Lecture: Link Analysis

http://bicmr.pku.edu.cn/~wenzw/bigdata2016.html

Acknowledgement: this slides is based on Prof. Jure Leskovec's lecture notes

Outline

Introduction

- 2 PageRank
- 3 PageRank in Reality
- 4 Ex
 - Extensions
 - Topic-Specific PageRank
 - TrustRank: combating the web spam

Communication networks

Web search

- How to organize the Web?
- First try: Human curated Web directories
 - Yahoo, baidu, hao123
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

hǎo123	5月16日 📓 北京(1984) 💫 大大年 - 10 🖵 💷 三方比八 五日天气 💫 30~18°C - 90兆道 手和道 桌道道 約回	
Baide	R.R. B.F. B.G. M.G. B.G. B.G. T.G. T.G. <tht.g.< th=""> T.G. T.G. <th< th=""><th></th></th<></tht.g.<>	
II 网站大全 🛄 电视到	II 最新电影 II 新闻头条 白 松丁游戏 亞 小语戏 II 今日特价 II 最新小说 ※ 特价旅游	
自正男子校 和双子门建思考与大考察 前往世界的尽头:探险斯里兰卡	■ ER NG ● ER NM ● R R	
 电视影 ● 游戏 小游戏 ● 助戏 小游戏 ● 助戏 小游戏 ● 助戏 小游戏 ■ 助戏 小波 「など 直接 ■ 助水 下本 ※ (加加) 日本 ● 取用 小本枝 小波 	■ RUX 14280、Ass Sv2 SAMUA SABUA 026 EVECT 150 F20261 B) 学校市地・142-55 989.02 83040 23401 2440.02 9-9 PM 校式用用 ARAMU 155040 35708 259431 2440.02 9-9 PM 校式用用 ARAMU 155040 35708 2470.07 82.918 9-9 PM 大学校研究 142-554 1461.07 92.945 ARAMU 259.08 PM - 7.5-4 2502.02 1461.07 92.07	
國國第一部份 Q 查询 天气	网边 电视器 电影 头条 刻乐 军事 小游戏 特价 ✓	
X# X XF XF X X XF XF XF X X XF XF XF X X XF XF XF X XF XF XF XF	任任 第十七元為 (松田) 万田川 528 (日 1233) (日 1233) 日本 (日 1233)	
 ・运告商提述降费被指或意不足 ・事业单位工资调整月均衰300 ・事の点を見るの。前時時から消 	エキ 中学年春 民族 年春 环线集年春 年春天長 彼血年春 年春色点 新放年春 <u>1</u> 58~9 新闻 - 叔乐 - 平孝 - 体育 - 正通 - NBA - 足球 - 英女 - 胡英 - 激成 - 漫画 - 小说	<u>Ä</u> 848
 · 世川以方以來自求很等時主時 · 豐原將女子很衣養身粉閉槍人 · 外媒環或炎去世 成紀後元泰富 · · ·	体育 新波·NBA 建煤体膏 CCTV5 皮针体膏 体育直接 直接把 足球彩票 更多>> 前 标 163艘箱 128艘箱 阿里五般箱 新浪總稿 QQ邮箱 网络F41船箱 更多>>	© £8 ○ 8%
2.0 放放6月中下旬将强制联谊	小说 起位中文网 漆粉料液 百度书编 纵极中文词 小说物行 找1/小说 更多>> 。 药物 泡室网 京东商城 亚马逊 1 <mark>9名</mark> 天徽文装 聚以煤 易品网 更多>>	± 1188
ALL OF OWNER WITH	育成 天猿 1号正线城 国现在线 苏宁原的 聚庚戊品 撤淘金纬的 单皮的发室 - 元多>>	

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Web as a directed graph

 Web as a directed graph: Nodes: Webpages; Edges: Hyperlinks

Web as a directed graph

 Web as a directed graph: Nodes: Webpages; Edges: Hyperlinks

6/78

Three basic things of search engines

- Crawl the web and locate all web pages with public access.
- Index the data from step 1, so that it can be searched efficiently for relevant keywords or phrases.
- Rate the importance of each page in the database, so that when a user does a search and the subset of pages in the database with the desired information has been found, the more important pages can be presented first.

Two challenges of web search:

- Web contains many sources of information. Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking nodes on the graph

- All web pages are not equally "important" www.pku.edu.cn VS. www.tsinghua.edu.cn
- There is large diversity in the web-graph node connectivity
- Let's rank the pages by the link structure!

Outline

2 PageRank

- 3 PageRank in Reality
- 4) Ex
 - Extensions
 - Topic-Specific PageRank
 - TrustRank: combating the web spam

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

10/78

Links as votes

- Idea: links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes
 - www.pku.edu.cn: 6,649 links www.alexa.com/siteinfo/www.pku.edu.cn
 - www.tsinghua.edu.cn: 8579 links www.alexa.com/siteinfo/www.tsinghua.edu.cn
- Are all in-links equal?
 - Links from important pages count more
 - Recursive question!

Links as votes

What sites link to pku.edu.cn?		What sites link to tsinghua.edu.cn?			
Total Sites Linking In	6,649	Total Sites Linking In	8,579		
Site	Page	Site	Page		
1. baidu.com	bdl.baidu.com/publication.html 🖗	1. yahoo.com	travelinspirations.yahoo.com/post/:id/ 🖗		
2. msn.com	msn.com/de-at/nachrichten/wissenundtec 🖗	2. baidu.com	tieba.baidu.com/f?ie=utf-8&kw=清华大学 🖉		
3. qq.com	edu.qq.com/bschool 🖗	3. msn.com	msn.com/en-us/travel/tripideas/the-bes 🖗		
4. hupu.com	bbs.hupu.com/14788328.html 🖗	4. yandex.ru	ftp.yandex.ru/debian/README.mirrors.ht		
5. 163.com	biz.163.com 🖗	5. qq.com	city.qq.com		

Example: PageRank scores

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page *j* with importance *r_j* has *n* out-links, each link gets *r_j/n* votes
- Page j's own importance is the sum of the votes on its in-links

14/78

PageRank: the "flow" model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

where d_i is the out-degree of node i

Flow" equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

Solving the flow equations

"Flow" equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

No unique solution

- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

•
$$r_y + r_a + r_m = 1$$

- Solution: $r_y = 2/5, r_a = 2/5, r_m = 1/5$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: matrix formulation

- Stochastic adjacency matrix M
 - Let page *i* has *d_i* out-links

$$\mathbf{M}_{ji} = \left\{ egin{array}{cc} rac{1}{d_i} & ext{if } i
ightarrow j \ 0 & ext{otherwise} \end{array}
ight.$$

- M is a column stochastic matrix (column sum to 1)
- Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equation $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ can be written as

$$\mathbf{r} = \mathbf{M}\mathbf{r}$$

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
- Flow equation in the matrix form: $\mathbf{Mr} = \mathbf{r}$
 - Suppose page *i* links to 3 pages, including *j*

18/78

Eigenvector formulation

- NOTE: *x* is an eigenvector of *A* with the corresponding eigenvalue λ if: *Ax* = λx
- Flow equation in the matrix form: Mr = r
- $\bullet\,$ The rank vector r is an eigenvector of the stochastic web matrix $M\,$
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic. We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now efficiently solve for r through *power iteration*

Example: flow equations

	У	a	m
y	1⁄2	1⁄2	0
a	1⁄2	0	1
m	0	1⁄2	0

 $r = M \cdot r$

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1/2}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power iteration

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N, ..., 1/N]^{\top}$

• Iterate:
$$\mathbf{r}^{(t+1)} = \mathbf{M}\mathbf{r}^{(t)}$$
, i.e.,

$$\mathbf{r}_{j}^{t+1} = \sum_{i
ightarrow j} rac{\mathbf{r}_{i}^{(t)}}{d_{i}}, \quad d_{i}$$
 : out-degree of node i

• Stop when
$$\|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}\|_1 \le \epsilon$$

Random walk interpretation

- Imagine a random web surfer:
 - At any time *t*, surfer is on some page *i*
 - At time *t* + 1, the surfer follows an out-link from *i* uniformly at random
 - Ends up on some page *j* linked from *i*
 - Process repeats indefinitely
- Let p_t vector whose *i*-th coordinate is the prob. that the surfer is at page *i* at time t
- So, **p**_t is a probability distribution over pages

The stationary distribution

• Where is the surfer at time t + 1?

• Follows a link uniformly at random

 $\mathbf{p}_{t+1} = \mathbf{M}\mathbf{p}_t$

• Suppose the random walk reaches a state

$$\mathbf{p}_{t+1} = \mathbf{M}\mathbf{p}_t = \mathbf{p}_t$$

then \mathbf{p}_t is the stationary distribution of a random walk

- Our original rank vector ${\bf r}$ satisfies ${\bf r}={\bf M}{\bf r}$
- So r is a stationary distribution for the random walk

PageRank: three questions

$$\mathbf{r}_{j}^{t+1} = \sum_{i o j} \frac{\mathbf{r}_{i}^{(t)}}{d_{i}}, \quad \text{or equivalently} \quad \mathbf{r} = \mathbf{M}\mathbf{r}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

24/78

- Does it converge?
- Does it converge to what we want?
- Are results reasonable?

Does it converge?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Does it converge to what we want?

PageRank: problems

Two problems:

- Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"
- Spider traps (all out-links are within the group)
 - Eventually spider traps absorb all importance

27/78

Problem: spider traps

Power Iteration:

Set
$$r_j = 1$$

 $r_i = \sum_{i=1}^{n} \frac{r_i}{r_i}$

$$r_j = \Delta_i \rightarrow j_{d_i}$$

And iterate

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2$$
$$r_{m} = r_{a}/2 + r_{m}$$

Example:

1/3	2/6	3/12	5/24		0
1/3	1/6	2/12	3/24		0
1/3	3/6	7/12	16/24		1
Iteration 0, 1, 2,					

Solution: random teleports

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With probability β , follow a link at random
 - With probability 1β , jump to some random page
 - Commonly $\beta \in [0.8, 0.9]$
- Surfer will teleport out of spider trap within a few time steps

Problem: dead ends

Power Iteration:

- Set r_j = 1
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	а	m
у	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2$

Example:

1/3	2/6	3/12	5/24	0
1/3	1/6	2/12	3/24	 0
1/3	1/6	1/12	2/24	0
н e	0 4 0			

Iteration 0, 1, 2, ...

Solution: always teleport

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- Surfer will teleport out of spider trap within a few time steps

Why teleports solve the problem?

$$\mathbf{r}^{(t+1)} = \mathbf{M}\mathbf{r}^{(t)}$$

Markov chains

- Set of states X
- Transition matrix *P* where $P_{ij} = P(X_t = i | X_{t-1} = j)$
- π specifying the stationary probability of being at each state $x \in X$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

32/78

• Goal is to find π such that $\pi = P\pi$

- Theory of Markov chains
- Fact: For *any start vector*, the power method applied to a Markov transition matrix *P* will converge to a unique positive stationary vector as long as *P* is **stochastic**, **irreducible** and **aperiodic**
- (By the Perron-Frobenius theorem, an irreducible and aperiodic Markov chain is guaranteed to converge to a unique stationary distribution)

Make M stochastic

- (column)-stochastic: every column sums to 1
- A possible solution: add green links

$$\mathbf{A} = \mathbf{M} + \mathbf{a}^{\top}(\frac{1}{n}\mathbf{1})$$

where $a_i = 1$ if node *i* has out deg 0, otherwise $a_i = 0$

<ロト
・ロト
・< 三ト</p>
・< 三・</p>
・< 三・</p>
・< 34/78</p>

Make M aperiodic

- A chain is **periodic** if there exists k > 1 such that the interval between two visits to some state *s* is always a multiple of *k*
- A possible solution: add green links

Make M irreducible

- From any state, there is a non-zero probability of going from any one state to any another
- A possible solution: add green links

Google's solution: random jumps

- Google's solution that does it all:
 - Makes M stochastic, aperiodic, irreducible
- At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1β , jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

- This formulation assumes that M has no dead ends
- We can either preprocess matrix **M** to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends

Google's solution: random jumps

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

• Since $\mathbf{1}^{\top}\mathbf{r} = 1$, the Google matrix A:

$$\mathbf{A} = \beta \mathbf{M} + (1 - \beta) \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$$

• A is stochastic, aperiodic and irreducible, so

$$\mathbf{r}^{(t+1)} = \mathbf{A}\mathbf{r}^{(t)}$$

• In practice $\beta \in [0.8, 0.9]$ (make around 5 steps and jump)

Random teleports ($\beta = 0.8$)

Simple proof using linear algebra

- Every stochastic matrix has 1 as an eigenvalue.
- $V_1(\mathbf{A})$: eigenspace for eigenvalue 1 of a stochastic matrix \mathbf{A} .
- Fact 1: If **M** is positive and stochastic, then any eigenvector in $V_1(\mathbf{M})$ has all positive or all negative components.
- Fact 2: If **M** is positive and stochastic, then *V*₁(**M**) has dimension 1.

Proof of Fact 1

- Suppose $x \in V_1(\mathbf{M})$ contains elements of mixed sign.
- Since $M_{ij} > 0$, each $M_{ij}x_j$ are of mixed sign. Then

$$|x_i| = |\sum_{j=1}^n M_{ij}x_j| < \sum_{j=1}^n M_{ij}|x_j|$$

Since M is stochastic, we can obtain a contradition

$$\sum_{i=1}^{n} |x_i| < \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} |x_j| = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} M_{ij} \right) |x_j| = \sum_{j=1}^{n} |x_j|$$

• If $x_j \ge 0$ for all j, then $x_i > 0$ since $M_{ij} > 0$ and not all x_j are zero.

Proof of Fact 2

- Claim: Let $v, w \in \mathbb{R}^m$ with $m \ge 2$ and linearly independent. Then for some *s* and *t* that are not both zero, the vector x = sv + tw has both positive and negative components.
 - Linear independence implies neither v nor w is zero. Let $d = \sum_{i} v_i$.
 - If d = 0, then v must contain mixed sign, and taking s = 1, t = 0.
 - If $d \neq 0$, set $s = -\sum_i w_i/d$, t = 1 and x = sv + w. Then $x \neq 0$ but $\sum_i x_i = 0$.
- Fact 2: Proof by contradiction. Suppose there are two linearly independent eigenvectors v and w in the subspace $V_1(\mathbf{M})$. For any real numbers s and t that are not both zero, the nonzero vector x = sv + tw must be in $V_1(\mathbf{M})$, and so have components that are all negative or all positive. But by the above claim, for some choice of s and t the vector x must contain components of mixed sign.

Convergence of Power Iteration

Claim 1: Let **M** be positive and stochastic. Let *V* be a subspace of *v* such that $\sum_i v_i = 0$. Then $\mathbf{M}v \in V$ and $\|\mathbf{M}v\|_1 \leq c\|v\|_1$ for any $v \in V$ and 0 < c < 1.

• Let w = Mv. Then $w \in V$ since

$$\sum_{i=1}^{n} w_i = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} v_j = \sum_{j=1}^{n} v_j \left(\sum_{i=1}^{n} M_{ij} \right) = \sum_{j=1}^{n} v_j = 0$$

• Let $e_i = \operatorname{sgn}(w_i)$ and $a_j = \sum_{i=1}^n e_i M_{ij}$, then e_i are of mixed sign

$$\|w\|_1 = \sum_{i=1}^n e_i w_i = \sum_{i=1}^n e_i \left(\sum_{j=1}^n M_{ij} v_j\right) = \sum_{j=1}^n a_j v_j$$

• Since $\sum_{i=1}^{n} M_{ij} = 1$ with $0 < M_{ij} < 1$, there exists 0 < c < 1 such that $|a_j| < c$.

Claim 2: Let **M** be positive and stochastic. Then it has a unique q > 0 such that $\mathbf{M}q = q$ with $||q||_1 = 1$. The vector q can be computed as $q = \lim_{k\to\infty} \mathbf{M}^k x_0$ with $x_0 > 0$ and $||x_0||_1 = 1$.

• The existence of *q* has been proved.

• We can write $x_0 = q + v$ where $v \in V$ defined in Claim 1. We have

$$\mathbf{M}^k x_0 = \mathbf{M}^k q + \mathbf{M}^k v = q + \mathbf{M}^k v$$

• Since $\|\mathbf{M}^k v\|_1 \le c^k \|v\|_1$ for 0 < c < 1, then $\lim_{k\to\infty} \mathbf{M}^k x_0 = q$.

Convergence rate of Power Iteration

•
$$\mathbf{r}^{(1)} = \mathbf{M}\mathbf{r}^{(0)}, \, \mathbf{r}^{(2)} = \mathbf{M}\mathbf{r}^{(1)} = \mathbf{M}^2\mathbf{r}^{(0)}, \, \dots$$

- Claim: The sequence Mr⁽⁰⁾,..., M^kr⁽⁰⁾,... approaches the dominant eigenvector of M.
- Proof: Assume M has n linearly independent eigenvectors, x₁, x₂,..., x_n with corresponding eigenvalues λ₁, λ₂,..., λ_n such that λ₁ > λ₂ ≥ ... ≥ λ_n
- Since x_1, x_2, \ldots, x_n is a basis in \mathbb{R}^n , we can write

$$\mathbf{r}^{(0)} = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

• Using $\mathbf{M}x_i = \lambda_i x_i$, we have

$$\mathbf{Mr}^{(0)} = \mathbf{M}(c_1x_1 + c_2x_2 + \ldots + c_nx_n)$$
$$= \sum_{i=1}^n c_i\lambda_i x_i$$

Convergence rate of Power Iteration

Repeated multiplication on both sides produces

$$\mathbf{M}^{k}\mathbf{r}^{(0)} = \sum_{i=1}^{n} c_{i}\lambda_{i}^{k}x_{i}$$
$$= \lambda_{1}^{k}\left(\sum_{i=1}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}x_{i}\right)$$

• Since $\lambda_1 > \lambda_i$, i = 2, ..., n. Then $\frac{\lambda_i}{\lambda_1} < 1$, and $\lim_{k \to \infty} \left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$, i = 2, ..., n.

• Therefore,

$$\mathbf{M}^k \mathbf{r}^{(0)} \approx c_1 \lambda_1^k x_1$$

Note if $c_1 = 0$, then the method won't converge.

Outline

Introduction

2 PageRank

PageRank in Reality

Extensions

- Topic-Specific PageRank
- TrustRank: combating the web spam

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ - 三 - のへぐ

Computing the PageRank

- The matrix $\mathbf{A} = \beta \mathbf{M} + (1 \beta) \frac{1}{N} \mathbf{1} \mathbf{1}^{\top}$
- Key step is matrix-vector multiplication

$$\mathbf{r}^{new} = \mathbf{A}\mathbf{r}^{old}$$

- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Suppose there are N = 1 billion pages
 - Suppose we need 4 bytes for each entry
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries 10¹⁸ is huge!

Sparse matrix formulation

We just rearranged the PageRank equation

$$\mathbf{r} = \beta \mathbf{M} \mathbf{r} + \frac{1 - \beta}{N} \mathbf{1}_N$$

• M is a sparse matrix! (with no dead-ends)

- 10 links per node, approximately 10N entries
- So in each iteration, we need to
 - Compute $\mathbf{r}^{new} = \mathbf{A}\mathbf{r}^{old}$
 - Add a constant value $(1 \beta)/N$ to each entry in \mathbf{r}^{new}
 - Note if M contains dead-ends then $\sum_i r_i^{new} < 1$ and we also have to renormalize \mathbf{r}^{new} so that it sums to 1

Sparse matrix encoding

• Encode sparse matrix using only nonzero entries

- Space proportional roughly to number of links
- Say 10*N*, or 4*10*1 billion = 40GB
- Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic algorithm: update step

- Assume enough RAM to fit rnew into memory
 - Store r^{old} and matrix M on disk
- Then 1 step of power-iteration is Initialize all entries of r^{new} to (1 – β)/N For each page p (of out-degree n): Read into memory: p, n, dest₁, , dest_n, r^{old}(p) for j = 1 to n: r^{new}(dest_j) += βr^{old}(p)/n

Assume enough RAM to fit r^{new} into memory

- Store $\mathbf{r}^{\textit{old}}$ and matrix \mathbf{M} on disk
- In each iteration, we have to
 - Read r^{old} and M
 - Write r^{new} back to disk
 - IO cost: $2|\mathbf{r}| + |\mathbf{M}|$
- Question: What if we could not even fit r^{new} in memory?

Block based update algorithm

Similar to nested-loop join in databases

- Break **r**^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block
- k scans of M and r^{old}

•
$$k(|\mathbf{r}| + |\mathbf{M}|) + |\mathbf{r}| = k|\mathbf{M}| + (k+1)|\mathbf{r}|$$

- Can we do better?
 - Hint: **M** is much bigger than **r** (approx 10-20x), so we must avoid reading it *k* times per iteration

Block stripe update algorithm

4 5

> ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで 55/78

Analysis of block stripe update

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Some additional overhead per stripe
 - But it is usually worth it
- Cost per iteration: $|\mathbf{M}|(1+\epsilon) + (k+1)|\mathbf{r}|$

Some problems with PageRank

Measures generic popularity of a page

- Biased against topic-specific authorities
- Solution: Topic-Specific PageRank
- Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
 - Solution: Hubs-and-Authorities (HITS)
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

Outline

Introduction

2 PageRank

Extensions

- Topic-Specific PageRank
- TrustRank: combating the web spam

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she pick a page from a set S
 - S contains only pages that are relevant to the topic
 - For each teleport set S, we get a different vector r_S

Matrix formulation

 To make this work all we need is to update the teleportation part of the PageRank formulation

$$\mathbf{A}_{ij} = \begin{cases} \beta \mathbf{M}_{ij} + (1 - \beta) / |S| & \text{if } i \in S \\ \beta \mathbf{M}_{ij} & \text{otherwise} \end{cases}$$

- A is stochastic!
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to pages
- Compute as for regular PageRank
 - Multiply by M, then add a vector
 - Maintains sparseness

Example

Suppose *S* = {1}, β = 0.8

Node	Iteration				
	0	1	2	stable	
1	0.25	0.4	0.28	0.294	
2	0.25	0.1	0.16	0.118	
3	0.25	0.3	0.32	0.327	
4	0.25	0.2	0.24	0.261	

 $\begin{array}{l} \textbf{S=\{1\}, \ \beta=0.90:} \\ r=[0.17, \ 0.07, \ 0.40, \ 0.36] \\ \textbf{S=\{1\}, \ \beta=0.8:} \\ r=[0.29, \ 0.11, \ 0.32, \ 0.26] \\ \textbf{S=\{1\}, \ \beta=0.70:} \\ r=[0.39, \ 0.14, \ 0.27, \ 0.19] \end{array}$

S={1,2,3,4}, β=0.8: r=[0.13, 0.10, 0.39, 0.36] S={1,2,3}, β=0.8: r=[0.17, 0.13, 0.38, 0.30] S={1,2}, β=0.8: r=[0.26, 0.20, 0.29, 0.23] S={1}, β=0.8: r=[0.29, 0.11, 0.32, 0.26]

Discovering the topic

- Create different PageRanks for different topics
- Which topic ranking to use?
 - User can pick from a menu
 - Classify query into a topic
 - Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic

- History of queries e.g., "basketball" followed by "Jordan"
- User context, e.g., user's bookmarks, ...

TrustRank: combating the web spam

- Spamming: any deliberate action to boost a web page's position in search engine results, incommensurate with page's real value
- Spam: web pages that are the result of spamming
- This is a very broad definition
 - SEO (Search Engine Optimization) industry might disagree!

65/78

• Approximately 10-15% of web pages are spam

Web search

- Early search engines:
 - Crawl the Web
 - Index pages by the words they contained
 - Respond to search queries (lists of words) with the pages containing those words
- Early page ranking:
 - Attempt to order pages matching a search query by "importance"
 - First search engines considered
 - Number of times query words appeared
 - Prominence of word position, e.g. title, header

First spammers

- As people began to use search engines to find things on the Web, those with commercial interests tried to exploit search engines to bring people to their own site — whether they wanted to be there or not
- Example: shirt-sellers might pretend to be about "movies"
 - Add the word movie 1,000 times to your page and set text color to the background color
 - Or, run the query "movie" on your target search engine, copy the first result into your page and make it "invisible"
- Techniques for achieving high relevance/importance for a web page
- These and similar techniques are term spam

Google's solution to term spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages

Why it works?

Our hypothetical shirt-seller looses

- Saying he is about movies doesn't help, because others don't say he is about movies
- His page isn't very important, so it won't be ranked high for shirts or movies
- Example:
 - Shirt-seller creates 1,000 pages, each links to his with "movie" in the anchor text
 - These pages have no links in, so they get little PageRank
 - So the shirt-seller can't beat truly important movie pages like IMDB

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- **Spam farms** were developed to concentrate PageRank on a single page
- Link farm: creating link structures that boost PageRank of a particular page

Three kinds of web pages from a spammer's point of view

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Inaccessible pages
- Accessible pages
 - e.g., blog comments pages
 - Spammer can post links to his pages
- Own pages
 - Completely controlled by spammer
 - May span multiple domain names

Link farms

- Spammer's goal: maximize the PageRank of target page t
- Technique:
 - Get as many links from accessible pages as possible to target page *t*
 - Construct "link farm" to get PageRank multiplier effect

Analysis

- x: PageRank contributed by accessible pages
- y: PageRank of target page t
- Rank of each "farm" page $= \frac{\beta y}{M} + \frac{1-\beta}{N}$

$$y = x + \beta M \left[\frac{\beta y}{M} + \frac{1 - \beta}{N}\right] + \frac{1 - \beta}{N}$$
$$= x + \beta^2 y + \frac{\beta (1 - \beta)M}{N} + \frac{1 - \beta}{N}$$

Ignore the last term (very small) and solve for y:

$$y = \frac{x}{1 - \beta^2} + c\frac{M}{N}$$

where $c = \frac{\beta}{1+\beta}$ • For $\beta = 0.85$, $1/(1-\beta^2) = 3.6$ • Multiplier effect for "acquired" PageP

- Multiplier effect for "acquired" PageRank
- By making *M* large, we can make *y* as large as we want

Combating spam

- Combating term spam
 - Analyze text using statistical methods
 - Similar to email spam filtering
 - Also useful: Detecting approximate duplicate pages
- Combating link spam
 - Detection and blacklisting of structures that look like spam farms
 - TrustRank = topic-specific PageRank with a teleport set of "trusted" pages

- Basic principle: Approximate isolation
 - It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- Have an oracle (human) to identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible

- Call the subset of seed pages that are identified as good the trusted pages
- Perform a topic-sensitive PageRank with teleport set = trusted pages
 - Propagate trust through links: each page gets a trust value between 0 and 1
- Use a threshold value and mark all pages below the trust threshold as spam

Trust attenuation

- The degree of trust conferred by a trusted page decreases with the distance in the graph
- Trust splitting
 - The larger the number of out-links from a page, the less scrutiny the page author gives each out-link

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

77/78

• Trust is split across out-links

Picking the seed set

- Two conflicting considerations
 - Human has to inspect each seed page, so seed set must be as small as possible
 - Must ensure every good page gets adequate trust rank, so need make all good pages reachable from seed set by short paths

78/78

- Suppose we want to pick a seed set of k pages, how?
 - PageRank: pick the top-k pages by PageRank
 - Use trusted domains, e.g. .edu, .mil, .gov