.
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Markovian Decision Problem

We will mostly assume the system is an n-state (controlled) Markov
chain

@ Statesi=1,...,n (instead of x)

@ Transition probabilities p;,;,, , (u) [instead of xxy1 = f (xx, ux, wi)]
@ stage cost g(ix, ug, ix+1) [instead of g(xk, ug, wi)]

@ cost function J = (J(1),...,J(n)) (vectors in R")

@ cost of a policy m = {uo, pu1, ...}

N—1
(i) = lim Ejporn %O‘kg(ihﬂk(ik)vik—kl) lig = i

@ MDP is the most important problem in infinite-horizon DP
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Markovian Decision Problem

@ Shorthand notation for DP mappings

Q) = min > py()(elin)) +al(), i=1,...

(TN = > pyp)) (gl uli). ) + (), i=1,...

j=1
@ Vector form of DP mappings
TJ = min{g, + aP,J}
I
and
T,J = g+ aP,J
where

gul)) = Y pi(u(i)g(i, p(0).),  Pulij) = pis(u(i))
j=1

10/71



Two Key properties

@ Monotonicity property: For any J and J’ such that J(x) < J'(x) for
all x, and any p

(T1)(x) < (T)(x),  (Tpd)(®) < (Tu))(x), Vo
@ Constant Shift property: For any J, any scalar r, and any p
(T(J +re))(x) = (TT)(x) +ar, (Tu(J+re))(x) = (TuJ)(x)+ar, Vx

where e is the unit function [e(x) = 1].
@ Monotonicity is present in all DP models (undiscounted, etc)
@ Constant shift is special to discounted models

@ Discounted problems have another property of major
importance: 7 and 7, are contraction mappings (we will show
this later)
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Convergence of Value lteration

For all bounded Jy, we have J*(x) = lim ;o (T*Jo)(x), for all x

Proof. For simplicity we give the proof for Jo = 0. For any initial state

x0, and policy = = {po, 1, - - -},

JW(X()) E

Z O[gg()(g, ;U’Z(xf)a W@)]
£=0
k—1

= E|D_a“gle, pe(xe),we) | +E
£=0 l=k
The tail portion satisfies
B | gl el wo) || < 221
o X, X, w
2 8\WXes el Xe)swe) || = 77

oo
ot g(xe, pe(xe), we)

|

where M > |g(x,u,w)|. Take min over 7 of both sides, then lim as

k— oo
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Proof of Bellman’s equation

The optimal cost function J* is a solution of Bellman’s equation,
J*=TJ*, i.e., for all x,

J* (X) = urenl}gc) Ew{g(x? u, w) + o (f (x, u, W))}

Proof. For all x and k, J*(x) — &4 < (TkJp)(x) < J*(x) + 24 where
Jo(x) =0and M > |g(x,u, w)|. Applying T to this relation, and using
Monotonicity and Constant Shift,

oM

1l —«o

fvanny V4

1 -«

(T77)(x) =

< (T o) (x) < (TT7) (x) +

Taking the limit as k — oo and using the fact
limy o0 (T¥1J5) (x) = J*(x) we obtain J* = TJ*.
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The Contraction Property

Contraction property: For any bounded functions J and J/, and any g,

max [(T7)(x) = (T/)(x)| < amax|J(x) - J'(x)],

X

max |(T,J) () — (T,)) (@) < amax|J(x) — 7' ()

Proof. Denote ¢ = maxeg |[/(x) — J'(x)|. Then
J(x) —c<J(x) <J(x)+c, Vx

Apply T to both sides, and use the Monotonicity and Constant Shift
properties:

(TJ)(x) — ac < (TJ")(x) < (TT)(x) + ac, Vx

Hence, |(TJ)(x) — (TJ")(x)| < ac, Vx.
This implies that 7, 7,, have unique fixed points. Then J* is the unique

solution of J* = 7J*, and J,, is the unique solution of J,, = T,,J,,
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Necessary and Sufficient Optimality Condition

A stationary policy p is optimal if and only if u(x) attains the minimum
in Bellman’s equation for each x; i.e.,

TJ* =T,J%,
or, equivalently, for all x,

u(x) € arg min Ey{g(x,u,w) + o (F(x,u,w))}

uel(x)
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Proof of Optimality Condition

Proof: We have two directions.

e If 7J* = T,,J*, then using Bellman’s equation (J* = 7J*), we have
J* =T,J*, so by uniqueness of the fixed point of 7,,, we obtain
J* =Jy;ie., pis optimal.

@ Conversely, if the stationary policy p is optimal, we have J* = J,,,
so J* = T,J*. Combining this with Bellman’s Eq. (J* = TJ*), we
obtain 77* = T,J*.

16/71



Two Main Algorithms

Value lteration
Solve the Bellman equation J* = TJ* by iterating on the value
functions:

Ji+1 = Ty,

or

i1 (0) mmZp,j (i,u,j) + adi(j))

fori=1,...,n
@ The program only needs to memorize the current value function
J.
@ We have shown that J, — J* as k — oo.

Policy lteration
Solve the Bellman equation J* = TJ* by iterating on the policies
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Policy lteration (PI)

Given u, the k-th policy iteration has two steps

@ Policy evaluation: Find J . by J,x = T,xJ 4« or solving
k l) = Zplj(:uk(l))(g(lv Mk(l)v.]) + a‘],u"(j))v i=1,...,n
j=1
@ Policy improvement: Let 1441 be such that 7)1/ 4 = TJ 4 or

(i) € arg min Zpu (8(i, u,j) + el i ()

Policy iteration is a method that updates the policy instead of the
value function.
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Policy lteration (PI)

More abstractly, the k-th policy iteration has two steps

@ Policy evaluation: Find J,« by solving

Jpo = Tpd o = g + P

@ Policy improvement: Let /! be such that 7,1/, = TJ 4

Comments:

@ Policy evaluation is equivalent to solving an n x n linear system
of equations

@ Policy improvement is equivalent to 1-step lookahead using the
evaluated value function

@ For large n, exact Pl is out of the question . We use instead
optimistic PI (policy evaluation with a few VIs)
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Convergence of Policy lteration

Assume that the state and action spaces are finite. The policy
iteration generates y; that converges to the optimal policy p* in a
finite number of steps.

Proof. We show that J,« > J 1 for all k. For given &, we have

Jp=T,

Iy #k.,#k > TJ“k = Tuk+ljﬂk

Using the monotonicity property of DP,

2 . N
Juk > Tuk-',-l.luk > Tu""']‘]#k > ... > Nh_{rgo Tukﬂfuk

Since limy_so Tl]Z/](+|J“k = Juk+1, we have J#k > Juk+1.

If J,» = J 111, all above inequalities hold as equations, so J,« solves
Bellman’s equation. Hence Jx = J*. Thus at iteration k either the
algorithm generates a strictly improved policy or it finds an optimal
policy. For a finite spaces MDP, the algorithm terminates with an
optimal policy. 2071



“Shorthand” Theory - A Summary

@ Infinite horizon cost function expressions [with Jy(x) = 0]

Jr(x) = lim (T, Ty, -+ Tuy)Jo(x),  Ju(x) = lim (T;JYJO)(X)

N—oo
@ Bellman’s equation J* = 1J*, J, = T,.J,,
@ Optimality condition: 1 is optimal iff 7,,J* = TJ*

@ Value iteration: For any (bounded) J:

J*(x) = lim (T*))(x), Vx

k—00

@ Policy iteration: given pX,
e Policy evaluation: Find J, by solving J,« = T xJ
e Policy improvement: Let **! be such that T 1/, = TJ
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Q-Factors

@ Optimal Q-factor of (x, u) :

Q" (xv u) = E{g(x, u, W) + aJ” (f(xv u, W))}

@ ltis the cost of starting at x, applying « in the 1st stage, and an
optimal policy after the 1st stage

@ The value function is equivalent to

J*(x) = min Q*(x,u),Vx.
(x) Jin. 0 (o, u), Vx

@ Q-factors are costs in an “augmented” problem where states are

(o, u)

@ Here (x,u) is a post-decision state.
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VI in Q-factors

@ We can equivalently write the VI method as

Jer1(x) = min Qpy(x,u), Vx
ueU(x)

where Q1 is generated by
Oik+1(x,u) =E |g(x,u,w) + o min Qr(f(x,u, w),v)

veU(x)

@ VI converges for Q-factors
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Q-factors

@ VI and PI for Q-factors are mathematically equivalent to VI and
PI for costs

@ They require equal amount of computation . .. they just need
more storage

@ Having optimal Q-factors is convenient when implementing an
optimal policy on-line by
p*(x) = arg ug%)Q (x, u)

@ Once Q*(x,u) are known, the model [¢ and E{-}] is not needed.
Model-free operation

@ Q-Learning (to be discussed later) is a sampling method that
calculates O* (x, u) using a simulator of the system (no model
needed)
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MDP and Q-Factors

Optimal Q-factors - the function Q(i, ) that satisfies the following
Bellman equation

Zpy ( g(i,u,j) +ar€an(J ))

or in short 0* = FQ*.

Interpretation Q-factors can be viewed as J values by considering
(i,u) as the post-decision state

DP Algorithm for Q-values instead of J-values
@ Value lteration: Qy11 = FQy
@ Policy evaluation: 0, = F,,Q,,
@ Policy improvement: F,, ., 0, = FQ,,
@ VI and PI are convergent for Q-values

@ Model-free. 25/71



Other DP Models

@ We have looked so far at the (discrete or continuous spaces)
discounted models for which the analysis is simplest and results are
most powerful

@ Other DP models include:

@ Undiscounted problems (« = 1): They may include a special
termination state (stochastic shortest path problems)

@ Continuous-time finite-state MDP : The time between transitions is
random and state-and-control-dependent (typical in queueing systems,
called Semi-Markov MDP ). These can be viewed as discounted
problems with state-and-control-dependent discount factors

@ Continuous-time, continuous-space models : Classical automatic
control, process control, robotics

@ Substantial differences from discrete-time

@ Mathematically more complex theory (particularly for stochastic
problems)

@ Deterministic versions can be analyzed using classical optimal control
theory
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Outline

e DP is a special case of LP
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(Optional) Formalism: MDP

@ Markov Decision Processes (MDPs). An MDP is a 5-tuple,
(S,A,R, P, po), where

@ Sis the set of all valid states,
@ A is the set of all valid actions,
@ R: S xA xS — Risthe reward function, with r, = R(s;, a;, s1+1),

@ P:SxA— P(S)is the transition probability function, with
P(s'|s,a) being the probability of transitioning into state s’ if you
start in state s and take action q,

@ and p is the starting state distribution.

@ The name Markov Decision Process refers to the fact that the
system obeys the ‘Markov property’: transitions only depend on
the most recent state and action, and no prior history.
https://en.wikipedia.org/wiki/Markov_property
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Look at the Bellman Equation Again

Consider a MDP model with
@ Statesi=1,...,n

@ Probability transition matrix under policy p is P, € R"*"

@ Reward of transition is g, € R”
The Bellman equation is

J=min g, +aP,J
"

This is a nonlinear system of equations.

Note: The righthandside is the infimum of a number of linear
mappings of J!
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DP is a special case of LP

Every finite-state DP problem is an LP problem. \

Let ¢ > 0. We construct the following LP

max ciJ(1)+ ...+ cJ(n)
st J(I) < Zp,-j(u)giju + Zp,-j(u)J(j), YueA
j=1 J=1
or more compactly

max c'J
st. J<gu+taP,J,VuecA

@ The variables are J(i) where i = 1, ..., n.

@ For each state action pair (i, u), there is an inequality constraint.
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DP is a special case of LP

IfJ <TJ,thenJ <J*. IfJ > TJ,thenJ > J*.

@ Suppose that J < TJ. Applying operator T on both sides k — 1
times, and by the monotonicity of 7, we have

J<TI<T<..<T.

Note that limy_, T%J = J*. Hence, we have J < J* .
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DP is a special case of LP

This solution to the constructed LP

max c'J
st. J<gu+taP,J,VucA

is exactly the solution to the Bellman’s equation

J=ming, +P,J
1%

V.

Proof: The solution J* to the Bellman equation is obviously a feasible
solution to the LP. If the LP solution J is different from J*, it must solve
the Bellman equation at the same time. Since the Bellman equation
has a unique solution, J* = J.
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ADP via Approximate Linear Programming

The constructed LP is of huge scale.

max c¢'J
st. J<gu+aP,J VuecA

Approximate LP:

@ We may approximate J by adding the constraint J = ®o, so the
variable dimension becomes smaller.

@ We may sample a subset of all constraints, so the constraint
dimension becomes smaller.

@ LP and Approximate LP can be solved by simulation/online.
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Outline

e A Premier on ADP
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Practical Difficulties of DP

@ The curse of dimensionality

@ Exponential growth of the computational and storage requirements as
the number of state variables and control variables increases

@ Quick explosion of the number of states in combinatorial problems
@ The curse of modeling

@ Sometimes a simulator of the system is easier to construct than a
model

@ There may be real-time solution constraints

@ A family of problems may be addressed. The data of the problem to be
solved is given with little advance notice

@ The problem data may change as the system is controlled - need for
on-line replanning

@ All of the above are motivations for approximation and simulation
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General Orientation to ADP

@ ADP (late 80s - present) is a breakthrough methodology that
allows the application of DP to problems with many or infinite
number of states .

@ Other names for ADP are: “reinforcement learning” (RL),
“neuro-dynamic programming” (NDP), “adaptive dynamic
programming” (ADP).

@ We will mainly adopt an n-state discounted model (the easiest
case - but think of HUGE n).

@ Extensions to other DP models (continuous space,
continuous-time, not discounted) are possible (but more quirky).
We will set aside for later.

@ There are many approaches: Problem approximation,
Simulation-based approaches.

@ Simulation-based methods are of three types: Rollout (we will
not discuss further), Approximation in value space,

Approximation in policy space
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Why do we use Simulation?

@ One reason: Computational complexity advantage in computing
sums/expectations involving a very large number of terms
@ Any sum " | a; can be written as an expected value:

n n a; B &

where ¢ is any probability distribution over {1,... n}

@ It can be approximated by generating many samples {ii, ..., ix }
from {1,...,n}, according to distribution &, and Monte Carlo
averaging:

Suenff- 15
a; = &l ~ — 7
i=1 § k =1 y
@ Simulation is also convenient when an analytical model of the

system is unavailable , but a simulation/computer model is
possible.
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Solve DP via Simulation

@ Ideally, VI and PI solve the fixed equation: finding J* such that
J* = min{g, + aP,J"}
1

@ Practically, we often wish to solve Bellman’s equation without
knowing P,,, g.

@ What we do have: a simulator that starts from state i, given
action a, generate random samples of transition costs and future
state (i, inext: @), inext

Example: Optimize a trading policy to maximize profit

@ Current transaction has unknown market impact

@ Use current order book as states/features

Example: stochastic games, Tetris, hundreds of millions of states,
captured using 22 features
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Outline

e Dimension Reduction in RL
@ Approximation in value space
@ Approximation in policy space
@ State Aggregation
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Approximation in value space

@ Approximate J* or J,, from a parametric class J(i; o) where i is
the current state and o = (04, ..., 04,) is a vector of “tunable”
scalars weights

@ Use J in place of J* or J,, in various algorithms and computations

@ Role of ¢ : By adjusting o we can change the “shape” of J so that
it is “close” to J* or J,

@ A simulator may be used, particularly when there is no
mathematical model of the system (but there is a computer
model)

@ We will focus on simulation , but this is not the only possibility

@ We may also use parametric approximation for Q-factors or cost
function differences

40/71



Approximation Architectures

Two key issues:

@ The choice of parametric class J(i; o) (the approximation
architecture)

@ Method for tuning the weights (“training” the architecture)

Success depends strongly on how these issues are handled ... also
on insight about the problem

@ Divided in linear and nonlinear [i.e., linear or nonlinear
dependence of J(i;0) on o]

@ Linear architectures are easier to train, but nonlinear ones (e.g.,
neural networks) are richer
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Computer chess example

@ Think of board position as state and move as control

@ Uses a feature-based position evaluator that assigns a score (or
approximate Q-factor) to each position/move

Features:

Material balance,

Mobility,
Feature Weighting
Extraction of Features

1
1
1
1
1
1
:
1
Safety, etc
atetysete ! Score
1
1
1
1
1
1
1
h

Position Evaluator

@ Relatively few special features and weights, and multistep
lookahead
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Linear Approximation Architectures

@ With well-chosen features, we can use a linear architecture:

J(i;0) = ¢(i)o, i=1,...,n,

or )
Jo = b0 = Z ;0
j=1
®: the matrix whose rows are ¢(i)’,i = 1,...,n, ®; is the jth
column

@ This is approximation on the subspace
S ={®o|o € R°}

spanned by the columns of ® (basis functions)
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Linear Approximation Architectures

Often, the features encode much of the nonlinearity inherent in the

cost function approximated

State i
—

Feature Extraction
Mapping

Feature Vector ¢(7)

Linear
Mapping

Linear Cost

Approximator ¢(i)'r
>

@ Many examples of feature types: Polynomial approximation,
radial basis functions, etc
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Example: Polynomial type

@ Polynomial Approximation, e.g., a quadratic approximating
function. Let the state be i = (i1, ..., i) (i.e., have ¢
“dimensions”) and define

(b()(l) - 17¢k(l) - ik; ¢km(l) == ikim7k7m - 17 - q

Linear approximation architecture :

J(iso —00+§ Uklk+§ E Olomikim,

k=1 m=k

where ¢ has components oy, oy, and o,.

@ Interpolation : A subset I of special/representative states is
selected, and the parameter vector ¢ has one component o; per
state i € 1. The approximating function is J(i; o) = o;,i € I. J(i;0)
is the interpolation using the values ati € 1,i ¢ I. For example,
piecewise constant, piecewise linear, more general polynomial

interpolations.
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Another Example

State
7/ .
y = [N
Possible ¥ s

actions y N

Possible | =
next states ERER

@ J*(i): optimal score starting from position i
@ Number of states > 229 (for 10 x 20 board)
@ Success with just 22 features, readily recognized by tetris players

as capturing important aspects of the board position (heights of

columns, etc)
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Approximation in Policy Space

@ A brief discussion; we will return to it later.

@ Use parametrization p(i; o) of policies with a vector
o= (o1,...,0%) .

Examples:
@ Polynomial, e.g., u(i;0) = o1 + 02 i + 03 - i?

@ Linear feature-based

wiso) = ¢1(i) - o1 + ¢2(i) - 02
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Approximation in Policy Space

@ Optimize the cost over o. For example:

@ Each value of o defines a stationary policy, with cost starting at
state i denoted by J(i; o).

@ Let (p1,...,pn) be some probability distribution over the states,
and minimize over o: > """, piJ(i;0)

@ Use a random search, gradient, or other method

@ A special case: The parameterization of the policies is indirect,
through a cost approximation architecture J, i.e.,

uli;0) € arg min Zpy ) (8(i,u,) + ad (j; 0))
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Aggregation
@ Afirstidea : Group similar states together into “aggregate states”
X1, - .. ,Xs; @ssign a common cost value o; to each group x;.

@ Solve an “aggregate” DP problem , involving the aggregate
states, to obtain o0 = (074, ..., 05). This is called hard aggregation

&1 963)

7 3 8 T4 9
°

OO OO MO - =
=) = =) = = e = =&
O =M= OOOO OO
| (=) (e {em) (o) (e=) (e=) (e (e
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Aggregation

SO OO MO M =
= == =S (S
(=), [ (e (e {en ] fen) an)(s)
ERSEIEESIORSNSRERE

@ More general/mathematical view : Solve
®o = ¢DT,(Po)

where the rows of D and ¢ are prob. distributions (e.g., D and ¢
“aggregate” rows and columns of the linear system J = T,,J)

@ Compare with projected equation ®o = IIT,,(®c). Note: PD is a

projection in some interesting cases
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Aggregation as Problem Abstraction

Original
System States

pij(uw), 9(i,u,j)
Aggregation
Probabilities

Dy

Disaggregation
Probabilities
dzi

Aggregate States
_——

Pey(u) =D dei > pij(u)diy
i=1 Jj=1
g(x,u) = Z dzi me (w)g(i,u, j)
i=1 F=1

@ Aggregation can be viewed as a systematic approach for
problem approximation. Main elements:

@ Solve (exactly or approximately) the “aggregate” problem by any
kind of VI or Pl method (including simulation-based methods)

@ Use the optimal cost of the aggregate problem to approximate

the optimal cost of the original problem
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Aggregate System Description

@ The transition probability from aggregate state x to aggregate
state y under control u

ny de szj ijya or P( ) DP(”)(I)

where the rows of D and ® are the disaggregation and
aggregation probs.

@ The expected transition cost is

de ZP’J (i,u,j), org=DP(u)g
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Aggregate Bellman’s Equation

@ The optimal cost function of the aggregate problem, denoted R, is
R(x) = IIllIl g(x,u) +a2pxy , Vx

Bellman’s equation for the aggregate problem.

@ The optimal cost function J* of the original problem is
approximated by J given by

()= R0, Vi
y

53/71



Example I: Hard Aggregation

@ Group the original system states into subsets, and view each
subset as an aggregate state

@ Aggregation probs.: ¢;, = 1 if j belongs to aggregate state y.

@ Disaggregation probs.: There are many possibilities, e.g., all
states i within aggregate state x have equal prob. d,;.

@ If optimal cost vector J* is piecewise constant over the aggregate
states/subsets, hard aggregation is exact. Suggests grouping
states with “roughly equal” cost into aggregates.

@ A variant: Soft aggregation (provides “soft boundaries” between
aggregate states).
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Example |I: Feature-Based Aggregation

@ Important question: How do we group states together?

@ If we know good features, it makes sense to group together
states that have “similar features”

@ A general approach for passing from a feature-based state
representation to a hard aggregation-based architecture

@ Essentially discretize the features and generate a corresponding
piecewise constant approximation to the optimal cost function

@ Aggregation-based architecture is more powerful (it is nonlinear
in the features)

@ ... but may require many more aggregate states to reach the
same level of performance as the corresponding linear
feature-based architecture
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Example Ill: Representative States/Coarse Grid

@ Choose a collection of “representative” original system states,
and associate each one of them with an aggregate state

@ Disaggregation probabilities are d,; = 1 if i is equal to
representative state x.

@ Aggregation probabilities associate original system states with
convex combinations of representative states

J~ Z Gjyy
YEA
@ Well-suited for Euclidean space discretization

@ Extends nicely to continuous state space, including belief space
of POMDP

56/71



Feature Extraction is Linear Approximation of High-d

Cost Vector

1
‘
Features: !
Material balance, :
Mobility, !
Safety, etc i
Feature ’ Weighting i Score
Extraction of Features 1
1
1
:
1
Position Evaluator !
gy 1

State i
—»

Feature Extraction
Mapping

Feature Vector ¢(7)

Linear
Mapping

Linear Cost

Approximator ¢(i)r
—
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Outline

e On-Policy Learning
@ Direct Projection
@ Bellman Error Minimization
@ Projected Bellman Equation Method
@ From On-Policy to Off-Policy
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Direct Policy evaluation

@ Approximate the cost of the current policy by using least squares
and simulation-generated cost samples

@ Amounts to projection of J,, onto the approximation subspace

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector Jy,
@ Solution by least squares methods
@ Regular and optimistic policy iteration
@ Nonlinear approximation architectures may also be used
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Direct Evaluation by Simulation

@ Projection by Monte Carlo Simulation: Compute the projection
I1J,, of J,, on subspace § = {®o|o € R*}, with respect to a
weighted Euclidean norm || - ||¢

@ Equivalently, find ®o*, where
* _ : 72— : AN T (1))2
0" = arg min [ B0 — J, | arggehg;s,<¢<z> o — Ju(i)
@ Setting to 0 the gradient at o*,

n =1y
o = (Z g,-¢>(i)¢(i)’> > &id(i)u(0)
i=1 i=1
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Direct Evaluation by Simulation

@ Generate samples {(i1,J,.(i1)),- -, (i, Ju(ix))} using distribution

§

@ Approximate by Monte Carlo the two “expected values” with
low-dimensional calculations

k
Ok = (Z ¢(it)¢(it),> > B uin)
=1 =1

@ Equivalent least squares alternative calculation:

k
o = argmin » (¢(i))'o — Jﬂ(it))2

gERS
=1
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Convergence of Evaluated Policy

@ By law of large numbers, we have

% > olieli) as, % > &gl
i=1

=1

and

1=

S 6 uli) as, - E0(i,(0)
i=1

=1
We have

*
O'ka._s>.0' —HS-IM

@ As the number of samples increases, the estimated low-dim cost
o converges almost surely to the projected J,,.
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Indirect policy evaluation

@ Solve the projected equation
O = 11T, (Po)

where II is projection with respect to a suitable weighted
Euclidean norm

@ Solution methods that use simulation (to manage the calculation
of 1)

@ TD(\): Stochastic iterative algorithm for solving ®o = I1T,,(Po)

@ LSTD(\): Solves a simulation-based approximation with a
standard solver

@ LSPE()\): A simulation-based form of projected value iteration ;
essentially

Qo = IIT,(Poy) + simulation noise

@ Almost sure convergence guarantee
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Bellman Error Minimization

@ Another example of indirect approximate policy evaluation:
min || P — TM(@J)H% (%)

where || - ||¢ is Euclidean norm, weighted with respect to some
distribution ¢

@ ltis closely related to the projected equation/Galerkin approach (with a
special choice of projection horm)

@ Several ways to implement projected equation and Bellman error
methods by simulation. They involve:

e Generating many random samples of states i, using the
distribution ¢

e Generating many samples of transitions (i, jx) using the policy u

e Form a simulation-based approximation of the optimality condition
for projection problem or problem (*) (use sample averages in
place of inner products)

e Solve the Monte-Carlo approximation of the optimality condition

@ Issues for indirect methods: How to generate the samples? How to

calculate o* efficiently?
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Cost Function Approximation via Projected Equations

Ideally, we want to solve the Bellman equation (for a fixed policy )
J=T,J
In MDP, the equation is n x n:
J=gu+aP,J
We solve a projected version of the high-dim equation

J=1l(gy + aP,J)

Since the projection II is onto the space spanned by &, the projected
equation is equivalent to

S0 =1I(g, + aP,Po)

We fix the policy p from now on, and omit mentioning it.
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Matrix Form of Projected Equation

@ The solution ®¢* satisfies the orthogonality condition: The error
Po* — (g + aPPo™)
is “orthogonal” to the subspace spanned by the columns of ®.
@ This is written as
P'E(Po™ — (g + aPDc™)) =0,

where Z is the diagonal matrix with the steady-state probabilities
£1,...,&, along the diagonal.

@ Equivalently, Ca* = d, where
C=0=(I —aP)d, d= =g

but computing C and d is HARD (high-dimensional inner

products).
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Simulation-Based Implementations

@ Key idea: Calculate simulation-based approximations based on k
samples
Ck ~ C, dk ~d

@ Matrix inversion o* = C~!d is approximated by
o) = C,:ldk
This is the LSTD (Least Squares Temporal Differences) Method.

@ Key fact: Cy, dy can be computed with low-dimensional linear
algebra (of order s; the number of basis functions).
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Simulation Mechanics

@ We generate an infinitely long trajectory (io, i1, . . .) of the Markov
chain, so states i and transitions (i,j) appear with long-term
frequencies &; and pj;.

@ After generating each transition (i;, i,+), we compute the row
¢(i;)" of ® and the cost component g(i;, ir41)-

@ We form
1 k
di = M;QB 8(ir ir1) Z&pzﬂﬁ = 0'Eg =d,
Lk
Co = g 2 0l (6(i) — ad(ie)) ~ V(I — aP)® = C

t=0

@ Convergence based on law of large numbers: C; a.s. C,d; a.s, d.
As sample size increases, o, converges a.s. to the solution of
projected Bellman equation.
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Approximate Pl via On-Policy Learning

Outer Loop (Off-Policy RL):

@ Estimate the value function of the current policy y, using linear
features:
Jyu, = ®oy
Inner Loop (On-Policy RL):
o Generate state trajectories ...

e Estimate o, via Bellman error minimization (or direct projection, or
projected equation approach)

@ Update the policy by

p1 (i) = argmin y_ pyi(a)(8(i, a.) + 6() o), Vi
j
Comments:

@ Requires knowledge of p;; (suitable for computer games with
known transitions)

@ The policy 11 is parameterized by ;. o



Approximate Pl via On-Policy Learning

@ Use simulation to approximate the cost J,, of the current policy
@ Generate “improved” policy x by minimizing in (approx.) Bellman

equation

Initial Policy

y

Evaluate Approximate Cost

JuGir)

A

Generate “Improved” Policy &

Approximate Policy
Evaluation

Policy Improvement

Alternatively we can approximate the Q-factors of u
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Theoretical Basis of Approximate Pl

If policies are approximately evaluated using an approximation
architecture such that

max [J(i,00) — J i (i) <d, k=0,1,...,

If policy improvement is also approximate,
max |(Tuk+1.7)(i, or) — (TN(i,01)| <€, k=0,1,...

Error bound: The sequence {u} generated by approximate
policy iteration satisfies
€+ 2ad
. N k[ <
hmksii}):)o mlaX(Juk(l) J (i) < —ar

Typical practical behavior: The method makes steady progress
up to a point and then the iterates J,,« oscillate within a
neighborhood of J*.

In practice oscillations between policies is probably not the major

concern.
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