
Infinite-Horizon Dynamic Programming

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Acknowledgement: this slides is based on Prof. Mengdi Wang’s and Prof. Dimitri
Bertsekas’ lecture notes

1/71

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

2/71

作业

1)阅读如下章节： Richard S. Sutton and Andrew G. Barto,
Reinforcement Learning: An Introduction,
http://incompleteideas.net/book/the-book-2nd.html

Chapter 2: Multi-armed Bandits
Chapter 3: Finite Markov Decision Processes
Chapter 4: Dynamic Programming
Chapter 5: Monte Carlo Methods
Chapter 6: Temporal-Difference Learning
Chapter 9: On-policy Prediction with Approximation
Chapter 10: On-policy Control with Approximation
Chapter 13: Policy Gradient Methods

2)至少看懂每章的三个Example。如果有程序，测试或实现其程序。

http://incompleteideas.net/book/the-book-2nd.html

3/71

Outline

1 Infinite-Horizon DP: Theory and Algorithms

2 DP is a special case of LP

3 A Premier on ADP

4 Dimension Reduction in RL
Approximation in value space
Approximation in policy space
State Aggregation

5 On-Policy Learning
Direct Projection
Bellman Error Minimization
Projected Bellman Equation Method
From On-Policy to Off-Policy

4/71

Infinite-Horizon Discounted Problems/Bounded Cost

Stationary system

xk+1 = f (xk, uk,wk), k = 0, 1, . . .

Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

Ewk,k=0,1,...

[
N−1∑
k=0

αkg(xk, µk(xk),wk)

]

with α < 1, and g is bounded [for some M , we have
|g(x, u,w)| ≤ M for all (x, u,w)]

Optimal cost function is defined as

J∗(x) = min
π

Jπ(x)

5/71

Infinite-Horizon Discounted Problems/Bounded Cost

Boundedness of g guarantees that all costs are well-defined and
bounded:

|Jπ(x)| ≤ M
1− α

All spaces are arbitrary - only boundedness of g is important
(there are math fine points, e.g. measurability, but they don’t
matter in practice)

Important special case with finite space: Markovian Decision
Problem

All algorithms ultimately work with a finite spaces MDP
approximating the original problem

6/71

Shorthand notation for DP mappings

For any function J of x, denote

(TJ)(x) = min
u∈U(x)

Ew{g(x, u,w) + αJ(f (x, u,w))}, ∀x

TJ is the optimal cost function for the one-stage problem with
stage cost g and terminal cost function αJ.
T operates on bounded functions of x to produce other bounded
functions of x
For any stationary policy µ, denote

(TµJ)(x) = Ew{g(x, µ(x),w) + αJ(f (x, µ(x),w))}, ∀x
The critical structure of the problem is captured in T and Tµ
The entire theory of discounted problems can be developed in
shorthand using T and Tµ
True for many other DP problems.
T and Tµ provide a powerful unifying framework for DP. This is
the essence of the book “Abstract Dynamic Programming”

7/71

Express Finite-Horizon Cost using T

Consider an N-stage policy πN
0 = {µ0, µ1, . . . , µN−1} with a

terminal cost J and πN
1 = {µ1, µ2, . . . , µN−1}:

JπN
0
(x0) = E

[
αNJ(xk) +

N−1∑
`=0

α`g(x`, µ`(x`),w`)

]
= E

[
g(x0, µ0(x0),w0) + αJπN

1
(x1)

]
= (Tµ0JπN

1
)(x0)

By induction, we have JπN
0
(x0) = (Tµ0Tµ1 · · · TµN−1J)(x), ∀x

For a stationary policy µ the N-stage cost function (with terminal
cost J) is JπN

0
= TN

µ J, where TN
µ is the N-fold composition of Tµ

Similarly the optimal N-stage cost function (with terminal cost J)
is TNJ

TNJ = T(TN−1J) is just the DP algorithm

8/71

Markov Chain

A Markov chain is a random process that takes values on the
state space {1, . . . , n}.
The process evolves according to a certain transition probability
matrix P ∈ Rn×n where

P(ik+1 = j | ik, ik−1, . . . , i0) = P(ik+1 = j | ik = i) = Pij

Markov chain is memoryless, i.e., further evolvements are
independent with past trajectory conditioned on the current state.
The “memoryless” property is equivalent to “Markov.”
A state i is recurrent if it will be visited infinitely many times with
probability 1.
A Markov chain is said to be irreducible if its state space is a
single communicating class; in other words, if it is possible to get
to any state from any state.
When states are modeled appropriately, all stochastic processes
are Markov.

9/71

Markovian Decision Problem

We will mostly assume the system is an n-state (controlled) Markov
chain

States i = 1, . . . , n (instead of x)
Transition probabilities pikik+1(uk) [instead of xk+1 = f (xk, uk,wk)]
stage cost g(ik, uk, ik+1) [instead of g(xk, uk,wk)]
cost function J = (J(1), . . . , J(n)) (vectors in Rn)
cost of a policy π = {µ0, µ1, . . .}

Jπ(i) = lim
N→∞

Eik,k=1,2,...

[
N−1∑
k=0

αkg(ik, µk(ik), ik+1) | i0 = i

]

MDP is the most important problem in infinite-horizon DP

10/71

Markovian Decision Problem

Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ(j)), i = 1, . . . , n,

(TµJ)(i) =

n∑
j=1

pij(µ(i))(g(i, µ(i), j) + αJ(j)), i = 1, . . . , n,

Vector form of DP mappings

TJ = min
µ
{gµ + αPµJ}

and
TµJ = gµ + αPµJ

where

gµ(i) =

n∑
j=1

pij(µ(i))g(i, µ(i), j), Pµ(i, j) = pij(µ(i))

11/71

Two Key properties

Monotonicity property: For any J and J′ such that J(x) ≤ J′(x) for
all x, and any µ

(TJ)(x) ≤ (TJ′)(x), (TµJ)(x) ≤ (TµJ′)(x), ∀x

Constant Shift property: For any J, any scalar r, and any µ

(T(J + re))(x) = (TJ)(x) + ar, (Tµ(J + re))(x) = (TµJ)(x) + ar, ∀x

where e is the unit function [e(x) ≡ 1].

Monotonicity is present in all DP models (undiscounted, etc)

Constant shift is special to discounted models

Discounted problems have another property of major
importance: T and Tµ are contraction mappings (we will show
this later)

12/71

Convergence of Value Iteration

Theorem
For all bounded J0, we have J∗(x) = limk→∞(TkJ0)(x), for all x

Proof. For simplicity we give the proof for J0 ≡ 0. For any initial state
x0, and policy π = {µ0, µ1, . . .},

Jπ(x0) = E

[∞∑
`=0

α`g(x`, µ`(x`),w`)

]

= E

[
k−1∑
`=0

α`g(x`, µ`(x`),w`)

]
+ E

[∞∑
`=k

α`g(x`, µ`(x`),w`)

]

The tail portion satisfies∣∣∣∣∣E
[∞∑
`=k

α`g(x`, µ`(x`),w`)

]∣∣∣∣∣ ≤ αkM
1− α

where M ≥ |g(x, u,w)|. Take min over π of both sides, then lim as
k→∞

13/71

Proof of Bellman’s equation

Theorem
The optimal cost function J∗ is a solution of Bellman’s equation,
J∗ = TJ∗, i.e., for all x,

J∗(x) = min
u∈U(x)

Ew{g(x, u,w) + αJ∗(f (x, u,w))}

Proof. For all x and k, J∗(x)− αkM
1−α ≤ (TkJ0)(x) ≤ J∗(x) + αkM

1−α where
J0(x) ≡ 0 and M ≥ |g(x, u,w)|. Applying T to this relation, and using
Monotonicity and Constant Shift,

(TJ∗)(x)− αk+1M
1− α

≤ (Tk+1J0)(x) ≤ (TJ∗)(x) +
αk+1M
1− α

Taking the limit as k→∞ and using the fact
limk→∞(Tk+1J0)(x) = J∗(x) we obtain J∗ = TJ∗.

14/71

The Contraction Property

Contraction property: For any bounded functions J and J′, and any µ,

max
x
|(TJ)(x)− (TJ′)(x)| ≤ αmax

x
|J(x)− J′(x)|,

max
x
|(TµJ)(x)− (TµJ′)(x)| ≤ αmax

x
|J(x)− J′(x)|

Proof. Denote c = maxx∈S |J(x)− J′(x)|. Then

J(x)− c ≤ J′(x) ≤ J(x) + c, ∀x

Apply T to both sides, and use the Monotonicity and Constant Shift
properties:

(TJ)(x)− αc ≤ (TJ′)(x) ≤ (TJ)(x) + αc, ∀x

Hence, |(TJ)(x)− (TJ′)(x)| ≤ αc, ∀x.
This implies that T,Tµ have unique fixed points. Then J∗ is the unique
solution of J∗ = TJ∗, and Jµ is the unique solution of Jµ = TµJµ

15/71

Necessary and Sufficient Optimality Condition

Theorem
A stationary policy µ is optimal if and only if µ(x) attains the minimum
in Bellman’s equation for each x; i.e.,

TJ∗ = TµJ∗,

or, equivalently, for all x,

µ(x) ∈ arg min
u∈U(x)

Ew{g(x, u,w) + αJ∗(f (x, u,w))}

16/71

Proof of Optimality Condition

Proof: We have two directions.

If TJ∗ = TµJ∗, then using Bellman’s equation (J∗ = TJ∗), we have
J∗ = TµJ∗, so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

Conversely, if the stationary policy µ is optimal, we have J∗ = Jµ,
so J∗ = TµJ∗. Combining this with Bellman’s Eq. (J∗ = TJ∗), we
obtain TJ∗ = TµJ∗.

17/71

Two Main Algorithms

Value Iteration
Solve the Bellman equation J∗ = TJ∗ by iterating on the value
functions:

Jk+1 = TJk,

or

Jk+1(i) = min
u

n∑
j=1

pij(u)(g(i, u, j) + αJk(j))

for i = 1, . . . , n.
The program only needs to memorize the current value function
Jk.
We have shown that Jk → J∗ as k→∞.

Policy Iteration
Solve the Bellman equation J∗ = TJ∗ by iterating on the policies

18/71

Policy Iteration (PI)

Given µk, the k-th policy iteration has two steps

Policy evaluation: Find Jµk by Jµk = Tµk Jµk or solving

Jµk(i) =

n∑
j=1

pij(µ
k(i))(g(i, µk(i), j) + αJµk(j)), i = 1, . . . , n

Policy improvement: Let µk+1 be such that Tµk+1Jµk = TJµk or

µk+1(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJµk(j))

Policy iteration is a method that updates the policy instead of the
value function.

19/71

Policy Iteration (PI)

More abstractly, the k-th policy iteration has two steps

Policy evaluation: Find Jµk by solving

Jµk = Tµk Jµk = gµk + αPµk Jµk

Policy improvement: Let µk+1 be such that Tµk+1Jµk = TJµk

Comments:

Policy evaluation is equivalent to solving an n× n linear system
of equations
Policy improvement is equivalent to 1-step lookahead using the
evaluated value function
For large n, exact PI is out of the question . We use instead
optimistic PI (policy evaluation with a few VIs)

20/71

Convergence of Policy Iteration

Theorem
Assume that the state and action spaces are finite. The policy
iteration generates µk that converges to the optimal policy µ∗ in a
finite number of steps.

Proof. We show that Jµk ≥ Jµk+1 for all k. For given k, we have

Jµk = Tµk Jµk ≥ TJµk = Tµk+1Jµk

Using the monotonicity property of DP,

Jµk ≥ Tµk+1Jµk ≥ T2
µk+1Jµk ≥ . . . ≥ lim

N→∞
TN
µk+1Jµk

Since limN→∞ TN
µk+1Jµk = Jµk+1 , we have Jµk ≥ Jµk+1 .

If Jµk = Jµk+1 , all above inequalities hold as equations, so Jµk solves
Bellman’s equation. Hence Jµk = J∗. Thus at iteration k either the
algorithm generates a strictly improved policy or it finds an optimal
policy. For a finite spaces MDP, the algorithm terminates with an
optimal policy.

21/71

“Shorthand” Theory - A Summary

Infinite horizon cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
N→∞

(Tµ0Tµ1 · · · TµN)J0(x), Jµ(x) = lim
N→∞

(TN
µ J0)(x)

Bellman’s equation J∗ = TJ∗, Jµ = TµJµ

Optimality condition: µ is optimal iff TµJ∗ = TJ∗

Value iteration: For any (bounded) J:

J∗(x) = lim
k→∞

(TkJ)(x), ∀x

Policy iteration: given µk,
Policy evaluation: Find Jµk by solving Jµk = Tµk Jµk

Policy improvement: Let µk+1 be such that Tµk+1 Jµk = TJµk

22/71

Q-Factors

Optimal Q-factor of (x, u) :

Q∗(x, u) = E{g(x, u,w) + αJ∗(f (x, u,w))}

It is the cost of starting at x, applying u in the 1st stage, and an
optimal policy after the 1st stage

The value function is equivalent to

J∗(x) = min
u∈U(x)

Q∗(x, u),∀x.

Q-factors are costs in an “augmented” problem where states are
(x, u)

Here (x, u) is a post-decision state.

23/71

VI in Q-factors

We can equivalently write the VI method as

Jk+1(x) = min
u∈U(x)

Qk+1(x, u), ∀x

where Qk+1 is generated by

Qk+1(x, u) = E
[

g(x, u,w) + α min
v∈U(x̄)

Qk(f (x, u,w), v)

]
VI converges for Q-factors

24/71

Q-factors

VI and PI for Q-factors are mathematically equivalent to VI and
PI for costs

They require equal amount of computation . . . they just need
more storage

Having optimal Q-factors is convenient when implementing an
optimal policy on-line by

µ∗(x) = arg min
u∈U(x)

Q∗(x, u)

Once Q∗(x, u) are known, the model [g and E{·}] is not needed.
Model-free operation

Q-Learning (to be discussed later) is a sampling method that
calculates Q∗(x, u) using a simulator of the system (no model
needed)

25/71

MDP and Q-Factors

Optimal Q-factors - the function Q(i, u) that satisfies the following
Bellman equation

Q∗(i, u) =

n∑
j=1

pij(u)

(
g(i, u, j) + α min

v∈U(j)
Q∗(j, v)

)

or in short Q∗ = FQ∗.

Interpretation Q-factors can be viewed as J values by considering
(i, u) as the post-decision state

DP Algorithm for Q-values instead of J-values
Value Iteration: Qk+1 = FQk

Policy evaluation: Qµk = Fµk Qµk

Policy improvement: Fµk+1Qµk = FQµk

VI and PI are convergent for Q-values
Model-free.

26/71

Other DP Models

We have looked so far at the (discrete or continuous spaces)
discounted models for which the analysis is simplest and results are
most powerful

Other DP models include:

Undiscounted problems (α = 1): They may include a special
termination state (stochastic shortest path problems)

Continuous-time finite-state MDP : The time between transitions is
random and state-and-control-dependent (typical in queueing systems,
called Semi-Markov MDP). These can be viewed as discounted
problems with state-and-control-dependent discount factors

Continuous-time, continuous-space models : Classical automatic
control, process control, robotics

Substantial differences from discrete-time

Mathematically more complex theory (particularly for stochastic
problems)

Deterministic versions can be analyzed using classical optimal control
theory

Admit treatment by DP, based on time discretization

27/71

Outline

1 Infinite-Horizon DP: Theory and Algorithms

2 DP is a special case of LP

3 A Premier on ADP

4 Dimension Reduction in RL
Approximation in value space
Approximation in policy space
State Aggregation

5 On-Policy Learning
Direct Projection
Bellman Error Minimization
Projected Bellman Equation Method
From On-Policy to Off-Policy

28/71

(Optional) Formalism: MDP

Markov Decision Processes (MDPs). An MDP is a 5-tuple,
〈S,A,R,P, ρ0〉, where

S is the set of all valid states,

A is the set of all valid actions,

R : S× A× S→ R is the reward function, with rt = R(st, at, st+1),

P : S× A→ P(S) is the transition probability function, with
P(s′|s, a) being the probability of transitioning into state s′ if you
start in state s and take action a,

and ρ0 is the starting state distribution.

The name Markov Decision Process refers to the fact that the
system obeys the ‘Markov property’: transitions only depend on
the most recent state and action, and no prior history.
https://en.wikipedia.org/wiki/Markov_property

https://en.wikipedia.org/wiki/Markov_property

29/71

Look at the Bellman Equation Again

Consider a MDP model with
States i = 1, . . . , n

Probability transition matrix under policy µ is Pµ ∈ Rn×n

Reward of transition is gµ ∈ Rn

The Bellman equation is

J = min
µ

gµ + αPµJ

This is a nonlinear system of equations.

Note: The righthandside is the infimum of a number of linear
mappings of J!

30/71

DP is a special case of LP

Theorem
Every finite-state DP problem is an LP problem.

Let c ≥ 0. We construct the following LP

max c1J(1) + . . .+ cnJ(n)

s.t. J(i) ≤
n∑

j=1

pij(u)giju + α

n∑
j=1

pij(u)J(j),∀u ∈ A

or more compactly

max c′J

s.t. J ≤ gµ + αPµJ, ∀u ∈ A

The variables are J(i) where i = 1, ..., n.
For each state action pair (i, u), there is an inequality constraint.

31/71

DP is a special case of LP

If J ≤ TJ, then J ≤ J∗. If J ≥ TJ, then J ≥ J∗.
Suppose that J ≤ TJ. Applying operator T on both sides k − 1
times, and by the monotonicity of T, we have

J ≤ TJ ≤ T2J ≤ . . . ≤ TkJ.

Note that limk→∞ TkJ = J∗. Hence, we have J ≤ J∗ .

32/71

DP is a special case of LP

Theorem
This solution to the constructed LP

max c′J

s.t. J ≤ gµ + αPµJ, ∀u ∈ A

is exactly the solution to the Bellman’s equation

J = min
µ

gµ + PµJ

Proof: The solution J∗ to the Bellman equation is obviously a feasible
solution to the LP. If the LP solution J̄ is different from J∗, it must solve
the Bellman equation at the same time. Since the Bellman equation
has a unique solution, J∗ = J̄.

33/71

ADP via Approximate Linear Programming

The constructed LP is of huge scale.

max c′J

s.t. J ≤ gµ + αPµJ, ∀u ∈ A

Approximate LP:
We may approximate J by adding the constraint J = Φσ, so the
variable dimension becomes smaller.

We may sample a subset of all constraints, so the constraint
dimension becomes smaller.

LP and Approximate LP can be solved by simulation/online.

34/71

Outline

1 Infinite-Horizon DP: Theory and Algorithms

2 DP is a special case of LP

3 A Premier on ADP

4 Dimension Reduction in RL
Approximation in value space
Approximation in policy space
State Aggregation

5 On-Policy Learning
Direct Projection
Bellman Error Minimization
Projected Bellman Equation Method
From On-Policy to Off-Policy

35/71

Practical Difficulties of DP

The curse of dimensionality

Exponential growth of the computational and storage requirements as
the number of state variables and control variables increases

Quick explosion of the number of states in combinatorial problems

The curse of modeling

Sometimes a simulator of the system is easier to construct than a
model

There may be real-time solution constraints

A family of problems may be addressed. The data of the problem to be
solved is given with little advance notice

The problem data may change as the system is controlled - need for
on-line replanning

All of the above are motivations for approximation and simulation

36/71

General Orientation to ADP

ADP (late 80s - present) is a breakthrough methodology that
allows the application of DP to problems with many or infinite
number of states .
Other names for ADP are: “reinforcement learning” (RL),
“neuro-dynamic programming” (NDP), “adaptive dynamic
programming” (ADP).
We will mainly adopt an n-state discounted model (the easiest
case - but think of HUGE n).
Extensions to other DP models (continuous space,
continuous-time, not discounted) are possible (but more quirky).
We will set aside for later.
There are many approaches: Problem approximation,
Simulation-based approaches.
Simulation-based methods are of three types: Rollout (we will
not discuss further), Approximation in value space,
Approximation in policy space

37/71

Why do we use Simulation?

One reason: Computational complexity advantage in computing
sums/expectations involving a very large number of terms
Any sum

∑n
i=1 ai can be written as an expected value:

n∑
i=1

ai =

n∑
i=1

ξi
ai

ξi
= Eξ

[
ai

ξi

]
where ξ is any probability distribution over {1, . . . , n}
It can be approximated by generating many samples {i1, ..., ik}
from {1, . . . , n}, according to distribution ξ, and Monte Carlo
averaging:

n∑
i=1

ai = Eξ
[

a
ξ

]
≈ 1

k

k∑
t=1

ait

ξit

Simulation is also convenient when an analytical model of the
system is unavailable , but a simulation/computer model is
possible.

38/71

Solve DP via Simulation

Ideally, VI and PI solve the fixed equation: finding J∗ such that

J∗ = min
µ
{gµ + αPµJ∗}

Practically, we often wish to solve Bellman’s equation without
knowing Pµ, gµ.

What we do have: a simulator that starts from state i, given
action a, generate random samples of transition costs and future
state g(i, inext, a), inext

Example: Optimize a trading policy to maximize profit
Current transaction has unknown market impact
Use current order book as states/features

Example: stochastic games, Tetris, hundreds of millions of states,
captured using 22 features

39/71

Outline

1 Infinite-Horizon DP: Theory and Algorithms

2 DP is a special case of LP

3 A Premier on ADP

4 Dimension Reduction in RL
Approximation in value space
Approximation in policy space
State Aggregation

5 On-Policy Learning
Direct Projection
Bellman Error Minimization
Projected Bellman Equation Method
From On-Policy to Off-Policy

40/71

Approximation in value space

Approximate J∗ or Jµ from a parametric class J̃(i;σ) where i is
the current state and σ = (σ1, . . . , σm) is a vector of “tunable”
scalars weights

Use J̃ in place of J∗ or Jµ in various algorithms and computations

Role of σ : By adjusting σ we can change the “shape” of J̃ so that
it is “close” to J∗ or Jµ

A simulator may be used, particularly when there is no
mathematical model of the system (but there is a computer
model)

We will focus on simulation , but this is not the only possibility

We may also use parametric approximation for Q-factors or cost
function differences

41/71

Approximation Architectures

Two key issues:

The choice of parametric class J̃(i;σ) (the approximation
architecture)

Method for tuning the weights (“training” the architecture)

Success depends strongly on how these issues are handled ... also
on insight about the problem

Divided in linear and nonlinear [i.e., linear or nonlinear
dependence of J̃(i;σ) on σ]

Linear architectures are easier to train, but nonlinear ones (e.g.,
neural networks) are richer

42/71

Computer chess example

Think of board position as state and move as control
Uses a feature-based position evaluator that assigns a score (or
approximate Q-factor) to each position/move

Relatively few special features and weights, and multistep
lookahead

43/71

Linear Approximation Architectures

With well-chosen features, we can use a linear architecture:

J̃(i;σ) = φ(i)′σ, i = 1, . . . , n,

or

J̃σ = Φσ =

s∑
j=1

Φjσj

Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n, Φj is the jth
column

This is approximation on the subspace

S = {Φσ|σ ∈ Rs}

spanned by the columns of Φ (basis functions)

44/71

Linear Approximation Architectures

Often, the features encode much of the nonlinearity inherent in the
cost function approximated

Many examples of feature types: Polynomial approximation,
radial basis functions, etc

45/71

Example: Polynomial type

Polynomial Approximation, e.g., a quadratic approximating
function. Let the state be i = (i1, . . . , iq) (i.e., have q
“dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture :

J̃(i;σ) = σ0 +

q∑
k=1

σkik +

q∑
k=1

q∑
m=k

σkmikim,

where σ has components σ0, σk, and σkm.
Interpolation : A subset I of special/representative states is
selected, and the parameter vector σ has one component σi per
state i ∈ I. The approximating function is J̃(i;σ) = σi, i ∈ I. J̃(i;σ)
is the interpolation using the values at i ∈ I, i /∈ I. For example,
piecewise constant, piecewise linear, more general polynomial
interpolations.

46/71

Another Example

J∗(i): optimal score starting from position i
Number of states > 2200 (for 10× 20 board)
Success with just 22 features, readily recognized by tetris players
as capturing important aspects of the board position (heights of
columns, etc)

47/71

Approximation in Policy Space

A brief discussion; we will return to it later.

Use parametrization µ(i;σ) of policies with a vector
σ = (σ1, . . . , σs) .

Examples:
Polynomial, e.g., µ(i;σ) = σ1 + σ2 · i + σ3 · i2

Linear feature-based

µ(i;σ) = φ1(i) · σ1 + φ2(i) · σ2

48/71

Approximation in Policy Space

Optimize the cost over σ. For example:

Each value of σ defines a stationary policy, with cost starting at
state i denoted by J̃(i;σ).

Let (p1, . . . , pn) be some probability distribution over the states,
and minimize over σ:

∑n
i=1 piJ̃(i;σ)

Use a random search, gradient, or other method

A special case: The parameterization of the policies is indirect,
through a cost approximation architecture J̃, i.e.,

µ(i;σ) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ̃(j;σ)

)

49/71

Aggregation

A first idea : Group similar states together into “aggregate states”
x1, . . . , xs; assign a common cost value σi to each group xi.

Solve an “aggregate” DP problem , involving the aggregate
states, to obtain σ = (σ1, ..., σs). This is called hard aggregation

50/71

Aggregation

More general/mathematical view : Solve

Φσ = ΦDTµ(Φσ)

where the rows of D and Φ are prob. distributions (e.g., D and Φ
“aggregate” rows and columns of the linear system J = TµJ)
Compare with projected equation Φσ = ΠTµ(Φσ). Note: ΦD is a
projection in some interesting cases

51/71

Aggregation as Problem Abstraction

Aggregation can be viewed as a systematic approach for
problem approximation. Main elements:
Solve (exactly or approximately) the “aggregate” problem by any
kind of VI or PI method (including simulation-based methods)
Use the optimal cost of the aggregate problem to approximate
the optimal cost of the original problem

52/71

Aggregate System Description

The transition probability from aggregate state x to aggregate
state y under control u

p̂xy(u) =

n∑
i=1

dxi

n∑
j=1

pij(u)φjy, or P̂(u) = DP(u)Φ

where the rows of D and Φ are the disaggregation and
aggregation probs.

The expected transition cost is

ĝ(x, u) =

n∑
i=1

dxi

n∑
j=1

pij(u)g(i, u, j), or ĝ = DP(u)g

53/71

Aggregate Bellman’s Equation

The optimal cost function of the aggregate problem, denoted R̂, is

R̂(x) = min
u∈U

[
ĝ(x, u) + α

∑
y

p̂(x,y)(u)R̂(y)

]
, ∀x

Bellman’s equation for the aggregate problem.

The optimal cost function J∗ of the original problem is
approximated by J̃ given by

J̃(j) =
∑

y

φjyR̂(y), ∀j

54/71

Example I: Hard Aggregation

Group the original system states into subsets, and view each
subset as an aggregate state

Aggregation probs.: φjy = 1 if j belongs to aggregate state y.

Disaggregation probs.: There are many possibilities, e.g., all
states i within aggregate state x have equal prob. dxi.

If optimal cost vector J∗ is piecewise constant over the aggregate
states/subsets, hard aggregation is exact. Suggests grouping
states with “roughly equal” cost into aggregates.

A variant: Soft aggregation (provides “soft boundaries” between
aggregate states).

55/71

Example II: Feature-Based Aggregation

Important question: How do we group states together?

If we know good features, it makes sense to group together
states that have “similar features”

A general approach for passing from a feature-based state
representation to a hard aggregation-based architecture

Essentially discretize the features and generate a corresponding
piecewise constant approximation to the optimal cost function

Aggregation-based architecture is more powerful (it is nonlinear
in the features)

... but may require many more aggregate states to reach the
same level of performance as the corresponding linear
feature-based architecture

56/71

Example III: Representative States/Coarse Grid

Choose a collection of “representative” original system states,
and associate each one of them with an aggregate state

Disaggregation probabilities are dxi = 1 if i is equal to
representative state x.

Aggregation probabilities associate original system states with
convex combinations of representative states

j ∼
∑
y∈A

φjyy

Well-suited for Euclidean space discretization

Extends nicely to continuous state space, including belief space
of POMDP

57/71

Feature Extraction is Linear Approximation of High-d
Cost Vector

58/71

Outline

1 Infinite-Horizon DP: Theory and Algorithms

2 DP is a special case of LP

3 A Premier on ADP

4 Dimension Reduction in RL
Approximation in value space
Approximation in policy space
State Aggregation

5 On-Policy Learning
Direct Projection
Bellman Error Minimization
Projected Bellman Equation Method
From On-Policy to Off-Policy

59/71

Direct Policy evaluation

Approximate the cost of the current policy by using least squares
and simulation-generated cost samples
Amounts to projection of Jµ onto the approximation subspace

Solution by least squares methods
Regular and optimistic policy iteration
Nonlinear approximation architectures may also be used

60/71

Direct Evaluation by Simulation

Projection by Monte Carlo Simulation: Compute the projection
ΠJµ of Jµ on subspace S = {Φσ|σ ∈ Rs}, with respect to a
weighted Euclidean norm ‖ · ‖ξ

Equivalently, find Φσ∗, where

σ∗ = arg min
σ∈Rs
‖Φσ − Jµ‖2

ξ = arg min
σ∈Rs

n∑
i=1

ξi(φ(i)′σ − Jµ(i))2

Setting to 0 the gradient at σ∗,

σ∗ =

(
n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)Jµ(i)

61/71

Direct Evaluation by Simulation

Generate samples {(i1, Jµ(i1)), . . . , (ik, Jµ(ik))} using distribution
ξ

Approximate by Monte Carlo the two “expected values” with
low-dimensional calculations

σ̂k =

(
k∑

t=1

φ(it)φ(it)′
)−1 k∑

t=1

φ(it)Jµ(it)

Equivalent least squares alternative calculation:

σ̂k = arg min
σ∈Rs

k∑
t=1

(φ(it)′σ − Jµ(it))2

62/71

Convergence of Evaluated Policy

By law of large numbers, we have

1
k

k∑
t=1

φ(it)φ(it)′ a.s.−→
1
n

n∑
i=1

ξiφ(i)φ(i)′

and

1
k

k∑
t=1

φ(it)Jµ(it) a.s.−→
1
n

n∑
i=1

ξiφ(i)Jµ(i)

We have
σk a.s.−→ σ∗ = ΠSJµ

As the number of samples increases, the estimated low-dim cost
σk converges almost surely to the projected Jµ.

63/71

Indirect policy evaluation

Solve the projected equation

Φσ = ΠTµ(Φσ)

where Π is projection with respect to a suitable weighted
Euclidean norm
Solution methods that use simulation (to manage the calculation
of Π)
TD(λ): Stochastic iterative algorithm for solving Φσ = ΠTµ(Φσ)

LSTD(λ): Solves a simulation-based approximation with a
standard solver
LSPE(λ): A simulation-based form of projected value iteration ;
essentially

Φσk+1 = ΠTµ(Φσk) + simulation noise

Almost sure convergence guarantee

64/71

Bellman Error Minimization

Another example of indirect approximate policy evaluation:

min
σ
‖Φσ − Tµ(Φσ)‖2

ξ (∗)

where ‖ · ‖ξ is Euclidean norm, weighted with respect to some
distribution ξ

It is closely related to the projected equation/Galerkin approach (with a
special choice of projection norm)

Several ways to implement projected equation and Bellman error
methods by simulation. They involve:

Generating many random samples of states ik using the
distribution ξ
Generating many samples of transitions (ik, jk) using the policy µ
Form a simulation-based approximation of the optimality condition
for projection problem or problem (*) (use sample averages in
place of inner products)
Solve the Monte-Carlo approximation of the optimality condition

Issues for indirect methods: How to generate the samples? How to
calculate σ∗ efficiently?

65/71

Cost Function Approximation via Projected Equations

Ideally, we want to solve the Bellman equation (for a fixed policy µ)

J = TµJ

In MDP, the equation is n× n:

J = gµ + αPµJ

We solve a projected version of the high-dim equation

J = Π(gµ + αPµJ)

Since the projection Π is onto the space spanned by Φ, the projected
equation is equivalent to

Φσ = Π(gµ + αPµΦσ)

We fix the policy µ from now on, and omit mentioning it.

66/71

Matrix Form of Projected Equation

The solution Φσ∗ satisfies the orthogonality condition: The error

Φσ∗ − (g + αPΦσ∗)

is “orthogonal” to the subspace spanned by the columns of Φ.

This is written as

Φ′Ξ(Φσ∗ − (g + αPΦσ∗)) = 0,

where Ξ is the diagonal matrix with the steady-state probabilities
ξ1, . . . , ξn along the diagonal.

Equivalently, Cσ∗ = d, where

C = ΦΞ(I − αP)Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional inner
products).

67/71

Simulation-Based Implementations

Key idea: Calculate simulation-based approximations based on k
samples

Ck ≈ C, dk ≈ d

Matrix inversion σ∗ = C−1d is approximated by

σ̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Differences) Method.

Key fact: Ck, dk can be computed with low-dimensional linear
algebra (of order s; the number of basis functions).

68/71

Simulation Mechanics

We generate an infinitely long trajectory (i0, i1, . . .) of the Markov
chain, so states i and transitions (i, j) appear with long-term
frequencies ξi and pij.
After generating each transition (it, it+1), we compute the row
φ(it)′ of Φ and the cost component g(it, it+1).
We form

dk =
1

k + 1

k∑
t=0

φ(it)g(it, it+1) ≈
∑

i,j

ξipijφ(i)g(i, j) = Φ′Ξg = d,

Ck =
1

k + 1

k∑
t=0

φ(it)(φ(it)− αφ(it+1))′ ≈ Φ′Ξ(I − αP)Φ = C

Convergence based on law of large numbers: Ck a.s.−→ C, dk a.s.−→ d.
As sample size increases, σk converges a.s. to the solution of
projected Bellman equation.

69/71

Approximate PI via On-Policy Learning

Outer Loop (Off-Policy RL):
Estimate the value function of the current policy µt using linear
features:

Jµt ≈ Φσt

Inner Loop (On-Policy RL):
Generate state trajectories ...
Estimate σt via Bellman error minimization (or direct projection, or
projected equation approach)

Update the policy by

µt+1(i) = arg min
a

∑
j

pij(α)(g(i, α, j) + φ(j)′σt), ∀i

Comments:
Requires knowledge of pij (suitable for computer games with
known transitions)
The policy µt+1 is parameterized by σt.

70/71

Approximate PI via On-Policy Learning

Use simulation to approximate the cost Jµ of the current policy µ
Generate “improved” policy µ by minimizing in (approx.) Bellman
equation

Alternatively we can approximate the Q-factors of µ

71/71

Theoretical Basis of Approximate PI

If policies are approximately evaluated using an approximation
architecture such that

max
i
|J̃(i, σk)− Jµk(i)| ≤ d, k = 0, 1, . . . ,

If policy improvement is also approximate,

max
i
|(Tµk+1 J̃)(i, σk)− (TJ̃)(i, σk)| ≤ ε, k = 0, 1, . . .

Error bound: The sequence {µk} generated by approximate
policy iteration satisfies

lim sup
k→∞

max
i

(Jµk(i)− J∗(i)) ≤ ε+ 2αd
(1− α)2

Typical practical behavior: The method makes steady progress
up to a point and then the iterates Jµk oscillate within a
neighborhood of J∗.
In practice oscillations between policies is probably not the major
concern.

	Infinite-Horizon DP: Theory and Algorithms
	DP is a special case of LP
	 A Premier on ADP
	Dimension Reduction in RL
	Approximation in value space
	Approximation in policy space
	State Aggregation

	On-Policy Learning
	Direct Projection
	Bellman Error Minimization
	Projected Bellman Equation Method
	From On-Policy to Off-Policy

