Optimal Transport

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Gabriel Peyré’s lecture notes
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A Geometric Motivation

Setting: Probability measures P(X) on a metric space (X, dist).

distance between p and v:
@ =0y and v =9,
dist(p, v) = dist(xy,y1)
@ = % Z?:l 5x,- and v = % Z?:l 5}’1‘
dist(p,v) = n]7 ZU dist(x;, y;)? or
dist(u, I/) = min, permutation % Z,‘ diSt(xiaya(i))
@ What if u,v € P(X)?
Goal: Build a metric on P(X) with the geometry of (X', dist).
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Applications: comparing measures

Comparing Measures

e Optimal transport
— takes into account a metric d.

L? mean Op al transport mean
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Applications: toward high-dimensional OT

Toward High-dimensional OT

Monge Kantorovich Dantzig Brenier Otto McCann Villani

Y
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Kantorovitch’s Formulation

Discrete Optimal Transport
Input two discrete probability measures

a=> aby, B=)Y by (1)
i=1 j=1

@ X = {x;};, Y = {x;};: are given points clouds, x;, y; are vectors.
@ a;,b; : positive weights, 377, a; = > 77 b = 1.
@ Cj: costs, Cjj = ¢(xi,yj) > 0.

def

U(a> 5) =

(Il € R7*" 1M1, = a, 11" 1,, = b} 2)

is called the set of couplings with respect to « and £.
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Kantorovitch’s Formulation

Discrete Optimal Transport
In the optimal transport, we want to compute the following quantity
[Kantorovich 1942]

Optimal transport distance

L(a, 8,C) % min {Z i1, 11 € U(a, b)} . (3)

LJ
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Push Forward

@ Radon measures («, 3) on (X,)).
@ Transfer of measure by 7 : X — ): push forward.
@ The measure Txa on Y is defined by

Tya(Y) = o(T7'(Y)), forall measurable Y € V.

Equivalently,
/ ¢()dTa(y) & / ¢(T())do).
% X

@ Discrete measures: Tya = ), idr(y,)
@ Smooth densities: da = p(x)dx, d5 = £(x)dx.

Tpa = <= p(T(x))|det(9T(x))| = £(x).
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Monge problem

@ Monge problem seeks for a map that associates to each point x;
a single point y;, and which must push the mass of « toward the
mass of 3, namely:

Vj, bj = Z a;
i:T (xi)=y;

@ Discrete case:

min Zc(xi,T(xi)), st. Tya=p

@ Arbitrary measures:

mTin /Xc(x, T(x))da(x), st Typa=p
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Couplings between General Measures

Projectors:
Py:(x,y) €X' xY —=xeX,

Py:(x,y) eXxY —>ye).

Couplings between General Measures

U, B) L {1 € My (X X V);Payr = a,Pyym =B} (8)

is called the set of couplings with respect to o and 3.
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Cases of Couplings

Couplings: the 3 Settings

Discrete Semi-discrete Continuous

;...:::.: Q -:[-3:

i il .

°
3
3

[

Qe
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More Examples

Examples of Couplings
o~ AN

B % B A
« Y
B 8
B
7r 3 e
(1. (l‘

12/55



Kantorovitch Problem for General Measures

Optimal transport distance between General Measures

£ min [ cwyarey).
T «, >

Probability interpretation:

in{k X.Y).X ~a. Y~ B
ggﬁ x,y)(c(X,Y)), a, Y~ g}

(10)
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Wasserstein Distance

Metric Space X = ).
Distance d(x,y) (nonegative, symmetric, identity, triangle inequality).
Cost ¢(x,y) =d(x,y)’,p > 1.

Wasserstein Distance

Wy(a, 8) € L(a, 8,d") . (11)

.

W, is a distance, and

W,(om, a) = 0 <= ay weak . (12)

.

Wp(0x, y) = d(x, y).

v
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Dual form

Dual problem (discrete case)

max wla+ rTb,
wE]R’",rE]R" (14)

st. wi+r <Gy V(i))

Relation between any primal and dual solutions:

P,-j>0:>w,-+rj:Cij.
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Wasserstein barycenter

o Define C &' Myy, where (Mxy); = d(x;,y:)". The Wasserstein
distance as

ij

£(a,b, C) d:ef min {Z C,'JH,‘J; IT e U(Cl,b)} . (15)

@ Given a set of point clouds and their corresponding probability
vector {(Y,b))},i=1,...,N.

@ Find a support X = {x;} with a probability vector a such that
(X, a) is the optimal solution of the following problem

N

in Z ML(a, b*, M),

m
X,a
k=1

where ), Ay = 1 and A\x > 0.
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Outline

e Applications
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Applications: image color adaptation

Example: https://pythonot.github.io/auto_examples/
domain-adaptation/plot_otda_color_images.html

Given color image stored in the RGB format: Il, I2
# Converts an image to matrix (one pixel per line)
X1 = im2mat (I1), X2 = im2mat (I2)

# Take samples

Xs = X1[idx1l, :], Xt = X2[idx2, :]

# Scatter plot of colors

pl.scatter (Xs[:, 0], Xs[:, 2], c=Xs)

# Sinkhorn Transport

ot_sinkhorn = ot.da.SinkhornTransport (reg_e=le-1)
ot_sinkhorn.fit (Xs=Xs, Xt=Xt)

# prediction between images

transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform (Xt=X2)
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Applications: image color adaptation

Image 1 Image 1 Adapt (reg)

Image 1 Image 2
g 1 g

U T T T T T DU T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10
Red Red
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Applications: image color palette equalization

Image Color Palette Equalization

b, o —
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Applications: shape interpolation

Shape Interpolation

SEFET| A kKK
SESLY| Qo HNK
2SPPS | QedHkE
28OPS  QROH
X X & & IO/ Ok
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Applications: MRI Data Processing

MRI Data Procesing [with A. Gramfort]

Ground cost ¢ = djps: geodesic on cortical surface M.

L? barycenter

W2 barycenter
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Applications: word mover’s distance

normalized bag-of-words (nBOW), word travel cost (word2vec
distance), document distance Tj;c(i, j), transportation problem

Bag of Words
document 1 H ‘greets’ document 2

Obama ‘Obama’ ./V. 1 74 The
speaks .“.. , ‘speaks’ President

to President greets

the the
media ‘Chicago’ press

in ‘media’ in
Illinois _ ee—® Chicago

‘Illinois> press

word2vee embedding

[ Kusner’l5] dist(Dy, Dy) = Wa(u, v)
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Applications: word mover’s distance

min 1L;c;
>0 &= = U0
ij

st. > I =d;
j=1
> M =d;
i=1
@ x;: word2vec embedding

@ ¢ = ||xi — xi2

@ if word i appears w; times in the document, we denote d; = Z—w
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Distributional Robust Optimization (DRO)
@ stochastic optimization:
inf Ep- [e(8 X)),

where B is a convex set, ¢ is a loss function, Ep«[-] represents the
expectation operator associated to the probability model P*,
which describes the random element X.

@ The DRO model:

inf sup Ep[t(87X)],
BEB peits(Py)

where Us(Py) is a so-called distributional uncertainty region
“centered” around some benchmark model, Py, which may be
data-driven (for example, an empirical distribution) and ¢ >0
parameterizes the sizeof the distributional uncertainty.

@ Wasserstein distance: Us(Py) = {P | W(P, Py) < d}.
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Outline

e Entropic Regularization
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Discrete OT Review

Given an integer n > 1, we write %, for the discrete probability simplex

zd:e‘{ ER+Za,_1} (16)

Givena € ¥, b € ¥, the Optimal Transport problem is to compute

L(a,b,C) E min{}_ C;Piy; st PeUa,b)}. (17)
i

Where U(qa, b) is the set of couplings between a and b.
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Entropy

The discrete entropy of a positive matrix P (3_, P; = 1) is defined as
- ZPiJ(IOg(PiJ’) - 1). (18)
ij
For a positive vector u € 3, the entropy is defined analogously:
> ui(log(w;) - 1). (19)

For two positive vector u,v € ¥, the Kullback-Leibler divergence (or,
KL divergence) is defined to be

n

KL(ullv) = = > ulog(-"). (20)

i=1 i
The KL divergence is always non-negative: KL(«||v) > 0 (Jensen’s

inequality: E[f(g(X))] > f(E[g(X)]))-

28/55



Entropic regularization

@ Givenac ¥, bc X, and cost matrix C ¢ Rﬂx”. The entropic
regularization of the transportation problem reads

L*(a,b,C) = Perlr}glb)@’ C) —cH(P). (21)

@ The case ¢ = 0 corresponds to the classic (linear) optimal
transport problem.

@ Fore > 0, problem (21) has an e-strongly convex objective and
therefore admits a unique optimal solution P%.
@ This is not (necessarily) true for e = 0. But we have the following

proposition.
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Entropic regularization

Proposition

When ¢ — 0, the unique solution P. of (21) converges to the optimal
solution with maximal entropy within the set of all optimal solutions of
the unregularized transportation problem, namely,

P. "2’ argmaxp{H(P);P € U(a,b), (P,C) = L%(a,b,C)} (22)

The above proposition motivates us to solve the problems in (21)
sequentially and then take ¢ — 0.
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Entropic regularization

We consider a sequence (g¢), such thate, — 0 and ¢, > 0. We
denote P, = P7,. Since U(a, b) is bounded, we can extract a
sequence (that we do not relabel for the sake of simplicity) such that
P, — P*. Since U(q, b) is closed, P* € U(a, b). We consider any P
such that (C,P) = L%(a, b, C). By optimality of P and P, for their
respective optimization problems (for ¢ = 0 and € = /), one has

0 < (C,Py) — (C,P) < ¢(H(P;) — H(P)). (23)

Since H is continuous, taking the limit £ — +oo in this expression
shows that (C,P*) = (C,P). Furthermore, dividing by ¢, and taking
the limit shows that H(P) < H(P*). Now the result follows from the
strictly convexity of —H.
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Entropic regularization

By the concavity of entropy, for o > 0, we introduce the convex set

Ua(a,b) E [P € U(a, b) KL(P|labT) < a)

(24)
= {P € U(a,b)|H(P) > H(a) + H(b) — 1 — a}.

Definition: Sinkhorn Distance

def .
d (0% 7b = ;P . 25
cala,b) Pegilab)@ ) (25)

For a > 0, dc . (a, b) is symmetric and satisfies all triangle inequalities.
Moreover, 1,.45dc,«(a, b) satisfies all three distance axioms.

V,
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Entropic regularization

Proposition
For « large enough, the Sinkhorn distance dc , is the transport
distance dc.

v

Note that for any P € U(a, b), we have

(H(a) + H(b)), (26)

N —

H(P) >

so for a > 3(H(a) + H(b)) — 1, we have

Uq(a,b) = U(a,b).

A
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Outline

e Sinkhorn’s Algorithm

34/55



Sinkhorn’s algorithm

For solving (21), consider its Lagrangian dual function

L&(P,w,r) = (C,P) —cH(P)+w' (P1,—a)+r (P'1, —b).

Now let 0L /0P; =0, i.e.,

SO we can write
P. — diag(e ¥ )e s diag(e ¢).

Note that
P.1,=a, P/1,=0,

we can then use Sinkhorn’s algorithm to find P..!

35/55



Sinkhorn’s algorithm

Letu=e=,v=e¢: and K = ¢~ /<. We again state the KKT system
of (21):
P. = diag(«)Kdiag(v),

a = diag(u)Kv, (31)
b = diag(v)K " u

Then the Sinkhorn’s algorithm amounts to alternating updates in the

form of
u*) = diag(Kv®)~q,

32
v(k—l—l) dlag( k—H)) b ( )
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Sinkhorn’s algorithm

Sinkhorn’s algorithm

|

A WODN =

. Compute K=¢"=.
. Compute K = diag(a")K.
. Initial scale factor u € R™.

. Iteratively update u:

u=1./(K(b./(K u))),

until reaches certain stopping criterion.

. Compute

v=>b./(K u),

and eventually
P. = diag(«)Kdiag(v).

37/55



Outline

© sinkhorn-Newton method
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Sinkhorn-Newton method

The dual problem of (21) is
min (@, w) + (b,r) + (e =, Ke 5),
s.t. diag(e”:)Ke = =aq, (33)
diag(¢ =)K'e = = b.

with w, r being the dual variables.
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Sinkhorn-Newton method

Let .
o) - (ST a)
We want to find w, r such that F(w, r) = 0 so that
P. = diag(e ¢ )e~ - diag(e ¢ ). (35)
The Newton iteration is given by
<v:<(f:11>)> = (V:((:))) ORI O (36)

where

_ 1 (diag(P1,) P
Tr=7 < P’ diag(PTlm)> ’ (37)
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Sinkhorn-Newton method: Convergence

Proposition
For w € R™ and r € R”, the Jacobian matrix Jg(w, r) is symmetric
positive semidefinite, and its kernel is given by

Ker(Jx(w, 7)) — span { (_1’1"> } . (38)

Jr is clearly symmetric. For arbitrary v € R™ and ¢ € R”", one has
1
(" #")JF @) =D _Pilni+) >0,
ij

which holds with equality if and only if v; + ¢; = 0 for all 7, j, leading us
to (38).

V.
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Sinkhorn-Newton method: Convergence

Let F: D — R" be a continuously differentiable mapping with D C R” open
and convex. Suppose that F(x) is invertible for each x € D. Assume that the
following affine covariant Lipschitz condition holds

IF'(x) ™' (F' () = F'(x)) (v = )l < wlly — x|I? (39)

for x,y € D. Let F(x) = 0 have a solution x*. For the initial guess x(*) assume
that B(x*, [|x(*) — x*||) C D and that

w|x©@ — x*|| < 2.

Then the ordinary Newton iterates remain in the open ball B(x*, [[x(® — x*||)
and converge to x* at an estimated quadratic rate

* w *
D — ) < S e — 2. (40)

Moreover, the solution x* is unique in the open ball B(x*,2/w).
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Sinkhorn-Newton method: Convergence

Denote ¢®) = x®) — x*, Let us prove the lemma by induction:

le®+Hll = 6 - (P9~ FEP - Fe)) - |
= [}e® — (P~ (F D — F()|

= [(F' R~ (FG) = Fa®) + F/(®)el))

-1 (41)
= ||(F/(x(k)))_1/ (F/(x(k) _|_se(k)) _F/(x(k)))e(k) ds]|

5s=0

—1
< wll/ sds||e®|? = 2He(“ll2 < [le®]].
s=0 2
Also
wlle® V] < wlle®@] < 2. (42)

For the uniqueness part, let x() = x** = x* be a different solution,then
x() = x** then consider (40) when k = 0.
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Sinkhorn-Newton method: Convergence

For any k € N with ng-)- > 0, the affine covariante Lipschitz condition

y

holds in the ¢.,-norm for

1 mas{ P91, o, é’“))TlmHoo}> 43)

. (k)
min;; Pe’ij

wg(eé—l) <1+2e

when ||y — x|l < 1.

The proof for this proposition is tedious and therefore we refer the
interested readers to the paper [?].
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Relationship with Sinkhorn’s algorithm

Letu=e=,v=e¢: and K = ¢~ /<. We again state the KKT system
of (21):
P. = diag(«)Kdiag(v),

a = diag(u)Kv, (44)
b = diag(v)K " u

Then the Sinkhorn’s algorithm amounts to alternating updates in the

form of
u*) = diag(Kv®)~q,

v(k—l—l) dlag( k—H)) Iy (45)
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Relationship with Sinkhorn’s algorithm

([ diag(u)Kv —a
Glu,v) = (diag(v)KTu — b> '

Process analogously to the Sinkhorn-Newton method we just
discussed, note that

Define

_ ( diag(Kv)  diag(u)K
Tolu,v) = (diag(v)KT diag(KTu)> '

If we neglect the off-diagonal blocks above, i.e.,

. _ (diag(Kv) 0
Jo(u,v) = < 0 diag(KT”)> ’

and perform the Newton iteration

(k1) O\
<u k+l)> = <u k)> — I ™ v Gu® vy,

v v
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Relationship with Sinkhorn’s algorithm

We get
w1 = diag(Kv®))1q,

v — diag(KTu®)~1p. (50)

So the Sinkhorn’s algorithm simply approximates one Newton step by
neglecting the off-diagonal blocks and replacing »®) by »*+1.
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Outline

e Wasserstein barycenter
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Wasserstein barycenter

o Define C &' Myy, where (Mxy); = d(x;,y:)". The Wasserstein
distance as

ij

L(a,b,C) & min {Z CiLi 10 € U(a,b)} . (51)

@ Given a set of point clouds and their corresponding probability
vector {(Y, b))}, i=1,...,N

@ Find a support X = {x;} with a probability vector a such that
(X, a) is the optimal solution of the following problem

r§(11n1an kz;)\kﬁab ,Myyt), S.1. Za,—1a>0

where ), Ay = 1 and \x > 0.
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Differentiability of L(a, b, C) w.r.t. a

@ The primal problem:
def . T
L(a,b,C) = mﬁnz G, st T,=aT"1,=>5bT>0.
L
@ Let u* is the optimal dual vector of the dual problem:

T T ..
max ua+t+v'b st wut+vi<C; V(i
MER"'7VER” ’ ! J = 78] ( 7.])

@ Suppose L(a, b, C) is finite, the strong duality holds. Then u* is a
subgradient of L(a,b,C) w.r.t. a.
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Subgradient of optimal value function

define h(u,v) as the optimal value of convex problem

min  fo(x)
st filx) <wuyi=1,---,m
Ax=b+v

(functions f; are convex; optimization variable is x)

weak result: suppose i(i, v) is finite, strong duality holds with the
dual

max mf <f0 + Z Ai(fi(x) +v (Ax—b— 9))

st. A>0

if \, o are optimal dual variables (for r.h.s. i, v) then (X, 2) € dh(i, )
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proof : by weak duality for problem with r.h.s. u,v

h(u,v) > 1nf <f0 Z Ai(fi(x o (Ax — b — v))

mf <f() +Z)\(fx—u,)+u (Ax—b—v))

AN (u—a)— UT(V —7)

=h(i,9) = AN (u—a) -0 (v—1)

52/55



minimizing ¢ (a,X) w.r.t a
For a fixed X, consider the problem
N
min  Y(a,X) = Z}\kﬁ(a,bk,Mxyk), s.t. Zai =1,a>0
k=1
@ Let u* be the optimal dual variable of £(a, b*, Myy:) w.r.t. a. Then
N
8= Z)\kuk € &ﬂ/)(a,X)
k=1
@ Let h(a) =", ailoga;. The associated Bregman divergence is
Di(y,x) = h(y) — h(x) = VA(x)" (y — x)
@ The mirror descent method is
@' = argmin {gT(a —d)+ ch(a,aj)}

> ai=1,a>0
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Minimizing ¢ (a, X) w.r.t. X

Denote X = [x1,...,x,) @and Y = [y1,..., vl

@ Consider (Myy); = ||x; — yi||3. Let x = diag(X " X) and
y = diag(Y"Y). Then we have:

Myy =x1] +1]y —2xTy e R™"
@ Let IT be the optimal matrix corresponding to a
L(a,b,Mxy) = (II,Mxy)
- <H x1] +1Ty —2xTy >
(x, II1,) + <y, HT1m> 2 <H,XTY>

= x'a+y'b-2 <H,XTY>

= | Xdiag(a'/?) — YII "diag(a~"/?)||% + const.
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Minimizing ¢ (a, X) w.r.t. X

For a fixed a, consider the problem

N
mXin Y(a,X) = Z ML (a, b, Myy).
k=1
Then, it is equivalent to

miny

»
=

M (xTa _2 <H",XTY">>

k=1

N
miny xTa—2<Z)\ka,XTYk>

N
ming  [|Xdiag(a'/?) = > N (I1*) Tdiag(a™'/?)|7
k=1
The optimal solution is:

N
X= Z M YF(TT%) Tdiag(a™!)
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