Lecture: Link Analysis

http://bicmr.pku.edu.cn/~wenzw/bigdata2016.html

Acknowledgement: this slides is based on Prof. Jure Leskovec’s lecture notes
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Outline

@ Introduction
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Communication networks
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Web search

, hdor23. »:®
° HOW to organlze the Web’? B3 w5 o5 25 we ne g B 5>
Eai'(:h"ﬁﬁ 0| mE-T | wmEERwGH

@ First try: Human curated Web o e s s

di rectories Bmeke LEL] Ry kA AT s SRt LETE) Ak
s | o

@ Yahoo, baidu, hao123 v- T3 1888
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@ Information Retrieval
investigates: Find relevant
docs in a small and
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Web as a directed graph

@ Web as a directed graph:
Nodes: Webpages; Edges: Hyperlinks




Web as a directed graph
@ Web as a directed graph:
Nodes: Webpages; Edges: Hyperlinks
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Three basic things of search engines

@ Crawl the web and locate all web pages with public access.

@ Index the data from step 1, so that it can be searched efficiently
for relevant keywords or phrases.

@ Rate the importance of each page in the database, so that when
a user does a search and the subset of pages in the database
with the desired information has been found, the more important

pages can be presented first.
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Web search: two challenges

Two challenges of web search:
@ Web contains many sources of information. Who to "trust"?
e Trick: Trustworthy pages may point to each other!

© What is the "best" answer to query "newspaper"?
e No single right answer

e Trick: Pages that actually know about newspapers might all be
pointing to many newspapers
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Ranking nodes on the graph

@ All web pages are not equally
"important”
www.pku.edu.cn VS.
www.tsinghua.edu.cn

@ There is large diversity in the
web-graph node connectivity

@ Let’s rank the pages by the
link structure!
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www.pku.edu.cn
www.tsinghua.edu.cn

Outline

Q PageRank
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Links as votes

@ Idea: links as votes
e Page is more important if it has more links
@ In-coming links? Out-going links?

@ Think of in-links as votes

@ www.pku.edu.cn: 6,649 links
www.alexa.com/siteinfo/www.pku.edu.cn

@ www.tsinghua.edu.cn: 8579 links
www.alexa.com/siteinfo/www.tsinghua.edu.cn

@ Are all in-links equal?
e Links from important pages count more

e Recursive question!
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www.pku.edu.cn
www.alexa.com/siteinfo/www.pku.edu.cn
www.tsinghua.edu.cn
www.alexa.com/siteinfo/www.tsinghua.edu.cn

Links as votes

What site ik to pku.edu.cn?

What sites link to tsinghua.edu.cn?
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Example: PageRank scores
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Simple recursive formulation

@ Each link’s vote is proportional to the importance of its source
page

@ If page j with importance r; has n out-links, each link gets rj/n
votes

@ Page j's own importance is the sum of the votes on its in-links
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PageRank: the "flow" model

@ A "vote" from an important page is worth more
@ A page is important if it is pointed to by other important pages

@ Define a "rank" r; for page j
Ti

r; =
J
— d
i—j

where d; is the out-degree of node i

The web in 1839

y/2 .
“Flow"” equations:
r, =r,/2+r,/2

. 2
r, r. /2 +r,

= 2
r,=r,/2

m @
a2
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Solving the flow equations

“Flow" equations:

r. =r./2+r,/2
r, =r./2+r,

P = 2
r,=r,/2

@ No unique solution
@ All solutions equivalent modulo the scale factor

@ Additional constraint forces uniqueness:
o rytr,t+r,=1
e Solution: r, =2/5,r, =2/5,r, =1/5

@ Gaussian elimination method works for small examples, but we
need a better method for large web-size graphs

@ We need a new formulation!
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PageRank: matrix formulation

@ Stochastic adjacency matrix M
o Let page i has d; out-links

M. — g ifi— J
/ 0 otherwise

e M is a column stochastic matrix (column sumto 1)

@ Rank vector r: vector with an entry per page
e r; is the importance score of page i

o Zirizl

@ The flow equation r; =}, . 2 can be written as

i—j d;

r = Mr
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Example
@ Remember the flow equation: r; = 3

"
i—)j d;
@ Flow equation in the matrix form: Mr =r

e Suppose page i links to 3 pages, including j

|
J I
r;
1/3

M

DA 18/78



Eigenvector formulation

@ NOTE: x is an eigenvector of A with the corresponding
eigenvalue \ if: Ax = \x

@ Flow equation in the matrix form: Mr =r

@ The rank vector r is an eigenvector of the stochastic web matrix
M
e In fact, its first or principal eigenvector, with corresponding
eigenvalue 1
o Largest eigenvalue of M is 1 since M is column stochastic.
We know r is unit length and each column of M sums to one, so
Mr <1

@ We can now efficiently solve for r through power iteration
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Example: flow equations

y a m
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al»% | 0| 1
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Power iteration

@ Given a web graph with n nodes, where the nodes are pages
and edges are hyperlinks

@ Power iteration: a simple iterative scheme
@ Suppose there are N web pages

o Initialize: r®© = [1/N,... 1/N]T
e lterate: r*+Y) = Mr® | i.e.,

(1
+1_ T . i
= E & d; : out-degree of node i

i—j

e Stop when [[r(+D) —r0||; < ¢
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Random walk interpretation

@ Imagine a random web surfer:
e At any time ¢, surfer is on some page i

o Attime ¢+ 1, the surfer follows an out-link from i uniformly at
random

e Ends up on some page j linked from i

e Process repeats indefinitely

@ Let p, vector whose i-th coordinate is the prob. that the surfer is
at page i at time ¢

@ So, p; is a probability distribution over pages
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The stationary distribution

@ Where is the surfer at time ¢ + 17
e Follows a link uniformly at random

pr+1 = Mp;
@ Suppose the random walk reaches a state
Pr+1 = Mp; = p;
then p, is the stationary distribution of a random walk

@ Our original rank vector r satisfies r = Mr

@ So ris a stationary distribution for the random walk
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PageRank: three questions

it = Z—, or equivalently

l—)_]

@ Does it converge?
@ Does it converge to what we want?

@ Are results reasonable?

r = Mr
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Does it converge?

(t+1) r
— |
0—0 - =2
-] Yij
Example:
o _ 1 0 1 0
My o 1 0 1

Iteration O, 1, 2, ...
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Does it converge to what we want?

(t+1) r'(t)
e ,0 A N
rj o Z d

i—>j i
Example:
R _ 1 0 0 0
M o 1 0 O

lteration O, 1, 2, ...
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PageRank: problems

Two problems:
@ Some pages are dead ends (have no out-links)
@ Such pages cause importance to "leak out"

© Spider traps (all out-links are within the group)
e Eventually spider traps absorb all importance

—_——
/

, %

Ntmngly Connected Core \
IN ¢ = 1, ouT

= e

Disconnected components
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Problem: spider traps

Power lteration:
Set ;= 1

— i
= Zi—>jdi

= And iterate

Example:

r, 173 2/6  3/12
r, 1/3 /6  2/12
r, /3 3/6  7/12

Iteration O, 1, 2, ...

5/24
3/24
16/24

v a m
y Vs Ya
a Ya 0

m 0 s

)

r, =r,/2+r,/2
r, =r./2
r,=r,/2+r,
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Solution: random teleports

@ The Google solution for spider traps: At each time step, the
random surfer has two options

e With probability 3, follow a link at random
e With probability 1 — 3, jump to some random page
e Commonly § € [0.8,0.9]

@ Surfer will teleport out of spider trap within a few time steps

29/78



Problem: dead ends

Power Iteration: TS
Setr; =1 a0 o
. 2 m| 0 Va
T = Linj 4
= And iterate ry =124, 12
r, =r,/2
r,=r,/2
Example:
I, 1/3 2/6 3/12 5/24 0
L, | = 1/3 1’6 2/12 324 .. 0
I, 1/3 1/6 /12 2/24 0

lteration 0, 1, 2, ...
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Solution: always teleport

@ Teleports: Follow random teleport links with probability 1.0 from
dead-ends

e Adjust matrix accordingly

@ Surfer will teleport out of spider trap within a few time steps

a m a m
y y

y| Y va v| Y Y s
al 2 0 al Y2 0 Y

m| 0 Y 0 m| 0 Ya Y
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Why teleports solve the problem?

L) e

Markov chains
@ Set of states X

@ Transition matrix P where P; = P(X; = i|X;_1 = ))

@ 7 specifying the stationary probability of being at each state
xeX

@ Goalis to find 7 such that = = Pn
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Why is this analogy useful?

@ Theory of Markov chains

@ Fact: For any start vector, the power method applied to a Markov
transition matrix P will converge to a unique positive stationary
vector as long as P is stochastic, irreducible and aperiodic

@ (By the Perron-Frobenius theorem, an irreducible and aperiodic
Markov chain is guaranteed to converge to a unique stationary
distribution)

33/78



Make M stochastic

@ (column)-stochastic: every column sums to 1

@ A possible solution: add links

1
A=M-+a'(-1)

n

where a; = 1 if node i has out deg 0, otherwise a; = 0

y a m
vl v | w3

\ al ! 0 | 13
m| 0 2| 1/3

r, =r./2+r,/2+r, /3
r, =r,/2+r, /3

r,=r,/2 +r_ /3
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Make M aperiodic

@ A chain is periodic if there exists k > 1 such that the interval
between two visits to some state s is always a multiple of £

@ A possible solution: add green links
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Make M irreducible

@ From any state, there is a non-zero probability of going from any
one state to any another

@ A possible solution: add green links
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Google’s solution: random jumps

@ Google’s solution that does it all:
o Makes M stochastic, aperiodic, irreducible

@ At each step, random surfer has two options:

o With probability 3, follow a link at random
e With probability 1 — 3, jump to some random page

@ PageRank equation [Brin-Page, 98]
ri 1
=) By +-8
1—]
@ This formulation assumes that M has no dead ends

@ We can either preprocess matrix M to remove all dead ends or
explicitly follow random teleport links with probability 1.0 from
dead-ends
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Google’s solution: random jumps

@ PageRank equation [Brin-Page, 98]

n=3 8% +01-5),

A n
i—J
@ Since 1'r = 1, the Google matrix A:
1
A=pBAM+(1-p)-117
n

@ A is stochastic, aperiodic and irreducible, so

L) Ap®)

@ In practice g € [0.8,0.9] (make around 5 steps and jump)
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Random teleports (5 = 0.8)

M 1/n-1-17
0.8-%+0.2-%s
1/21/2 0 1/31/31/3
08|12 0 0| *0.21/31/31/3
0 12 1 1/31/31/3

y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

0.8+0.2'%

o3 2 A

y 1/3 033 024 0.26 7133
a = 1/3 020 020 018 ... 5/33
m 1/3 046 052 0.56 21/33
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Simple proof using linear algebra

@ Every stochastic matrix has 1 as an eigenvalue.
@ Vi(A) : eigenspace for eigenvalue 1 of a stochastic matrix A.

@ Fact 1: If M is positive and stochastic, then any eigenvector in
V1(M) has all positive or all negative components.

@ Fact 2: If M is positive and stochastic, then V; (M) has dimension
1.
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Proof of Fact 1

@ Suppose x € V(M) contains elements of mixed sign.
@ Since M;; > 0, each M;x; are of mixed sign. Then

n n
il = 1) M| <> Myl
j=1 j=1
@ Since M is stochastic, we can obtain a contradition

3 lsl < 303wl - z (ZM) 5 :Zm

i=1 j=l1

@ If x; > 0 for all j, then x; > 0 since M;; > 0 and not all x; are zero.
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Proof of Fact 2

@ Claim: Let v,w € R™ with m > 2 and linearly independent. Then
for some s and ¢ that are not both zero, the vector x = sv + rw has
both positive and negative components.

e Linear independence implies neither v nor w is zero. Letd =, v;.

e If d =0, then v must contain mixed sign, and taking s =1, 7 = 0.

o Ifd#0,sets=—>".w;/d,t=1andx=sv+w. Thenx # 0 but
Zixi =0.

@ Fact 2: Proof by contradiction. Suppose there are two linearly
independent eigenvectors v and w in the subspace V;(M). For
any real numbers s and r that are not both zero, the nonzero
vector x = sv + tw must be in V;(M), and so have components
that are all negative or all positive. But by the above claim, for
some choice of s and r the vector x must contain components of
mixed sign.
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Convergence of Power lteration

Claim 1: Let M be positive and stochastic. Let V be a subspace of v
such that >, v; =0. ThenMv € V and |My||; < c||v||; foranyv e V
and0 <c< 1.

@ Letw = Mv. Thenw € V since
ZW,’ = ZZMUVJ = ZVJ' (ZMU) = ZVJ' =0
i=1 i=1 j=1 j=1 i=1 j=1

@ Lete; =sgn(w;) and a; = "7 | e;M;;, then e; are of mixed sign

n n n n
wih =Y emwi=Y e[ D Mgy | =) aw
i=1 i=1 j=1 =1

@ Since Y !, M; = 1 with 0 < M;; < 1, there exists 0 < ¢ < 1 such
that |gj| < c.
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Convergence of Power lteration

Claim 2: Let M be positive and stochastic. Then it has a unique ¢ > 0
such that Mg = ¢ with ||¢||; = 1. The vector ¢ can be computed as
q = limy_,oo Mfxq with xq > 0 and ||xo||; = 1.

@ The existence of ¢ has been proved.

@ We can write xo = ¢ + v where v € V defined in Claim 1. We have
Mfxg = Mg + MMy = g + MFy

@ Since |[M*v||; < cK|v||; for 0 < ¢ < 1, then limy_, o MFxg = .
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Convergence rate of Power lteration

) r(]) = MI'(O), r(z) = Mr(l) = M2r(0), L

@ Claim: The sequence Mr(® ... M*r(®) ... approaches the
dominant eigenvector of M.

@ Proof: Assume M has n linearly independent eigenvectors,
x1,Xx2,...,X, With corresponding eigenvalues A, A, ..., A, such
that A\ >\ > ... >\,

@ Since x1,x2,...,x, IS a basis in R", we can write
r(o) =cix;1 +cxp+ ...+ cpxy
@ Using Mx; = \;x;, we have

MI'(O) — M(Clxl +cxy+ ...+ Cnxn)
n
= ZCi}\l’xi
i=1
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Convergence rate of Power lteration

@ Repeated multiplication on both sides produces

n
M@ = Zci)\fxi
i=1

k
@ Since \; > N\, i=2,...,n. Then j—l < 1, and limy_, (%) =0,
i=2,...,n.

@ Therefore,
M r©) ~ cl)\lfxl

Note if ¢; = 0, then the method won’t converge.
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Outline

e PageRank in Reality
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Computing the PageRank

@ The matrix A = SM + (1 — 8) 4117
@ Key step is matrix-vector multiplication
rev — Arold

@ Easy if we have enough main memory to hold A, ro, r"e"

@ Suppose there are N = 1 billion pages

@ Suppose we need 4 bytes for each entry
e 2 billion entries for vectors, approx 8GB
e Matrix A has N? entries - 10'8 is huge!
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Sparse matrix formulation

@ We just rearranged the PageRank equation

1-p

= M
r6r+N

1y

@ M is a sparse matrix! (with no dead-ends)
e 10 links per node, approximately 10N entries

@ So in each iteration, we need to
e Compute r"®" = Ar°“
e Add a constant value (1 — 3)/N to each entry in r*”

e Note if M contains dead-ends then ), 7/ < 1 and we also have
to renormalize r"*" so that it sums to 1
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Sparse matrix encoding

@ Encode sparse matrix using only nonzero entries
@ Space proportional roughly to number of links
e Say 10N, or 4*10*1 billion = 40GB
e Still won't fit in memory, but will fit on disk

0 3 1,5, 7
5 17, 64, 113, 117, 245
2 2 13, 23
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Basic algorithm: update step

@ Assume enough RAM to fit rnew into memory

e Store r°? and matrix M on disk

@ Then 1 step of power-iteration is

Initialize all entries of r¥ to (1 — 8)/N
For each page p (of out-degree n):

Read into memory: p,n, desty, , dest,, r(p)

forj = 1to n: r"(dest;) += Br°(p) /n

dn pW N RO

rnew

src deiree destination
1 4

17, 64, 113, 117

2

2

13, 23

rold

o HpW N RO
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Analysis

@ Assume enough RAM to fit r**” into memory
e Store r’ and matrix M on disk

@ In each iteration, we have to

e Read r’ and M
o Write r*® back to disk
e IO cost: 2|r| + M|

@ Question: What if we could not even fit r*” in memory?
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Block based update algorithm

rnew rold

src degree  destination

. o Ja& Jo1ss | LD
1 1
1 2 0,5 2
3,4 3
4
5
4
5

u]
o)
I
ul
it
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Analysis of block update

@ Similar to nested-loop join in databases

o Break r"™" into k blocks that fit in memory
e Scan M and r°“ once for each block

@ k scans of M and r
o k(|r| + [M|) + [r| = kM| + (k + 1)[r|

@ Can we do better?

e Hint: M is much bigger than r (approx 10-20x), so we must avoid
reading it k times per iteration
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Block stripe update algorithm

src degree  destination

. o Ja Jo1 |
1 . 1 3 0 rold
2

w N
N

w|w

v W N B O
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Analysis of block stripe update

@ Break M into stripes

e Each stripe contains only destination nodes in the corresponding
block of ¢

@ Some additional overhead per stripe
e But it is usually worth it

@ Cost per iteration: [IM|(1 +¢€) + (k+ 1)|r|
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Some problems with PageRank

@ Measures generic popularity of a page
e Biased against topic-specific authorities

e Solution: Topic-Specific PageRank

@ Uses a single measure of importance
e Other models e.g., hubs-and-authorities

@ Solution: Hubs-and-Authorities (HITS)

@ Susceptible to Link spam
o Atrtificial link topographies created in order to boost page rank

@ Solution: TrustRank

57/78



Outline

© Extensions
@ Topic-Specific PageRank
@ TrustRank: combating the web spam
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Topic-Specific PageRank

@ Instead of generic popularity, can we measure popularity within a
topic?

@ Goal: Evaluate Web pages not just according to their popularity,
but by how close they are to a particular topic, e.g. "sports" or
"history"

@ Allows search queries to be answered based on interests of the
user
o Example: Query "Trojan" wants different pages depending on
whether you are interested in sports, history and computer
security
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Topic-Specific PageRank

@ Random walker has a small probability of teleporting at any step

@ Teleport can go to:

e Standard PageRank: Any page with equal probability
e Topic Specific PageRank: A topic-specific set of "relevant" pages
(teleport set)

@ Idea: Bias the random walk

e When walker teleports, she pick a page from a set S
e S contains only pages that are relevant to the topic
e For each teleport set S, we get a different vector rg
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Matrix formulation

@ To make this work all we need is to update the teleportation part
of the PageRank formulation

A — BM; + (1 —B)/|S| ifies
Y M otherwise
@ A is stochastic!

@ We have weighted all pages in the teleport set S equally
e Could also assign different weights to pages

@ Compute as for regular PageRank

e Multiply by M, then add a vector
e Maintains sparseness
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Example

Suppose S={1}, 3=0.8

Node | Iteration
0 1 2 ... stable
1 0.25 0.4 0.28 0.294
2 0.25 0.1 0.16 0.118
3 0.25 0.3 0.32 0.327
4 0.25 0.2 0.24 0.261
S={1,2,3,4}, p=0.8:
r=[0.13, 0.10, 0.39, 0.36]
S={1}, p=0.90: S={1,2,3}, B=0.8:

r=[0.17, 0.07, 0.40, 0.36]

S={1}, B=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1}, B=0.70:

r=[0.39, 0.14, 0.27, 0.19]

r=[0.17, 0.13, 0.38, 0.30]
S={1,2}, B=0.8:
r=[0.26, 0.20, 0.29, 0.23]
S={1}, B=0.8:

r=[0.29, 0.11, 0.32, 0.26]
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Discovering the topic

@ Create different PageRanks for different topics

@ Which topic ranking to use?
e User can pick from a menu

e Classify query into a topic

e Can use the context of the query
@ E.g., query is launched from a web page talking about a known topic

@ History of queries e.g., "basketball" followed by "Jordan"

e User context, e.g., user’s bookmarks, ...
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TrustRank: combating the web spam
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Web spam

@ Spamming: any deliberate action to boost a web page’s position
in search engine results, incommensurate with page’s real value

@ Spam: web pages that are the result of spamming

@ This is a very broad definition
e SEO (Search Engine Optimization) industry might disagree!

@ Approximately 10-15% of web pages are spam
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Web search

@ Early search engines:
o Crawl the Web

e Index pages by the words they contained

e Respond to search queries (lists of words) with the pages
containing those words

@ Early page ranking:
e Attempt to order pages matching a search query by "importance”

e First search engines considered

@ Number of times query words appeared
@ Prominence of word position, e.g. title, header
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First spammers

@ As people began to use search engines to find things on the
Web, those with commercial interests tried to exploit search
engines to bring people to their own site — whether they wanted
to be there or not

@ Example: shirt-sellers might pretend to be about "movies”

e Add the word movie 1,000 times to your page and set text color to
the background color

e Or, run the query "movie" on your target search engine, copy the
first result into your page and make it "invisible"

@ Techniques for achieving high relevance/importance for a web
page

@ These and similar techniques are term spam
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Google’s solution to term spam

@ Believe what people say about you, rather than what you say
about yourself

e Use words in the anchor text (words that appear underlined to
represent the link) and its surrounding text

@ PageRank as a tool to measure the "importance" of Web pages
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Why it works?

@ Our hypothetical shirt-seller looses
e Saying he is about movies doesn’t help, because others don’t say
he is about movies
e His page isn’t very important, so it won’t be ranked high for shirts
or movies

@ Example:
e Shirt-seller creates 1,000 pages, each links to his with "movie" in
the anchor text
e These pages have no links in, so they get little PageRank
e So the shirt-seller can’t beat truly important movie pages like
IMDB
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Spam farming

@ Once Google became the dominant search engine, spammers
began to work out ways to fool Google

@ Spam farms were developed to concentrate PageRank on a
single page

@ Link farm: creating link structures that boost PageRank of a
particular page
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Link spamming

Three kinds of web pages from a spammer’s point of view
@ Inaccessible pages

@ Accessible pages

e e.g., blog comments pages
@ Spammer can post links to his pages

@ Own pages
o Completely controlled by spammer
e May span multiple domain names
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Link farms

@ Spammer’s goal: maximize the PageRank of target page ¢

@ Technique:
e Get as many links from accessible pages as possible to target
page ¢

e Construct "link farm" to get PageRank multiplier effect

Accessible Own

Inaccessible

N...# pages on the web
M...# of pages spammer
owns
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Analysis

x: PageRank contributed by accessible pages

@ y: PageRank of target paget
@ Rank of each "farm" page = 2 + Tﬁ
_ By 1-6, 1-p
_ 2. BU-=BM 1-8
= x+ B+ N + N
@ Ignore the last term (very small) and solve for y:
_x M

where ¢ = %

For 3=0.85,1/(1- %) =3.6
Multiplier effect for "acquired" PageRank
By making M large, we can make y as large as we want
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Combating spam

@ Combating term spam
o Analyze text using statistical methods

o Similar to email spam filtering
e Also useful: Detecting approximate duplicate pages

@ Combating link spam
e Detection and blacklisting of structures that look like spam farms

e TrustRank = topic-specific PageRank with a teleport set of
"trusted” pages
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TrustRank: idea

@ Basic principle: Approximate isolation
e ltis rare for a "good" page to point to a "bad" (spam) page

@ Sample a set of seed pages from the web

@ Have an oracle (human) to identify the good pages and the spam
pages in the seed set
e Expensive task, so we must make seed set as small as possible
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Trust propagation

@ Call the subset of seed pages that are identified as good the
trusted pages

@ Perform a topic-sensitive PageRank with teleport set = trusted
pages
e Propagate trust through links: each page gets a trust value
between 0 and 1

@ Use a threshold value and mark all pages below the trust
threshold as spam
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Why is it a good idea?

@ Trust attenuation

e The degree of trust conferred by a trusted page decreases with
the distance in the graph

@ Trust splitting

e The larger the number of out-links from a page, the less scrutiny
the page author gives each out-link

e Trust is split across out-links
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Picking the seed set

@ Two conflicting considerations

e Human has to inspect each seed page, so seed set must be as
small as possible

e Must ensure every good page gets adequate trust rank, so need
make all good pages reachable from seed set by short paths

@ Suppose we want to pick a seed set of k pages, how?
@ PageRank: pick the top-k pages by PageRank

@ Use trusted domains, e.g. .edu, .mil, .gov
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