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Web search

How to organize the Web?

First try: Human curated Web
directories

Yahoo, baidu, hao123

Second try: Web Search
Information Retrieval
investigates: Find relevant
docs in a small and
trusted set

But: Web is huge, full of
untrusted documents,
random things, web spam,
etc.
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Web as a directed graph

Web as a directed graph:
Nodes: Webpages; Edges: Hyperlinks
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Web as a directed graph

Web as a directed graph:
Nodes: Webpages; Edges: Hyperlinks
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Three basic things of search engines

Crawl the web and locate all web pages with public access.

Index the data from step 1, so that it can be searched efficiently
for relevant keywords or phrases.

Rate the importance of each page in the database, so that when
a user does a search and the subset of pages in the database
with the desired information has been found, the more important
pages can be presented first.
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Web search: two challenges

Two challenges of web search:
1 Web contains many sources of information. Who to "trust"?

Trick: Trustworthy pages may point to each other!

2 What is the "best" answer to query "newspaper"?
No single right answer

Trick: Pages that actually know about newspapers might all be
pointing to many newspapers
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Ranking nodes on the graph

All web pages are not equally
"important"
www.pku.edu.cn vs.
www.tsinghua.edu.cn

There is large diversity in the
web-graph node connectivity

Let’s rank the pages by the
link structure!

www.pku.edu.cn
www.tsinghua.edu.cn
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Links as votes

Idea: links as votes
Page is more important if it has more links

In-coming links? Out-going links?

Think of in-links as votes
www.pku.edu.cn: 6,649 links
www.alexa.com/siteinfo/www.pku.edu.cn
www.tsinghua.edu.cn: 8579 links
www.alexa.com/siteinfo/www.tsinghua.edu.cn

Are all in-links equal?
Links from important pages count more

Recursive question!

www.pku.edu.cn
www.alexa.com/siteinfo/www.pku.edu.cn
www.tsinghua.edu.cn
www.alexa.com/siteinfo/www.tsinghua.edu.cn
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Links as votes
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Example: PageRank scores
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Simple recursive formulation

Each link’s vote is proportional to the importance of its source
page

If page j with importance rj has n out-links, each link gets rj/n
votes

Page j’s own importance is the sum of the votes on its in-links
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PageRank: the "flow" model

A "vote" from an important page is worth more

A page is important if it is pointed to by other important pages

Define a "rank" rj for page j

rj =
∑
i→j

ri

di

where di is the out-degree of node i
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Solving the flow equations

No unique solution

All solutions equivalent modulo the scale factor

Additional constraint forces uniqueness:
ry + ra + rm = 1
Solution: ry = 2/5, ra = 2/5, rm = 1/5

Gaussian elimination method works for small examples, but we
need a better method for large web-size graphs

We need a new formulation!
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PageRank: matrix formulation

Stochastic adjacency matrix M
Let page i has di out-links

Mji =

{ 1
di

if i→ j
0 otherwise

M is a column stochastic matrix (column sum to 1)

Rank vector r: vector with an entry per page
ri is the importance score of page i∑

i ri = 1

The flow equation rj =
∑

i→j
ri
di

can be written as

r = Mr



18/78

Example

Remember the flow equation: rj =
∑

i→j
ri
di

Flow equation in the matrix form: Mr = r
Suppose page i links to 3 pages, including j 
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. r = r 
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Eigenvector formulation

NOTE: x is an eigenvector of A with the corresponding
eigenvalue λ if: Ax = λx

Flow equation in the matrix form: Mr = r

The rank vector r is an eigenvector of the stochastic web matrix
M

In fact, its first or principal eigenvector, with corresponding
eigenvalue 1
Largest eigenvalue of M is 1 since M is column stochastic.
We know r is unit length and each column of M sums to one, so
Mr ≤ 1

We can now efficiently solve for r through power iteration
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Example: flow equations

½ ½ 0 
½ 0 1 
0 ½ 0 

 

 
 

 
 
 

y y 
a 

 

a m m 

y a m 
 
 
 
 
 
 
 
 
 
 
 
 
 

r = M∙r 
 
 
 
 

ry = ry /2 + ra /2 
ra = ry /2 + rm 

rm = ra /2 

y ½ ½ 0 y 
a = ½  0 1  a 
m   0 ½ 0 m 
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Power iteration

Given a web graph with n nodes, where the nodes are pages
and edges are hyperlinks

Power iteration: a simple iterative scheme
Suppose there are N web pages

Initialize: r(0) = [1/N, . . . , 1/N]>

Iterate: r(t+1) = Mr(t), i.e.,

rt+1
j =

∑
i→j

r(t)
i

di
, di : out-degree of node i

Stop when ‖r(t+1) − r(t)‖1 ≤ ε
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Random walk interpretation

Imagine a random web surfer:
At any time t, surfer is on some page i

At time t + 1, the surfer follows an out-link from i uniformly at
random

Ends up on some page j linked from i

Process repeats indefinitely

Let pt vector whose i-th coordinate is the prob. that the surfer is
at page i at time t

So, pt is a probability distribution over pages
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The stationary distribution

Where is the surfer at time t + 1?
Follows a link uniformly at random

pt+1 = Mpt

Suppose the random walk reaches a state

pt+1 = Mpt = pt

then pt is the stationary distribution of a random walk

Our original rank vector r satisfies r = Mr

So r is a stationary distribution for the random walk
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PageRank: three questions

rt+1
j =

∑
i→j

r(t)i
di
, or equivalently r = Mr

Does it converge?

Does it converge to what we want?

Are results reasonable?
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Does it converge?
 
 
 
 
 
 
 
 
 
 
 
 
 

a b rj
 

 
 

(t +1) 

 

= ∑ ri 
(t ) 

 
 
 
 
 

Example: 
i→ j  di 

ra  = 1 0 1 0 
rb 0 1 0 1 

Iteration 0, 1, 2, … 
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Does it converge to what we want?
 
 
 
 
 
 
 
 
 
 
 
 
 

a b rj
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= ∑ ri 
(t ) 

 
 
 
 
 

Example: 
i→ j  di 

ra  = 1 0 0 0 
rb 0 1 0 0 

Iteration 0, 1, 2, … 
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PageRank: problems

Two problems:
1 Some pages are dead ends (have no out-links)

Such pages cause importance to "leak out"

2 Spider traps (all out-links are within the group)
Eventually spider traps absorb all importance
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Problem: spider traps
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Solution: random teleports

The Google solution for spider traps: At each time step, the
random surfer has two options

With probability β, follow a link at random

With probability 1− β, jump to some random page

Commonly β ∈ [0.8, 0.9]

Surfer will teleport out of spider trap within a few time steps
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Problem: dead ends
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Solution: always teleport

Teleports: Follow random teleport links with probability 1.0 from
dead-ends

Adjust matrix accordingly

Surfer will teleport out of spider trap within a few time steps
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Why teleports solve the problem?

r(t+1) = Mr(t)

Markov chains
Set of states X

Transition matrix P where Pij = P(Xt = i|Xt−1 = j)

π specifying the stationary probability of being at each state
x ∈ X

Goal is to find π such that π = Pπ
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Why is this analogy useful?

Theory of Markov chains

Fact: For any start vector, the power method applied to a Markov
transition matrix P will converge to a unique positive stationary
vector as long as P is stochastic, irreducible and aperiodic

(By the Perron-Frobenius theorem, an irreducible and aperiodic
Markov chain is guaranteed to converge to a unique stationary
distribution)
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Make M stochastic

(column)-stochastic: every column sums to 1

A possible solution: add green links

A = M + a>(
1
n

1)

where ai = 1 if node i has out deg 0, otherwise ai = 0
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Make M aperiodic

A chain is periodic if there exists k > 1 such that the interval
between two visits to some state s is always a multiple of k

A possible solution: add green links
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Make M irreducible

From any state, there is a non-zero probability of going from any
one state to any another

A possible solution: add green links
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Google’s solution: random jumps

Google’s solution that does it all:
Makes M stochastic, aperiodic, irreducible

At each step, random surfer has two options:
With probability β, follow a link at random
With probability 1− β, jump to some random page

PageRank equation [Brin-Page, 98]

rj =
∑
i→j

β
ri

di
+ (1− β)1

n

This formulation assumes that M has no dead ends

We can either preprocess matrix M to remove all dead ends or
explicitly follow random teleport links with probability 1.0 from
dead-ends
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Google’s solution: random jumps

PageRank equation [Brin-Page, 98]

rj =
∑
i→j

β
ri

di
+ (1− β)1

n

Since 1>r = 1, the Google matrix A:

A = βM + (1− β)1
n

11>

A is stochastic, aperiodic and irreducible, so

r(t+1) = Ar(t)

In practice β ∈ [0.8, 0.9] (make around 5 steps and jump)
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Random teleports (β = 0.8)

y 7/15 7/15 1/15 
a 7/15 1/15 1/15 
m 1/15 7/15 13/15 
   

A 
 

 

1/3 0.33 0.24 0.26  7/33 
1/3 0.20 0.20 0.18 . . . 5/33 
1/3 0.46 0.52 0.56  21/33 
 

 
 
 
 
 
 

0.8·½+0.2·⅓ M 1/n·1·1T 

y 
0.8 

1/2 1/2 0 
1/2 0 0 
0 1/2 1 

 
 
 

+ 0.2 
1/3 1/3 1/3 
1/3 1/3 1/3 
1/3 1/3 1/3 

 
 
 
 
 

0.8+0.2·⅓ 
 

a m 
 
 
 
 
 
 
 

y 
a = 
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Simple proof using linear algebra

Every stochastic matrix has 1 as an eigenvalue.

V1(A) : eigenspace for eigenvalue 1 of a stochastic matrix A.

Fact 1: If M is positive and stochastic, then any eigenvector in
V1(M) has all positive or all negative components.

Fact 2: If M is positive and stochastic, then V1(M) has dimension
1.
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Proof of Fact 1

Suppose x ∈ V1(M) contains elements of mixed sign.

Since Mij > 0, each Mijxj are of mixed sign. Then

|xi| = |
n∑

j=1

Mijxj| <
n∑

j=1

Mij|xj|

Since M is stochastic, we can obtain a contradition

n∑
i=1

|xi| <
n∑

i=1

n∑
j=1

Mij|xj| =
n∑

j=1

(
n∑

i=1

Mij

)
|xj| =

n∑
j=1

|xj|

If xj ≥ 0 for all j, then xi > 0 since Mij > 0 and not all xj are zero.
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Proof of Fact 2

Claim: Let v,w ∈ Rm with m ≥ 2 and linearly independent. Then
for some s and t that are not both zero, the vector x = sv + tw has
both positive and negative components.

Linear independence implies neither v nor w is zero. Let d =
∑

i vi.
If d = 0, then v must contain mixed sign, and taking s = 1, t = 0.
If d 6= 0, set s = −

∑
i wi/d, t = 1 and x = sv + w. Then x 6= 0 but∑

i xi = 0.

Fact 2: Proof by contradiction. Suppose there are two linearly
independent eigenvectors v and w in the subspace V1(M). For
any real numbers s and t that are not both zero, the nonzero
vector x = sv + tw must be in V1(M), and so have components
that are all negative or all positive. But by the above claim, for
some choice of s and t the vector x must contain components of
mixed sign.
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Convergence of Power Iteration

Claim 1: Let M be positive and stochastic. Let V be a subspace of v
such that

∑
i vi = 0. Then Mv ∈ V and ‖Mv‖1 ≤ c‖v‖1 for any v ∈ V

and 0 < c < 1.
Let w = Mv. Then w ∈ V since

n∑
i=1

wi =

n∑
i=1

n∑
j=1

Mijvj =

n∑
j=1

vj

(
n∑

i=1

Mij

)
=

n∑
j=1

vj = 0

Let ei = sgn(wi) and aj =
∑n

i=1 eiMij, then ei are of mixed sign

‖w‖1 =

n∑
i=1

eiwi =

n∑
i=1

ei

 n∑
j=1

Mijvj

 =

n∑
j=1

ajvj

Since
∑n

i=1 Mij = 1 with 0 < Mij < 1, there exists 0 < c < 1 such
that |aj| < c.
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Convergence of Power Iteration

Claim 2: Let M be positive and stochastic. Then it has a unique q > 0
such that Mq = q with ‖q‖1 = 1. The vector q can be computed as
q = limk→∞Mkx0 with x0 > 0 and ‖x0‖1 = 1.

The existence of q has been proved.

We can write x0 = q + v where v ∈ V defined in Claim 1. We have

Mkx0 = Mkq + Mkv = q + Mkv

Since ‖Mkv‖1 ≤ ck‖v‖1 for 0 < c < 1, then limk→∞Mkx0 = q.
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Convergence rate of Power Iteration

r(1) = Mr(0), r(2) = Mr(1) = M2r(0), . . .

Claim: The sequence Mr(0), . . . ,Mkr(0), . . . approaches the
dominant eigenvector of M.

Proof: Assume M has n linearly independent eigenvectors,
x1, x2, . . . , xn with corresponding eigenvalues λ1, λ2, . . . , λn such
that λ1 > λ2 ≥ . . . ≥ λn

Since x1, x2, . . . , xn is a basis in Rn, we can write

r(0) = c1x1 + c2x2 + . . .+ cnxn

Using Mxi = λixi, we have

Mr(0) = M(c1x1 + c2x2 + . . .+ cnxn)

=

n∑
i=1

ciλixi
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Convergence rate of Power Iteration

Repeated multiplication on both sides produces

Mkr(0) =

n∑
i=1

ciλ
k
i xi

= λk
1

(
n∑

i=1

ci

(
λi

λ1

)k

xi

)

Since λ1 > λi, i = 2, . . . , n. Then λi
λ1
< 1, and limk→∞

(
λi
λ1

)k
= 0,

i = 2, . . . , n.

Therefore,
Mkr(0) ≈ c1λ

k
1x1

Note if c1 = 0, then the method won’t converge.
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Computing the PageRank

The matrix A = βM + (1− β) 1
N 11>

Key step is matrix-vector multiplication

rnew = Arold

Easy if we have enough main memory to hold A, rold, rnew

Suppose there are N = 1 billion pages
Suppose we need 4 bytes for each entry
2 billion entries for vectors, approx 8GB
Matrix A has N2 entries - 1018 is huge!
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Sparse matrix formulation

We just rearranged the PageRank equation

r = βMr +
1− β

N
1N

M is a sparse matrix! (with no dead-ends)
10 links per node, approximately 10N entries

So in each iteration, we need to
Compute rnew = Arold

Add a constant value (1− β)/N to each entry in rnew

Note if M contains dead-ends then
∑

i rnew
i < 1 and we also have

to renormalize rnew so that it sums to 1
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Sparse matrix encoding

Encode sparse matrix using only nonzero entries
Space proportional roughly to number of links
Say 10N, or 4*10*1 billion = 40GB
Still won’t fit in memory, but will fit on disk

source 
node degree destination nodes 
0 3 1, 5, 7 
1 5 17, 64, 113, 117, 245 
2 2 13, 23 
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Basic algorithm: update step

Assume enough RAM to fit rnew into memory
Store rold and matrix M on disk

Then 1 step of power-iteration is
Initialize all entries of rnew to (1− β)/N
For each page p (of out-degree n):

Read into memory: p, n, dest1, , destn, rold(p)
for j = 1 to n: rnew(destj) += βrold(p)/n

   
0 3 1, 5, 6  

1 4 
 

17, 64, 113, 117 
2 2 13, 23 

 

6 

rnew  rold 

0 src degree destination 0 
1 1 
2 2 
3 3 
4 4 
5 5 

6 
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Analysis

Assume enough RAM to fit rnew into memory
Store rold and matrix M on disk

In each iteration, we have to
Read rold and M
Write rnew back to disk
IO cost: 2|r|+ |M|

Question: What if we could not even fit rnew in memory?
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Block based update algorithm

   
0 4 0, 1, 3, 5 
1 2 

 

0, 5 
2 2 3, 4 

 

 
 
 
 
 
 
 
 
 
 
 
 

rnew 

0 
1 

 
 
 

2 
3 

 
 

4 
5 

src degree destination rold 

0 
1 
2 
3 
4 
5 
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Analysis of block update

Similar to nested-loop join in databases
Break rnew into k blocks that fit in memory
Scan M and rold once for each block

k scans of M and rold

k(|r|+ |M|) + |r| = k|M|+ (k + 1)|r|

Can we do better?
Hint: M is much bigger than r (approx 10-20x), so we must avoid
reading it k times per iteration
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Block stripe update algorithm

   
0 4 0, 1 
1 3 

 

0 
2 2 1 

 

0 4 3 
2 2 3 

 

0 4 5 
1 3 5 
2 2 4 

 

4 

 
 
 
 
 
 
 
 

rnew 

0 
1 

 
 
 
 
 
 
 

2 
3 

src degree destination  
 
 
 
 
 

rold 

0 
1 
2 
3 
4 
5 

 
 
 
 
 
 
 
 

5 
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Analysis of block stripe update

Break M into stripes
Each stripe contains only destination nodes in the corresponding
block of rnew

Some additional overhead per stripe
But it is usually worth it

Cost per iteration: |M|(1 + ε) + (k + 1)|r|
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Some problems with PageRank

Measures generic popularity of a page
Biased against topic-specific authorities

Solution: Topic-Specific PageRank

Uses a single measure of importance
Other models e.g., hubs-and-authorities

Solution: Hubs-and-Authorities (HITS)

Susceptible to Link spam
Artificial link topographies created in order to boost page rank

Solution: TrustRank
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Topic-Specific PageRank

Instead of generic popularity, can we measure popularity within a
topic?

Goal: Evaluate Web pages not just according to their popularity,
but by how close they are to a particular topic, e.g. "sports" or
"history"

Allows search queries to be answered based on interests of the
user

Example: Query "Trojan" wants different pages depending on
whether you are interested in sports, history and computer
security
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Topic-Specific PageRank

Random walker has a small probability of teleporting at any step

Teleport can go to:
Standard PageRank: Any page with equal probability
Topic Specific PageRank: A topic-specific set of "relevant" pages
(teleport set)

Idea: Bias the random walk
When walker teleports, she pick a page from a set S
S contains only pages that are relevant to the topic
For each teleport set S, we get a different vector rS
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Matrix formulation

To make this work all we need is to update the teleportation part
of the PageRank formulation

Aij =

{
βMij + (1− β)/|S| if i ∈ S
βMij otherwise

A is stochastic!

We have weighted all pages in the teleport set S equally
Could also assign different weights to pages

Compute as for regular PageRank
Multiply by M, then add a vector
Maintains sparseness
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Example

 
 
 
 
 
 

0.5 

 
0.2 

 

1 
0.5 

Suppose S = {1}, β = 0.8 
 

 

Node Iteration 
0.4 0.4 

1 
0 1 2 … stable 

1 0.25 0.4 0.28 0.294 
2 

0.8 3 
 

1 1 

0.8 0.8 
 

4 

2 0.25 0.1 0.16 0.118 
3 0.25 0.3 0.32 0.327 
4 0.25 0.2 0.24 0.261 
 
 

S={1,2,3,4}, β=0.8: 
r=[0.13, 0.10, 0.39, 0.36] 

S={1}, β=0.90: 
r=[0.17, 0.07, 0.40, 0.36] 
S={1} , β=0.8: 
r=[0.29, 0.11, 0.32, 0.26] 
S={1}, β=0.70: 
r=[0.39, 0.14, 0.27, 0.19] 

S={1,2,3} , β=0.8: 
r=[0.17, 0.13, 0.38, 0.30] 
S={1,2} , β=0.8: 
r=[0.26, 0.20, 0.29, 0.23] 
S={1} , β=0.8: 
r=[0.29, 0.11, 0.32, 0.26] 
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Discovering the topic

Create different PageRanks for different topics

Which topic ranking to use?
User can pick from a menu

Classify query into a topic

Can use the context of the query
E.g., query is launched from a web page talking about a known topic

History of queries e.g., "basketball" followed by "Jordan"

User context, e.g., user’s bookmarks, ...
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TrustRank: combating the web spam
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Web spam

Spamming: any deliberate action to boost a web page’s position
in search engine results, incommensurate with page’s real value

Spam: web pages that are the result of spamming

This is a very broad definition
SEO (Search Engine Optimization) industry might disagree!

Approximately 10-15% of web pages are spam
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Web search

Early search engines:
Crawl the Web

Index pages by the words they contained

Respond to search queries (lists of words) with the pages
containing those words

Early page ranking:
Attempt to order pages matching a search query by "importance"

First search engines considered
1 Number of times query words appeared
2 Prominence of word position, e.g. title, header
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First spammers

As people began to use search engines to find things on the
Web, those with commercial interests tried to exploit search
engines to bring people to their own site — whether they wanted
to be there or not

Example: shirt-sellers might pretend to be about "movies"
Add the word movie 1,000 times to your page and set text color to
the background color
Or, run the query "movie" on your target search engine, copy the
first result into your page and make it "invisible"

Techniques for achieving high relevance/importance for a web
page

These and similar techniques are term spam
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Google’s solution to term spam

Believe what people say about you, rather than what you say
about yourself

Use words in the anchor text (words that appear underlined to
represent the link) and its surrounding text

PageRank as a tool to measure the "importance" of Web pages
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Why it works?

Our hypothetical shirt-seller looses
Saying he is about movies doesn’t help, because others don’t say
he is about movies
His page isn’t very important, so it won’t be ranked high for shirts
or movies

Example:
Shirt-seller creates 1,000 pages, each links to his with "movie" in
the anchor text
These pages have no links in, so they get little PageRank
So the shirt-seller can’t beat truly important movie pages like
IMDB
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Spam farming

Once Google became the dominant search engine, spammers
began to work out ways to fool Google

Spam farms were developed to concentrate PageRank on a
single page

Link farm: creating link structures that boost PageRank of a
particular page
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Link spamming

Three kinds of web pages from a spammer’s point of view
Inaccessible pages

Accessible pages
e.g., blog comments pages
Spammer can post links to his pages

Own pages
Completely controlled by spammer
May span multiple domain names
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Link farms

Spammer’s goal: maximize the PageRank of target page t

Technique:
Get as many links from accessible pages as possible to target
page t

Construct "link farm" to get PageRank multiplier effect

 

 
 
 
 

Inaccessible 

Accessible Own 
 

1 
 

t 2 
 
 
 
 
 
 

M 

 
 
 
 
 
 
 
 
 
 
N…# pages on the web 
M…# of pages spammer 
owns 
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Analysis

x: PageRank contributed by accessible pages
y: PageRank of target page t
Rank of each "farm" page = βy

M + 1−β
N

y = x + βM[
βy
M

+
1− β

N
] +

1− β
N

= x + β2y +
β(1− β)M

N
+

1− β
N

Ignore the last term (very small) and solve for y:

y =
x

1− β2 + c
M
N

where c = β
1+β

For β = 0.85, 1/(1− β2) = 3.6
Multiplier effect for "acquired" PageRank
By making M large, we can make y as large as we want
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Combating spam

Combating term spam
Analyze text using statistical methods

Similar to email spam filtering

Also useful: Detecting approximate duplicate pages

Combating link spam
Detection and blacklisting of structures that look like spam farms

TrustRank = topic-specific PageRank with a teleport set of
"trusted" pages
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TrustRank: idea

Basic principle: Approximate isolation
It is rare for a "good" page to point to a "bad" (spam) page

Sample a set of seed pages from the web

Have an oracle (human) to identify the good pages and the spam
pages in the seed set

Expensive task, so we must make seed set as small as possible
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Trust propagation

Call the subset of seed pages that are identified as good the
trusted pages

Perform a topic-sensitive PageRank with teleport set = trusted
pages

Propagate trust through links: each page gets a trust value
between 0 and 1

Use a threshold value and mark all pages below the trust
threshold as spam
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Why is it a good idea?

Trust attenuation
The degree of trust conferred by a trusted page decreases with
the distance in the graph

Trust splitting
The larger the number of out-links from a page, the less scrutiny
the page author gives each out-link

Trust is split across out-links
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Picking the seed set

Two conflicting considerations
Human has to inspect each seed page, so seed set must be as
small as possible

Must ensure every good page gets adequate trust rank, so need
make all good pages reachable from seed set by short paths

Suppose we want to pick a seed set of k pages, how?
1 PageRank: pick the top-k pages by PageRank

2 Use trusted domains, e.g. .edu, .mil, .gov
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