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A Geometric Motivation

Setting: Probability measures P(X ) on a metric space (X , dist).

distance between µ and ν:
µ = δx1 and ν = δy1

dist(µ, ν) = dist(x1, y1)

µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi

dist(µ, ν) = 1
n2

∑
ij dist(xi, yj)? or

dist(µ, ν) = minσ permutation
1
n

∑
i dist(xi, yσ(i))

What if µ, ν ∈ P(X )?
Goal: Build a metric on P(X ) with the geometry of (X , dist).



4/55

Applications: comparing measures
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! images, vision, graphics and machine learning, . . .

• Optimal transport

Optimal transport meanL
2
mean
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Applications: toward high-dimensional OT
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Kantorovitch’s Formulation

Discrete Optimal Transport
Input two discrete probability measures

α =

m∑
i=1

aiδxi , β =

n∑
j=1

bjδyj . (1)

X = {xi}i, Y = {xj}j: are given points clouds, xi, yi are vectors.
ai, bj : positive weights,

∑m
i=1 ai =

∑n
j=1 bj = 1.

Cij: costs, Cij = c(xi, yj) ≥ 0.

Couplings

U(α, β)
def
= {Π ∈ Rm×n

+ ; Π1n = a,Π⊤1m = b} (2)

is called the set of couplings with respect to α and β.
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Kantorovitch’s Formulation

Discrete Optimal Transport
In the optimal transport, we want to compute the following quantity
[Kantorovich 1942]

Optimal transport distance

L(α, β,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (3)
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Push Forward

Radon measures (α, β) on (X ,Y).
Transfer of measure by T : X → Y: push forward.
The measure T#α on Y is defined by

T#α(Y) = α(T−1(Y)), for all measurable Y ∈ Y. (4)

Equivalently, ∫
Y

g(y)dT#α(y)
def
=

∫
X

g(T(x))dα(x). (5)

Discrete measures: T#α =
∑

i αiδT(xi)

Smooth densities: dα = ρ(x)dx, dβ = ξ(x)dx.

T#α = β ⇐⇒ ρ(T(x))|det(∂T(x))| = ξ(x). (6)
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Monge problem

Monge problem seeks for a map that associates to each point xi

a single point yj, and which must push the mass of α toward the
mass of β, namely:

∀j, bj =
∑

i:T(xi)=yj

ai

Discrete case:

min
T

∑
i

c(xi,T(xi)), s.t. T#α = β

Arbitrary measures:

min
T

∫
X

c(x,T(x))dα(x), s.t. T#α = β
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Couplings between General Measures

Projectors:
PX : (x, y) ∈ X × Y → x ∈ X ,
PY : (x, y) ∈ X × Y → y ∈ Y.

(7)

Couplings between General Measures

U(α, β) def
= {π ∈ M+(X × Y);PX#π = α,PY#π = β}. (8)

is called the set of couplings with respect to α and β.
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Cases of Couplings
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⇡

Discrete

⇡

Continuous

⇡

Semi-discrete
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More Examples
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Kantorovitch Problem for General Measures

Optimal transport distance between General Measures

L(α, β, c) def
= min

π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y). (9)

Probability interpretation:

min
(X,Y)

{E(X,Y)(c(X,Y)),X ∼ α,Y ∼ β}. (10)
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Wasserstein Distance

Metric Space X = Y.
Distance d(x, y) (nonegative, symmetric, identity, triangle inequality).
Cost c(x, y) = d(x, y)p, p ≥ 1.

Wasserstein Distance

Wp(α, β)
def
= L(α, β, dp)1/p. (11)

Theorem
Wp is a distance, and

Wp(αn, α) → 0 ⇐⇒ αn
weak→ α. (12)

Example

Wp(δx, δy) = d(x, y). (13)
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Dual form

Dual problem (discrete case)

max
w∈Rm,r∈Rn

w⊤a + r⊤b,

s.t. wi + rj ≤ Cij, ∀(i, j)
(14)

Relation between any primal and dual solutions:

Pij > 0 ⇒ wi + rj = Cij.
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Wasserstein barycenter

Define C def
= MXY , where (MXY)ij = d(xi, yi)

p. The Wasserstein
distance as

L(a, b,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (15)

Given a set of point clouds and their corresponding probability
vector {(Y i, bi)}, i = 1, . . . ,N.
Find a support X = {xi} with a probability vector a such that
(X, a) is the optimal solution of the following problem

min
X,a

N∑
k=1

λkL(a, bk,MXYk),

where
∑

k λk = 1 and λk ≥ 0.
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Applications: image color adaptation

Example: https://pythonot.github.io/auto_examples/
domain-adaptation/plot_otda_color_images.html

Given color image stored in the RGB format: I1, I2
# Converts an image to matrix (one pixel per line)
X1 = im2mat(I1), X2 = im2mat(I2)
# Take samples
Xs = X1[idx1, :], Xt = X2[idx2, :]
# Scatter plot of colors
pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
# Sinkhorn Transport
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
# prediction between images
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)

https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_color_images.html
https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_color_images.html
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Applications: image color adaptation
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Applications: image color palette equalization

Optimal

transport
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Applications: shape interpolation
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Applications: MRI Data Processing
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L
2 barycenter

W
2

2
barycenter

Ground cost c = dM : geodesic on cortical surface M .
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Applications: word mover’s distance

normalized bag-of-words (nBOW), word travel cost (word2vec
distance), document distance Tijc(i, j), transportation problem

�������������������������

����������� dist(D1, D2) = W2(µ,⌫)

µ

⌫

������������
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Applications: word mover’s distance

min
Π≥0

∑
ij

Πijcij

s.t.
n∑

j=1

Πij = di

n∑
i=1

Πij = d′
j

xi: word2vec embedding
cij = ∥xi − xj∥2

if word i appears wi times in the document, we denote di =
wi∑

wj
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Distributional Robust Optimization (DRO)

stochastic optimization:

inf
β∈B

EP∗ [ℓ(β⊤X)],

where B is a convex set, ℓ is a loss function, EP∗ [·] represents the
expectation operator associated to the probability model P∗,
which describes the random element X.

The DRO model:

inf
β∈B

sup
P∈Uδ(P0)

EP[ℓ(β
⊤X)],

where Uδ(P0) is a so-called distributional uncertainty region
“centered” around some benchmark model, P0, which may be
data-driven (for example, an empirical distribution) andδ>0
parameterizes the sizeof the distributional uncertainty.

Wasserstein distance: Uδ(P0) = {P | W(P,P0) ≤ δ}.
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Discrete OT Review

Given an integer n ⩾ 1, we write Σn for the discrete probability simplex

Σn
def
=

{
a ∈ R+

n ;

n∑
i=1

ai = 1.

}
(16)

Given a ∈ Σm, b ∈ Σn, the Optimal Transport problem is to compute

L(a, b,C)
def
= min{

∑
i,j

Ci,jPi,j; s.t. P ∈ U(a, b)}. (17)

Where U(a, b) is the set of couplings between a and b.
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Entropy

The discrete entropy of a positive matrix P (
∑

ij Pij = 1) is defined as

H(P) def
= −

∑
i,j

Pi,j(log(Pi,j)− 1). (18)

For a positive vector u ∈ Σn, the entropy is defined analogously:

H(u) def
= −

∑
i

ui(log(ui)− 1). (19)

For two positive vector u, v ∈ Σn, the Kullback-Leibler divergence (or,
KL divergence) is defined to be

KL(u∥v) = −
n∑

i=1

ui log(
vi

ui
). (20)

The KL divergence is always non-negative: KL(u∥v) ≥ 0 (Jensen’s
inequality: E[f (g(X))] ≥ f (E[g(X)])).
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Entropic regularization

Given a ∈ Σm, b ∈ Σn and cost matrix C ∈ Rm×n
+ . The entropic

regularization of the transportation problem reads

Lε(a, b,C) = min
P∈U(a,b)

⟨P,C⟩ − εH(P). (21)

The case ε = 0 corresponds to the classic (linear) optimal
transport problem.
For ε > 0, problem (21) has an ε-strongly convex objective and
therefore admits a unique optimal solution P⋆

ε.

This is not (necessarily) true for ε = 0. But we have the following
proposition.
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Entropic regularization

Proposition
When ε→ 0, the unique solution Pε of (21) converges to the optimal
solution with maximal entropy within the set of all optimal solutions of
the unregularized transportation problem, namely,

Pε
ε→0→ argmaxP{H(P);P ∈ U(a, b), ⟨P,C⟩ = L0(a, b,C)} (22)

The above proposition motivates us to solve the problems in (21)
sequentially and then take ϵ→ 0.
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Entropic regularization

Proof
We consider a sequence (εℓ)ℓ such that εℓ → 0 and εℓ > 0. We
denote Pℓ = P⋆

εℓ
. Since U(a, b) is bounded, we can extract a

sequence (that we do not relabel for the sake of simplicity) such that
Pℓ → P⋆. Since U(a, b) is closed, P⋆ ∈ U(a, b). We consider any P
such that ⟨C,P⟩ = L0(a, b,C). By optimality of P and Pℓ for their
respective optimization problems (for ε = 0 and ε = εℓ), one has

0 ≤ ⟨C,Pℓ⟩ − ⟨C,P⟩ ≤ εℓ(H(Pℓ)− H(P)). (23)

Since H is continuous, taking the limit ℓ→ +∞ in this expression
shows that ⟨C,P⋆⟩ = ⟨C,P⟩. Furthermore, dividing by εℓ and taking
the limit shows that H(P) ⩽ H(P⋆). Now the result follows from the
strictly convexity of −H.
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Entropic regularization

By the concavity of entropy, for α > 0, we introduce the convex set

Uα(a, b)
def
= {P ∈ U(a, b)|KL(P∥ab⊤) ≤ α}
= {P ∈ U(a, b)|H(P) ≥ H(a) + H(b)− 1 − α}.

(24)

Definition: Sinkhorn Distance

dC,α(a, b)
def
= min

P∈Uα(a,b)
⟨C,P⟩. (25)

Proposition
For α ≥ 0, dC,α(a, b) is symmetric and satisfies all triangle inequalities.
Moreover, 1a̸=bdC,α(a, b) satisfies all three distance axioms.
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Entropic regularization

Proposition
For α large enough, the Sinkhorn distance dC,α is the transport
distance dC.

Proof.
Note that for any P ∈ U(a, b), we have

H(P) ≥ 1
2
(H(a) + H(b)), (26)

so for α ≥ 1
2(H(a) + H(b))− 1, we have

Uα(a, b) = U(a, b).
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Sinkhorn’s algorithm

For solving (21), consider its Lagrangian dual function

Lε
C(P,w, r) = ⟨C,P⟩ − εH(P) + w⊤(P1n − a) + r⊤(P⊤1m − b). (27)

Now let ∂Lε
C/∂Pij = 0, i.e.,

Pij = e−
cij+wi+rj

ε , (28)

so we can write

Pε = diag(e−
w
ε )e−

C
ε diag(e−

r
ε ). (29)

Note that
Pε1n = a, P⊤

ε 1m = b, (30)

we can then use Sinkhorn’s algorithm to find Pε!
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Sinkhorn’s algorithm

Let u = e−
w
ε , v = e−

r
ε and K = e−C/ε. We again state the KKT system

of (21):
Pε = diag(u)Kdiag(v),
a = diag(u)Kv,

b = diag(v)K⊤u.

(31)

Then the Sinkhorn’s algorithm amounts to alternating updates in the
form of

u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k+1))−1b.
(32)
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Sinkhorn’s algorithm

Sinkhorn’s algorithm

1. Compute K = e−
C
ε .

2. Compute K̂ = diag(a−1)K.
3. Initial scale factor u ∈ Rm.
4. Iteratively update u:

u = 1./(K̂(b./(K⊤u))),

until reaches certain stopping criterion.
5. Compute

v = b./(K⊤u),

and eventually
Pε = diag(u)Kdiag(v).
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Sinkhorn-Newton method

The dual problem of (21) is

min
w,r

⟨a,w⟩+ ⟨b, r⟩+ ε⟨e−
w
ε ,Ke−

r
ε ⟩,

s.t. diag(e−
w
ε )Ke−

r
ε = a,

diag(e−
r
ε )K⊤e−

w
ε = b.

(33)

with w, r being the dual variables.
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Sinkhorn-Newton method

Let

F(w, r) =
(

diag(e−
w
ε )Ke−

r
ε − a

diag(e−
r
ε )K⊤e−

w
ε − b

)
. (34)

We want to find w, r such that F(w, r) = 0 so that

Pε = diag(e−
w
ε )e−

C
ε diag(e−

r
ε ). (35)

The Newton iteration is given by(
w(k+1)

r(k+1)

)
=

(
w(k)

r(k)

)
− J−1

F (w(k), r(k))F(w(k), r(k)), (36)

where

JF =
1
ε

(
diag(P1n) P

P⊤ diag(P⊤1m)

)
. (37)
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Sinkhorn-Newton method: Convergence

Proposition
For w ∈ Rm and r ∈ Rn, the Jacobian matrix JF(w, r) is symmetric
positive semidefinite, and its kernel is given by

ker(JF(w, r)) = span
{(

1m

−1n

)}
. (38)

Proof
JF is clearly symmetric. For arbitrary γ ∈ Rm and ϕ ∈ Rn, one has

(
γ⊤ ϕ⊤

)
JF

(
γ
ϕ

)
=

1
ε

∑
ij

Pij(γi + ϕj)
2 ≥ 0,

which holds with equality if and only if γi + ϕj = 0 for all i, j, leading us
to (38).
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Sinkhorn-Newton method: Convergence

Lemma
Let F : D → Rn be a continuously differentiable mapping with D ⊂ Rn open
and convex. Suppose that F(x) is invertible for each x ∈ D. Assume that the
following affine covariant Lipschitz condition holds

∥F′(x)−1(F′(y)− F′(x))(y − x)∥ ≤ ω∥y − x∥2 (39)

for x, y ∈ D. Let F(x) = 0 have a solution x∗. For the initial guess x(0) assume
that B(x∗, ∥x(0) − x∗∥) ⊂ D and that

ω∥x(0) − x∗∥ < 2.

Then the ordinary Newton iterates remain in the open ball B(x∗, ∥x(0) − x∗∥)
and converge to x∗ at an estimated quadratic rate

∥x(k+1) − x∗∥ ≤ ω

2
∥x(k) − x∗∥2. (40)

Moreover, the solution x∗ is unique in the open ball B(x∗, 2/ω).
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Sinkhorn-Newton method: Convergence

Proof
Denote e(k) = x(k) − x∗. Let us prove the lemma by induction:

∥e(k+1)∥ = ∥x(k) − (F′(x(k)))−1(F(x(k) − F(x∗))− x∗∥
= ∥e(k) − (F′(x(k)))−1(F(x(k) − F(x∗))∥
= ∥(F′(x(k)))−1((F(x∗)− F(x(k))) + F′(x(k))e(k))∥

= ∥(F′(x(k)))−1
∫ −1

s=0
(F′(x(k) + se(k))− F′(x(k)))e(k) ds∥

≤ ω∥
∫ −1

s=0
s ds∥e(k)∥2 =

ω

2
∥e(k)∥2 < ∥e(k)∥.

(41)

Also
ω∥e(k+1)∥ ≤ ω∥e(k)∥ < 2. (42)

For the uniqueness part, let x(0) = x∗∗ ̸= x∗ be a different solution,then
x(1) = x∗∗, then consider (40) when k = 0.
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Sinkhorn-Newton method: Convergence

Proposition

For any k ∈ N with P(k)
ε,ij > 0, the affine covariante Lipschitz condition

holds in the ℓ∞-norm for

ω ≤ (e
1
ε − 1)

(
1 + 2e

1
ε
max{∥P(k)

ε 1n∥∞, ∥(P(k)
ε )⊤1m∥∞}

minij P(k)
ε,ij

)
(43)

when ∥y − x∥∞ ≤ 1.

The proof for this proposition is tedious and therefore we refer the
interested readers to the paper [?].
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Relationship with Sinkhorn’s algorithm

Let u = e−
w
ε , v = e−

r
ε and K = e−C/ε. We again state the KKT system

of (21):
Pε = diag(u)Kdiag(v),
a = diag(u)Kv,

b = diag(v)K⊤u.

(44)

Then the Sinkhorn’s algorithm amounts to alternating updates in the
form of

u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k+1))−1b.
(45)
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Relationship with Sinkhorn’s algorithm

Define

G(u, v) =
(

diag(u)Kv − a
diag(v)K⊤u − b

)
. (46)

Process analogously to the Sinkhorn-Newton method we just
discussed, note that

JG(u, v) =
(

diag(Kv) diag(u)K
diag(v)K⊤ diag(K⊤u)

)
. (47)

If we neglect the off-diagonal blocks above, i.e.,

ĴG(u, v) =
(

diag(Kv) 0
0 diag(K⊤u)

)
, (48)

and perform the Newton iteration(
u(k+1)

v(k+1)

)
=

(
u(k)

v(k)

)
− Ĵ−1

G (u(k), v(k))G(u(k), v(k)), (49)
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Relationship with Sinkhorn’s algorithm

We get
u(k+1) = diag(Kv(k))−1a,

v(k+1) = diag(K⊤u(k))−1b.
(50)

So the Sinkhorn’s algorithm simply approximates one Newton step by
neglecting the off-diagonal blocks and replacing u(k) by u(k+1).
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Wasserstein barycenter

Define C def
= MXY , where (MXY)ij = d(xi, yi)

p. The Wasserstein
distance as

L(a, b,C)
def
= min

∑
i,j

Ci,jΠi,j; Π ∈ U(a, b)

 . (51)

Given a set of point clouds and their corresponding probability
vector {(Y i, bi)}, i = 1, . . . ,N.
Find a support X = {xi} with a probability vector a such that
(X, a) is the optimal solution of the following problem

min
X,a

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk), s.t.
∑

i

ai = 1, a ≥ 0.

where
∑

k λk = 1 and λk ≥ 0.
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Differentiability of L(a, b,C) w.r.t. a

The primal problem:

L(a, b,C)
def
= min

Π

∑
i,j

Ci,jΠi,j s.t. Π1n = a,Π⊤1m = b,Π ≥ 0.

Let u∗ is the optimal dual vector of the dual problem:

max
u∈Rm,v∈Rn

u⊤a + v⊤b, s.t. ui + vj ≤ Cij, ∀(i, j)

Suppose L(a, b,C) is finite, the strong duality holds. Then u∗ is a
subgradient of L(a, b,C) w.r.t. a.
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Subgradient of optimal value function

define h(u, v) as the optimal value of convex problem

min f0(x)

s.t. fi(x) ≤ ui, i = 1, · · · ,m
Ax = b + v

(functions fi are convex; optimization variable is x)

weak result: suppose h(û, v̂) is finite, strong duality holds with the
dual

max inf
x

(
f0(x) +

∑
i

λi(fi(x)− ûi) + ν⊤(Ax − b − v̂)

)
s.t. λ ≥ 0

if λ̂, ν̂ are optimal dual variables (for r.h.s. û, v̂) then (λ̂, ν̂) ∈ ∂h(û, v̂)
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proof : by weak duality for problem with r.h.s. u, v

h(u, v) ≥ inf
x

(
f0(x) +

∑
i

λ̂i(fi(x − ui) + ν̂⊤(Ax − b − v)

)

= inf
x

(
f0(x) +

∑
i

λ̂i(fi(x − ûi) + ν̂⊤(Ax − b − v̂)

)
− λ̂⊤(u − û)− ν̂⊤(v − v̂)

= h(û, v̂)− λ̂⊤(u − û)− ν̂⊤(v − v̂)
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minimizing ψ(a,X) w.r.t a

For a fixed X, consider the problem

min
a

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk), s.t.
∑

ai = 1, a ≥ 0

Let uk be the optimal dual variable of L(a, bk,MXYk) w.r.t. a. Then

g =

N∑
k=1

λkuk ∈ ∂aψ(a,X)

Let h(a) =
∑m

i=1 ai log ai. The associated Bregman divergence is

Dh(y, x) = h(y)− h(x)−∇h(x)T(y − x)

The mirror descent method is

aj+1 = argmin∑
ai=1,a≥0

{
gT(a − aj) + tDh(a, aj)

}



54/55

Minimizing ψ(a,X) w.r.t. X

Denote X = [x1, . . . , xm] and Y = [y1, . . . , yn].
Consider (MXY)ij = ∥xi − yi∥2

2. Let x = diag(X⊤X) and
y = diag(Y⊤Y). Then we have:

MXY = x1⊤n + 1⊤m y − 2X⊤Y ∈ Rm×n

Let Π be the optimal matrix corresponding to a

L(a, b,MXY) = ⟨Π,MXY⟩

=
〈
Π, x1⊤n + 1⊤m y − 2X⊤Y

〉
= ⟨x,Π1n⟩+

〈
y,Π⊤1m

〉
− 2

〈
Π,X⊤Y

〉
= x⊤a + y⊤b − 2

〈
Π,X⊤Y

〉
= ∥Xdiag(a1/2)− YΠ⊤diag(a−1/2)∥2

F + const.
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Minimizing ψ(a,X) w.r.t. X

For a fixed a, consider the problem

min
X

ψ(a,X) =
N∑

k=1

λkL(a, bk,MXYk).

Then, it is equivalent to

minX

N∑
k=1

λk

(
x⊤a − 2

〈
Πk,X⊤Yk

〉)
minX x⊤a − 2

〈
N∑

k=1

λkΠ
k,X⊤Yk

〉

minX ∥Xdiag(a1/2)−
N∑

k=1

λkYk(Πk)⊤diag(a−1/2)∥2
F

The optimal solution is:

X =

N∑
k=1

λkYk(Πk)⊤diag(a−1)
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