Lecture: network flow problems

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Acknowledgement: this slides is based on Prof. James B. Orlin’s lecture notes of
“15.082/6.855J, Introduction to Network Optimization” at MIT

Textbook: Network Flows: Theory, Algorithms, and Applications by Ahuja, Magnanti, and
Orlin referred to as AMO

1/74

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html

Outline

6 Overview of network flow problems

2/74

Notation and Terminology

Network terminology as used in AMO.

Left: an undirected graph, Right: a directed graph

@ Network G = (N, A)
@ Node set N ={1, 2, 3, 4}
@ Arcset A={(1,2), (1,3), (3,2), (3,4), (2,4)}

@ In an undirected graph, (i,j) = (j,i)

3/74

@ Path: afinite sequence of nodes: iy, iy, .. .,i; such @,
that (ix, ix+1) € A and all nodes are not the same. p
’ (/3\ e |
Example: 5, 2, 3, 4. (or 5, ¢, 2, b, 3, e, 4). No 0-@-0-0
node is repeated. Directions are ignored.

@ Directed Path. Example: 1,2,5,3,4 (or 1, a, 2, N
¢, 5,d, 3, e, 4). No node is repeated. Directions O+3-C-0
are important. 5

e). A path with 2 or more nodes, except that the

@ Cycle (orcircuit orloop) 1,2,3,1. (or 1, a, 2, b, 3, 1&0/
first node is the last node. Directions are ignored. Y

d, 1. No node is repeated. Directions are
important. <

b
@ Directed Cycle: (1,2,3,4,1)or1,a,2,b, 3,c¢, 4, @‘\d%@
4

4/74

Walks

@ Walks are paths that can repeat nodes and arcs

@ Example of a directed walk: 1-2-3-5-4-2-3-5

@ A walk is closed if its first and last nodes are the same.

@ Aclosed walk is a cycle except that it can repeat nodes and arcs.

5/74

Three Fundamental Flow Problems

@ The shortest path problem
@ The maximum flow problem

@ The minimum cost flow problem

6/74

The shortest path problem

@ Consider a network G = (N, A) with cost ¢;; on each edge
(i,j) € A. There is an origin node s and a destination node t.

@ Standard notation: n = [N|, m = |A|
@ cost of of a path: ¢(P) = > (; ;yep cij

@ What is the shortest path from s to t?

7/74

The shortest path problem

min g CijXij

(ij)€A

s.t. szjzl
J
D xj—) x;=0, foreachi #sort
J

J
— ZX,‘; =—1
i

x;; € {0, 1} for all (i, /)

8/74

The Maximum Flow Problem

@ Directed Graph G = (N, A).
e Source s
e Sinkt
e Capacities u; on arc (i,))
e Maximize the flow out of s, subject to

@ Flow out of i = Flow into i, for i # s or t.
9 @\88
/10/11 e
3
@, | @
\ 10

A Network with Arc Capacities (and the maximum flow)

9/74

Representing the Max Flow as an LP

6,6 10,7

J
> xj— > xi=0, foreachi #sor¢

J J
— E Xit = —V
i

0< Xij < Ujj for all (i,j)

10/74

Min Cost Flows

5

$4&/ 2 \\
— T
@ T @

e

Flow out of i - Flow into i = b(i).
Each arc has a linear cost and a capacity

min Z cl-jxij
ij
st Y x;— > xi=bh(i), foreach i
J J
0< Xij < Ujj for all (i,j)

Covered in detail in Chapter 1 of AMO

11/74

Where Network Optimization Arises

@ Transportation Systems

e transportation of goods over transportation networks
e Scheduling of fleets of airplanes

@ Manufacturing Systems

e Scheduling of goods for manufacturing
e Flow of manufactured items within inventory systems

@ Communication Systems

e Design and expansion of communication systems
e Flow of information across networks

@ Energy Systems, Financial Systems, and much more

12/74

Applications in social network: shortest path

2014 ACM SIGMOD Programming Contest
http://www.cs.albany.edu/~sigmodl4contest/task.html

@ Shortest Distance Over Frequent Communication Paths
EAAL MG ML ARE) AXFIDRFAMEINR. BT
M 2 2 IHJ MAp1Fap2 VAR % b — A Fix, FHE Fpl1 Fop2 18]
RERDT ROGRZ

@ Interests with Large Communities
@ Socialization Suggestion

@ Most Central People (All pairs shorted path)
TXLME% . WP AFEG RN, 48ZEHEINIR . BT E ik
1= %t, F KA highest closeness centrality valueség A

13/74

http://www.cs.albany.edu/~sigmod14contest/task.html

Applications in social network: max flow and etc

Community detection in social network
@ Social network is a network of people connected to their “friends”

@ Recommending friends is an important practical problem
@ solution 1: recommend friends of friends

@ solution 2: detect communities

e ideal: use max-flow min-cut algorithms to find a minimum cut
o it fails when there are outliers with small degree
e idea2: find partition A and B that minimize conductance:

. ¢(A,B)
min :
AR A B

where ¢(A,B) = >4 Y iep i

14/74

Outline

e Duality of shortest path problem

15/74

The shortest path problem: LP relaxation

LP Relaxation: replace x; € {0, 1} by x;; > 0

Primal

min E CijXjj

(i)eA

- szj == Dual

max d(1) —d(s)
ijl_ZxU_o iFsort s.t. d(j) —d(i) <, V(i,j) €A

zxn -1
x;; > 0 for all (i)
Signs in the constraints in the primal problem

16/74

Dual LP

Claim: When G = (N, A) satisfies the no-negative-cycles property, the
indicator vector of the shortest s-t path is an optimal solution to the
LP.

@ Let x* be the indicator vector of shortest s-t path

° xji=1 if (i,j) € P, otherwise xi =0

e Feasible for primal

@ Let d*(v) be the shortest path distance from s to v
o Feasible for dual (by triangle inequality)

° Z(z,] €A Cl]x - d*() d*(s>

@ Hence, both x* and d* are optimal

17/74

Optimality Conditions

Lemma. Let d*(j) be the shortest path length from node 1 to node j,
for each j. Let d() be node labels with the following properties:

d(j) < d(i)+c¢jfori € Nforj #1 (1)

(1) = 0 2)

Then d(j) < d*(j) for each j.
@ Proof. Let P be the shortest path from node 1 to node j.

18/74

Completion of the proof

@ IfP=(1,]), then d(j) < d(1) + ci; = c1j = d*(j).

@ Suppose |P| > 1, and assume that the result is true for paths of
length |P| - 1. Let i be the predecessor of node j on P, and let P;
be the subpath of P from 1 to i.

| P |
|®—> (N N

P;

@ P; is the shortest path from node 1 to node i. So,
d(i) < d*(i) = ¢(P;)by inductive hypothesis. Then,
d(j) < d(i) 4 cij < c(Pi) + cj = c(P) = d*(j).

19/74

Optimality Conditions

Theorem. Letd(1), . . ., d(n) satisfy the following properties for a
directed graph G = (N,A):

Q@ d(1)=0.
@ d(i) is the length of some path from node 1 to node i.
© d(j) < d(i) + ¢ for all (i,j) €A.

Then d(j) = d*(j).

Proof. d(j) < d*(j) by the previous lemma. But, d(j) > d*(j) because
d(j) is the length of some path from node 1 to node j. Thus d(j) = d*(j).

20/74

A Generic Shortest Path Algorithm

Notation.
@ d(j) = “temporary distance labels”.
e At each iteration, it is the length of a path (or walk) from 1 to j.
o At the end of the algorithm d(j) is the minimum length of a path
from node 1 to node j.

@ Pred(j) = Predecessor of j in the path of length d(j) from node 1
to node j.

@ ¢; = length of arc (i,j).

21/74

A Generic Shortest Path Algorithm

Algorithm LABEL CORRECTING;
@ d(1) : = 0 and Pred(1) := 0;
d(j) : = oo for each jeN - {1};

@ while some arc (i,j) satisfies d(j) > d(i) + ¢;; do
d(j) :=d(i) + cj;
Pred(j) : =1i;

22/74

llustration

e

i

23/74

llustration

24/74

Outline

© Duality of Maximum Flows

25/74

Maximum Flows

We refer to a flow x as maximum if it is feasible and maximizes v. Our
objective in the max flow problem is to find a maximum flow.

10

A max flow problem. Capacities and a non- optimum flow.

26/74

The feasibility problem: find a feasible flow

warehouses retailers
6 = (1)
5 —b () (& —> ¢
—_— 7
4 9‘ @
>
5 p o o —) 6

Is there a way of shipping from the warehouses to the retailers to
satisfy demand?

27/74

The feasibility problem: find a feasible flow

warehouses retailers

N7 s

There is a 1-1 correspondence with flows from s to t with 24 units
(why 247?) and feasible flows for the transportation problem.

28/74

The Max Flow Problem

e G=(N,A)
@ x; = flow on arc (i,j)

@ u;; = capacity of flow in arc (i,j)
@ s = source node

@ t = sink node

max v

s.t. szj:v
qu ij,_o for each i # s or
_let*

0§xij§uijforall (i,j) €A
29/74

Dual of the Max Flow Problem

reformulation:
@ A ij = L,Aju,; = —1,for (i,j) € A and all other elements are 0
@ Aly=yi—y

The primal-dual pair is

min (0, —1)(x,v)" max —u'm

st Ax+(—1,0,1)Tv=0 . st Aly+1Tn>0
LK+0"v<u —14+(-1,0,1)y=0
x> 0,vis free T >0

Hence, we have the dual problem:
T

min u
styj—yi<my, V(i,j) €A
yi—ys =1

>0

30/74

Duality of the Max Flow Problem

The primal-dual of the max flow problem is

max v
st va -7 min u' 7
le/ ij, =0,Vi ¢ {s,} s.t.yj —vi <7,
Ve —Ys = 1

_an >0

OSXUSMU V(,])EA

V(i,j) €A

31/74

Duality of the Max Flow Problem

@ Dual solution describes fraction ;; of each edge to fractionally
cut

@ Dual constraints require that at least 1 edge is cut on every path
P fromstot.

DT Y, yi—yi=y—y=1
(ij)ep (ij)epP

@ Every integral s-t cut (A,B) is feasible:
mj = 1,Vi € A,j € B, otherwise, m;; = 0.
yi=0ificAandy; =1ificB

@ weak duality: v < u' r for any feasible solution
max flow < minimum flow

@ strong duality: v* = u' 7* at the optimal solution

32/74

sending flows along s-t paths

10 8
1
®>\ ®A6/®
One can find a larger flow from s to t by sending 1 unit of flow along

the path s-2-t
10 e
1
®>6\ @/5/@

33/74

A different kind of path

One could also find a larger flow from s to t by sending 1 unit of flow
along the path s-2-1-t. (Backward arcs have their flow decreased.)

o f o

Decreasing flow in (1, 2) is mathematically equivalent to sending flow

n (2, 1) w.r.t. node balance constraints. e

The Residual Network

The Residual Network G(x)

We let r;; denote the
residual capacity of arc (i,j)

35/74

A Useful Idea: Augmenting Paths

@ An augmenting path is a path from s to t in the residual network.

@ The residual capacity of the augmenting path P is
d(P) = min{r; : (i,j) € P}.

@ To augment along P is to send 4(P) units of flow along each arc
of the path. We modify x and the residual capacities
appropriately.

@ r;j:=r;— 0(P)and rj := rjj + 6(P) for (i,j) €P.

36/74

The Ford Fulkerson Maximum Flow Algorithm

@ x:=0;
create the residual network G(x);

@ while there is some directed path from s to t in G(x) do
let P be a path from s to t in G(x);

§ := §(P) = min{ry : (i,j) € P};

send §-units of flow along P;

update the r's:

riji=ri — (S(P) and rji i=Tji + 6<P) for (|,J) EP

37/74

Cut Duality Theory

@ An (s,t)-cut in a network G = (N,A) is a partition of N into two
disjoint subsets S and T suchthats € Sandt €T, e.g., S = {s, 1}
and T = {2, t}.

@ The capacity of a cut (S,T) is

cut(S,T) = ZZ”’J

ieS jeT

38/74

The flow across a cut

We define the flow across the cut (S,T) to be

FX(S, T) = ZZXU — ZZXﬁ

ies jer ieS jeT

@ IfS={s,1},then F (S, T)=6+1+8=15
@ IfS={s,2},then F,(S,T)=9-1+7=15

39/74

Max Flow Min Cut

Theorem. (Max-flow Min-Cut). The maximum flow value is the
minimum value of a cut.

@ Proof. The proof will rely on the following three lemmas:

@ Lemma 1. For any flow x, and for any s-t cut (S, T), the flow out
of s equals Fy(S,T).

@ Lemma 2. For any flow x, and for any s-t cut (S, T),
F (S, T) <cut(s,T).

@ Lemma 3. Suppose that x* is a feasible s-t flow with no
augmenting path. Let S* = {j: s —j in G(x*)} and let T* = N\S.
Then F,-(S*,T*) = cut(S*, T*).

40/74

Proof of Theorem (using the 3 lemmas)

Let x’ be a maximum flow

Let v’ be the maximum flow value

Let x* be the final flow.

Let v* be the flow out of node s (for x*)

Let S* be nodes reachable in G(x*) from s.
Let T* = N\S*.

Q v <v,

Q v=F/ (8T,

@ F. (S*, T*) < cut(S*, T*)

Q Vv*=F, (S*, T*) =cut(S*, T

Thus all inequalities are equalities and v* = v’

by definition of v’
by Lemma 1.
by Lemma 2.
by Lemmas 1,3.

41/74

Outline

e Maximum Bipartite Matching

42/74

Matchings

Persons Tasks
@ An undirected network G = (N, A) is

bipartite if N can be partitioned into
N1 and N2 so that for every arc (i,j), i
€ N1 andje N2.

@ A matching in N is a set of arcs no
two of which are incident to a
common node.

@ Matching Problem: Find a matching
of maximum cardinality

43/74

Node Covers

Persons Tasks

@ A node cover is a subset S of nodes
such that each arc of G is incident to
a node of S.

@ Node Cover Problem: Find a node
cover of minimum cardinality.

44/74

Matching Duality Theorem

Persons Tasks

@ Theorem. Kdnig- Egervéry. The
maximum cardinality of a matching is
equal to the minimum cardinality of a
node cover.

@ Note. Every node cover has at least
as many nodes as any matching
because each matched edge is
incident to a different node of the
node cover.

45/74

How to find a minimum node cover

" Transform into a
ori ill'lr\allllaul:l;).blem ‘- max flow
9 P problem
Find the Solve the max
minimum cut ‘— flow problem

|

Use the cut to find the ‘

minimum node cover

46/74

Matching-Max Flow

Solving the Matching Problem as a Max Flow Problem

@ Replace original arcs by directed arcs with infinite capacity.
@ Each arc (s, i) has a capacity of 1.

@ Each arc (j, t) has a capacity of 1.
47/74

Find a Max Flow

@ The maximum s-t flow is 4.

@ The max matching has cardinality 4.

48/74

Determine the minimum cut

@ plot the residual network G(x)
@ LetS={:s—jinG(x)} and let T = N\S.
@ S={s,1,3,4,6,8.T={2,5,7,9, 10, t}.

@ Thereis no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to {2, 5}.
Any such arc would have an infinite capacity.

49/74

Find the min node cover

@ The minimum node cover is the set of nodes incident to the arcs
across the cut. Max-Flow Min-Cut implies the duality theorem for
matching.

@ minimum node cover: {2,5,6,8} 5074

Philip Hall's Theorem

@ A perfect matching is a matching which matches all nodes of the
graph. That is, every node of the graph is incident to exactly one
edge of the matching.

@ Philip Hall's Theorem. If there is no perfect matching, then there
is a set S of nodes of N1 such that |S| > |T| where T are the

nodes of N2 adjacent to S.
51/74

The Max-Weight Bipartite Matching Problem

Given a bipartite graph G = (N, A), with N = L U R, and weights w;; on
edges (i,j), find a maximum weight matching.

@ Matching: a set of edges covering each node at most once
@ Let n=|N| and m = |A|.

@ Equivalent to maximum weight / minimum cost perfect matching.

52/74

The Max-Weight Bipartite Matching

Integer Programming (IP) formulation
max Z WijXij
i

st. > x<LViel
J

d x <LVjER
x;j € {0,1},V(i,j) € A
@ x; = 1 indicate that we include edge (i, j) in the matching

@ IP: non-convex feasible set

53/74

The Max-Weight Bipartite Matching

Integer program (IP) LP relaxation
max Z WiiXij max Z WiXij
ij ij
st. > x<LViel st. > x<LViel
j J
S xy<LVjeR D <1LYeER
i i
xj € {0,1},Y(i,j) € A x> 0,V(i,j) €A

@ Theorem. The feasible region of the matching LP is the convex
hull of indicator vectors of matchings.

@ This is the strongest guarantee you could hope for an LP
relaxation of a combinatorial problem

@ Solving LP is equivalent to solving the combinatorial problem

54/74

Primal-Dual Interpretation

Primal LP relaxation

max Z WijXjj Dual
i

min i
s.t. lej,'ﬁ LVielL zi:y
D x<LYeR y>0
: =
Xij > O,V(l,J) €A

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

@ From strong duality theorem, we know P;, = Djp

55/74

Primal-Dual Interpretation

Suppose edge weights w;; = 1, then binary solutions to the dual are
node covers.

Dual Dual Integer Program
min Z)’i min Zy,-
i i
styi+y >1,V(,j)eA st.yi+y > 1,V(,j) €A
y=0 ye€{0,1}

@ Dual problem is solving minimum vertex cover: find smallest set
of nodes S such that at least one end of each edge is in S

@ From strong duality theorem, we know P}, = Djp
@ Consider IP formulation of the dual, then
Pip < Pip=Dip < Djp

56/74

Total Unimodularity

Defintion: A matrix A is Totally Unimodular if every square submatrix
has determinant 0, +1 or -1.

Theorem: If A € R™*" is totally unimodular, and b is an integer vector,
then {x : Ax < b;x > 0} has integer vertices.

@ Non-zero entries of vertex x are solution of A’x’ = ' for some
nonsignular square submatrix A’ and corresponding sub-vector 4’

@ Cramer’s rule:
_ det(A] | D)
M= det A’
Claim: The constraint matrix of the bipartite matching LP is totally
unimodular.

57/74

The Minimum weight vertex cover

@ undirected graph G = (N, A) with node weights w; > 0

@ A vertex cover is a set of nodes S such that each edge has at
least one end in S

@ The weight of a vertex cover is sum of all weights of nodes in the
cover

@ Find the vertex cover with minimum weight

Integer Program LP Relaxation
min Z Wiyi min Z Wii
i i
sty +y > 1,V(i,j) €A styi+y >1,V(ijeA

ye {01} y>0

58/74

LP Relaxation for the Minimum weight vertex cover

@ In the LP relaxation, we do not need y < 1, since the optimal
solution y* of the LP does not change if y < 1 is added.
Proof: suppose that there exists an index i such that the optimal
solution of the LP y? is strictly larger than one. Then, let y’ be a
vector which is same as y* except for y; = 1 < yf. This)’ satisfies
all the constraints, and the objective function is smaller.

@ The solution of the relaxed LP may not be integer, i.e., 0 <y’ <1

@ rounding technique:

= 0, ifyf<05
! 1, ifyr>05

@ The rounded solution y’ is feasible to the original problem

59/74

LP Relaxation for the Minimum weight vertex cover

The weight of the vertex cover we get from rounding is at most twice
as large as the minimum weight vertex cover.

@ Note that y; = min(|2yf], 1)

@ Let P}, be the optimal solution for IP, and P;, be the optimal
solution for the LP relaxation

@ Since any feasible solution for IP is also feasible in LP, P;, < P}

@ The rounded solution y’ satisfy

S yiwi o= > min([2y7], Dwi <Y 2y7w; = 2P < 2Pj
i i i

60/74

Outline

© Modularity Maximization for Community Detection

61/74

Communities in the Networks

@ Many networks have community structures. Nodes in the same
cluster have high connection intensity.

s

Priootetuse

P)
e S
:

Lot
o e

oo
R, e

Bocorcucy "t
o
Coen . C
OSN 100 /O -
% N

b Toi-05 /77

M0 A ckad Phoes| N\

VA4 SN96

b R 1099 8 i -
AR e

\ £ mimpar

roger— 1/t O Pzl

A Pooran) AL

g, < oo

o Spacnige rork Cntetp
MNE3Onigs Og

Sioes
e
Comnei1a0 s

Figure: https://www.slideshare.net/NicolaBarbieri/community-detection

62/74

Communities in the Networks

Figure: Simmons College Facebook Network, the four clusters are labeled
by different graduation year: 2006 in green, 2007 in light blue, 2008 in
purple and 2009 in red. Figure from Chen, Li and Xu, 2016.

63/74

Partition Matrix and Assignment Matrix

@ For any partition Uf_, C, = [n], define the partition matrix X

X — 1, ifi,j € C,, for some a,
Y770, else .

(1 1

1 11 1 |
1 11 1
X = = X 1 11
1 11 1 [11]

64/74

Modularity Maximization

@ The modularity (MEJ Newman, M Girvan, 2004) is defined by

1
=(A— —dd". X

where \ = |E|.
@ The Integral modularity maximization problem:

max (A — 5-dd", X)
s.t. X € {0,1}" is a partiton matrix.

@ Probably hard to solve.

65/74

Modularity Maximization: SDP relaxation

@ The modularity (MEJ Newman, M Girvan, 2004) is defined by

— 1 T
0= (A~ 5ydd" X)
where \ = |E|.
@ SDP Relaxation Yudong Chen, Xiaodong Li, Jiaming Xu

max (A — 5xdd", X)
st. X>=0
0<X;<1
Xi=1

66/74

A Nonconvex Completely Positive Relaxation

@ A nonconvex completely positive relaxation of modularity
maximization:

1
min(—A + —~dd", UU")

2
s.t.U € R"*k
el =1, luillo < pyi=1,....n,

U>0

@ ||u;]|> = 1: helpful in the algorithm.
@ U > 0: important in theoretical proof.
@ ||uillo < p: keep the sparsity.

67/74

A Nonconvex Proximal RBR Algorithm

@ Define
Ui = {u; € R¥ [u; > 0, |luill2 = 1, |luillo < p}

@ Define
U:=U x...xU,

then rewrite U in component-wise form:

U= [ul,uz, . ,un]T
@ Reuwrite the problem as

min f(U) = (C,UU")

68/74

A Nonconvex Proximal RBR Algorithm

@ Proximal BCD reformulation: fix the other rows and minimize

over the ith row

. o 2
Ui = argmlnf(uh sy U1, X Ui 1 -)ul’l) + EHX_ ul“

XEU;

@ Work in blocks:

Cii Ci Cia ulru, Ulx
C = C,' Cii Cin y UUT: XTU1 XTX
Cu Cun Cum Uuru, Ulx

@ Note that |[x|| = 1. The problem is simplified to

u; = argmin b’ x,
XEU;

where .
' =2C,U_; — ou;” .

69/74

Randomized BCD Algorithm

Algorithm 1: Low-rank Decomposition Row by Row (RBR) method

1 Give U, setk =0
2 while Not converging do

3 uﬁ“ = argminxeuilf(x, uf‘z, ey u{‘n) + 5lx — “ﬁ 1

4 |
W = argmingey, FOd Wl x) 4 9l — i |12

In

6 Extract the community by k-means or direct rounding from U*.

@ Each sub-problem: u; = arg min,<, b x Explicit solution

o Uy = {ur € B*| flulo = L > 0, o < p}, U =2y x -+~ x Uy,

by e g
w=1{ Tl 167 #0,
ej,, With jo = argmin; b;, otherwise.

70/74

Complexity and Implementation Issues

@ Expand the matrix C to get b”:
b = —2A" . U_; + 2\ did",U_; — ow;"

@ Compute —A" .U_;: O(d;p) FLOPS.
e Compute d;d”,U_; using

d'U =d",U_; + du!
@ Update d”U using

d'U « d"U + di(u} — &)

71/74

Asynchronous Updates

Q: How to deal with the conflicts?
A: Asynchronous programming tells us to just ignore it.

The synchronous world:

) Overheads

—" ~~s

Timeline -

[o]
|] —— Q]
] | (e

@ Load imbalance causes the idle.

@ Correct but slow.
72/74

Asynchronous Updates
The asynchronous world:

Timeline

@ No synchronizations among the workers.
@ No idle time — every worker is kept busy.
@ High scalability.

@ Noisy but fast.

73/74

H W N =

o O

An Asynchronous Proximal RBR Algorithm

Algorithm 2: Asynchronous parallel RBR algorithm

Give U, sett=0
while Not converging do
for each row i asynchronously do
Compute the vector b = —2A" ,U_; +2\d;d".U_; — ou;,
and save previous iterate u; in the private memory.
Update u; + argmin,;, b x in the shared memory.
Update the vector d" U « d" U + d;(u; — &;) in the shared
memory.
if rounding is activated then
for each row i asynchronously do
L Set u; = ej, where jy = arg max(u;);.
Compute and update d ' U.

74/74

	Overview of network flow problems
	Duality of shortest path problem
	Duality of Maximum Flows
	Maximum Bipartite Matching
	Modularity Maximization for Community Detection

