Optimal Transport

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Gabriel Peyré's lecture notes

Outline

Problem Formulation

- 2 Applications
- 3 Entropic Regularization
- Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
- 6 Wasserstein barycenter

A Geometric Motivation

Setting: Probability measures $\mathcal{P}(\mathcal{X})$ on a metric space $(\mathcal{X}, dist)$.

distance between μ and ν :

•
$$\mu = \delta_{x_1}$$
 and $\nu = \delta_{y_1}$
dist $(\mu, \nu) = dist(x_1, y_1)$

•
$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$$
 and $\nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$
 $\operatorname{dist}(\mu, \nu) = \frac{1}{n^2} \sum_{ij} \operatorname{dist}(x_i, y_j)$? or
 $\operatorname{dist}(\mu, \nu) = \min_{\sigma \text{ permutation}} \frac{1}{n} \sum_i \operatorname{dist}(x_i, y_{\sigma(i)})$

• What if $\mu, \nu \in \mathcal{P}(\mathcal{X})$?

Goal: Build a metric on $\mathcal{P}(\mathcal{X})$ with the geometry of $(\mathcal{X}, \text{dist})$.

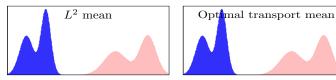
Applications: comparing measures

Comparing Measures

 \rightarrow images, vision, graphics and machine learning,

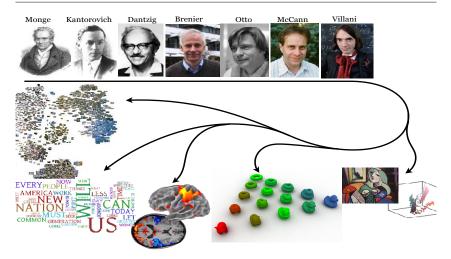
• Optimal transport

 \rightarrow takes into account a metric d.



Applications: toward high-dimensional OT

Toward High-dimensional OT



Kantorovitch's Formulation

Discrete Optimal Transport Input two discrete probability measures

$$\alpha = \sum_{i=1}^{m} a_i \delta_{x_i}, \quad \beta = \sum_{j=1}^{n} b_j \delta_{y_j}.$$
 (1)

- $X = \{x_i\}_i$, $Y = \{x_j\}_j$: are given points clouds, x_i, y_i are vectors.
- a_i, b_j : positive weights, $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j = 1$.

•
$$C_{ij}$$
: costs, $C_{ij} = c(x_i, y_j) \ge 0$.

Couplings

$$\mathbf{U}(\alpha,\beta) \stackrel{\text{def}}{=} \{ \Pi \in \mathbb{R}^{m \times n}_{+}; \Pi \mathbf{1}_{n} = a, \Pi^{\top} \mathbf{1}_{m} = b \}$$
(2)

is called the set of couplings with respect to α and β .

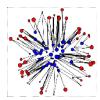
Kantorovitch's Formulation

Discrete Optimal Transport

In the optimal transport, we want to compute the following quantity [Kantorovich 1942]

Optimal transport distance

$$\mathcal{L}(\alpha,\beta,C) \stackrel{\mathsf{def}}{=} \min\left\{\sum_{i,j} C_{i,j} \Pi_{i,j}; \Pi \in \mathbf{U}(a,b)\right\}.$$
 (3)



Push Forward

- Radon measures (α, β) on $(\mathcal{X}, \mathcal{Y})$.
- Transfer of measure by $T : \mathcal{X} \to \mathcal{Y}$: push forward.
- The measure $T_{\#}\alpha$ on $\mathcal Y$ is defined by

$$T_{\#}\alpha(Y) = \alpha(T^{-1}(Y)), \text{ for all measurable } Y \in \mathcal{Y}.$$
 (4)

Equivalently,

$$\int_{\mathcal{Y}} g(y) dT_{\#} \alpha(y) \stackrel{\text{def}}{=} \int_{\mathcal{X}} g(T(x)) d\alpha(x).$$
 (5)

• Discrete measures: $T_{\#}\alpha = \sum_{i} \alpha_i \delta_{T(x_i)}$

• Smooth densities: $d\alpha = \rho(x)dx$, $d\beta = \xi(x)dx$.

$$T_{\#}\alpha = \beta \iff \rho(T(x))|\det(\partial T(x))| = \xi(x).$$
(6)

Monge problem

 Monge problem seeks for a map that associates to each point x_i a single point y_j, and which must push the mass of α toward the mass of β, namely:

$$\forall j, \quad b_j = \sum_{i:T(x_i)=y_j} a_i$$

Discrete case:

$$\min_{T} \sum_{i} c(x_i, T(x_i)), \quad \text{s.t.} \quad T_{\#}\alpha = \beta$$

Arbitrary measures:

$$\min_{T} \quad \int_{\mathcal{X}} c(x, T(x)) d\alpha(x), \quad \text{ s.t. } \quad T_{\#} \alpha = \beta$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Couplings between General Measures

Projectors:

$$P_{\mathcal{X}} : (x, y) \in \mathcal{X} \times \mathcal{Y} \to x \in \mathcal{X}, P_{\mathcal{Y}} : (x, y) \in \mathcal{X} \times \mathcal{Y} \to y \in \mathcal{Y}.$$

$$(7)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

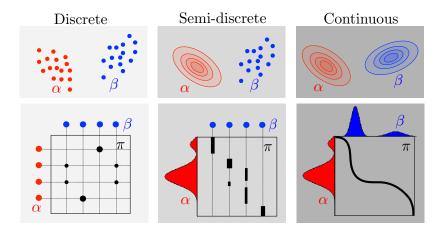
10/55

Couplings between General Measures

$$\mathcal{U}(\alpha,\beta) \stackrel{\text{def}}{=} \{ \pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y}); P_{\mathcal{X} \#} \pi = \alpha, P_{\mathcal{Y} \#} \pi = \beta \}.$$
(8)

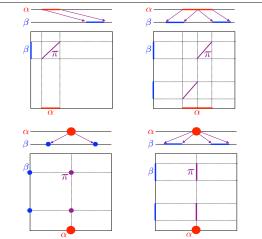
is called the set of couplings with respect to α and β .

Couplings: the 3 Settings



More Examples

Examples of Couplings



Kantorovitch Problem for General Measures

Optimal transport distance between General Measures

$$\mathcal{L}(\alpha,\beta,c) \stackrel{\text{def}}{=} \min_{\pi \in \mathcal{U}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathrm{d}\pi(x,y).$$
(9)

Probability interpretation:

$$\min_{(X,Y)} \{ \mathbb{E}_{(X,Y)}(c(X,Y)), X \sim \alpha, Y \sim \beta \}.$$
 (10)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

13/55

Wasserstein Distance

Metric Space $\mathcal{X} = \mathcal{Y}$. Distance d(x, y) (nonegative, symmetric, identity, triangle inequality). Cost $c(x, y) = d(x, y)^p$, $p \ge 1$.

Wasserstein Distance

$$\mathcal{W}_p(\alpha,\beta) \stackrel{\text{def}}{=} \mathcal{L}(\alpha,\beta,d^p)^{1/p}.$$
 (11)

Theorem

 \mathcal{W}_p is a distance, and

$$\mathcal{W}_p(\alpha_n, \alpha) \to 0 \iff \alpha_n \stackrel{\text{weak}}{\to} \alpha.$$
 (12)

Example

$$W_p(\delta_x, \delta_y) = d(x, y).$$
 (13)

Dual problem (discrete case)

$$\max_{w \in \mathbb{R}^{m}, r \in \mathbb{R}^{n}} \quad w^{\top}a + r^{\top}b,$$
s.t. $w_{i} + r_{j} \leq C_{ij}, \quad \forall (i,j)$
(14)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ - 三 - のへぐ

15/55

Relation between any primal and dual solutions:

$$P_{ij} > 0 \Rightarrow w_i + r_j = C_{ij}.$$

Wasserstein barycenter

• Define $C \stackrel{\text{def}}{=} M_{XY}$, where $(M_{XY})_{ij} = d(x_i, y_i)^p$. The Wasserstein distance as

$$\mathcal{L}(a,b,C) \stackrel{\mathsf{def}}{=} \min\left\{\sum_{i,j} C_{i,j} \Pi_{i,j}; \Pi \in \mathbf{U}(a,b)\right\}.$$
 (15)

- Given a set of point clouds and their corresponding probability vector {(Yⁱ, bⁱ)}, i = 1,...,N.
- Find a support $X = \{x_i\}$ with a probability vector *a* such that (X, a) is the optimal solution of the following problem

$$\min_{X,a} \sum_{k=1}^N \lambda_k \mathcal{L}(a, b^k, M_{XY^k}),$$

where $\sum_k \lambda_k = 1$ and $\lambda_k \ge 0$.

Outline

Problem Formulation

2 Applications

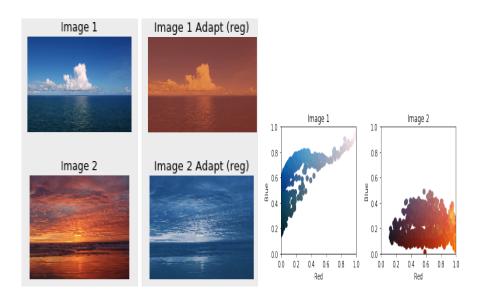
- 3 Entropic Regularization
- Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
- 6 Wasserstein barycenter

Applications: image color adaptation

Example: https://pythonot.github.io/auto_examples/ domain-adaptation/plot_otda_color_images.html

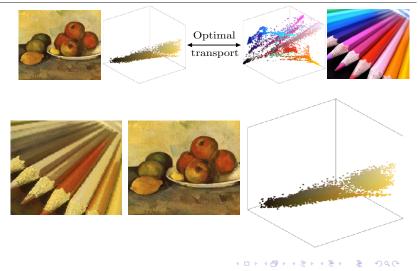
```
Given color image stored in the RGB format: I1, I2
# Converts an image to matrix (one pixel per line)
X1 = im2mat(I1), X2 = im2mat(I2)
# Take samples
Xs = X1[idx1, :], Xt = X2[idx2, :]
# Scatter plot of colors
pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
# Sinkhorn Transport
ot sinkhorn = ot.da.SinkhornTransport(reg e=1e-1)
ot sinkhorn.fit(Xs=Xs, Xt=Xt)
# prediction between images
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
transp_Xt_sinkhorn = ot_sinkhorn.inverse_transform(Xt=X2)
```

Applications: image color adaptation



Applications: image color palette equalization

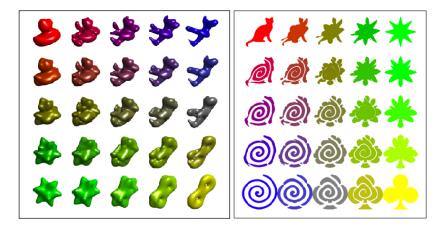
Image Color Palette Equalization



20/55

Applications: shape interpolation

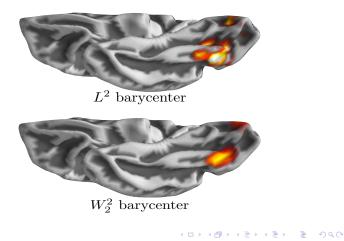
Shape Interpolation



Applications: MRI Data Processing

MRI Data Procesing [with A. Gramfort]

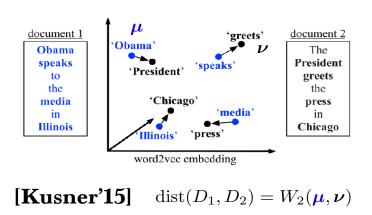
Ground cost $c = d_M$: geodesic on cortical surface M.



Applications: word mover's distance

normalized bag-of-words (nBOW), word travel cost (word2vec distance), document distance $T_{ij}c(i,j)$, transportation problem

Bag of Words



Applications: word mover's distance

$$\min_{\Pi \ge 0} \sum_{ij} \Pi_{ij} c_{ij}$$

s.t.
$$\sum_{j=1}^{n} \Pi_{ij} = d_i$$
$$\sum_{i=1}^{n} \Pi_{ij} = d'_j$$

- x_i: word2vec embedding
- $c_{ij} = ||x_i x_j||_2$
- if word i appears w_i times in the document, we denote $d_i = \frac{w_i}{\sum w_i}$

Distributional Robust Optimization (DRO)

stochastic optimization:

$$\inf_{\beta\in B} E_{P^*}[\ell(\beta^\top X)],$$

where *B* is a convex set, ℓ is a loss function, $E_{P^*}[\cdot]$ represents the expectation operator associated to the probability model P^* , which describes the random element *X*.

• The DRO model:

$$\inf_{\beta \in B} \sup_{P \in \mathcal{U}_{\delta}(P_0)} E_P[\ell(\beta^\top X)],$$

where $\mathcal{U}_{\delta}(P_0)$ is a so-called distributional uncertainty region "centered" around some benchmark model, P_0 , which may be data-driven (for example, an empirical distribution) and $\delta > 0$ parameterizes the size of the distributional uncertainty.

• Wasserstein distance: $\mathcal{U}_{\delta}(P_0) = \{P \mid \mathcal{W}(P, P_0) \leq \delta\}.$

Outline

2 Applications

- 4) Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
- 6 Wasserstein barycenter

Discrete OT Review

Given an integer $n \ge 1$, we write Σ_n for the discrete probability simplex

$$\Sigma_n \stackrel{\text{def}}{=} \left\{ a \in \mathbb{R}_n^+; \sum_{i=1}^n a_i = 1. \right\}$$
(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

27/55

Given $a \in \Sigma_m$, $b \in \Sigma_n$, the Optimal Transport problem is to compute

$$L(a,b,C) \stackrel{\text{def}}{=} \min\{\sum_{i,j} C_{i,j} \mathbf{P}_{i,j}; \text{ s.t. } \mathbf{P} \in \mathbf{U}(a,b)\}.$$
 (17)

Where U(a, b) is the set of couplings between *a* and *b*.

Entropy

The discrete entropy of a positive matrix \mathbf{P} ($\sum_{ij} \mathbf{P}_{ij} = 1$) is defined as

$$H(\mathbf{P}) \stackrel{\text{def}}{=} -\sum_{i,j} \mathbf{P}_{i,j}(\log(\mathbf{P}_{i,j}) - 1).$$
(18)

For a positive vector $u \in \Sigma_n$, the entropy is defined analogously:

$$H(\mathbf{u}) \stackrel{\text{def}}{=} -\sum_{i} \mathbf{u}_{i} (\log(\mathbf{u}_{i}) - 1).$$
(19)

For two positive vector $u, v \in \Sigma_n$, the Kullback-Leibler divergence (or, KL divergence) is defined to be

$$\mathbf{KL}(u||v) = -\sum_{i=1}^{n} u_i \log(\frac{v_i}{u_i}).$$
(20)

28/55

The KL divergence is always non-negative: $\mathbf{KL}(u||v) \ge 0$ (Jensen's inequality: $E[f(g(X))] \ge f(E[g(X)])$).

• Given $a \in \Sigma_m$, $b \in \Sigma_n$ and cost matrix $\mathbf{C} \in \mathbb{R}^{m \times n}_+$. The entropic regularization of the transportation problem reads

$$L^{\varepsilon}(a,b,\mathbf{C}) = \min_{\mathbf{P} \in \mathbf{U}(a,b)} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}).$$
(21)

- The case $\varepsilon = 0$ corresponds to the classic (linear) optimal transport problem.
- For ε > 0, problem (21) has an ε-strongly convex objective and therefore admits a unique optimal solution P^{*}_ε.
- This is not (necessarily) true for $\varepsilon = 0$. But we have the following proposition.

Proposition

When $\varepsilon \to 0$, the unique solution P_{ε} of (21) converges to the optimal solution with maximal entropy within the set of all optimal solutions of the unregularized transportation problem, namely,

$$\mathbf{P}_{\varepsilon} \stackrel{\varepsilon \to 0}{\to} \operatorname{argmax}_{\mathbf{P}} \{ H(\mathbf{P}); \mathbf{P} \in U(a, b), \langle \mathbf{P}, \mathbf{C} \rangle = L^{0}(a, b, \mathbf{C}) \}$$
(22)

The above proposition motivates us to solve the problems in (21) sequentially and then take $\epsilon \rightarrow 0$.

Proof

We consider a sequence $(\varepsilon_{\ell})_{\ell}$ such that $\varepsilon_{\ell} \to 0$ and $\varepsilon_{\ell} > 0$. We denote $\mathbf{P}_{\ell} = \mathbf{P}^{\star}_{\varepsilon_{\ell}}$. Since $\mathbf{U}(a, b)$ is bounded, we can extract a sequence (that we do not relabel for the sake of simplicity) such that $\mathbf{P}_{\ell} \to \mathbf{P}^{\star}$. Since $\mathbf{U}(a, b)$ is closed, $\mathbf{P}^{\star} \in \mathbf{U}(a, b)$. We consider any \mathbf{P} such that $\langle \mathbf{C}, \mathbf{P} \rangle = L^0(a, b, \mathbf{C})$. By optimality of \mathbf{P} and \mathbf{P}_{ℓ} for their respective optimization problems (for $\varepsilon = 0$ and $\varepsilon = \varepsilon_{\ell}$), one has

$$0 \le \langle \mathbf{C}, \mathbf{P}_{\ell} \rangle - \langle \mathbf{C}, \mathbf{P} \rangle \le \varepsilon_{\ell} (H(\mathbf{P}_{\ell}) - H(\mathbf{P})).$$
(23)

Since *H* is continuous, taking the limit $\ell \to +\infty$ in this expression shows that $\langle C, \mathbf{P}^{\star} \rangle = \langle C, \mathbf{P} \rangle$. Furthermore, dividing by ε_{ℓ} and taking the limit shows that $H(\mathbf{P}) \leq H(\mathbf{P}^{\star})$. Now the result follows from the strictly convexity of -H.

By the concavity of entropy, for $\alpha > 0$, we introduce the convex set

$$U_{\alpha}(a,b) \stackrel{\text{def}}{=} \{ \mathbf{P} \in \mathbf{U}(a,b) | \mathbf{KL}(\mathbf{P} \| ab^{\top}) \le \alpha \}$$

= $\{ \mathbf{P} \in \mathbf{U}(a,b) | H(\mathbf{P}) \ge H(a) + H(b) - 1 - \alpha \}.$ (24)

Definition: Sinkhorn Distance

$$d_{\mathbf{C},\alpha}(a,b) \stackrel{\text{def}}{=} \min_{\mathbf{P} \in \mathbf{U}_{\alpha}(a,b)} \langle \mathbf{C}, \mathbf{P} \rangle.$$
(25)

Proposition

For $\alpha \ge 0$, $d_{\mathbf{C},\alpha}(a, b)$ is symmetric and satisfies all triangle inequalities. Moreover, $\mathbf{1}_{a \ne b} d_{\mathbf{C},\alpha}(a, b)$ satisfies all three distance axioms.

Proposition

For α large enough, the Sinkhorn distance $d_{C,\alpha}$ is the transport distance $d_{\mathbf{C}}$.

Proof.

Note that for any $\mathbf{P} \in U(a, b)$, we have

$$H(\mathbf{P}) \ge \frac{1}{2}(H(a) + H(b)),$$
 (26)

so for $\alpha \geq \frac{1}{2}(H(a) + H(b)) - 1$, we have

 $U_{\alpha}(a,b) = U(a,b).$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 の Q ○ 33/55</p>

Outline

- 2 Applications
- 3 Entropic Regularization
- 4 Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
- 6 Wasserstein barycenter

Sinkhorn's algorithm

For solving (21), consider its Lagrangian dual function

$$\mathcal{L}^{\varepsilon}_{\mathbf{C}}(\mathbf{P}, w, r) = \langle \mathbf{C}, \mathbf{P} \rangle - \varepsilon H(\mathbf{P}) + w^{\top} (\mathbf{P} \mathbf{1}_n - a) + r^{\top} (\mathbf{P}^{\top} \mathbf{1}_m - b).$$
(27)

Now let $\partial \mathcal{L}^{\varepsilon}_{\mathbf{C}} / \partial \mathbf{P}_{ij} = 0$, i.e.,

$$\mathbf{P}_{ij} = e^{-\frac{c_{ij}+w_i+r_j}{\varepsilon}},\tag{28}$$

so we can write

$$\mathbf{P}_{\varepsilon} = \mathsf{diag}(e^{-\frac{w}{\varepsilon}})e^{-\frac{C}{\varepsilon}}\mathsf{diag}(e^{-\frac{r}{\varepsilon}}). \tag{29}$$

Note that

$$\mathbf{P}_{\varepsilon}\mathbf{1}_{n} = a, \quad \mathbf{P}_{\varepsilon}^{\top}\mathbf{1}_{m} = b, \tag{30}$$

we can then use Sinkhorn's algorithm to find \mathbf{P}_{ε} !

Sinkhorn's algorithm

Let
$$u = e^{-\frac{w}{\varepsilon}}$$
, $v = e^{-\frac{T}{\varepsilon}}$ and $\mathbf{K} = e^{-\mathbf{C}/\varepsilon}$. We again state the KKT system
of (21):
$$\mathbf{P}_{\varepsilon} = \mathbf{diag}(u)\mathbf{K}\mathbf{diag}(v),$$
$$a = \mathbf{diag}(u)\mathbf{K}v,$$
$$b = \mathbf{diag}(v)\mathbf{K}^{\top}u.$$
(31)

Then the Sinkhorn's algorithm amounts to alternating updates in the form of

$$u^{(k+1)} = \operatorname{diag}(\mathbf{K}v^{(k)})^{-1}a,$$

$$v^{(k+1)} = \operatorname{diag}(\mathbf{K}^{\top}u^{(k+1)})^{-1}b.$$
(32)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ - 三 - のへぐ

36/55

Sinkhorn's algorithm

Sinkhorn's algorithm

- 1. Compute $\mathbf{K} = e^{-\frac{\mathbf{C}}{\varepsilon}}$.
- 2. Compute $\hat{\mathbf{K}} = \mathbf{diag}(a^{-1})\mathbf{K}$.
- 3. Initial scale factor $u \in \mathbb{R}^m$.
- 4. Iteratively update *u*:

$$u = 1./(\hat{\mathbf{K}}(b./(\mathbf{K}^{\top}u))),$$

until reaches certain stopping criterion.

5. Compute

 $v = b./(\mathbf{K}^{\top}u),$

and eventually

$$\mathbf{P}_{\varepsilon} = \mathbf{diag}(u)\mathbf{K}\mathbf{diag}(v)$$

Outline

- 2 Applications
- 3 Entropic Regularization
- 4 Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
 - 6 Wasserstein barycenter

The dual problem of (21) is

$$\min_{w,r} \langle a, w \rangle + \langle b, r \rangle + \varepsilon \langle e^{-\frac{w}{\varepsilon}}, \mathbf{K} e^{-\frac{r}{\varepsilon}} \rangle,$$
s.t. $\operatorname{diag}(e^{-\frac{w}{\varepsilon}})\mathbf{K} e^{-\frac{r}{\varepsilon}} = a,$
 $\operatorname{diag}(e^{-\frac{r}{\varepsilon}})\mathbf{K}^{\top} e^{-\frac{w}{\varepsilon}} = b.$
(33)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ - 三 - のへぐ

39/55

with w, r being the dual variables.

Sinkhorn-Newton method

Let

$$F(w,r) = \begin{pmatrix} \operatorname{diag}(e^{-\frac{w}{\varepsilon}})\operatorname{K} e^{-\frac{r}{\varepsilon}} - a\\ \operatorname{diag}(e^{-\frac{r}{\varepsilon}})\operatorname{K}^{\top} e^{-\frac{w}{\varepsilon}} - b \end{pmatrix}.$$
(34)

We want to find w, r such that F(w, r) = 0 so that

$$\mathbf{P}_{\varepsilon} = \mathsf{diag}(e^{-\frac{w}{\varepsilon}})e^{-\frac{\mathbf{C}}{\varepsilon}}\mathsf{diag}(e^{-\frac{r}{\varepsilon}}). \tag{35}$$

The Newton iteration is given by

$$\binom{w^{(k+1)}}{r^{(k+1)}} = \binom{w^{(k)}}{r^{(k)}} - J_F^{-1}(w^{(k)}, r^{(k)})F(w^{(k)}, r^{(k)}),$$
(36)

where

$$J_F = \frac{1}{\varepsilon} \begin{pmatrix} \mathsf{diag}(\mathbf{P}\mathbf{1}_n) & \mathbf{P} \\ \mathbf{P}^\top & \mathsf{diag}(\mathbf{P}^\top\mathbf{1}_m) \end{pmatrix}.$$
(37)

Sinkhorn-Newton method: Convergence

Proposition

For $w \in \mathbb{R}^m$ and $r \in \mathbb{R}^n$, the Jacobian matrix $J_F(w, r)$ is symmetric positive semidefinite, and its kernel is given by

$$\ker(J_F(w,r)) = \operatorname{span}\left\{ \begin{pmatrix} \mathbf{1}_m \\ -\mathbf{1}_n \end{pmatrix} \right\}.$$
 (38)

Proof

 J_F is clearly symmetric. For arbitrary $\gamma \in \mathbb{R}^m$ and $\phi \in \mathbb{R}^n$, one has

$$\begin{pmatrix} \gamma^{\top} & \phi^{\top} \end{pmatrix} J_F \begin{pmatrix} \gamma \\ \phi \end{pmatrix} = \frac{1}{\varepsilon} \sum_{ij} \mathbf{P}_{ij} (\gamma_i + \phi_j)^2 \ge 0,$$

which holds with equality if and only if $\gamma_i + \phi_j = 0$ for all *i*, *j*, leading us to (38).

Lemma

Let $F : D \to \mathbb{R}^n$ be a continuously differentiable mapping with $D \subset \mathbb{R}^n$ open and convex. Suppose that F(x) is invertible for each $x \in D$. Assume that the following affine covariant Lipschitz condition holds

$$\|F'(x)^{-1}(F'(y) - F'(x))(y - x)\| \le \omega \|y - x\|^2$$
(39)

for $x, y \in D$. Let F(x) = 0 have a solution x^* . For the initial guess $x^{(0)}$ assume that $B(x^*, ||x^{(0)} - x^*||) \subset D$ and that

 $\omega \|x^{(0)} - x^*\| < 2.$

Then the ordinary Newton iterates remain in the open ball $B(x^*, ||x^{(0)} - x^*||)$ and converge to x^* at an estimated quadratic rate

$$\|x^{(k+1)} - x^*\| \le \frac{\omega}{2} \|x^{(k)} - x^*\|^2.$$
(40)

Moreover, the solution x^* is unique in the open ball $B(x^*, 2/\omega)$.

Sinkhorn-Newton method: Convergence

Proof

Denote $e^{(k)} = x^{(k)} - x^*$. Let us prove the lemma by induction:

$$\begin{aligned} |e^{(k+1)}|| &= ||x^{(k)} - (F'(x^{(k)}))^{-1}(F(x^{(k)} - F(x^*)) - x^*|| \\ &= ||e^{(k)} - (F'(x^{(k)}))^{-1}(F(x^{(k)} - F(x^*))|| \\ &= ||(F'(x^{(k)}))^{-1}((F(x^*) - F(x^{(k)})) + F'(x^{(k)})e^{(k)})|| \\ &= ||(F'(x^{(k)}))^{-1} \int_{s=0}^{-1} (F'(x^{(k)} + se^{(k)}) - F'(x^{(k)}))e^{(k)} ds|| \\ &\leq \omega ||\int_{s=0}^{-1} s ds||e^{(k)}||^2 = \frac{\omega}{2} ||e^{(k)}||^2 < ||e^{(k)}||. \end{aligned}$$
(41)

Also

$$\omega \| e^{(k+1)} \| \le \omega \| e^{(k)} \| < 2.$$
(42)

For the uniqueness part, let $x^{(0)} = x^{**} \neq x^*$ be a different solution, then $x^{(1)} = x^{**}$, then consider (40) when k = 0.

Sinkhorn-Newton method: Convergence

Proposition

For any $k \in \mathbb{N}$ with $P_{\varepsilon,ij}^{(k)} > 0$, the affine covariante Lipschitz condition holds in the ℓ_{∞} -norm for

$$\omega \le (e^{\frac{1}{\varepsilon}} - 1) \left(1 + 2e^{\frac{1}{\varepsilon}} \frac{\max\{\|\mathbf{P}_{\varepsilon}^{(k)} \mathbf{1}_n\|_{\infty}, \|(\mathbf{P}_{\varepsilon}^{(k)})^{\top} \mathbf{1}_m\|_{\infty}\}}{\min_{ij} \mathbf{P}_{\varepsilon, ij}^{(k)}} \right)$$
(43)
when $\|y - x\|_{\infty} \le 1$.

The proof for this proposition is tedious and therefore we refer the interested readers to the paper [?].

Relationship with Sinkhorn's algorithm

Let
$$u = e^{-\frac{w}{\varepsilon}}$$
, $v = e^{-\frac{r}{\varepsilon}}$ and $\mathbf{K} = e^{-\mathbf{C}/\varepsilon}$. We again state the KKT system
of (21):
$$\mathbf{P}_{\varepsilon} = \mathbf{diag}(u)\mathbf{K}\mathbf{diag}(v),$$
$$a = \mathbf{diag}(u)\mathbf{K}v,$$
$$b = \mathbf{diag}(v)\mathbf{K}^{\top}u.$$
(44)

Then the Sinkhorn's algorithm amounts to alternating updates in the form of

$$u^{(k+1)} = \operatorname{diag}(\mathbf{K}v^{(k)})^{-1}a,$$

$$v^{(k+1)} = \operatorname{diag}(\mathbf{K}^{\top}u^{(k+1)})^{-1}b.$$
(45)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

45/55

Relationship with Sinkhorn's algorithm

Define

$$G(u,v) = \begin{pmatrix} \operatorname{diag}(u)\mathbf{K}v - a \\ \operatorname{diag}(v)\mathbf{K}^{\top}u - b \end{pmatrix}.$$
 (46)

Process analogously to the Sinkhorn-Newton method we just discussed, note that

$$J_G(u, v) = \begin{pmatrix} \mathsf{diag}(\mathbf{K}v) & \mathsf{diag}(u)\mathbf{K} \\ \mathsf{diag}(v)\mathbf{K}^\top & \mathsf{diag}(\mathbf{K}^\top u) \end{pmatrix}.$$
 (47)

If we neglect the off-diagonal blocks above, i.e.,

$$\hat{J}_G(u,v) = \begin{pmatrix} \mathsf{diag}(\mathbf{K}v) & \mathbf{0} \\ \mathbf{0} & \mathsf{diag}(\mathbf{K}^\top u) \end{pmatrix}, \tag{48}$$

and perform the Newton iteration

$$\begin{pmatrix} u^{(k+1)} \\ v^{(k+1)} \end{pmatrix} = \begin{pmatrix} u^{(k)} \\ v^{(k)} \end{pmatrix} - \hat{J}_G^{-1}(u^{(k)}, v^{(k)}) G(u^{(k)}, v^{(k)}),$$
(49)

Relationship with Sinkhorn's algorithm

We get

$$u^{(k+1)} = \operatorname{diag}(\mathbf{K}v^{(k)})^{-1}a,$$

$$v^{(k+1)} = \operatorname{diag}(\mathbf{K}^{\top}u^{(k)})^{-1}b.$$
(50)

So the Sinkhorn's algorithm simply approximates one Newton step by neglecting the off-diagonal blocks and replacing $u^{(k)}$ by $u^{(k+1)}$.

Outline

Problem Formulation

- 2 Applications
- Entropic Regularization
- Sinkhorn's Algorithm
- 5 Sinkhorn-Newton method
- 6 Wasserstein barycenter

Wasserstein barycenter

• Define $C \stackrel{\text{def}}{=} M_{XY}$, where $(M_{XY})_{ij} = d(x_i, y_i)^p$. The Wasserstein distance as

$$\mathcal{L}(a,b,C) \stackrel{\mathsf{def}}{=} \min\left\{\sum_{i,j} C_{i,j} \Pi_{i,j}; \Pi \in \mathbf{U}(a,b)\right\}.$$
 (51)

- Given a set of point clouds and their corresponding probability vector {(Yⁱ, bⁱ)}, i = 1,...,N.
- Find a support $X = \{x_i\}$ with a probability vector *a* such that (X, a) is the optimal solution of the following problem

$$\min_{X,a} \psi(a,X) = \sum_{k=1}^{N} \lambda_k \mathcal{L}(a,b^k,M_{XY^k}), \text{ s.t. } \sum_i a_i = 1, a \ge 0.$$

where $\sum_k \lambda_k = 1$ and $\lambda_k \ge 0$.

Differentiability of $\mathcal{L}(a, b, C)$ w.r.t. *a*

• The primal problem:

$$\mathcal{L}(a,b,C) \stackrel{\mathsf{def}}{=} \min_{\Pi} \sum_{i,j} C_{i,j} \Pi_{i,j} \quad \mathsf{s.t.} \quad \Pi \mathbf{1}_n = a, \Pi^{\top} \mathbf{1}_m = b, \Pi \ge 0.$$

• Let *u*^{*} is the optimal dual vector of the dual problem:

$$\max_{u \in \mathbb{R}^m, v \in \mathbb{R}^n} \quad u^\top a + v^\top b, \text{ s.t. } \quad u_i + v_j \leq C_{ij}, \quad \forall (i,j)$$

Suppose L(a, b, C) is finite, the strong duality holds. Then u* is a subgradient of L(a, b, C) w.r.t. a.

Subgradient of optimal value function

define h(u, v) as the optimal value of convex problem

min
$$f_0(x)$$

s.t. $f_i(x) \le u_i, i = 1, \cdots, m$
 $Ax = b + v$

(functions f_i are convex; optimization variable is x)

weak result: suppose $h(\hat{u},\hat{v})$ is finite, strong duality holds with the dual

$$\max \inf_{x} \left(f_0(x) + \sum_{i} \lambda_i (f_i(x) - \hat{u}_i) + \nu^\top (Ax - b - \hat{v}) \right)$$

s.t. $\lambda \ge 0$

if $\hat{\lambda}, \hat{\nu}$ are optimal dual variables (for r.h.s. \hat{u}, \hat{v}) then $(\hat{\lambda}, \hat{\nu}) \in \partial h(\hat{u}, \hat{v})$

proof : by weak duality for problem with r.h.s. *u*, *v*

$$h(u,v) \ge \inf_{x} \left(f_0(x) + \sum_{i} \hat{\lambda}_i (f_i(x-u_i) + \hat{\nu}^\top (Ax-b-v)) \right)$$
$$= \inf_{x} \left(f_0(x) + \sum_{i} \hat{\lambda}_i (f_i(x-\hat{u}_i) + \hat{\nu}^\top (Ax-b-\hat{v})) \right)$$
$$- \hat{\lambda}^\top (u-\hat{u}) - \hat{\nu}^\top (v-\hat{v})$$
$$= h(\hat{u},\hat{v}) - \hat{\lambda}^\top (u-\hat{u}) - \hat{\nu}^\top (v-\hat{v})$$

<□ > < ② > < ≧ > < ≧ > < ≧ > < ≧ > ○ < ○ 52/55</p>

minimizing $\psi(a, X)$ w.r.t a

For a fixed X, consider the problem

$$\min_{a} \quad \psi(a,X) = \sum_{k=1}^{N} \lambda_k \mathcal{L}(a,b^k,M_{XY^k}), \text{ s.t. } \sum a_i = 1, a \ge 0$$

• Let u^k be the optimal dual variable of $\mathcal{L}(a, b^k, M_{XY^k})$ w.r.t. *a*. Then

$$g = \sum_{k=1}^{N} \lambda_k u^k \in \partial_a \psi(a, X)$$

• Let $h(a) = \sum_{i=1}^{m} a_i \log a_i$. The associated Bregman divergence is

$$D_h(y,x) = h(y) - h(x) - \nabla h(x)^T (y-x)$$

The mirror descent method is

$$a^{j+1} = \operatorname*{argmin}_{\sum a_i=1, a \ge 0} \left\{ g^T(a-a^j) + tD_h(a, a^j) \right\}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 53/55

Minimizing $\psi(a, X)$ w.r.t. X

Denote $X = [x_1, \ldots, x_m]$ and $Y = [y_1, \ldots, y_n]$. • Consider $(M_{XY})_{ij} = ||x_i - y_i||_2^2$. Let $x = \text{diag}(X^\top X)$ and $y = \text{diag}(Y^\top Y)$. Then we have:

$$M_{XY} = \mathbf{x}\mathbf{1}_n^\top + \mathbf{1}_m^\top \mathbf{y} - 2X^\top Y \in \mathbb{R}^{m \times n}$$

Let Π be the optimal matrix corresponding to a

$$\mathcal{L}(a, b, M_{XY}) = \langle \Pi, M_{XY} \rangle$$

= $\langle \Pi, x \mathbf{1}_n^\top + \mathbf{1}_m^\top \mathbf{y} - 2X^\top Y \rangle$
= $\langle x, \Pi \mathbf{1}_n \rangle + \langle \mathbf{y}, \Pi^\top \mathbf{1}_m \rangle - 2 \langle \Pi, X^\top Y \rangle$
= $x^\top a + \mathbf{y}^\top b - 2 \langle \Pi, X^\top Y \rangle$
= $\| X \operatorname{diag}(a^{1/2}) - Y \Pi^\top \operatorname{diag}(a^{-1/2}) \|_F^2 + \operatorname{const}$

Minimizing $\psi(a, X)$ w.r.t. X

For a fixed *a*, consider the problem

$$\min_{X} \quad \psi(a, X) = \sum_{k=1}^{N} \lambda_k \mathcal{L}(a, b^k, M_{XY^k}).$$

Then, it is equivalent to

$$\begin{split} \min_{X} & \sum_{k=1}^{N} \lambda_{k} \left(\mathbf{x}^{\top} a - 2 \left\langle \Pi^{k}, X^{\top} Y^{k} \right\rangle \right) \\ \min_{X} & \mathbf{x}^{\top} a - 2 \left\langle \sum_{k=1}^{N} \lambda_{k} \Pi^{k}, X^{\top} Y^{k} \right\rangle \\ \min_{X} & \| X \operatorname{diag}(a^{1/2}) - \sum_{k=1}^{N} \lambda_{k} Y^{k} (\Pi^{k})^{\top} \operatorname{diag}(a^{-1/2}) \|_{F}^{2} \end{split}$$

The optimal solution is:

$$X = \sum_{k=1}^{N} \lambda_k Y^k (\Pi^k)^\top \operatorname{diag}(a^{-1})$$