Dynamic Programming: MDP

http://bicmr.pku.edu.cn/~wenzw/bigdata2022.html

Acknowledgement: this slides is based on OpenAI Spinning Up and and Prof. Shipra Agrawal's lecture notes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

1/63

Outline

Dynamic Programming

- Markov Decision Process (MDP)
- 3 Bellman Equation
- 4 Example: Airfare Pricing
- 5 Iterative algorithms (discounted reward case)
 - Value Iteration
 - Q-value iteration
 - Policy iteration

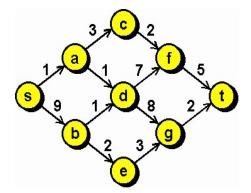
Dynamic Programming

- Basically, we want to solve a big problem that is hard
- We can first solve a few smaller but similar problems, if those can be solved, then the solution to the big problem will be easy to get
- To solve each of those smaller problems, we use the same idea, we first solve a few even smaller problems.
- Continue doing it, we will eventually encounter a problem we know how to solve

Dynamic programming has the same feature, the difference is that at each step, there might be some optimization involved.

Shortest Path Problem

You have a graph, you want to find the shortest path from *s* to *t*



Here we use d_{ij} to denote the distance between node *i* and node *j*

DP formulation for the shortest path problem

Let V_i denote the shortest distance between *i* to *t*.

- Eventually, we want to compute V_s
- It is hard to directly compute V_i in general
- However, we can just look one step

We know if the first step is to move from *i* to *j*, the shortest distance we can get must be $d_{ij} + V_j$.

• To minimize the total distance, we want to choose j to minimize $d_{ij} + V_j$

To write into a math formula, we get

$$V_i = \min_j \{d_{ij} + V_j\}$$

We call this the recursion formula

$$V_i = \min_j \{d_{ij} + V_j\}$$
 for all i

We also know if we are already at our destination, then the distance is 0. i.e.,

$$V_t = 0$$

The above two equations are the DP formulation for this problem

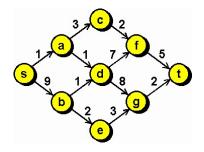
Given the formula, how to solve the DP?

$$V_i = \min_j \{d_{ij} + V_j\}$$
 for all i , $V_t = 0$

We use backward induction.

• From the last node (which we know the value), we solve the values of *V*'s backwardly.

Example

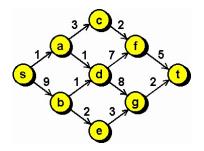


• We have $V_t = 0$. Then we have

$$V_f = \min_{(f,j) \text{ is a path }} \{ d_{fj} + V_j \}$$

- Here, we only have one path, thus $V_f = 5 + V_t = 5$
- Similarly, $V_g = 2$

Example Continued 1



- We have $V_t = 0$, $V_f = 5$ and $V_g = 2$
- Now consider *c*, *d*, *e*. For *c* and *e* there is only one path

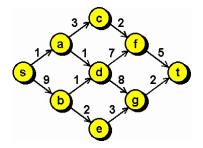
$$V_c = d_{cf} + V_f = 7, \quad V_e = d_{eg} + V_g = 5$$

• For d, we have

$$V_g = \min_{(d,j) \text{ is a path }} \{ d_{dj} + V_j \} = \min\{ d_{df} + V_f, d_{dg} + V_g \} = 10$$

• The optimal way to choose at d is go to g_{a} , the set a = 200

Example Continued 2



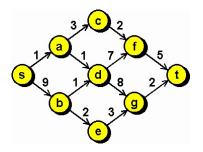
• We got $V_c = 7$, $V_d = 10$ and $V_e = 5$. Now we compute V_a and V_b

$$V_a = \min\{d_{ac} + V_c, d_{ad} + V_d\} = \min\{3 + 7, 1 + 10\} = 10$$

$$V_b = \min\{d_{bd} + V_d, d_{be} + V_e\} = \min\{1 + 10, 2 + 5\} = 7$$

and the optimal path to go at a is to choose c, and the optimal path to go at b is to choose e.

Example Continued 3



• Finally, we have

 $V_s = \min\{d_{sa} + V_a, d_{sb} + V_b\} = \min\{1 + 10, 9 + 7\} = 11$

and the optimal path to go at *s* is to choose *a*

 Therefore, we found the optimal path is 11, and by connecting the optimal path, we get

$$s \to a \to c \to f \to t$$

 $< \Box > < B > < E > < E > < < < < 11/63$

Summary of the example

In the example, we saw that we have those V_i 's, indicating the shortest length to go from *i* to *t*.

• We call this *V* the value function

We also have those nodes s, a, b, \ldots, g, t

- We call them the states of the problem
- The value function is a function of the state

And the recursion formula

$$V_i = \min_j \{d_{ij} + V_j\}$$
 for all *i*

connects the value function at different states. It is known as the Bellman equation

In some cases, when you choose action a at x, the next state is not certain (e.g., you decide a price, but the demand is random).

• There will be p(x, y, a) probability you move from x to y if you choose action $a \in A(x)$

Then the recursion formula becomes:

$$V(x) = \min_{a \in A(x)} \{ r(x, a) + \sum_{y} p(x, y, a) V(y) \}$$

or if we choose to use the expectation notation:

$$V(x) = \min_{a \in A(x)} \{ r(x, a) + \mathbf{E}V(x, a)) \}$$

Example: Stochastic Shortest Path Problem

Stochastic setting:

- One no longer controls which exact node to jump to next
- Instead one can choose between different actions $a \in \mathcal{A}$
- Each action *a* is associated with a set of transition probabilities p(j|i;a) for all $i, j \in S$.
- The arc length may be random w_{ija}

Objective:

• One needs to decide on the action for every possible current node. In other words, one wants to find a policy or strategy that maps from S to A.

Bellman Equation for Stochastic SSP:

$$V(i) = \min_{a} \sum_{j \in S} p(j|i;a)(w_{ija} + V(j)), \quad i \in S$$

Outline

2 Markov Decision Process (MDP)

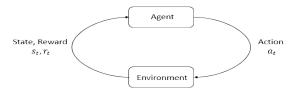
- 3 Bellman Equation
- 4 Example: Airfare Pricing
- 5 Iterative algorithms (discounted reward case)
 - Value Iteration
 - Q-value iteration
 - Policy iteration

What Can RL Do?

RL methods have recently enjoyed a wide variety of successes. For example, it's been used to teach computers to control robots in simulation

RL: agent and environment

- **environment**: the world that the agent lives in and interacts with. At every step of interaction, the agent sees a (possibly partial) observation of the state of the world, and then decides on an action to take. The environment changes when the agent acts on it, but may also change on its own.
- **agent**: perceives a **reward** signal from the environment, a number that tells it how good or bad the current world state is. The goal of the agent is to maximize its cumulative reward, called **return**. Reinforcement learning methods are ways that the agent can learn behaviors to achieve its goal.



States and Observations

- state: s is a complete description of the state of the world. There is no information about the world which is hidden from the state. An observation o is a partial description of a state, which may omit information.
- In deep RL, we almost always represent states and observations by a "real-valued vector, matrix, or higher-order tensor". For instance, a visual observation could be represented by the RGB matrix of its pixel values; the state of a robot might be represented by its joint angles and velocities.
- When the agent is able to observe the complete state of the environment, we say that the environment is **fully observed**.
 When the agent can only see a partial observation, we say that the environment is **partially observed**.
- We often write that the action is conditioned on the state, when in practice, the action is conditioned on the observation because the agent does not have access to the state.

Action Spaces

- Different environments allow different kinds of actions. The set of all valid actions in a given environment is often called the action space. Some environments, like Atari and Go, have discrete action spaces, where only a finite number of moves are available to the agent. Other environments, like where the agent controls a robot in a physical world, have continuous action spaces. In continuous spaces, actions are real-valued vectors.
- This distinction has some quite-profound consequences for methods in deep RL. Some families of algorithms can only be directly applied in one case, and would have to be substantially reworked for the other.

Markov decision processes

- The defining property of MDPs is the Markov property which says that the future is independent of the past given the current state. This essentially means that the state in this model captures all the information from the past that is relevant in determining the future states and rewards.
- A Markov Decision Process (MDP) is specified by a tuple (S, s₁, A, P, R, H), where S is the set of states, s₁ is the starting state, A is the set of actions. The process proceeds in discrete rounds t = 1, 2, ··· , H, starting in the initial state s₁. In every round, t the agent observes the current state s_t ∈ S, takes an action a_t ∈ A, and observes a feedback in form of a reward signal r_{t+1} ∈ ℝ. The agent then observes transition to the next state s_{t+1} ∈ S.

Formal definition

• The probability of transitioning to a particular state depends only on current state and action, and not on any other aspect of the history. The matrix $P \in [0, 1]^{S \times A \times S}$ specifies these probabilities. That is,

$$Pr(s_{t+1} = s' \mid history \ till \ time \ t) = Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$$
$$= P(s, a, s')$$

• The reward distribution depends only on the current state and action. So, that the expected reward at time *t* is a function of current state and action. A matrix *R* specifies these rewards.

 $\mathbb{E}[r_{t+1} \mid history \ till \ time \ t] = \mathbb{E}[r_{t+1} \mid s_t = s, a_t = a] = R(s, a)$

• Let *R*(*s*, *a*, *s'*) be the expected (or deterministic) reward when action *a* is taken in state *s* and transition to state *s'* is observed. Then, we can obtain the same model as above by defining

$$R(s,a) = \mathbb{E}[r_{t+1} \mid s_t = s, a_t = a] = \mathbb{E}_{s' \sim P(s,a)}[R(s,a,s')]$$

Policy

- A policy specifies what action to take at any time step. A history dependent policy at time *t* is a mapping from history till time *t* to an action. A Markovian policy is a mapping from state space to action *π*: *S* → *A*. Due to Markovian property of the MDP, it suffices to consider Markovian policies (in the sense that for any history dependent policy same performance can be achieved by a Markovian policy). Therefore, in this text, policy refers to a Markovian policy.
- A deterministic policy π: S → A is mapping from any given state to an action. A randomized policy π : S → Δ^A is a mapping from any given state to a distribution over actions. Following a policy π_t at time t means that if the current state s_t = s, the agent takes action a_t = π_t(s) (or a_t ~ π(s) for randomized policy). Following a stationary policy π means that π_t = π for all rounds t = 1, 2, ...

Policy

- Any stationary policy π defines a Markov chain, or rather a 'Markov reward process' (MRP), that is, a Markov chain with reward associated with every transition.
- The transition probability vector and reward for this MRP in state s is given by Pr (s'|s) = P^π_s, E [r_t|s] = r^π_s, where P^π is an S × S matrix, and r^π is an S-dimensional vector defined as:

$$P_{s,s'}^{\pi} = \mathbb{E}_{a \sim \pi(s)} \left[P\left(s, a, s'\right)
ight], \forall s, s' \in S$$

 $r_s^{\pi} = \mathbb{E}_{a \in \pi(s)} [R(s, a)]$

 The stationary distribution (if exists) of this Markov chain when starting from state s₁ is also referred to as the stationary distribution of the policy π, denoted by d^π:

$$d^{\pi}(s) = \lim_{t \to \infty} \Pr\left(s_t = s | s_1, \pi\right)$$

Goals, finite horizon MDP

 The tradeoffs between immediate reward vs. future rewards of the sequential decisions and the need for planning ahead is captured by the goal of the Markov Decision Process. At a high level, the goal is to maximize some form of cumulative reward. Some popular forms are total reward, average reward, or discounted sum of rewards.

finite horizon MDP

actions are taken for *t* = 1,..., *H* where *H* is a finite horizon. The total (discounted) reward criterion is simply to maximize the expected total (discounted) rewards in an episode of length *H*. (In reinforcement learning context, when this goal is used, the MDP is often referred to as an episodic MDP.) For discount 0 ≤ γ ≤ 1, the goal is to maximize

$$\mathbb{E}\left[\sum_{t=1}^{H} \gamma^{t-1} r_t | s_1\right]$$

• Expected total discounted reward criteria: The most popular form of cumulative reward is expected discounted sum of rewards. This is an asymptotic weighted sum of rewards, where with time the weights decrease by a factor of $\gamma < 1$. This essentially means that the immediate returns more valuable than those far in the future.

$$\lim_{T\to\infty} \mathbb{E}\left[\sum_{t=1}^T \gamma^{t-1} r_t | s_1\right]$$

・ロト ・ 同ト ・ 三ト ・ 三 ・ つくの

25/63

Infinite horizon MDP

Expected total reward criteria: Here, the goal is to maximize

$$\lim_{T\to\infty} \mathbb{E}\left[\sum_{t=1}^T r_t | s_1\right]$$

The limit may not always exist or be bounded. We are only interested in cases where above exists and is finite. This requires restrictions on reward and/or transition models. Interesting cases include the case where there is an undesirable state, the reward after reaching that state is 0. For example, end of a computer game. The goal would be to maximize the time to reach this state. (A minimization version of this model is where there is a cost associated with each state and the game is to minimize the time to reach winning state, called the shortest path problem). Expected average reward criteria: Maximize

$$\lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} r_t | s_1\right]$$

Intuitively, the performance in a few initial rounds does not matter here, what we are looking for is a good asymptotic performance. This limit may not always exist. Assuming bounded rewards and finite state spaces, it exists under some further conditions on policy used.

Gain of the MDP

Gain (roughly the 'expected value objective' or formal goal) of an MDP when starting in state s_1 is defined as (when supremum exists):

episodic MDP:

$$J(s_1) = \sup_{\{\pi_t\}} \mathbb{E}\left[\sum_{t=1}^{H} \gamma^{t-1} r_t | s_1\right]$$

• Infinite horizon expected total reward:

$$J(s_1) = \sup_{\{\pi_t\}} \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=1}^T r_t | s_1\right]$$

Infinite horizon discounted sum of rewards:

$$J(s_1) = \sup_{\{\pi_t\}} \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=1}^T \gamma^{t-1} r_t | s_1\right]$$

Gain of the MDP

• infinite horizon average reward:

$$J(s_1) = \sup_{\{\pi_t\}} \lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^T r_t | s_1\right]$$

Here, expectation is taken with respect to state transition and reward distribution, supremum is taken over all possible sequence of policies for the given MDP. It is also useful to define gain ρ^{π} of a stationary policy π , which is the expected (total/total discounted/average) reward when policy π is used in all time steps. For example, for infinite average reward:

$$J^{\pi}\left(s_{1}
ight)=\lim_{T
ightarrow\infty}\mathbb{E}\left[rac{1}{T}\sum_{t=1}^{T}r_{t}|s_{1}
ight]$$

where $a_t = \pi(s_t), t = 1, ..., T$

(ロ) (型) (三) (三) (三) (29/63)

Optimal policy

- Optimal policy is defined as the one that maximizes the gain of the MDP.
- Due to the structure of MDP it is not difficult to show that it is sufficient to consider Markovian policies. Henceforth, we consider only Markovian policies.
- For infinite horizon MDP with average/discounted reward criteria, a further observation that comes in handy is that such a MDP always has a stationary optimal policy, whenever optimal policy exists. That is, there always exists a fixed policy so that taking actions specified by that policy at all time steps maximizes average/discounted/total reward.
- The agent does not need to change policies with time. This insight reduces the question of finding the best sequential decision making strategy to the question of finding the best stationary policy.

Outline

Markov Decision Process (MDP)

3 Bellman Equation

4 Example: Airfare Pricing

5 Iterative algorithms (discounted reward case)

- Value Iteration
- Q-value iteration
- Policy iteration

Value Functions

It's often useful to know the **value** of a state, or state-action pair. By value, we mean the expected return if you start in that state or state-action pair, and then act according to a particular policy forever after. **Value functions** are used, one way or another, in almost every RL algorithm.

 The On-Policy Value Function V^π(s), which gives the expected return if you start in state s and always act according to policy π:

$$V^{\pi}(s) = \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=1}^{T} \gamma^{t-1} r_t | s_1 = s\right]$$

The On-Policy Action-Value Function Q^π(s, a), which gives the expected return if you start in state s, take an arbitrary action a (which may not have come from the policy), and then forever after act according to policy π:

$$Q^{\pi}(s,a) = \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r_t | s_1 = s, a_1 = a \right]$$

32/63

• The **Optimal Value Function** $V^*(s)$, which gives the expected return if you start in state *s* and always act according to the *optimal* policy in the environment:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

• The **Optimal Action-Value Function**, $Q^*(s, a)$, which gives the expected return if you start in state *s*, take an arbitrary action *a*, and then forever after act according to the *optimal* policy in the environment:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

<ロ><四><四><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Value Functions

- When we talk about value functions, if we do not make reference to time-dependence, we only mean expected infinite-horizon discounted return. Value functions for finite-horizon undiscounted return would need to accept time as an argument. Can you think about why? Hint: what happens when time's up?
- There are two key connections between the value function and the action-value function that come up pretty often:

$$V^{\pi}(s) = \mathop{\mathbf{E}}_{a \sim \pi} \left[Q^{\pi}(s, a) \right],$$

and

$$V^*(s) = \max_a Q^*(s,a).$$

These relations follow pretty directly from the definitions just given: can you prove them?

The Optimal Q-Function and the Optimal Action

- There is an important connection between the optimal action-value function $Q^*(s, a)$ and the action selected by the optimal policy. By definition, $Q^*(s, a)$ gives the expected return for starting in state *s*, taking (arbitrary) action *a*, and then acting according to the optimal policy forever after.
- The optimal policy in *s* will select whichever action maximizes the expected return from starting in *s*. As a result, if we have *Q*^{*}, we can directly obtain the optimal action, *a*^{*}(*s*), via

$$a^*(s) = \arg\max_a Q^*(s, a).$$

• Note: there may be multiple actions which maximize $Q^*(s, a)$, in which case, all of them are optimal, and the optimal policy may randomly select any of them. But there is always an optimal policy which deterministically selects an action.

Bellman Equations

- All four of the value functions obey special self-consistency equations called **Bellman equations**. The basic idea is: *The value of your starting point is the reward you expect to get from being there, plus the value of wherever you land next.*
- The Bellman equations for the on-policy value functions are

$$\begin{split} V^{\pi}(s) &= \mathop{\mathbf{E}}_{\substack{a \sim \pi \\ s' \sim P}} \left[R(s, a, s') + \gamma V^{\pi}(s') \right], \\ Q^{\pi}(s, a) &= \mathop{\mathbf{E}}_{s' \sim P} \left[R(s, a, s') + \gamma \mathop{\mathbf{E}}_{a' \sim \pi} \left[Q^{\pi}(s', a') \right] \right], \end{split}$$

where $s' \sim P$ is shorthand for $s' \sim P(\cdot|s, a)$, indicating that the next state s' is sampled from the environment's transition rules; $a \sim \pi$ is shorthand for $a \sim \pi(\cdot|s)$; and $a' \sim \pi$ is shorthand for $a' \sim \pi(\cdot|s')$.

Proof of Bellman equations

Proof. $V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$:

$$V^{\pi}(s) = \mathbb{E} \left[r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots | s_1 = s \right] \\ = \mathbb{E} \left[r_1 | s_1 = s \right] + \gamma \mathbb{E} \left[\mathbb{E} \left[r_2 + \gamma r_3 + \gamma^2 r_4 + \dots | s_2 \right] | s_1 = s \right]$$

The first term here is simply the expected reward in state *s* when action is given by $\pi(s)$. The second term is γ times the value function at $s_2 \sim P(s, \pi(s), \cdot)$

$$\begin{split} V^{\pi}(s) &= & \mathbb{E}\left[R\left(s,\pi(s),s_{1}\right) + \gamma V^{\pi}\left(s_{2}\right)|s_{1}=s\right] \\ &= & R(s,\pi(s)) + \gamma \sum_{s_{2} \in S} P\left(s,\pi(s),s_{2}\right) V^{\pi}\left(s_{2}\right) \\ &= & R^{\pi}(s) + \gamma \left[P^{\pi}V^{\pi}\right](s) \end{split}$$

Bellman Optimal Equations

• The Bellman equations for the optimal value functions are

$$V^*(s) = \max_{a} \mathop{\mathbf{E}}_{s' \sim P} \left[R(s, a) + \gamma V^*(s') \right],$$
$$Q^*(s, a) = \mathop{\mathbf{E}}_{s' \sim P} \left[R(s, a) + \gamma \max_{a'} Q^*(s', a') \right].$$

The crucial difference between the Bellman equations for the on-policy value functions and the optimal value functions, is the absence or presence of the \max over actions. Its inclusion reflects the fact that whenever the agent gets to choose its action, in order to act optimally, it has to pick whichever action leads to the highest value.

• The term "Bellman backup" comes up quite frequently in the RL literature. The Bellman backup for a state, or state-action pair, is the right-hand side of the Bellman equation: the reward-plus-next-value.

Proof of Bellman optimality equations

Proof. for all *s*, from the theorem ensuring stationary optimal policy:

$$V^{*}(s) = \max_{\pi} V^{\pi}(s) = \max_{\pi} \mathbb{E}_{a \sim \pi(s), s' \sim P(s, a)} \left[R\left(s, a, s'\right) + \gamma V^{\pi}\left(s'\right) \right]$$

$$\leq \max_{a} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) \max_{\pi} V^{\pi}\left(s'\right)$$

$$= \max_{a} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) V^{*}\left(s'\right)$$

Now, if the above inequality is strict then the value of state *s* can be improved by using a (possibly non-stationary) policy that uses action $\arg \max_a R(s, a)$ in the first step. This is a contradiction to the definition $V^*(s)$. Therefore,

$$V^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) V^{*}\left(s'\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

39/63

Bellman optimality equations

- Technically, above only shows that *V** satisfies the Bellman equations.
- Theorem 6.2.2 (c) in Puterman [1994] shows that V* is in fact unique solution of above equations.
- Therefore, satisfying these equations is sufficient to guarantee optimality, so that it is not difficult to see that the deterministic (stationary) policy

$$\pi^{*}(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) V^{*}\left(s'\right)$$

is optimal (see Puterman [1994] Theorem 6.2.7 for formal proof).

Linear programming

Linear programming

The fixed point for above Bellman optimality equations can be found by formulating a linear program. It amounts to :

$$\min_{\mathbf{v} \in \mathbb{R}^{S}} \quad \sum_{s} w_{s} \mathbf{v}_{s}$$
s.t. $\mathbf{v}_{s} \ge \mathbf{R}(s, a) + \gamma \mathbf{P}(s, a)^{\top} \mathbf{v} \quad \forall a, s$

Proof. V^* clearly satisfies the constraints of the above LP. Next, we show that $\mathbf{v} = V^*$ minimizes the obj. fun. The constraint implies that

$$\mathbf{v}_{s} \geq R\left(s, \pi^{*}(s)\right) + \gamma P\left(s, \pi^{*}(s)\right)^{\top} \mathbf{v}, \forall s$$

(Above is written assuming π^* is deterministic, which is in fact true in the infinite horizon discounted reward case.) Or,

$$\left(I - \gamma P^{\pi^*}\right) \mathbf{v} \ge R^{\pi^*}$$

Proof

Because $\gamma < 1, (I - \gamma P^{\pi})^{-1}$ exists for all π , and for any $u \ge 0$

$$\left(I - \gamma P^{\pi}\right)^{-1} u = \left(I + \gamma P^{\pi} + \gamma^{2} \left(P^{\pi}\right)^{2} + \cdots\right) u \ge u$$

Therefore, from above

$$\left(I - \gamma P^{\pi^*}\right)^{-1} \left(\left(I - \gamma P^{\pi^*}\right) \mathbf{v} - R^{\pi^*} \right) \ge 0$$

Or,

$$\mathbf{v} \ge \left(I - \gamma P^{\pi^*}\right)^{-1} R^{\pi^*} = V^*$$

Therefore, $\mathbf{w}^{\top}\mathbf{v}$ for w > 0 is minimized by $\mathbf{v} = V^*$.

Outline

Dynamic Programming

- 2 Markov Decision Process (MDP)
- 3 Bellman Equation

Example: Airfare Pricing

- 5 Iterative algorithms (discounted reward case)
 - Value Iteration
 - Q-value iteration
 - Policy iteration

An Example in Revenue Management: Airfare Pricing

Nonstop flights from \$303					
from \$303 5 tickets at this price Science	Departi 10:42 p.m. Sat, Jan, J. 2013 San Prancisco, CA (SPO)	Artina 4445 am. +1 Day 5em, Jan. 3, 2013 Chitago, IL (ORD - O'Hana)	Travel Time: 4 hr 3 ma	Distance: 1,846 miles	Fight UA214 Alizzit Beaing 277-280 Fare Care United Economy (W) See Care United Economy (W) See Control Real Control Control See Control Real Control Control See Control Control Control Control United Set
from \$343 L ticket at this price Select	Degart: 4:30 p.m. Satu, Jam. J. 2013 San Francisco, CA (SPO)	Arrise: 10:39 p.m. 5et., Jun. 1, 2013 Chicago, IL (ORD - O'Hare)	Travel Time: 4 hr 9 mn	Distanse: 1,846 miles	Flight UAP35 Arroth: Arbita A319 Fare Class: United Econemy (V) Mail: Heals for Durchest And Class Continue Performance See Datillow Performance View Ceate
from \$343 2 tickets at this price Select	Geart: 11:10 p.m. Sat, Jan J, 2013 San Francisco, CA (SPO)	Antres 5:20 a.m. +1 Day 5um, Jun. 2, 2013 Chicago, IL (ORD - O'Hane)	Travel Time: 4 hr 10 mn	Distancei 1,846 miles	Flipht (M1192 Arrant, Boelen 277-000 Fara Class: United Economy (V) Mail: Seak for Prochase No Special Read Offered. Sign Casta View Seak
from \$373 I ticket at this price Select	Departi: 9'30 & m. 5st., 2m. 3, 2013 San Francisco, CA (SFO)	Anirai 3:40 p.m. 5:41, Jun. 1, 2013 Shirapo, IL (ORD - O'Hare)	Travel Time: 4 hr 10 mn	Distance: 1,846 miles	Fight UN485 Aruchi Baseng 227-500 Fec Class Unted Conserv (Q) Val Mask for Perchase See Chillon Parformance Una Sea

The price corresponding to each fare class rarely changes (this is determined by other department), however, the RM department determines when to close low fare classes

- From the passenger's point of view, when the RM system closes a class, the fare increases
- Closing fare class achieves dynamic pricing

Fare classes

And when you make booking, you will frequently see messages like

This is real. It means there are only that number of tickets at that fare class (there is one more sale that will trigger the next protection level)

 You can try to buy one ticket with only one remaining, and see what happens

Dynamic Arrival of Consumers

Assumptions

- There are T periods in total indexed forward (the first period is 1 and the last period is T)
- There are C inventory at the beginning
- Customers belong to *n* classes, with $p_1 > p_2 > ... > p_n$
- In each period, there is a probability λ_i that a class i customer arrives
- Each period is small enough so that there is at most one arrival in each period

Decisions

- When at period t and when you have x inventory remaining, which fare class should you accept (if such a customer comes)
- Instead of finding a single optimal price or reservation level, we now seek for a decision rule, i.e., a mapping from (*t*, *x*) to {*I*|*I* ⊂ {1,...,*n*}}.

Dynamic Arrival - a T-stage DP problem

- State: Inventory level x_k for stages k = 1, ..., T
- Action: Let $u^{(k)} \in \{0,1\}^n$ to be the decision variable at period k

$$u_i^{(k)} = egin{cases} 1 & ext{accept class i customer} \ 0 & ext{reject class i customer} \end{cases}$$

decision vector $u^{(k)}$ at stage k, where $u_i^{(k)}$ decides whether to accept the *i*th class

• Random disturbance: Let $w_k, k \in \{0, ..., T\}$ denotes the type of new arrival during the kth stage (type 0 means no arrival). Then $P(w_k = i) = \lambda_i$ for k = 1, ..., T and $P(w_k = 0) = 1 - \sum_{i=1}^n \lambda_i$

Value Function: A Rigorous Definition

State transition cost:

$$g_k(x_k, u^{(k)}, w_k) = u^{(k)}_{w_k} p_{w_k}$$

where we take $p_0 = 0$. Clearly, $\mathbf{E}[g_k(x_k, u^{(k)}, w_k)|x_k] = \sum_{i=1}^n u_i^{(k)} p_i \lambda_i$

State transition dynamics

$$x_{k+1} = \begin{cases} x_k - 1 & \text{if } u_{w_k}^{(k)} w_k \neq 0 \text{ (with probability } \sum_{i=1}^n u_i^{(k)} \lambda_i) \\ x_k & \text{otherwise (with probability } 1 - \sum_{i=1}^n u_i^{(k)} \lambda_i) \end{cases}$$

The overall revenue is

$$\max_{\mu_1,\ldots,\mu_T} \mathbf{E}\left[\sum_{k=0}^T g_k(x_k,\mu_k(x_k),w_k)\right]$$

subject to the $\mu_k : x \to \{u\}$ for all k

A Dynamic Programming Model

Let V_t(x) denote the optimal revenue one can earn (by using the optimal policy onward) starting at time period t with inventory x

$$V_t(x) = \max_{\mu_t, \dots, \mu_T} \mathbf{E}\left[\sum_{k=t}^T g_k(x_k, \mu_k(x_k), w_k) | x_t = x
ight]$$

- We call *V_t*(*x*) the value function (a function of stage *t* and state *x*)
- Suppose that we know the optimal pricing strategy from time t+1 for all possible inventory levels x.
- More specifically, suppose that we know V_{t+1}(x) for all possible state x. Now let us find the best decisions at time t.

Bellman's Equation for Dynamic Arrival Model

We just proved the Bellman's equation. In the airfare model, Bellman's equation is

$$V_t(x) = \max_u \left\{ \sum_{i=1}^n \lambda_i (p_i u_i + u_i V_{t+1}(x-1)) + (1 - \sum_{i=1}^n \lambda_i u_i) V_{t+1}(x) \right\}$$

with $V_{T+1}(x) = 0$ for all x and $V_t(0) = 0$ for all t

We can rewrite this as

$$V_t(x) = V_{t+1}(x) + \max_u \left\{ \sum_{i=1}^n \lambda_i u_i(p_i + V_{t+1}(x-1) - V_{t+1}(x)) \right\}$$

For every (t, x), we have an equality and an unknown. The Bellman equation bears a unique solution.

Dynamic Programming Analysis

$$V_{t}(x) = V_{t+1}(x) + \max_{u} \left\{ \sum_{i=1}^{n} \lambda_{i} u_{i}(p_{i} - \Delta V_{t+1}(x)) \right\}$$

Therefore the optimal decision at time t with inventory x should be

$$u_i^* = \begin{cases} 1 & p_i \ge \Delta V_{t+1}(x) \\ 0 & p_i < \Delta V_{t+1}(x) \end{cases}$$

This is also called bid-price control policy

- The bid-price is $\Delta V_{t+1}(x)$
- If the customer pays more than the bid-price, then accept
- Otherwise reject

Dynamic Programming Analysis

Of course, to implement this strategy, we need to know $\Delta V_{t+1}(x)$

- We can compute all the values of $V_{t+1}(x)$ backwards
- Computational complexity is *O*(*nCT*)
- With those, we can have a whole table of $V_{t+1}(x)$. And we can execute based on that

Proposition (Properties of the Bid-prices)

For any x and t, i) $\Delta V_t(x+1) \leq \Delta V_t(x)$, ii) $\Delta V_{t+1}(x) \leq \Delta V_t(x)$

Intuitions:

- Fixed *t*, the value of the inventory has decreasing marginal returns
- The more time one has, the more valuable an inventory worth
- Proof by induction using the DP formula

Outline

Dynamic Programming

2 Markov Decision Process (MDP)

3 Bellman Equation

Iterative algorithms (discounted reward case)

- Value Iteration
- Q-value iteration
- Policy iteration

Value Iteration

 Indirect method that finds optimal value function (value vector v in above), not explicit policy.

Pseudocode

- Start with an arbitrary initialization v^0 . Specify $\epsilon > 0$
- Repeat for k = 1, 2, ... until $\|\mathbf{v}^k(s) \mathbf{v}^{k-1}(s)\|_{\infty} \le \epsilon \frac{(1-\gamma)}{2\gamma}$:

• for every $s \in S$, improve the value vector as:

$$\mathbf{v}^{k}(s) = \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') \, \mathbf{v}^{k-1}(s') \tag{1}$$

Compute optimal policy as

$$\pi(s) \in \arg\max_{a} R(s, a) + \gamma P(s, a)^{\top} \mathbf{v}^{k}$$
(2)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

54/63

Bellman operator

It is useful to represent the iterative step (1) using operator
 L : ℝ^S → ℝ^S.

$$\mathbf{L}V(s) := \max_{a \in A} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) V\left(s'\right)$$

$$\mathbf{L}^{\pi}V(s) := \mathbb{E}_{a \in \pi(s)} \left[R(s,a) + \gamma \sum_{s'} P\left(s,a,s'\right) V\left(s'\right) \right]$$
(3)

• Then, (1) is same as

$$\mathbf{v}^k = \mathbf{L} \mathbf{v}^{k-1} \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

55/63

 For any policy π, if V^π denotes its value function, then, by Bellman equations:

$$V^* = \mathbf{L}V^*, V^{\pi} = \mathbf{L}^{\pi}V^{\pi}$$
⁽⁵⁾

Below is a useful 'contraction' property of the Bellman operator, which underlies the convergence properties of all DP based iterative algorithms.

Lemma 6

The operator $\mathbf{L}(\cdot)$ and $\mathbf{L}^{\pi}(\cdot)$ defined by (3) are contraction mappings, i.e.,

$$\|\mathbf{L}v - \mathbf{L}u\|_{\infty} \le \gamma \|v - u\|_{\infty}$$
$$\|\mathbf{L}^{\pi}v - \mathbf{L}^{\pi}u\|_{\infty} \le \gamma \|v - u\|_{\infty}$$

・ロト < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 56/63
</p>

Proof of contraction

Proof. First assume $\mathbf{L}v(s) \ge \mathbf{L}u(s)$. Let $a_s^* = \arg \max_{a \in A} R(s, a) + \gamma \sum_{s'} P(s, a, s') v(s')$

$$0 \leq \mathbf{L}v(s) - \mathbf{L}u(s)$$

$$\leq R(s, a_s^*) + \gamma \sum_{s'} P(s, a_s^*, s') v(s') - R(s, a_s^*) - \gamma \sum_{s'} P(s, a_s^*, s') u(s')$$

$$= \gamma P(s, a_s^*)^\top (v - u)$$

$$\leq \gamma \|v - u\|_{\infty}$$

Repeating a symmetric argument for the case $Lv(s) \ge Lu(s)$ gives the lemma statement. Similar proof holds for L^{π} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

57/63

Theorem 7 (Theorem 6.3.3, Section 6.3.2 in Puterman [1994])

The convergence rate of the above algorithm is linear at rate γ . Specifically,

$$\left\|\mathbf{v}^{k}-V^{*}
ight\|_{\infty}\leqrac{\gamma^{k}}{1-\gamma}\left\|\mathbf{v}^{1}-\mathbf{v}^{0}
ight\|_{\infty}$$

Further, let π^k be the policy given by (2) using v^k . Then,

$$\left\|V^{\pi^k}-V^*
ight\|_{\infty}\leqrac{2\gamma^k}{1-\gamma}\left\|v^1-v^0
ight\|_{\infty}$$

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ● ○ \$8/63

Proof of Convergence

Proof. By Bellman equations $V^* = \mathbf{L}V^*$

$$\begin{split} \|V^{*} - \mathbf{v}^{k}\|_{\infty} &= \|\mathbf{L}V^{*} - v^{k}\|_{\infty} \\ &\leq \|\mathbf{L}V^{*} - \mathbf{L}v^{k}\|_{\infty} + \|\mathbf{L}v^{k} - v^{k}\|_{\infty} \\ &= \|\mathbf{L}V^{*} - \mathbf{L}v^{k}\|_{\infty} + \|\mathbf{L}v^{k} - \mathbf{L}v^{k-1}\|_{\infty} \\ &\leq \gamma \|V^{*} - v^{k}\| + \gamma \|v^{k} - v^{k-1}\| \\ &\leq \gamma \|V^{*} - v^{k}\| + \gamma^{k} \|v^{1} - v^{0}\| \\ \|V^{*} - v^{k}\|_{\infty} &\leq \frac{\gamma^{k}}{1 - \gamma} \|v^{1} - v^{0}\| \end{split}$$

Let $\pi = \pi^k$ be the policy at the end of *k* iterations. Then, $V^{\pi} = \mathbf{L}^{\pi} V^{\pi}$ by Bellman equations. Further, by definition of $\pi = \pi^k$,

$$\mathbf{L}^{\pi} \mathbf{v}^{k}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P\left(s, a, s'\right) \mathbf{v}^{k}\left(s'\right) = \mathbf{L} \mathbf{v}^{k}(s)$$

Proof of Convergence

Therefore,

$$\begin{split} \|V^{\pi} - v^{k}\|_{\infty} &= \|\mathbf{L}^{\pi}V^{\pi} - v^{k}\|_{\infty} \\ &\leq \|\mathbf{L}^{\pi}V^{\pi} - \mathbf{L}^{\pi}v^{k}\|_{\infty} + \|\mathbf{L}^{\pi}v^{k} - v^{k}\|_{\infty} \\ &= \|\mathbf{L}^{\pi}V^{\pi} - \mathbf{L}^{\pi}v^{k}\|_{\infty} + \|\mathbf{L}v^{k} - \mathbf{L}v^{k-1}\|_{\infty} \\ &\leq \gamma \|V^{\pi} - v^{k}\| + \gamma \|v^{k} - v^{k-1}\| \\ \|V^{\pi} - v^{k}\|_{\infty} &\leq \frac{\gamma}{1 - \gamma} \|v^{k} - v^{k-1}\| \\ &\leq \frac{\gamma^{k}}{1 - \gamma} \|v^{1} - v^{0}\| \end{split}$$

Adding the two results above:

$$\|V^{\pi} - V^*\|_{\infty} \le \frac{2\gamma^k}{1-\gamma} \|v^1 - v^0\|_{\infty}$$

<ロ> (四)、(四)、(三)、(三)、(三)、(三)、(G)/63 (G)/63 (G)/63

Convergence

In average reward case, the algorithm is similar, but the Bellman operator used to update the values is now
 LV(s) = max_a r_{s,a} + P(s, a)^TV. Also, here v^k will converge to v^{*} + ce for some constant c. Therefore, the stopping condition used is instead sp (v^k - v^{k-1}) ≤ ε where
 sp(v) := max_s v_s - min_s v_s. That is, span is used instead of L_∞
 norm. Further since there is no discount (γ = 1), a condition on
 the transition matrix is required to prove convergence. Let

$$\gamma := \max_{s,s',a,a'} 1 - \sum_{j \in S} \min \left\{ P(s,a,j), P\left(s',a',j\right) \right\}$$

• Then, linear convergence with rate γ is guaranteed if $\gamma < 1$. This condition ensures that the Bellman operator in this case: is still a contraction. For more details, refer to Section 8.5.2 in Puterman [1994].

Q-value iteration

• $Q^*(s, a)$: expected utility on taking action a in state *s*, and thereafter acting optimally. Then, $V^*(s) = \max_a Q^*(s, a)$. Therefore, Bellman equations can be written as,

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P\left(s,a,s'\right) \left(\max_{a'} Q^*\left(s',a'\right)\right)$$

Based on above a *Q*-value-iteration algorithm can be derived: **Pseudocode**

- Start with an arbitrary initialization $\mathbf{Q}^0 \in \mathbb{R}^{S \times A}$.
- In every iteration *k*, improve the *Q*-value vector as:

$$\mathbf{Q}^{k}(s,a) = \mathbf{R}(s,a) + \gamma \mathbb{E}_{s'} \left[\max_{a'} \mathbf{Q}^{k-1} \left(s', a' \right) | s, a \right], \forall s, a$$

• Stop if
$$\left\| Q^k - Q^{k-1} \right\|_\infty$$
 is small.

Start with an arbitrary initialization of policy π^1 . The *k*-th policy iteration has two steps:

• Policy evaluation: Find \mathbf{v}^k by solving $\mathbf{v}^k = \mathbf{L}^{\pi^k} \mathbf{v}^k$, i.e.,

$$\mathbf{v}^{k}(s) = \mathbb{E}_{a \sim \pi(s)} \left[R\left(s, a, s'\right) + \gamma \sum_{s'} P\left(s, a, s'\right) \mathbf{v}^{k}\left(s'\right) \right], \forall s$$

• Policy improvement: Find π^{k+1} such that $\mathbf{L}^{\pi^{k+1}}\mathbf{v}^k = \mathbf{L}\mathbf{v}^k$, i.e.,

$$\pi^{k+1}(s) = \arg\max_{a} R(s, a) + \gamma \mathbb{E}_{s'} \left[\mathbf{v}^{k} \left(s' \right) | s, a \right], \forall s$$

<ロト < 回 ト < 臣 ト < 臣 ト 王 の < で 63/63