
Lecture: network flow problems

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Acknowledgement: this slides is based on Prof. James B. Orlin’s lecture notes of
“15.082/6.855J, Introduction to Network Optimization” at MIT

Textbook: Network Flows: Theory, Algorithms, and Applications by Ahuja, Magnanti, and
Orlin referred to as AMO

1/74

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

2/74

Outline

1 Overview of network flow problems

2 Duality of shortest path problem

3 Duality of Maximum Flows

4 Maximum Bipartite Matching

5 Modularity Maximization for Community Detection

3/74

Notation and Terminology

Network terminology as used in AMO.

Left: an undirected graph, Right: a directed graph

Network G = (N, A)

Node set N = {1, 2, 3, 4}

Arc set A = {(1,2), (1,3), (3,2), (3,4), (2,4)}

In an undirected graph, (i,j) = (j,i)

4/74

Path: a finite sequence of nodes: i1, i2, . . . , it such
that (ik, ik+1) ∈ A and all nodes are not the same.
Example: 5, 2, 3, 4. (or 5, c, 2, b, 3, e, 4). No
node is repeated. Directions are ignored.

Directed Path. Example: 1, 2, 5, 3, 4 (or 1, a, 2,
c, 5, d, 3, e, 4). No node is repeated. Directions
are important.

Cycle (or circuit or loop) 1, 2, 3, 1. (or 1, a, 2, b, 3,
e). A path with 2 or more nodes, except that the
first node is the last node. Directions are ignored.

Directed Cycle: (1, 2, 3, 4, 1) or 1, a, 2, b, 3, c, 4,
d, 1. No node is repeated. Directions are
important.

5/74

Walks

Walks are paths that can repeat nodes and arcs

Example of a directed walk: 1-2-3-5-4-2-3-5

A walk is closed if its first and last nodes are the same.

A closed walk is a cycle except that it can repeat nodes and arcs.

6/74

Three Fundamental Flow Problems

The shortest path problem

The maximum flow problem

The minimum cost flow problem

7/74

The shortest path problem

Consider a network G = (N, A) with cost cij on each edge
(i, j) ∈ A. There is an origin node s and a destination node t.

Standard notation: n = |N|, m = |A|

cost of of a path: c(P) =
∑

(i,j)∈P cij

What is the shortest path from s to t?

8/74

The shortest path problem

min
∑

(i,j)∈A

cijxij

s.t.
∑

j

xsj = 1

∑
j

xij −
∑

j

xji = 0, for each i 6= s or t

−
∑

i

xit = −1

xij ∈ {0, 1} for all (i, j)

9/74

The Maximum Flow Problem

Directed Graph G = (N, A).
Source s
Sink t
Capacities uij on arc (i,j)
Maximize the flow out of s, subject to

Flow out of i = Flow into i, for i 6= s or t.

A Network with Arc Capacities (and the maximum flow)

10/74

Representing the Max Flow as an LP

Flow out of i = Flow into i, for i 6= s or t.

max v

s.t.
∑

j

xsj = v

∑
j

xij −
∑

j

xji = 0, for each i 6= s or t

−
∑

i

xit = −v

0 ≤ xij ≤ uij for all (i, j)

11/74

Min Cost Flows

Flow out of i - Flow into i = b(i).
Each arc has a linear cost and a capacity

min
∑

ij

cijxij

s.t.
∑

j

xij −
∑

j

xji = b(i), for each i

0 ≤ xij ≤ uij for all (i, j)

Covered in detail in Chapter 1 of AMO

12/74

Where Network Optimization Arises

Transportation Systems
transportation of goods over transportation networks
Scheduling of fleets of airplanes

Manufacturing Systems
Scheduling of goods for manufacturing
Flow of manufactured items within inventory systems

Communication Systems
Design and expansion of communication systems
Flow of information across networks

Energy Systems, Financial Systems, and much more

13/74

Applications in social network: shortest path

2014 ACM SIGMOD Programming Contest
http://www.cs.albany.edu/~sigmod14contest/task.html

Shortest Distance Over Frequent Communication Paths
定义社交网络的边: 相互直接至少有x条回复并且相互认识。给定
网络里两个人p1和p2以及另外一个整数x，寻找图中p1和p2之间
数量最少节点的路径

Interests with Large Communities

Socialization Suggestion

Most Central People (All pairs shorted path)
定义网络：论坛中有标签t的成员，相互直接认识。给定整数k和
标签t,寻找k个有highest closeness centrality values的人

http://www.cs.albany.edu/~sigmod14contest/task.html

14/74

Applications in social network: max flow and etc

Community detection in social network
Social network is a network of people connected to their “friends”

Recommending friends is an important practical problem

solution 1: recommend friends of friends

solution 2: detect communities
idea1: use max-flow min-cut algorithms to find a minimum cut
it fails when there are outliers with small degree
idea2: find partition A and B that minimize conductance:

min
A,B

c(A,B)

|A| |B|
,

where c(A,B) =
∑

i∈A

∑
j∈B cij

15/74

Outline

1 Overview of network flow problems

2 Duality of shortest path problem

3 Duality of Maximum Flows

4 Maximum Bipartite Matching

5 Modularity Maximization for Community Detection

16/74

The shortest path problem: LP relaxation

LP Relaxation: replace xij ∈ {0, 1} by xij ≥ 0

Primal

min
∑

(i,j)∈A

cijxij

s.t. −
∑

j

xsj = −1

∑
j

xji −
∑

j

xij = 0, i 6= s or t

∑
i

xit = 1

xij ≥ 0 for all (i, j)

Dual
max d(t)− d(s)

s.t. d(j)− d(i) ≤ cij, ∀(i, j) ∈ A

Signs in the constraints in the primal problem

17/74

Dual LP

Claim: When G = (N,A) satisfies the no-negative-cycles property, the
indicator vector of the shortest s-t path is an optimal solution to the
LP.

Let x∗ be the indicator vector of shortest s-t path
x∗ij = 1 if (i, j) ∈ P, otherwise x∗ij = 0
Feasible for primal

Let d∗(v) be the shortest path distance from s to v
Feasible for dual (by triangle inequality)∑

(i,j)∈A cijx∗ij = d∗(t)− d∗(s)

Hence, both x∗ and d∗ are optimal

18/74

Optimality Conditions

Lemma. Let d*(j) be the shortest path length from node 1 to node j,
for each j. Let d() be node labels with the following properties:

d(j) ≤ d(i) + cij for i ∈ N for j 6= 1 (1)
d(1) = 0 (2)

Then d(j) ≤ d*(j) for each j.
Proof. Let P be the shortest path from node 1 to node j.

19/74

Completion of the proof

If P = (1, j), then d(j) ≤ d(1) + c1j = c1j = d∗(j).

Suppose |P| > 1, and assume that the result is true for paths of
length |P| - 1. Let i be the predecessor of node j on P, and let Pi

be the subpath of P from 1 to i.

Pi is the shortest path from node 1 to node i. So,
d(i) ≤ d∗(i) = c(Pi)by inductive hypothesis. Then,
d(j) ≤ d(i) + cij ≤ c(Pi) + cij = c(P) = d∗(j).

20/74

Optimality Conditions

Theorem. Let d(1), . . . , d(n) satisfy the following properties for a
directed graph G = (N,A):

1 d(1) = 0.
2 d(i) is the length of some path from node 1 to node i.
3 d(j) ≤ d(i) + cij for all (i,j) ∈A.

Then d(j) = d*(j).

Proof. d(j) ≤ d∗(j) by the previous lemma. But, d(j) ≥ d∗(j) because
d(j) is the length of some path from node 1 to node j. Thus d(j) = d*(j).

21/74

A Generic Shortest Path Algorithm

Notation.

d(j) = “temporary distance labels”.
At each iteration, it is the length of a path (or walk) from 1 to j.

At the end of the algorithm d(j) is the minimum length of a path
from node 1 to node j.

Pred(j) = Predecessor of j in the path of length d(j) from node 1
to node j.
cij = length of arc (i,j).

22/74

A Generic Shortest Path Algorithm

Algorithm LABEL CORRECTING;
d(1) : = 0 and Pred(1) := ∅;
d(j) : =∞ for each j∈N - {1};

while some arc (i,j) satisfies d(j) > d(i) + cij do
d(j) := d(i) + cij;
Pred(j) : = i;

23/74

Ilustration

24/74

Ilustration

25/74

Outline

1 Overview of network flow problems

2 Duality of shortest path problem

3 Duality of Maximum Flows

4 Maximum Bipartite Matching

5 Modularity Maximization for Community Detection

26/74

Maximum Flows

We refer to a flow x as maximum if it is feasible and maximizes v. Our
objective in the max flow problem is to find a maximum flow.

A max flow problem. Capacities and a non- optimum flow.

27/74

The feasibility problem: find a feasible flow

Is there a way of shipping from the warehouses to the retailers to
satisfy demand?

28/74

The feasibility problem: find a feasible flow

There is a 1-1 correspondence with flows from s to t with 24 units
(why 24?) and feasible flows for the transportation problem.

29/74

The Max Flow Problem

G = (N,A)

xij = flow on arc (i,j)

uij = capacity of flow in arc (i,j)

s = source node

t = sink node
max v

s.t.
∑

j

xsj = v

∑
j

xij −
∑

j

xji = 0, for each i 6= s or t

−
∑

i

xit = −v

0 ≤ xij ≤ uij for all (i, j) ∈ A

30/74

Dual of the Max Flow Problem

reformulation:
Ai,(i,j) = 1,Aj,(i,j) = −1, for (i, j) ∈ A and all other elements are 0
A>y = yi − yj

The primal-dual pair is

min (0,−1)(x, v)>

s.t. Ax + (−1, 0, 1)>v = 0

Ix + 0>v ≤ u

x ≥ 0, v is free

⇐⇒

max − u>π

s.t. A>y + I>π ≥ 0

− 1 + (−1, 0, 1)y = 0

π ≥ 0

Hence, we have the dual problem:

min u>π

s.t. yj − yi ≤ πij, ∀(i, j) ∈ A

yt − ys = 1

π ≥ 0

31/74

Duality of the Max Flow Problem

The primal-dual of the max flow problem is

max v

s.t.
∑

j

xsj = v

∑
j

xij −
∑

j

xji = 0,∀i /∈ {s, t}

−
∑

i

xit = −v

0 ≤ xij ≤ uij ∀(i, j) ∈ A

min u>π

s.t. yj − yi ≤ πij, ∀(i, j) ∈ A

yt − ys = 1

π ≥ 0

32/74

Duality of the Max Flow Problem

Dual solution describes fraction πij of each edge to fractionally
cut

Dual constraints require that at least 1 edge is cut on every path
P from s to t. ∑

(i,j)∈P

πij ≥
∑

(i,j)∈P

yj − yi = yt − ys = 1

Every integral s-t cut (A,B) is feasible:
πij = 1, ∀i ∈ A, j ∈ B, otherwise, πij = 0.
yi = 0 if i ∈ A and yj = 1 if i ∈ B

weak duality: v ≤ u>π for any feasible solution
max flow ≤ minimum flow

strong duality: v∗ = u>π∗ at the optimal solution

33/74

sending flows along s-t paths

One can find a larger flow from s to t by sending 1 unit of flow along
the path s-2-t

34/74

A different kind of path

One could also find a larger flow from s to t by sending 1 unit of flow
along the path s-2-1-t. (Backward arcs have their flow decreased.)

Decreasing flow in (1, 2) is mathematically equivalent to sending flow
in (2, 1) w.r.t. node balance constraints.

35/74

The Residual Network

The Residual Network G(x)
We let rij denote the
residual capacity of arc (i,j)

36/74

A Useful Idea: Augmenting Paths

An augmenting path is a path from s to t in the residual network.

The residual capacity of the augmenting path P is
δ(P) = min{rij : (i, j) ∈ P}.

To augment along P is to send δ(P) units of flow along each arc
of the path. We modify x and the residual capacities
appropriately.

rij := rij − δ(P) and rji := rji + δ(P) for (i,j) ∈P.

37/74

The Ford Fulkerson Maximum Flow Algorithm

x := 0;
create the residual network G(x);

while there is some directed path from s to t in G(x) do
let P be a path from s to t in G(x);
δ := δ(P) = min{rij : (i, j) ∈ P};
send δ-units of flow along P;
update the r’s:
rij := rij − δ(P) and rji := rji + δ(P) for (i,j) ∈P.

38/74

Cut Duality Theory

An (s,t)-cut in a network G = (N,A) is a partition of N into two
disjoint subsets S and T such that s ∈ S and t ∈T, e.g., S = {s, 1}
and T = {2, t}.

The capacity of a cut (S,T) is

cut(S,T) =
∑
i∈S

∑
j∈T

uij

39/74

The flow across a cut

We define the flow across the cut (S,T) to be

Fx(S,T) =
∑
i∈S

∑
j∈T

xij −
∑
i∈S

∑
j∈T

xji

If S = {s, 1}, then Fx(S,T) = 6 + 1 + 8 = 15

If S = {s, 2}, then Fx(S,T) = 9 - 1 + 7 = 15

40/74

Max Flow Min Cut

Theorem. (Max-flow Min-Cut). The maximum flow value is the
minimum value of a cut.

Proof. The proof will rely on the following three lemmas:

Lemma 1. For any flow x, and for any s-t cut (S, T), the flow out
of s equals Fx(S,T).

Lemma 2. For any flow x, and for any s-t cut (S, T),
Fx(S,T) ≤ cut(S,T).

Lemma 3. Suppose that x* is a feasible s-t flow with no
augmenting path. Let S* = {j : s→j in G(x*)} and let T* = N\S.
Then Fx∗(S∗,T∗) = cut(S∗,T∗).

41/74

Proof of Theorem (using the 3 lemmas)

Let x’ be a maximum flow
Let v’ be the maximum flow value
Let x* be the final flow.
Let v* be the flow out of node s (for x*)
Let S* be nodes reachable in G(x*) from s.
Let T* = N\S*.

1 v* ≤ v’, by definition of v’
2 v’ = Fx′ (S*, T*), by Lemma 1.
3 Fx′ (S*, T*) ≤ cut(S*, T*) by Lemma 2.
4 v* = Fx∗ (S*, T*) = cut(S*, T*) by Lemmas 1,3.

Thus all inequalities are equalities and v* = v’.

42/74

Outline

1 Overview of network flow problems

2 Duality of shortest path problem

3 Duality of Maximum Flows

4 Maximum Bipartite Matching

5 Modularity Maximization for Community Detection

43/74

Matchings

An undirected network G = (N, A) is
bipartite if N can be partitioned into
N1 and N2 so that for every arc (i,j), i
∈ N1 and j ∈ N2.

A matching in N is a set of arcs no
two of which are incident to a
common node.

Matching Problem: Find a matching
of maximum cardinality

44/74

Node Covers

A node cover is a subset S of nodes
such that each arc of G is incident to
a node of S.

Node Cover Problem: Find a node
cover of minimum cardinality.

45/74

Matching Duality Theorem

Theorem. König- Egerváry. The
maximum cardinality of a matching is
equal to the minimum cardinality of a
node cover.

Note. Every node cover has at least
as many nodes as any matching
because each matched edge is
incident to a different node of the
node cover.

46/74

How to find a minimum node cover

47/74

Matching-Max Flow

Solving the Matching Problem as a Max Flow Problem

Replace original arcs by directed arcs with infinite capacity.

Each arc (s, i) has a capacity of 1.

Each arc (j, t) has a capacity of 1.

48/74

Find a Max Flow

The maximum s-t flow is 4.

The max matching has cardinality 4.

49/74

Determine the minimum cut

plot the residual network G(x)

Let S = {j : s→j in G(x)} and let T = N\S.

S = {s, 1, 3, 4, 6, 8}. T = {2, 5, 7, 9, 10, t}.

There is no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to {2, 5}.
Any such arc would have an infinite capacity.

50/74

Find the min node cover

The minimum node cover is the set of nodes incident to the arcs
across the cut. Max-Flow Min-Cut implies the duality theorem for
matching.
minimum node cover: {2,5,6,8}

51/74

Philip Hall’s Theorem

A perfect matching is a matching which matches all nodes of the
graph. That is, every node of the graph is incident to exactly one
edge of the matching.
Philip Hall’s Theorem. If there is no perfect matching, then there
is a set S of nodes of N1 such that |S| > |T| where T are the
nodes of N2 adjacent to S.

52/74

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L ∪ R, and weights wij on
edges (i,j), find a maximum weight matching.

Matching: a set of edges covering each node at most once

Let n=|N| and m = |A|.

Equivalent to maximum weight / minimum cost perfect matching.

53/74

The Max-Weight Bipartite Matching

Integer Programming (IP) formulation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

xij = 1 indicate that we include edge (i, j) in the matching

IP: non-convex feasible set

54/74

The Max-Weight Bipartite Matching

Integer program (IP)

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ∈ {0, 1},∀(i, j) ∈ A

LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1, ∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

Solving LP is equivalent to solving the combinatorial problem

55/74

Primal-Dual Interpretation

Primal LP relaxation

max
∑

ij

wijxij

s.t.
∑

j

xij ≤ 1,∀i ∈ L

∑
i

xij ≤ 1,∀j ∈ R

xij ≥ 0,∀(i, j) ∈ A

Dual

min
∑

i

yi

s.t. yi + yj ≥ wij,∀(i, j) ∈ A

y ≥ 0

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗LP = D∗LP

56/74

Primal-Dual Interpretation

Suppose edge weights wij = 1, then binary solutions to the dual are
node covers.

Dual

min
∑

i

yi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ≥ 0

Dual Integer Program

min
∑

i

yi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ∈ {0, 1}

Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

From strong duality theorem, we know P∗LP = D∗LP

Consider IP formulation of the dual, then

P∗IP ≤ P∗LP = D∗LP ≤ D∗IP

57/74

Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A ∈ Rm×n is totally unimodular, and b is an integer vector,
then {x : Ax ≤ b; x ≥ 0} has integer vertices.

Non-zero entries of vertex x are solution of A′x′ = b′ for some
nonsignular square submatrix A′ and corresponding sub-vector b′

Cramer’s rule:

xi =
det(A′i | b′)

det A′

Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.

58/74

The Minimum weight vertex cover

undirected graph G = (N, A) with node weights wi ≥ 0
A vertex cover is a set of nodes S such that each edge has at
least one end in S
The weight of a vertex cover is sum of all weights of nodes in the
cover
Find the vertex cover with minimum weight

Integer Program

min
∑

i

wiyi

s.t. yi + yj ≥ 1, ∀(i, j) ∈ A

y ∈ {0, 1}

LP Relaxation

min
∑

i

wiyi

s.t. yi + yj ≥ 1,∀(i, j) ∈ A

y ≥ 0

59/74

LP Relaxation for the Minimum weight vertex cover

In the LP relaxation, we do not need y ≤ 1, since the optimal
solution y∗ of the LP does not change if y ≤ 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y∗i is strictly larger than one. Then, let y′ be a
vector which is same as y∗ except for y′i = 1 < y∗i . This y′ satisfies
all the constraints, and the objective function is smaller.

The solution of the relaxed LP may not be integer, i.e., 0 < y∗i < 1

rounding technique:

y′i =

{
0, if y∗i < 0.5
1, if y∗i ≥ 0.5

The rounded solution y′ is feasible to the original problem

60/74

LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

Note that y′i = min(b2y∗i c, 1)

Let P∗IP be the optimal solution for IP, and P∗LP be the optimal
solution for the LP relaxation

Since any feasible solution for IP is also feasible in LP, P∗LP ≤ P∗IP

The rounded solution y′ satisfy∑
i

y′iwi =
∑

i

min(b2y∗i c, 1)wi ≤
∑

i

2y∗i wi = 2P∗LP ≤ 2P∗IP

61/74

Outline

1 Overview of network flow problems

2 Duality of shortest path problem

3 Duality of Maximum Flows

4 Maximum Bipartite Matching

5 Modularity Maximization for Community Detection

62/74

Communities in the Networks

Many networks have community structures. Nodes in the same
cluster have high connection intensity.

Figure: https://www.slideshare.net/NicolaBarbieri/community-detection

63/74

Communities in the Networks

Figure: Simmons College Facebook Network, the four clusters are labeled
by different graduation year: 2006 in green, 2007 in light blue, 2008 in
purple and 2009 in red. Figure from Chen, Li and Xu, 2016.

64/74

Partition Matrix and Assignment Matrix

For any partition ∪k
a=1Ca = [n], define the partition matrix X

Xij =

{
1, if i, j ∈ Ca, for some a,
0, else .

Low rank solution

X =

1
1 1 1
1 1 1
1 1 1

1 1
1 1

 =

1
1
1
1

1
1

×
1

1 1 1
1 1

65/74

Modularity Maximization

The modularity (MEJ Newman, M Girvan, 2004) is defined by

Q = 〈A− 1
2λ

ddT ,X〉

where λ = |E|.
The Integral modularity maximization problem:

max 〈A− 1
2λddT ,X〉

s.t. X ∈ {0, 1}n×n is a partiton matrix.

Probably hard to solve.

66/74

Modularity Maximization: SDP relaxation

The modularity (MEJ Newman, M Girvan, 2004) is defined by

Q = 〈A− 1
2λ

ddT ,X〉

where λ = |E|.
SDP Relaxation Yudong Chen, Xiaodong Li, Jiaming Xu

max 〈A− 1
2λddT ,X〉

s.t. X � 0
0 ≤ Xij ≤ 1
Xii = 1

67/74

A Nonconvex Completely Positive Relaxation

A nonconvex completely positive relaxation of modularity
maximization:

min〈−A +
1

2λ
ddT ,UUT〉

s.t.U ∈ Rn×k

‖ui‖2 = 1, ‖ui‖0 ≤ p, i = 1, . . . , n,

U ≥ 0

‖ui‖2 = 1: helpful in the algorithm.
U ≥ 0: important in theoretical proof.
‖ui‖0 ≤ p: keep the sparsity.

68/74

A Nonconvex Proximal RBR Algorithm

Define
Ui := {ui ∈ Rk | ui ≥ 0, ‖ui‖2 = 1, ‖ui‖0 ≤ p}

Define
U := U1 × . . .× Un

then rewrite U in component-wise form:

U = [u1, u2, . . . , un]T

Rewrite the problem as

min
U∈U

f (U) ≡ 〈C,UUT〉

69/74

A Nonconvex Proximal RBR Algorithm

Proximal BCD reformulation: fix the other rows and minimize
over the ith row

ui = argmin
x∈Ui

f (u1, . . . , ui−1, x, ui+1, . . . , un) +
σ

2
‖x− ūi‖2

Work in blocks:

C =

C11 C1i C1n

Ci1 cii Cin

Cn1 Cni Cnn

 , UUT =

UT
1 U1 UT

1 x UT
1 Un

xTU1 xTx xTUn

UT
n U1 UT

n x UT
n Un

Note that ‖x‖ = 1. The problem is simplified to

ui = argmin
x∈Ui

bTx,

where
bT = 2Ci

−iU−i − σūi
T .

70/74

Randomized BCD Algorithm

Algorithm 1: Low-rank Decomposition Row by Row (RBR) method
1 Give U0, set k = 0
2 while Not converging do
3 uk+1

i1 = arg minx∈Ui1
f (x, uk

i2 , ..., u
k
in) + σ

2 ‖x− uk
i1‖

2

4
...

5 uk+1
in = arg minx∈Uin

f (uk+1
i1 , ..., uk+1

in−1
, x) + σ

2 ‖x− uk
in‖

2

6 Extract the community by k-means or direct rounding from U∗.

Ui = {ui ∈ Rk | ‖ui‖2 = 1, ui ≥ 0, ‖ui‖0 ≤ p}, U = U1 × · · · × Un.
Each sub-problem: ui = arg minx∈Ui b>x Explicit solution

u =

b−p
‖b−p ‖

, if b− 6= 0,

ej0 , with j0 = arg minj bj, otherwise.

71/74

Complexity and Implementation Issues

Expand the matrix C to get bT :

bT = −2Ai
−iU−i + 2λdidT

−iU−i − σūi
T

Compute −Ai
−iU−i: O(dip) FLOPS.

Compute didT
−iU−i using

dTU = dT
−iU−i + diuT

i

Update dTU using

dTU ← dTU + di(uT
i − ūi

T)

72/74

Asynchronous Updates

Q: How to deal with the conflicts?
A: Asynchronous programming tells us to just ignore it.

The synchronous world:

Timeline

Overheads

Idle

Load imbalance causes the idle.
Correct but slow.

73/74

Asynchronous Updates

The asynchronous world:

Timeline

No synchronizations among the workers.
No idle time – every worker is kept busy.
High scalability.
Noisy but fast.

74/74

An Asynchronous Proximal RBR Algorithm

Algorithm 2: Asynchronous parallel RBR algorithm
1 Give U0, set t = 0
2 while Not converging do
3 for each row i asynchronously do
4 Compute the vector b>i = −2Ai

−iU−i + 2λdid>−iU−i − σui,
and save previous iterate ūi in the private memory.

5 Update ui ← argminx∈Ui
b>i x in the shared memory.

6 Update the vector d>U ← d>U + di(ui − ūi) in the shared
memory.

7 if rounding is activated then
8 for each row i asynchronously do
9 Set ui = ej0 where j0 = arg max(ui)j.

10 Compute and update d>U.

	Overview of network flow problems
	Duality of shortest path problem
	Duality of Maximum Flows
	Maximum Bipartite Matching
	Modularity Maximization for Community Detection

