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X-ray crystallography

Method for determining atomic structure within a crystal

10 Nobel Prizes in X-ray crystallography, and counting...
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Missing phase problem

Detectors record intensities of diffracted rays =⇒ phaseless data
only!

Fraunhofer diffraction =⇒ intensity of electrical ≈ Fourier transform

|x̂(f1, f2)|2 =

∣∣∣∣∫ x(t1, t2)e−i2π(f1t1+f2t2)dt1dt2

∣∣∣∣
Electrical field x̂ = |x̂|eiϕ with intensity |x̂|2

Phase retrieval problem (inversion)
How can we recover the phase (or signal x(t1, t2)) from |x̂(f1, f2)|
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Phase and magnitude

Phase carries more information than magnitude
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Classical Phase Retrieval

Feasibility problem

find x ∈ S ∩M or find x ∈ S+ ∩M

given Fourier magnitudes:

M := {x(r) | |x̂(ω)| = b(ω)}

where x̂(ω) = F(x(r)), F : Fourier transform
given support estimate:

S := {x(r) | x(r) = 0 for r /∈ D}

or
S+ := {x(r) | x(r) ≥ 0 and x(r) = 0 if r /∈ D}
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Error Reduction

Alternating projection:

xk+1 = PSPM(xk)

projection to S:

PS(x) =
{

x(r), if r ∈ D,
0, otherwise,

projection to M:

PM(x) = F∗(ŷ), where ŷ =

{
b(ω) x̂(ω)

|x̂(ω)| , if x̂(ω) ̸= 0,
b(ω), otherwise,
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Summary of projection algorithms

Basic input-output (BIO)

xk+1 = (PSPM + I − PM) (xk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

Hybrid projection reflection (HPR)

xk+1 =
(
(1 + β)PS+PM + I − PS+ − βPM

)
(xk)

Relaxed averaged alternating reflection (RAAR)

xk+1 =
(
2βPS+PM + βI − βPS+ + (1 − 2β)PM

)
(xk)

Difference map (DF)

xk+1 = (I + β(PS((1 − γ2)PM − γ2I) + PM((1 − γ1)PS − γ1I))) (xk)
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ADMM

Consider problem

find x and y, such that x = y, x ∈ X and y ∈ Y

X is either S or S+, and Y is M.
Augmented Lagrangian function

L(x, y, λ) := λ⊤(x − y) +
1
2
∥x − y∥2

ADMM:

xk+1 = argmin
x∈X

L(x, yk, λk),

yk+1 = argmin
y∈Y

L(xk+1, y, λk),

λk+1 = λk + β(xk+1 − yk+1),



11/47

ADMM

ADMM

xk+1 = PX (yk − λk),

yk+1 = PY(xk+1 + λk),

λk+1 = λk + β(xk+1 − yk+1),

ADMM is equivalent to HIO or HPR
if PX (x + y) = PX (x) + PX (y)

xk+2 + λk+1 = [(1 + β)PXPY + (I − PX )− βPY ](xk+1 + λk)

Hybrid input-output (HIO)

xk+1 = ((1 + β)PSPM + I − PS − βPM) (xk)

if β = 1



12/47

ADMM

ADMM: updating Lagrange Multiplier twice

xk+1 := PX (yk − πk),

πk+1 := πk + β(xk+1 − yk) = −(I − βPX )(yk − πk),

yk+1 := PY(xk+1 + λk),

λk+1 := λk + ν(xk+1 − yk+1) = (I − νPY)(xk+1 + λk),

ADMM is equivalent to ER if β = ν = 1

xk+1 := PX (yk) and yk+1 := PY(xk+1).

ADMM is equivalent to BIO if β = ν = 1

xk+1 + λk = (PXPY + I − PY) (xk + λk−1)
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Numerical comparison

The parameter β in HPR and RAAR was updated dynamically with
β0 = 0.95. For ADMM, β = 0.5.
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Discrete mathematical model

Phaseless measurements about x0 ∈ Cn

bk = | ⟨ak, x0⟩ |2, k ∈ {1, . . . ,m}

Phase retrieval is feasibility problem

find x

s.t. | ⟨ak, x0⟩ |2 = bk, k = 1, . . . ,m

Solving quadratic equations is NP-complete in general
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NP-complete stone problem

Given weights wi ∈ R, i = 1, . . . , n, is there an assignment xi = ±1
such that

n∑
i=1

wixi = 0?

Formulation as a quadratic system

|xi|2 = 1, i = 1, . . . , n∣∣∣∣∣
n∑

i=1

wixi

∣∣∣∣∣
2

= 0
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PhaseLift (C., Eldar, Strohmer, Voroninski, 2011)

Lifting: X = xx∗

bk = | ⟨ak, x0⟩ |2 = a∗k xx∗ak = ⟨aka∗k ,X⟩

Turns quadratic measurements into linear measurements b = A(X)
about xx∗

Phase retrieval problem

find X

s.t. A(X) = b

X ⪰ 0, rank(X) = 1

PhaseLift
find X

s.t. A(X) = b

X ⪰ 0

Connections: relaxation of quadratically constrained QP’s
Shor (87) [Lower bounds on nonconvex quadratic optimization
problems]
Goemans and Williamson (95) [MAX-CUT]
Chai, Moscoso, Papanicolaou (11)
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Exact generalized phase retrieval via SDP

Phase retrieval problem

find x

s.t. bk = | ⟨ak, x0⟩ |2

PhaseLift
find tr(X)

s.t. A(X) = b, X ⪰ 0

Theorem (C. and Li (’12); C., Strohmer and Voroninski (’11))
▶ ak independently and uniformly sampled on unit sphere
▶ m ≳ n

Then with prob. 1 − O(e−γm), only feasible point is xx∗

{X : A(X) = b, and X ⪰ 0} = {xx∗}
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Extensions to physical setups
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Coded diffraction

Collect diffraction patterns of modulated samples

|F(w[t]x[t])|2 w ∈ W

Makes problem well-posed (for some choices of W)
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Exact recovery

Figure: Recovery from 6 random binary masks
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Numerical results: noiseless 2D images
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PhaseCut

Given A ∈ Cm×n and b ∈ Rm

find x, s.t. |Ax| = b.

(Candes et al. 2011b, Alexandre d’Aspremont 2013)

An equivalent model

min
x∈Cn,y∈Rm

1
2
∥Ax − y∥2

2

s.t. |y| = b.
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PhaseCut

Reformulation:

min
x∈Cn,u∈Cm

1
2
∥Ax − diag(b)u∥2

2

s.t. |ui| = 1, , i = 1, . . . ,m.

Given u, the signal variable is x = A†diag(b)u. Then

min
u∈Cm

u∗Mu

s.t. |ui| = 1, i = 1, . . . ,m,

where M = diag(b)(I − AA†)diag(b) is positive semidefinite.
The MAXCUT problem

min
U∈Sm

Tr(UM)

s.t. Uii = 1, i = 1, · · · ,m, U ⪰ 0.
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Phase retrieval by non-convex optimization

Solve the equations: yr = |⟨ar, x⟩|2, r = 1, 2, ...,m.

Gaussian model:

ar ∈ Cn i.i.d.∼ N (0, I/2) + iN (0, I/2).

Coded Diffraction model:

yr =

∣∣∣∣∣
n−1∑
t=0

x[t]d̄l(t)e−i2πkt/n

∣∣∣∣∣
2

, r = (l, k), 0 ≤ k ≤ n − 1, 1 ≤ l ≤ L.

Nonlinear least square problem:

min
z∈Cn

f (z) =
1

4m

m∑
k=1

(yk − |⟨ak, z⟩|2)2

Pro: operates over vectors and not matrices

Con: f is nonconvex, many local minima
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Wirtinger flow: C., Li and Soltanolkotabi (’14)

Strategies:
Start from a sufficiently accurate initialization

Make use of Wirtinger derivative

f (z) =
1

4m

m∑
k=1

(yk − |⟨ak, z⟩|2)2

∇f (z) =
1
m

m∑
k=1

(|⟨ak, z⟩|2 − yk)(aka∗k)z

Careful iterations to avoid local minima
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Algorithm: Gaussian model

Spectral Initialization:
1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1
m

m∑
r=1

yrara∗r .

3 Normalize z0 such that ∥z0∥2 = n
∑

r yr∑
r ∥ar∥2 .

Iteration via Wirtinger derivatives: for τ = 0, 1, . . .

zτ+1 = zτ −
µτ+1

∥z0∥2∇f (zτ )
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Convergence property: Gaussian model

distance (up to global phase)

dist(z, x) = arg min
π∈[0,2π]

∥z − eiϕx∥

Theorem
Convergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m ≳ n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1 − 10e−γn − 8/n2 − me−1.5n, we have dist(z0, x) ≤ 1
8∥x∥

and after τ iteration
dist(zτ , x) ≤ 1

8
(1 − µ

4
)τ/2∥x∥.

Here γ is a positive constant.



31/47

Numerical results: 1D signals

Consider the following two kinds of signals:
• Random low-pass signals:

x[t] =
M/2∑

k=−(M/2−1)

(Xk + iYk)e2πi(k−1)(t−1)/n,

with M=n/8 and Xk and Yk are i.i.d. N (0, 1).
• Random Guassian signals: where x ∈ Cn is a random complex

Gaussian vector with i.i.d. entries of the form

X[t] = X + iY,

with X and Y distributed as N (0, 1/2).
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Success rate

• Set n = 128.
• Apply 50 iterations of the power method as initialization.
• Set µτ = min(1 − e−τ/τ0 , 0.2), where τ0 ≈ 330.
• Stop after 2500 iterations, and declare a trial successful if the

relative error of the reconstruction dist(x̂, x)/∥x∥ falls below 10−5.
• The empirical probability of success is an average over 100 trials.
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Numerical results: natural images

• View RGB image as n1 × n2 × 3 array, and run the WF algorithm
separately on each color band.

• Apply 50 iterations of the power method as initialization.
• Set the step length parameter µτ = min(1 − exp(−τ/τ0), 0.4),

where τ0 ≈ 330. Stop after 300 iterations.
• One FFT unit is the amount of time it takes to perform a single

FFT on an image of the same size.
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Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080 × 1920 pixels; timing is 1318.1
sec or 41900 FFT units. The relative error is 9.3 × 10−16.
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Recall the main theorems

Theorem
Convergence for Gaussian model (C. Li and Soltanolkotabi (’14))

number of samples m ≳ n log n

Step size µ ≤ c/n(c > 0)

Then with probability at least 1 − 10e−γn − 8/n2 − me−1.5n, we have
dist(z0, x) ≤ 1

8∥x∥ and after τ iteration

dist(zτ , x) ≤ 1
8
(1 − µ

4
)τ/2∥x∥.

Here γ is a positive constant.
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Regularity condition

Definition
Definition We say that the function f satisfies the regularity condition
or RC(α, β, ϵ) if for all vectors z ∈ E(ϵ) we have

Re
(
⟨∇f (z), z − xeiϕ(z)⟩

)
≥ 1

α
dist2(z, x) +

1
β
∥∇f (z)∥2.

• ϕ(z) := argminϕ∈[0,2π] ∥z − eiϕx∥.

• dist(z, x) := ∥z − eiϕ(z)x∥.
• E(ϵ) := {z ∈ Cn : dist(z, x) ≤ ϵ}.
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Proof of convergence

Lemma 1
Assume that f obeys RC((α, β, ϵ)) for all z ∈ E(ϵ). Furthermore,
suppose z0 ∈ E(ϵ), and assume 0 < µ ≤ 2/β. Consider the following
update

zτ+1 = zτ − µ∇f (zτ ).

Then for all τ we have zτ ∈ E(ϵ) and

dist2(zτ , x) ≤
(

1 − 2µ
α

)τ

dist2(z0, x).
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Proof of convergence

Proof.
We prove that if z ∈ E(ϵ) then for all 0 < µ ≤ 2/β

z+ = z − µ∇f (z)

obeys

dist2(z+, x) ≤
(

1 − 2µ
α

)
dist2(z, x).

Then the lemma holds by inductively applying the equation above.
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Proof of convergence

Simple algebraic manipulations together with the regularity condition
give ∥∥∥z+ − xeiϕ(z)

∥∥∥2

=
∥∥∥z − xeiϕ(z) − µ∇f (z)

∥∥∥2

=
∥∥∥z − xeiϕ(z)

∥∥∥2
− 2µRe

(
⟨∇f (z), z − xeiϕ(z)⟩

)
+ µ2 ∥∇f (z)∥2

≤
∥∥∥z − xeiϕ(z)

∥∥∥2
− 2µ

(
1
α

∥∥∥z − xeiϕ(z)
∥∥∥2

+
1
β
∥∇f (z)∥2

)
+µ2 ∥∇f (z)∥2

=

(
1 − 2µ

α

)∥∥∥z − xeiϕ(z)
∥∥∥2

+ µ

(
µ− 2

β

)
∥∇f (z)∥2

≤
(

1 − 2µ
α

)∥∥∥z − xeiϕ(z)
∥∥∥2

,

which concludes the proof.
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Proof of regularity condition

We will make use of the following lemma:

Lemma 2
1 x is a solution obeying ∥x∥ = 1, and is independent from the

sampling vectors;
2 m ≥ c(δ)n log n in Gaussian model or L ≥ c(δ) log3 n in CD model.

Then, ∥∥∇2f (x)− E∇2f (x)
∥∥ ≤ δ

holds with pabability at least 1 − 10e−γn − 8/n2 and 1 − (2L + 1)/n3 for
the Gaussian and CD model, respectively.

• The concentration of the Hessian matrix at the optimizers.
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Proof of regularity condition

Based on the lemma above with δ = 0.01, we prove the regularity
condition by establishing the local curvature condition and the local
smoothness condition.

Local curvature condition
We say that the function f satisfies the local curvature condition or
LCC(α, ϵ, δ) if for all vectors z ∈ E(ϵ),

Re
(
⟨∇f (z), z − xeiϕ(z)⟩

)
≥
(

1
α
+

1 − δ

4

)
dist2(z, x)+

1
10m

m∑
r=1

∣∣∣a∗r (z − xeiϕ(z))
∣∣∣4 .

The LCC condition states that the function curves sufficiently upwards
along most directions near the curve of global optimizers.
For the CD model, LCC holds with α ≥ 30 and ϵ = 1

8
√

n ;

For the Gaussian model, LCC holds with α ≥ 8 and ϵ = 1
8 .
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Proof of regularity condition

Local smoothness condition
We say that the function f satisfies the local smoothness condition or
LSC(β, ϵ, δ) if for all vectors z ∈ E(ϵ) we have

∥∇f (z)∥2 ≤ β

(
(1 − δ)

4
dist2(z, x) +

1
10m

m∑
r=1

∣∣∣a∗r (z − xeiϕ(z))
∣∣∣4) .

The LSC condition states that the gradient of the function is well
behaved near the curve of global optimizers. Using δ = 0.01, LSC
holds with β ≥ 550 + 3n

β ≥ 550 for ϵ = 1/(8
√

n),

β ≥ 550 + 3n for ϵ = 1/8.
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Proof of regularity condition

In conclusion, when δ = 0.01, for the Gaussian model, the regularity
condition holds with

α ≥ 8, β ≥ 550 + 3n, and ϵ = 1/8.

while for the CD model, the regularity condition holds with

α ≥ 30, β ≥ 550, and ϵ = 1/(8
√

n),

Therefore, for the Gaussian model, linear convergence holds if the
initial points satisfies dist(z0, x) ≤ 1/8; for the CD model, linear
convergence holds if dist(z0, x) ≤ 1/(8

√
n).
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Proof of initialization

Recall the initialization algorithm:
1 Input measurements {ar} and observation {yr}(r = 1, 2, ...,m).

2 Calculate z0 to be the leading eigenvector of Y = 1
m

m∑
r=1

yrara∗r .

3 Normalize z0 such that ∥z0∥2 = n
∑

r yr∑
r ∥ar∥2 .

Ideas:

E

[
1
m

m∑
r=1

yrara∗r

]
= I + 2xx∗,

and any leading eigenvector of I + 2xx∗ is of the form λx. Therefore,
by the strong law of large number, the initialization step would recover
the direction of x perfectly as long as there are enough samples.
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Proof of initialization

In the detailed proof, we will use the following lemma:

Lemma 3
In the setup of Lemma 2, ∥∥∥∥∥I − 1

m

m∑
r=1

ara∗
r

∥∥∥∥∥ ≤ δ,

holds with probability at least 1 − 2e−γm for the Gaussian model and 1 − 1/n2 for the
CD model. On this event,

(1 − δ)∥h∥2 ≤ 1
m

m∑
r=1

|a∗
r h|2 ≤ (1 + δ)∥h∥2

holds for all h ∈ Cn.
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Proof of initialization

Detailed proof:
Lemma 2 gives

∥Y − (xx∗ + ∥x∥2I)∥ ≤ ϵ := 0.001.

Let z̃0 be the unit eigenvector corresponding to the top eigenvalue λ0
of Y, then

|λ0 − (|̃z0x|2 + 1)| = |̃z∗0(Y − (xx∗ + I))z̃0| ≤ ∥Y − (xx∗ + I)∥ ≤ ϵ.

Therefore, |̃z∗0x|2 ≥ λ0 − 1 − ϵ. Meanwhile, since λ0 is the top
eigenvalue of Y, and ∥x∥ = 1, we have

λ0 ≥ x∗Yx = x∗(Y − (I + x∗x))x + 2 ≥ 2 − ϵ.

Combining the above two inequalities together, we have

|̃z∗0x|2 ≥ 1−2ϵ ⇒ dist2(z̃0, x) ≤ 2−2
√

1 − 2ϵ ≤ 1
256

⇒ dist(z̃0, x) ≤ 1
16

.
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Proof of initialization

Now consider the normalization. Recall that z0 =

(√
1
m

m∑
r=1

|a∗r x|2
)

z̃0.

By Lemma 3, with high probability we have

|∥z0∥ − 1| ≤
∣∣∥z0∥2 − 1

∣∣ = ∣∣∣∣∣ 1
m

m∑
r=1

|a∗r x|2 − 1

∣∣∣∣∣ ≤ δ <
1

16
.

Therefore, we have

dist(z0, x) ≤ ∥z0 − z̃0∥+ dist(z̃0, x) ≤ |∥z0∥ − 1|+ dist(z̃0, x) ≤ 1
8
.
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