Infinite-Horizon Dynamic Programming

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Acknowledgement: this slides is based on Prof. Mengdi Wang's and Prof. Dimitri Bertsekas' lecture notes

作业

1) 阅读如下章节: Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction,

http://incompleteideas.net/book/the-book-2nd.html

- Chapter 2: Multi-armed Bandits
- Chapter 3: Finite Markov Decision Processes
- Chapter 4: Dynamic Programming
- Chapter 5: Monte Carlo Methods
- Chapter 6: Temporal-Difference Learning
- Chapter 9: On-policy Prediction with Approximation
- Chapter 10: On-policy Control with Approximation
- Chapter 13: Policy Gradient Methods
- 2) 至少看懂每章的三个Example。如果有程序,测试或实现其程序。

Outline

- Infinite-Horizon DP: Theory and Algorithms
- DP is a special case of LF
- 3 A Premier on ADP
- Dimension Reduction in RL
 - Approximation in value space
 - Approximation in policy space
 - State Aggregation
- On-Policy Learning
 - Direct Projection
 - Bellman Error Minimization
 - Projected Bellman Equation Method
 - From On-Policy to Off-Policy

Infinite-Horizon Discounted Problems/Bounded Cost

Stationary system

$$x_{k+1} = f(x_k, u_k, w_k), \quad k = 0, 1, \dots$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} \mathbf{E}_{w_k, k=0,1,\dots} \left[\sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right]$$

with $\alpha < 1$, and g is bounded [for some M , we have $|g(x, u, w)| \le M$ for all (x, u, w)]

Optimal cost function is defined as

$$J^*(x) = \min_{\pi} \quad J_{\pi}(x)$$

Infinite-Horizon Discounted Problems/Bounded Cost

 Boundedness of g guarantees that all costs are well-defined and bounded:

$$|J_{\pi}(x)| \le \frac{M}{1-\alpha}$$

- All spaces are arbitrary only boundedness of g is important (there are math fine points, e.g. measurability, but they don't matter in practice)
- Important special case with finite space: Markovian Decision Problem
- All algorithms ultimately work with a finite spaces MDP approximating the original problem

Shorthand notation for DP mappings

For any function J of x, denote

$$(TJ)(x) = \min_{u \in U(x)} \mathbf{E}_w \{ g(x, u, w) + \alpha J(f(x, u, w)) \}, \quad \forall x$$

- TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost function αJ .
- T operates on bounded functions of x to produce other bounded functions of x
- For any stationary policy μ , denote

$$(T_{\mu}J)(x) = \mathbf{E}_{w}\{g(x,\mu(x),w) + \alpha J(f(x,\mu(x),w))\}, \ \forall x$$

- ullet The critical structure of the problem is captured in T and T_{μ}
- \bullet The entire theory of discounted problems can be developed in shorthand using T and T_μ
- True for many other DP problems.
- T and T_{μ} provide a powerful unifying framework for DP. This is the essence of the book "Abstract Dynamic Programming"

Express Finite-Horizon Cost using T

• Consider an N-stage policy $\pi_0^N = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$ with a terminal cost J and $\pi_1^N = \{\mu_1, \mu_2, \dots, \mu_{N-1}\}$:

$$J_{\pi_0^N}(x_0) = \mathbf{E} \left[\alpha^N J(x_k) + \sum_{\ell=0}^{N-1} \alpha^{\ell} g(x_{\ell}, \mu_{\ell}(x_{\ell}), w_{\ell}) \right]$$

$$= \mathbf{E} \left[g(x_0, \mu_0(x_0), w_0) + \alpha J_{\pi_1^N}(x_1) \right]$$

$$= (T_{\mu_0} J_{\pi_1^N})(x_0)$$

- By induction, we have $J_{\pi_0^N}(x_0) = (T_{\mu_0}T_{\mu_1}\cdots T_{\mu_{N-1}}J)(x), \ \forall x$
- For a stationary policy μ the N-stage cost function (with terminal cost J) is $J_{\pi_0^N} = T_\mu^N J$, where T_μ^N is the N-fold composition of T_μ
- Similarly the optimal N-stage cost function (with terminal cost J) is T^NJ
- $T^N J = T(T^{N-1}J)$ is just the DP algorithm

Markov Chain

- A Markov chain is a random process that takes values on the state space $\{1, \ldots, n\}$.
- The process evolves according to a certain transition probability matrix $P \in \mathbb{R}^{n \times n}$ where

$$P(i_{k+1} = j \mid i_k, i_{k-1}, \dots, i_0) = P(i_{k+1} = j \mid i_k = i) = P_{ij}$$

- Markov chain is memoryless, i.e., further evolvements are independent with past trajectory conditioned on the current state.
- The "memoryless" property is equivalent to "Markov."
- A state i is recurrent if it will be visited infinitely many times with probability 1.
- A Markov chain is said to be irreducible if its state space is a single communicating class; in other words, if it is possible to get to any state from any state.
- When states are modeled appropriately, all stochastic processes are Markov.

Markovian Decision Problem

We will mostly assume the system is an *n*-state (controlled) Markov chain

- States i = 1, ..., n (instead of x)
- Transition probabilities $p_{i_k i_{k+1}}(u_k)$ [instead of $x_{k+1} = f(x_k, u_k, w_k)$]
- stage cost $g(i_k, u_k, i_{k+1})$ [instead of $g(x_k, u_k, w_k)$]
- cost function $J = (J(1), \ldots, J(n))$ (vectors in \mathbb{R}^n)
- cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(i) = \lim_{N \to \infty} \mathbf{E}_{i_k, k=1, 2, \dots} \left[\sum_{k=0}^{N-1} \alpha^k g(i_k, \mu_k(i_k), i_{k+1}) \mid i_0 = i \right]$$

MDP is the most important problem in infinite-horizon DP

Markovian Decision Problem

Shorthand notation for DP mappings

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u)(g(i, u, j) + \alpha J(j)), \quad i = 1, \dots, n,$$

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i, \mu(i), j) + \alpha J(j)), \quad i = 1, \dots, n,$$

Vector form of DP mappings

$$TJ = \min_{\mu} \{ g_{\mu} + \alpha P_{\mu} J \}$$

and

$$T_{\mu}J = g_{\mu} + \alpha P_{\mu}J$$

where

$$g_{\mu}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i))g(i,\mu(i),j), \quad P_{\mu}(i,j) = p_{ij}(\mu(i))$$

Two Key properties

• Monotonicity property: For any J and J' such that $J(x) \leq J'(x)$ for all x, and any μ

$$(TJ)(x) \le (TJ')(x), \quad (T_{\mu}J)(x) \le (T_{\mu}J')(x), \quad \forall x$$

• Constant Shift property: For any J, any scalar r, and any μ

$$(T(J+re))(x) = (TJ)(x) + ar, \quad (T_{\mu}(J+re))(x) = (T_{\mu}J)(x) + ar, \ \forall x$$

where *e* is the unit function $[e(x) \equiv 1]$.

- Monotonicity is present in all DP models (undiscounted, etc)
- Constant shift is special to discounted models
- Discounted problems have another property of major importance: T and T_{μ} are contraction mappings (we will show this later)

Convergence of Value Iteration

Theorem

For all bounded J_0 , we have $J^*(x) = \lim_{k \to \infty} (T^k J_0)(x)$, for all x

Proof. For simplicity we give the proof for $J_0 \equiv 0$. For any initial state x_0 , and policy $\pi = \{\mu_0, \mu_1, \ldots\}$,

$$J_{\pi}(x_0) = \mathbf{E} \left[\sum_{\ell=0}^{\infty} \alpha^{\ell} g(x_{\ell}, \mu_{\ell}(x_{\ell}), w_{\ell}) \right]$$
$$= \mathbf{E} \left[\sum_{\ell=0}^{k-1} \alpha^{\ell} g(x_{\ell}, \mu_{\ell}(x_{\ell}), w_{\ell}) \right] + \mathbf{E} \left[\sum_{\ell=k}^{\infty} \alpha^{\ell} g(x_{\ell}, \mu_{\ell}(x_{\ell}), w_{\ell}) \right]$$

The tail portion satisfies

$$\left| \mathbf{E} \left[\sum_{\ell=k}^{\infty} \alpha^{\ell} g(x_{\ell}, \mu_{\ell}(x_{\ell}), w_{\ell}) \right] \right| \leq \frac{\alpha^{k} M}{1 - \alpha}$$

where $M \ge |g(x, u, w)|$. Take min over π of both sides, then \lim as

Proof of Bellman's equation

Theorem

The optimal cost function J^* is a solution of Bellman's equation, $J^* = TJ^*$, i.e., for all x,

$$J^{*}(x) = \min_{u \in U(x)} \mathbf{E}_{w} \{ g(x, u, w) + \alpha J^{*}(f(x, u, w)) \}$$

Proof. For all x and k, $J^*(x) - \frac{\alpha^k M}{1-\alpha} \leq (T^k J_0)(x) \leq J^*(x) + \frac{\alpha^k M}{1-\alpha}$ where $J_0(x) \equiv 0$ and $M \geq |g(x,u,w)|$. Applying T to this relation, and using Monotonicity and Constant Shift,

$$(TJ^*)(x) - \frac{\alpha^{k+1}M}{1-\alpha} \le (T^{k+1}J_0)(x) \le (TJ^*)(x) + \frac{\alpha^{k+1}M}{1-\alpha}$$

Taking the limit as $k \to \infty$ and using the fact $\lim_{k \to \infty} (T^{k+1}J_0)(x) = J^*(x)$ we obtain $J^* = TJ^*$.

13/71

The Contraction Property

Contraction property: For any bounded functions J and J', and any μ ,

$$\max_{x} |(TJ)(x) - (TJ')(x)| \leq \alpha \max_{x} |J(x) - J'(x)|,$$

$$\max_{x} |(T_{\mu}J)(x) - (T_{\mu}J')(x)| \leq \alpha \max_{x} |J(x) - J'(x)|$$

Proof. Denote $c = \max_{x \in S} |J(x) - J'(x)|$. Then

$$J(x) - c \le J'(x) \le J(x) + c, \quad \forall x$$

Apply T to both sides, and use the Monotonicity and Constant Shift properties:

$$(TJ)(x) - \alpha c \le (TJ')(x) \le (TJ)(x) + \alpha c, \ \forall x$$

Hence, $|(TJ)(x) - (TJ')(x)| \le \alpha c$, $\forall x$.

This implies that T,T_{μ} have unique fixed points. Then J^* is the unique solution of $J^*=TJ^*$, and J_{μ} is the unique solution of $J_{\mu}=T_{\mu}J_{\mu}$

14/71

Necessary and Sufficient Optimality Condition

Theorem

A stationary policy μ is optimal if and only if $\mu(x)$ attains the minimum in Bellman's equation for each x; i.e.,

$$TJ^* = T_{\mu}J^*,$$

or, equivalently, for all x,

$$\mu(x) \in \arg\min_{u \in U(x)} \mathbf{E}_w \{ g(x, u, w) + \alpha J^*(f(x, u, w)) \}$$

Proof of Optimality Condition

Proof: We have two directions.

- If $TJ^* = T_{\mu}J^*$, then using Bellman's equation $(J^* = TJ^*)$, we have $J^* = T_{\mu}J^*$, so by uniqueness of the fixed point of T_{μ} , we obtain $J^* = J_{\mu}$; i.e., μ is optimal.
- Conversely, if the stationary policy μ is optimal, we have $J^*=J_\mu$, so $J^*=T_\mu J^*$. Combining this with Bellman's Eq. $(J^*=TJ^*)$, we obtain $TJ^*=T_\mu J^*$.

Two Main Algorithms

Value Iteration

Solve the Bellman equation $J^* = TJ^*$ by iterating on the value functions:

$$J_{k+1}=TJ_k,$$

or

$$J_{k+1}(i) = \min_{u} \sum_{j=1}^{n} p_{ij}(u)(g(i, u, j) + \alpha J_{k}(j))$$

for i = 1, ..., n.

- The program only needs to memorize the current value function J_k .
- We have shown that $J_k \to J^*$ as $k \to \infty$.

Policy Iteration

Solve the Bellman equation $J^* = TJ^*$ by iterating on the policies

Policy Iteration (PI)

Given μ_k , the k-th policy iteration has two steps

• Policy evaluation: Find J_{μ^k} by $J_{\mu^k} = T_{\mu^k} J_{\mu^k}$ or solving

$$J_{\mu^k}(i) = \sum_{j=1}^n p_{ij}(\mu^k(i))(g(i,\mu^k(i),j) + \alpha J_{\mu^k}(j)), \ i = 1,\dots,n$$

• Policy improvement: Let μ_{k+1} be such that $T_{\mu^{k+1}}J_{\mu^k}=TJ_{\mu^k}$ or

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u)(g(i, u, j) + \alpha J_{\mu^{k}}(j))$$

Policy iteration is a method that updates the policy instead of the value function.

Policy Iteration (PI)

More abstractly, the k-th policy iteration has two steps

ullet Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k} = g_{\mu^k} + \alpha P_{\mu^k} J_{\mu^k}$$

• Policy improvement: Let μ^{k+1} be such that $T_{\mu^{k+1}}J_{\mu^k}=TJ_{\mu^k}$

Comments:

- Policy evaluation is equivalent to solving an $n \times n$ linear system of equations
- Policy improvement is equivalent to 1-step lookahead using the evaluated value function
- For large n, exact PI is out of the question. We use instead optimistic PI (policy evaluation with a few VIs)

Convergence of Policy Iteration

Theorem

Assume that the state and action spaces are finite. The policy iteration generates μ_k that converges to the optimal policy μ^* in a finite number of steps.

Proof. We show that $J_{\mu^k} \ge J_{\mu^{k+1}}$ for all k. For given k, we have

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k} \ge T J_{\mu^k} = T_{\mu^{k+1}} J_{\mu^k}$$

Using the monotonicity property of DP,

$$J_{\mu^k} \ge T_{\mu^{k+1}} J_{\mu^k} \ge T_{\mu^{k+1}}^2 J_{\mu^k} \ge \ldots \ge \lim_{N o \infty} T_{\mu^{k+1}}^N J_{\mu^k}$$

Since $\lim_{N\to\infty} T^N_{\mu^{k+1}}J_{\mu^k}=J_{\mu^{k+1}}$, we have $J_{\mu^k}\geq J_{\mu^{k+1}}$.

If $J_{u^k} = J_{u^{k+1}}$, all above inequalities hold as equations, so J_{u^k} solves Bellman's equation. Hence $J_{nk} = J^*$. Thus at iteration k either the algorithm generates a strictly improved policy or it finds an optimal policy. For a finite spaces MDP, the algorithm terminates with an optimal policy. 4□ > 4問 > 4 = > 4 = > = 900

"Shorthand" Theory - A Summary

• Infinite horizon cost function expressions [with $J_0(x) \equiv 0$]

$$J_{\pi}(x) = \lim_{N \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_N}) J_0(x), \quad J_{\mu}(x) = \lim_{N \to \infty} (T_{\mu}^N J_0)(x)$$

- Bellman's equation $J^* = TJ^*, J_\mu = T_\mu J_\mu$
- Optimality condition: μ is optimal iff $T_{\mu}J^* = TJ^*$
- Value iteration: For any (bounded) *J*:

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x), \quad \forall x$$

- Policy iteration: given μ^k ,
 - ullet Policy evaluation: Find J_{μ^k} by solving $J_{\mu^k} = T_{\mu^k} J_{\mu^k}$
 - Policy improvement: Let μ^{k+1} be such that $T_{\mu^{k+1}}J_{\mu^k}=TJ_{\mu^k}$

Q-Factors

• Optimal Q-factor of (x, u):

$$Q^{*}(x, u) = \mathbf{E}\{g(x, u, w) + \alpha J^{*}(f(x, u, w))\}\$$

- It is the cost of starting at x, applying u in the 1st stage, and an optimal policy after the 1st stage
- The value function is equivalent to

$$J^*(x) = \min_{u \in U(x)} Q^*(x, u), \forall x.$$

- Q-factors are costs in an "augmented" problem where states are (x, u)
- Here (x, u) is a post-decision state.

VI in Q-factors

We can equivalently write the VI method as

$$J_{k+1}(x) = \min_{u \in U(x)} Q_{k+1}(x, u), \quad \forall x$$

where Q_{k+1} is generated by

$$Q_{k+1}(x,u) = \mathbf{E}\left[g(x,u,w) + \alpha \min_{v \in U(\bar{x})} Q_k(f(x,u,w),v)\right]$$

VI converges for Q-factors

Q-factors

- VI and PI for Q-factors are mathematically equivalent to VI and PI for costs
- They require equal amount of computation . . . they just need more storage
- Having optimal Q-factors is convenient when implementing an optimal policy on-line by

$$\mu^*(x) = \arg\min_{u \in U(x)} Q^*(x, u)$$

- Once $Q^*(x, u)$ are known, the model $[g \text{ and } E\{\cdot\}]$ is not needed. Model-free operation
- Q-Learning (to be discussed later) is a sampling method that calculates $Q^*(x,u)$ using a simulator of the system (no model needed)

MDP and Q-Factors

Optimal Q-factors - the function $\mathcal{Q}(i,u)$ that satisfies the following Bellman equation

$$Q^{*}(i,u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \min_{v \in U(j)} Q^{*}(j,v) \right)$$

or in short $Q^* = FQ^*$.

Interpretation Q-factors can be viewed as J values by considering (i,u) as the post-decision state

DP Algorithm for Q-values instead of J-values

- Value Iteration: $Q_{k+1} = FQ_k$
- Policy evaluation: $Q_{\mu_k} = F_{\mu_k} Q_{\mu_k}$
- Policy improvement: $F_{\mu_{k+1}}Q_{\mu_k} = FQ_{\mu_k}$
- VI and PI are convergent for Q-values
- Model-free.

Other DP Models

- We have looked so far at the (discrete or continuous spaces) discounted models for which the analysis is simplest and results are most powerful
- Other DP models include:
- Undiscounted problems ($\alpha = 1$): They may include a special termination state (stochastic shortest path problems)
- Continuous-time finite-state MDP: The time between transitions is random and state-and-control-dependent (typical in queueing systems, called Semi-Markov MDP). These can be viewed as discounted problems with state-and-control-dependent discount factors
- Continuous-time, continuous-space models : Classical automatic control, process control, robotics
- Substantial differences from discrete-time
- Mathematically more complex theory (particularly for stochastic problems)
- Deterministic versions can be analyzed using classical optimal control theory

Outline

- Infinite-Horizon DP: Theory and Algorithms
- DP is a special case of LP
- 3 A Premier on ADP
- Dimension Reduction in RL
 - Approximation in value space
 - Approximation in policy space
 - State Aggregation
- On-Policy Learning
 - Direct Projection
 - Bellman Error Minimization
 - Projected Bellman Equation Method
 - From On-Policy to Off-Policy

(Optional) Formalism: MDP

- Markov Decision Processes (MDPs). An MDP is a 5-tuple, $\langle S, A, R, P, \rho_0 \rangle$, where
- S is the set of all valid states,
- A is the set of all valid actions,
- $R: S \times A \times S \to \mathbb{R}$ is the reward function, with $r_t = R(s_t, a_t, s_{t+1})$,
- $P: S \times A \to \mathcal{P}(S)$ is the transition probability function, with P(s'|s,a) being the probability of transitioning into state s' if you start in state s and take action a,
- and ρ_0 is the starting state distribution.
- The name Markov Decision Process refers to the fact that the system obeys the 'Markov property': transitions only depend on the most recent state and action, and no prior history.
 https://en.wikipedia.org/wiki/Markov_property

Look at the Bellman Equation Again

Consider a MDP model with

- States $i = 1, \ldots, n$
- Probability transition matrix under policy μ is $P_{\mu} \in \mathbb{R}^{n \times n}$
- ullet Reward of transition is $g_{\mu} \in \mathbb{R}^n$

The Bellman equation is

$$J = \min_{\mu} \quad g_{\mu} + \alpha P_{\mu} J$$

This is a nonlinear system of equations.

Note: The righthandside is the infimum of a number of linear mappings of J!

DP is a special case of LP

Theorem

Every finite-state DP problem is an LP problem.

Let $c \ge 0$. We construct the following LP

$$\max c_1 J(1) + \ldots + c_n J(n)$$

s.t.
$$J(i) \leq \sum_{j=1}^{n} p_{ij}(u)g_{iju} + \alpha \sum_{j=1}^{n} p_{ij}(u)J(j), \forall u \in A$$

or more compactly

$$\max \quad c'J$$

s.t. $J \leq g_{\mu} + \alpha P_{\mu}J, \forall u \in A$

- The variables are J(i) where i = 1, ..., n.
- For each state action pair (i, u), there is an inequality constraint.

DP is a special case of LP

If $J \leq TJ$, then $J \leq J^*$. If $J \geq TJ$, then $J \geq J^*$.

• Suppose that $J \le TJ$. Applying operator T on both sides k-1 times, and by the monotonicity of T, we have

$$J \le TJ \le T^2J \le \ldots \le T^kJ.$$

Note that $\lim_{k\to\infty} T^k J = J^*$. Hence, we have $J \leq J^*$.

DP is a special case of LP

Theorem

This solution to the constructed LP

$$\max \quad c'J$$
 s.t. $J \leq g_{\mu} + \alpha P_{\mu}J, \forall u \in A$

is exactly the solution to the Bellman's equation

$$J = \min_{\mu} g_{\mu} + P_{\mu} J$$

Proof: The solution J^* to the Bellman equation is obviously a feasible solution to the LP. If the LP solution \bar{J} is different from J^* , it must solve the Bellman equation at the same time. Since the Bellman equation has a unique solution, $J^* = \bar{J}$.

32/71

ADP via Approximate Linear Programming

The constructed LP is of huge scale.

$$\max \quad c'J$$
 s.t. $J \leq g_{\mu} + \alpha P_{\mu}J, \forall u \in A$

Approximate LP:

- We may approximate J by adding the constraint $J = \Phi \sigma$, so the variable dimension becomes smaller.
- We may sample a subset of all constraints, so the constraint dimension becomes smaller.
- LP and Approximate LP can be solved by simulation/online.

Outline

- Infinite-Horizon DP: Theory and Algorithms
- DP is a special case of LP
- A Premier on ADP
- Dimension Reduction in RL
 - Approximation in value space
 - Approximation in policy space
 - State Aggregation
- On-Policy Learning
 - Direct Projection
 - Bellman Error Minimization
 - Projected Bellman Equation Method
 - From On-Policy to Off-Policy

Practical Difficulties of DP

- The curse of dimensionality
- Exponential growth of the computational and storage requirements as the number of state variables and control variables increases
- Quick explosion of the number of states in combinatorial problems
- The curse of modeling
- Sometimes a simulator of the system is easier to construct than a model
- There may be real-time solution constraints
- A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
- The problem data may change as the system is controlled need for on-line replanning
- All of the above are motivations for approximation and simulation

General Orientation to ADP

- ADP (late 80s present) is a breakthrough methodology that allows the application of DP to problems with many or infinite number of states.
- Other names for ADP are: "reinforcement learning" (RL), "neuro-dynamic programming" (NDP), "adaptive dynamic programming" (ADP).
- We will mainly adopt an n-state discounted model (the easiest case - but think of HUGE n).
- Extensions to other DP models (continuous space, continuous-time, not discounted) are possible (but more quirky).
 We will set aside for later.
- There are many approaches: Problem approximation, Simulation-based approaches.
- Simulation-based methods are of three types: Rollout (we will not discuss further), Approximation in value space, Approximation in policy space

Why do we use Simulation?

- One reason: Computational complexity advantage in computing sums/expectations involving a very large number of terms
- Any sum $\sum_{i=1}^{n} a_i$ can be written as an expected value:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \xi_i \frac{a_i}{\xi_i} = \mathbf{E}_{\xi} \left[\frac{a_i}{\xi_i} \right]$$

where ξ is any probability distribution over $\{1,\ldots,n\}$

• It can be approximated by generating many samples $\{i_1,...,i_k\}$ from $\{1,...,n\}$, according to distribution ξ , and Monte Carlo averaging:

$$\sum_{i=1}^{n} a_i = \mathbf{E}_{\xi} \left[\frac{a}{\xi} \right] \approx \frac{1}{k} \sum_{t=1}^{k} \frac{a_{i_t}}{\xi_{i_t}}$$

 Simulation is also convenient when an analytical model of the system is unavailable, but a simulation/computer model is possible.

Solve DP via Simulation

• Ideally, VI and PI solve the fixed equation: finding J^* such that

$$J^* = \min_{\mu} \{ g_{\mu} + \alpha P_{\mu} J^* \}$$

- Practically, we often wish to solve Bellman's equation without knowing P_{μ} , g_{μ} .
- What we do have: a simulator that starts from state i, given action a, generate random samples of transition costs and future state g(i, i_{next}, a), i_{next}

Example: Optimize a trading policy to maximize profit

- Current transaction has unknown market impact
- Use current order book as states/features

Example: stochastic games, Tetris, hundreds of millions of states, captured using 22 features

Outline

- Infinite-Horizon DP: Theory and Algorithms
- DP is a special case of LP
- 3 A Premier on ADP
- Dimension Reduction in RL
 - Approximation in value space
 - Approximation in policy space
 - State Aggregation
- On-Policy Learning
 - Direct Projection
 - Bellman Error Minimization
 - Projected Bellman Equation Method
 - From On-Policy to Off-Policy

Approximation in value space

- Approximate J^* or J_μ from a parametric class $\tilde{J}(i;\sigma)$ where i is the current state and $\sigma=(\sigma_1,\ldots,\sigma_m)$ is a vector of "tunable" scalars weights
- ullet Use \widetilde{J} in place of J^* or J_μ in various algorithms and computations
- Role of σ : By adjusting σ we can change the "shape" of \tilde{J} so that it is "close" to J^* or J_μ
- A simulator may be used, particularly when there is no mathematical model of the system (but there is a computer model)
- We will focus on simulation, but this is not the only possibility
- We may also use parametric approximation for Q-factors or cost function differences

Approximation Architectures

Two key issues:

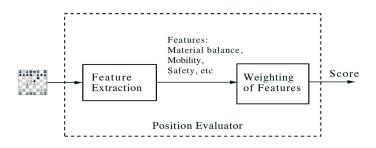
- The choice of parametric class $\tilde{J}(i;\sigma)$ (the approximation architecture)
- Method for tuning the weights ("training" the architecture)

Success depends strongly on how these issues are handled ... also on insight about the problem

- Divided in linear and nonlinear [i.e., linear or nonlinear dependence of $\tilde{J}(i;\sigma)$ on σ]
- Linear architectures are easier to train, but nonlinear ones (e.g., neural networks) are richer

Computer chess example

- Think of board position as state and move as control
- Uses a feature-based position evaluator that assigns a score (or approximate Q-factor) to each position/move



Relatively few special features and weights, and multistep lookahead

Linear Approximation Architectures

With well-chosen features, we can use a linear architecture:

$$\tilde{J}(i;\sigma) = \phi(i)'\sigma, \quad i = 1, \dots, n,$$

or

$$\tilde{J}\sigma = \Phi\sigma = \sum_{j=1}^{s} \Phi_j \sigma_j$$

 Φ : the matrix whose rows are $\phi(i)', i = 1, \dots, n$, Φ_j is the jth column

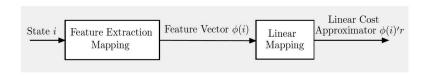
This is approximation on the subspace

$$S = \{\Phi\sigma | \sigma \in \mathbb{R}^s\}$$

spanned by the columns of Φ (basis functions)

Linear Approximation Architectures

Often, the features encode much of the nonlinearity inherent in the cost function approximated



 Many examples of feature types: Polynomial approximation, radial basis functions, etc

Example: Polynomial type

• Polynomial Approximation, e.g., a quadratic approximating function. Let the state be $i=(i_1,\ldots,i_q)$ (i.e., have q "dimensions") and define

$$\phi_0(i) = 1, \phi_k(i) = i_k, \phi_{km}(i) = i_k i_m, k, m = 1, \dots, q$$

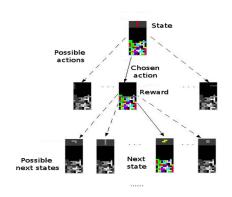
Linear approximation architecture:

$$\tilde{J}(i;\sigma) = \sigma_0 + \sum_{k=1}^q \sigma_k i_k + \sum_{k=1}^q \sum_{m=k}^q \sigma_{km} i_k i_m,$$

where σ has components σ_0, σ_k , and σ_{km} .

• Interpolation : A subset I of special/representative states is selected, and the parameter vector σ has one component σ_i per state $i \in I$. The approximating function is $\tilde{J}(i;\sigma) = \sigma_i, i \in I$. $\tilde{J}(i;\sigma)$ is the interpolation using the values at $i \in I, i \notin I$. For example, piecewise constant, piecewise linear, more general polynomial interpolations.

Another Example



- $J^*(i)$: optimal score starting from position i
- Number of states $> 2^{200}$ (for 10×20 board)
- Success with just 22 features, readily recognized by tetris players as capturing important aspects of the board position (heights of columns, etc)

Approximation in Policy Space

- A brief discussion; we will return to it later.
- Use parametrization $\mu(i;\sigma)$ of policies with a vector $\sigma=(\sigma_1,\ldots,\sigma_s)$.

Examples:

- Polynomial, e.g., $\mu(i;\sigma) = \sigma_1 + \sigma_2 \cdot i + \sigma_3 \cdot i^2$
- Linear feature-based

$$\mu(i;\sigma) = \phi_1(i) \cdot \sigma_1 + \phi_2(i) \cdot \sigma_2$$

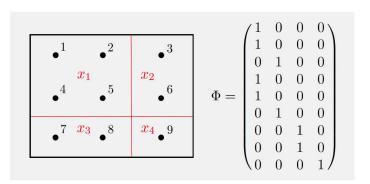
Approximation in Policy Space

- Optimize the cost over σ . For example:
- Each value of σ defines a stationary policy, with cost starting at state i denoted by $\tilde{J}(i;\sigma)$.
- Let (p_1, \ldots, p_n) be some probability distribution over the states, and minimize over σ : $\sum_{i=1}^{n} p_i \tilde{J}(i; \sigma)$
- Use a random search, gradient, or other method
- A special case: The parameterization of the policies is indirect, through a cost approximation architecture \tilde{J} , i.e.,

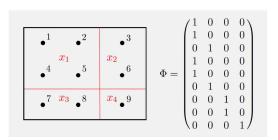
$$\mu(i;\sigma) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \tilde{J}(j;\sigma) \right)$$

Aggregation

- A first idea : Group similar states together into "aggregate states" x_1, \ldots, x_s ; assign a common cost value σ_i to each group x_i .
- Solve an "aggregate" DP problem , involving the aggregate states, to obtain $\sigma=(\sigma_1,...,\sigma_s)$. This is called hard aggregation



Aggregation



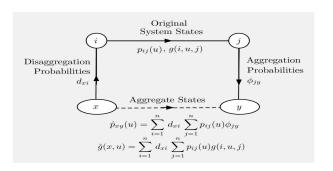
More general/mathematical view : Solve

$$\Phi\sigma = \Phi DT_{\mu}(\Phi\sigma)$$

where the rows of D and Φ are prob. distributions (e.g., D and Φ "aggregate" rows and columns of the linear system $J = T_{\mu}J$)

• Compare with projected equation $\Phi \sigma = \Pi T_{\mu}(\Phi \sigma)$. Note: ΦD is a projection in some interesting cases

Aggregation as Problem Abstraction



- Aggregation can be viewed as a systematic approach for problem approximation. Main elements:
- Solve (exactly or approximately) the "aggregate" problem by any kind of VI or PI method (including simulation-based methods)
- Use the optimal cost of the aggregate problem to approximate the optimal cost of the original problem

Aggregate System Description

 The transition probability from aggregate state x to aggregate state y under control u

$$\hat{p}_{xy}(u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u) \phi_{jy}, \text{ or } \hat{P}(u) = DP(u)\Phi$$

where the rows of D and Φ are the disaggregation and aggregation probs.

The expected transition cost is

$$\hat{g}(x,u) = \sum_{i=1}^{n} d_{xi} \sum_{j=1}^{n} p_{ij}(u) g(i,u,j), \quad \text{ or } \hat{g} = DP(u)g$$

Aggregate Bellman's Equation

• The optimal cost function of the aggregate problem, denoted \hat{R} , is

$$\hat{R}(x) = \min_{u \in U} \left[\hat{g}(x, u) + \alpha \sum_{y} \hat{p}_{(x, y)}(u) \hat{R}(y) \right], \quad \forall x$$

Bellman's equation for the aggregate problem.

• The optimal cost function J^* of the original problem is approximated by \tilde{J} given by

$$\tilde{J}(j) = \sum_{y} \phi_{jy} \hat{R}(y), \quad \forall j$$

Example I: Hard Aggregation

- Group the original system states into subsets, and view each subset as an aggregate state
- Aggregation probs.: $\phi_{jy} = 1$ if j belongs to aggregate state y.
- Disaggregation probs.: There are many possibilities, e.g., all states i within aggregate state x have equal prob. d_{xi} .
- If optimal cost vector J^* is piecewise constant over the aggregate states/subsets, hard aggregation is exact. Suggests grouping states with "roughly equal" cost into aggregates.
- A variant: Soft aggregation (provides "soft boundaries" between aggregate states).

Example II: Feature-Based Aggregation

- Important question: How do we group states together?
- If we know good features, it makes sense to group together states that have "similar features"
- A general approach for passing from a feature-based state representation to a hard aggregation-based architecture
- Essentially discretize the features and generate a corresponding piecewise constant approximation to the optimal cost function
- Aggregation-based architecture is more powerful (it is nonlinear in the features)
- ... but may require many more aggregate states to reach the same level of performance as the corresponding linear feature-based architecture

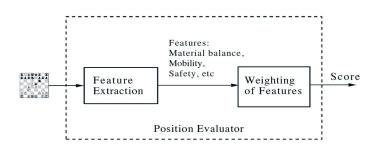
Example III: Representative States/Coarse Grid

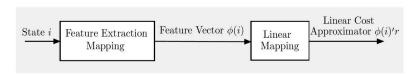
- Choose a collection of "representative" original system states, and associate each one of them with an aggregate state
- Disaggregation probabilities are $d_{xi} = 1$ if i is equal to representative state x.
- Aggregation probabilities associate original system states with convex combinations of representative states

$$j \sim \sum_{y \in A} \phi_{jy} y$$

- Well-suited for Euclidean space discretization
- Extends nicely to continuous state space, including belief space of POMDP

Feature Extraction is Linear Approximation of High-d Cost Vector



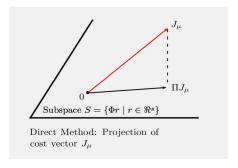


Outline

- Infinite-Horizon DP: Theory and Algorithms
- DP is a special case of LP
- 3 A Premier on ADP
- 4 Dimension Reduction in RL
 - Approximation in value space
 - Approximation in policy space
 - State Aggregation
- On-Policy Learning
 - Direct Projection
 - Bellman Error Minimization
 - Projected Bellman Equation Method
 - From On-Policy to Off-Policy

Direct Policy evaluation

- Approximate the cost of the current policy by using least squares and simulation-generated cost samples
- ullet Amounts to projection of J_{μ} onto the approximation subspace



- Solution by least squares methods
- Regular and optimistic policy iteration
- Nonlinear approximation architectures may also be used

Direct Evaluation by Simulation

- Projection by Monte Carlo Simulation: Compute the projection ΠJ_{μ} of J_{μ} on subspace $S=\{\Phi\sigma|\sigma\in\mathbb{R}^s\}$, with respect to a weighted Euclidean norm $\|\cdot\|_{\xi}$
- Equivalently, find $\Phi \sigma^*$, where

$$\sigma^* = \arg\min_{\sigma \in \mathbb{R}^s} \|\Phi\sigma - J_{\mu}\|_{\xi}^2 = \arg\min_{\sigma \in \mathbb{R}^s} \sum_{i=1}^n \xi_i (\phi(i)'\sigma - J_{\mu}(i))^2$$

• Setting to 0 the gradient at σ^* ,

$$\sigma^* = \left(\sum_{i=1}^n \xi_i \phi(i) \phi(i)'\right)^{-1} \sum_{i=1}^n \xi_i \phi(i) J_{\mu}(i)$$

Direct Evaluation by Simulation

- Generate samples $\{(i_1,J_{\mu}(i_1)),\ldots,(i_k,J_{\mu}(i_k))\}$ using distribution ξ
- Approximate by Monte Carlo the two "expected values" with low-dimensional calculations

$$\hat{\sigma}_k = \left(\sum_{t=1}^k \phi(i_t)\phi(i_t)'\right)^{-1} \sum_{t=1}^k \phi(i_t)J_{\mu}(i_t)$$

Equivalent least squares alternative calculation:

$$\hat{\sigma}_k = rg \min_{\sigma \in \mathbb{R}^s} \sum_{t=1}^k (\phi(i_t)'\sigma - J_{\mu}(i_t))^2$$

Convergence of Evaluated Policy

By law of large numbers, we have

$$\frac{1}{k} \sum_{t=1}^{k} \phi(i_t) \phi(i_t)' \xrightarrow{a.s.} \frac{1}{n} \sum_{i=1}^{n} \xi_i \phi(i) \phi(i)'$$

and

$$\frac{1}{k} \sum_{t=1}^{k} \phi(i_t) J_{\mu}(i_t) \xrightarrow{a.s.} \frac{1}{n} \sum_{i=1}^{n} \xi_i \phi(i) J_{\mu}(i)$$

We have

$$\sigma_k \underset{\longrightarrow}{a.s.} \sigma^* = \Pi_S J_\mu$$

• As the number of samples increases, the estimated low-dim cost σ_k converges almost surely to the projected J_μ .

Indirect policy evaluation

Solve the projected equation

$$\Phi\sigma = \Pi T_{\mu}(\Phi\sigma)$$

where Π is projection with respect to a suitable weighted Euclidean norm

- Solution methods that use simulation (to manage the calculation of Π)
- TD(λ): Stochastic iterative algorithm for solving $\Phi \sigma = \Pi T_{\mu}(\Phi \sigma)$
- LSTD(λ): Solves a simulation-based approximation with a standard solver
- LSPE(λ): A simulation-based form of projected value iteration ; essentially

$$\Phi \sigma_{k+1} = \Pi T_{\mu}(\Phi \sigma_k) + \text{ simulation noise}$$

Almost sure convergence guarantee

Bellman Error Minimization

• Another example of indirect approximate policy evaluation:

$$\min_{\sigma} \|\Phi\sigma - T_{\mu}(\Phi\sigma)\|_{\xi}^{2} \qquad (*)$$

where $\|\cdot\|_{\mathcal{E}}$ is Euclidean norm, weighted with respect to some distribution ξ

- It is closely related to the projected equation/Galerkin approach (with a special choice of projection norm)
- Several ways to implement projected equation and Bellman error methods by simulation. They involve:
 - Generating many random samples of states i_k using the distribution ξ
 - Generating many samples of transitions (i_k, j_k) using the policy μ
 - Form a simulation-based approximation of the optimality condition for projection problem or problem (*) (use sample averages in place of inner products)
 - Solve the Monte-Carlo approximation of the optimality condition
- Issues for indirect methods: How to generate the samples? How to calculate σ^* efficiently?

Cost Function Approximation via Projected Equations

Ideally, we want to solve the Bellman equation (for a fixed policy μ)

$$J = T_{\mu}J$$

In MDP, the equation is $n \times n$:

$$J = g_{\mu} + \alpha P_{\mu} J$$

We solve a projected version of the high-dim equation

$$J = \Pi(g_{\mu} + \alpha P_{\mu} J)$$

Since the projection Π is onto the space spanned by $\Phi,$ the projected equation is equivalent to

$$\Phi\sigma = \Pi(g_{\mu} + \alpha P_{\mu}\Phi\sigma)$$

We fix the policy μ from now on, and omit mentioning it.

Matrix Form of Projected Equation

• The solution $\Phi \sigma^*$ satisfies the orthogonality condition: The error

$$\Phi \sigma^* - (g + \alpha P \Phi \sigma^*)$$

is "orthogonal" to the subspace spanned by the columns of Φ .

This is written as

$$\Phi'\Xi(\Phi\sigma^* - (g + \alpha P\Phi\sigma^*)) = 0,$$

where Ξ is the diagonal matrix with the steady-state probabilities ξ_1, \ldots, ξ_n along the diagonal.

• Equivalently, $C\sigma^* = d$, where

$$C = \Phi \Xi (I - \alpha P)\Phi, \quad d = \Phi' \Xi g$$

but computing C and d is HARD (high-dimensional inner products).

Simulation-Based Implementations

 Key idea: Calculate simulation-based approximations based on k samples

$$C_k \approx C$$
, $d_k \approx d$

• Matrix inversion $\sigma^* = C^{-1}d$ is approximated by

$$\hat{\sigma}_k = C_k^{-1} d_k$$

This is the LSTD (Least Squares Temporal Differences) Method.

• Key fact: C_k , d_k can be computed with low-dimensional linear algebra (of order s; the number of basis functions).

Simulation Mechanics

- We generate an infinitely long trajectory $(i_0, i_1, ...)$ of the Markov chain, so states i and transitions (i, j) appear with long-term frequencies ξ_i and p_{ij} .
- After generating each transition (i_t, i_{t+1}) , we compute the row $\phi(i_t)'$ of Φ and the cost component $g(i_t, i_{t+1})$.
- We form

$$d_{k} = \frac{1}{k+1} \sum_{t=0}^{k} \phi(i_{t}) g(i_{t}, i_{t+1}) \approx \sum_{i,j} \xi_{i} p_{ij} \phi(i) g(i,j) = \Phi' \Xi g = d,$$

$$C_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) (\phi(i_t) - \alpha \phi(i_{t+1}))' \approx \Phi' \Xi(I - \alpha P) \Phi = C$$

• Convergence based on law of large numbers: $C_k \xrightarrow{a.s.} C, d_k \xrightarrow{a.s.} d$. As sample size increases, σ_k converges a.s. to the solution of projected Bellman equation.

Approximate PI via On-Policy Learning

Outer Loop (Off-Policy RL):

• Estimate the value function of the current policy μ_t using linear features:

$$J_{\mu_t} pprox \Phi \sigma_t$$

Inner Loop (On-Policy RL):

- Generate state trajectories ...
- Estimate σ_t via Bellman error minimization (or direct projection, or projected equation approach)
- Update the policy by

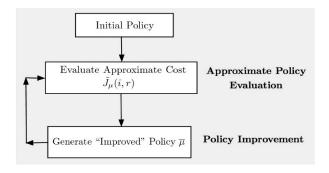
$$\mu_{t+1}(i) = \arg\min_{a} \sum_{j} p_{ij}(\alpha)(g(i,\alpha,j) + \phi(j)'\sigma_t), \quad \forall i$$

Comments:

- Requires knowledge of p_{ii} (suitable for computer games with known transitions)
- ullet The policy μ_{t+1} is parameterized by σ_t .

Approximate PI via On-Policy Learning

- ullet Use simulation to approximate the cost J_{μ} of the current policy μ
- Generate "improved" policy μ by minimizing in (approx.) Bellman equation



Alternatively we can approximate the Q-factors of μ

Theoretical Basis of Approximate PI

 If policies are approximately evaluated using an approximation architecture such that

$$\max_{i} |\tilde{J}(i, \sigma_k) - J_{\mu^k}(i)| \le d, \quad k = 0, 1, \dots,$$

If policy improvement is also approximate,

$$\max_{i} |(T_{\mu^{k+1}} \tilde{J})(i, \sigma_k) - (T \tilde{J})(i, \sigma_k)| \le \epsilon, \quad k = 0, 1, \dots$$

• Error bound: The sequence $\{\mu_k\}$ generated by approximate policy iteration satisfies

$$\lim \sup_{k \to \infty} \max_{i} (J_{\mu^k}(i) - J^*(i)) \le \frac{\epsilon + 2\alpha d}{(1 - \alpha)^2}$$

- Typical practical behavior: The method makes steady progress up to a point and then the iterates J_{μ^k} oscillate within a neighborhood of J^* .
- In practice oscillations between policies is probably not the major concern.