Phase Retrieval

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Emmanuel Candes ’s lecture notes
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X-ray crystallography
Method for determining atomic structure within a crystal

Source of
| Xrays |

Beam of
collimated

X rays )
10,000-
Q Single protein crystal 40,000 volts
Diffracted ‘:‘.'.'\\
X rays \ . :
3 \ \ - Crystalline solid screen

~— Spot from incident beam

Spots from diffracted X-rays
o~ Photographic plate

Film

principle typical setup

10 Nobel Prizes in X-ray crystallography, and counting...
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Missing phase problem

Detectors record intensities of diffracted rays = phaseless data
only!

diffraction patterns

Fraunhofer diffraction = intensity of electrical ~ Fourier transform

k(fi, ) * =

/x(ll, l‘z)eﬂ.zw(fm +fztz)dtldl‘z

Electrical field & = |x|e/® with intensity ||

Phase retrieval problem (inversion)

How can we recover the phase (or signal x(z,1,)) from [x(fi,/2)|
~ = = = ——ere 4/47




Phase and magnitude

¥ IF{Y phasa(F(Y)) iF(|F{Y)."phase{F{S]}}

s IF(S) phaze(F(S))

Phase carries more information than magnitude
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Outline

e Classical Phase Retrieval
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Classical Phase Retrieval

Feasibility problem

findxe SN Mor findxe Sy N M

@ given Fourier magnitudes:
M= {x(r) | |x(w)| = b(w)}

where x(w) = F(x(r)), F: Fourier transform
@ given support estimate:

S:={x(r) | x(r) =0 for r ¢ D}
or

St :={x(r) | x(r) > 0and x(r) =0if r ¢ D}
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Error Reduction

Alternating projection:
= PsPm (xk)

@ projection to S:

[ x(r), ifren,
Ps(x) = { 0, otherwise,

@ projection to M:

H(w)
(w)]?

b(w),

b(w)

Pm(x) = F*(y), where y = { (

if x(w) #0,
otherwise,
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Summary of projection algorithms

@ Basic input-output (BIO)

A = (PsPat +1 = Paa) ()
@ Hybrid input-output (HIO)

= (14 B)YPsPu + 1 — Ps — BPum) (x)
@ Hybrid projection reflection (HPR)
K = (14 B)Ps,Pm+1—Ps, — BPm) (X
@ Relaxed averaged alternating reflection (RAAR)
= (26Ps, Pam+ BI — BPs, + (1 = 28)Pur) ()

@ Difference map (DF)

M= I+ B(Ps((1 = )P — D) + Paml((1 = m)Ps — ) (x*)
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ADMM

Consider problem

findxandy, suchthatx=y, xe XYandye )y

@ X is either Sor Sy, and Y is M.
@ Augmented Lagrangian function

1
Lx,y, ) :=AT(x—y) + 5l —y|I?
o ADMM:
1 _ : ko yk
x* argmin £(x, 3", X%),

k+1
y

= argmin £(x*"1,y, \F),
yey
)\k—i—l —_ )\k _|_ﬂ(xk+l _yk+l)7
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ADMM

e ADMM

xk+1 _ Px(yk - )\k)’
yk+l — Py(karl +>\k)7
)\k+1 — )\k + /B(Xk+1 _yk+l)

@ ADMM is equivalent to HIO or HPR
o if Pr(x+y) =Px(x)+Px(y)

P N = (14 B)PaPy + (I — Px) — BPy] (! + XF)
Hybrid input-output (HIO)
¥ = (14 B)PsPam +1—Ps — BPum) (x*)
o if =1
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ADMM

@ ADMM: updating Lagrange Multiplier twice

X = Px(yk — 7Tk),
7Tk+1 — 71_k + ﬁ(ka _yk) — —(I _ ﬁPX)(yk o 7_[_k)’
yk—H = fpy(karl +)\k),

ML= Ny (D DY = (1 — Py (KT 40K,
@ ADMM is equivalentto ERif 6 =v =1
H = Pa (%) and = Py (K.
@ ADMM is equivalentto BIO if f =v =1

ML N = (PyPy +1-Py) (x* + X)
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Numerical comparison

The parameter g in HPR and RAAR was updated dynamically with
Bo = 0.95. For ADMM, g = 0.5.

ADM HPR RAAR

=10

iter

=20

iter

=200

iter
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© PhaselLift
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Discrete mathematical model

@ Phaseless measurements about xy € C"
bk:|<ak,xo)\2, kE{l,...,m}
@ Phase retrieval is feasibility problem

find x
st [{a,x0) P =buk=1,....m

Solving quadratic equations is NP-complete in general J
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NP-complete stone problem

Given weights w; € R, i = 1,...,n, is there an assignment x; = +1
such that .

Z WiX; = 07

i=1

Formulation as a quadratic system

|xl~\2 =1, i=1,...,n

n 2
g WiXi
i=1
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Phaselift (C., Eldar, Stronmer, Voroninski, 2011)
Lifting: X = xx*
b = | (ax, x0) |* = afxx*ay = (aaf, X)

Turns quadratic measurements into linear measurements b = A(X)
about xx*

Phase retrieval problem

find X find X
st. AX)=b st. AX)=0b
X > 0,rank(X) =1 X-0

Connections: relaxation of quadratically constrained QP’s
@ Shor (87) [Lower bounds on nonconvex quadratic optimization
problems]
@ Goemans and Williamson (95) [MAX-CUT]

@ Chai, Moscoso, Papanicolaou (11)
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Exact generalized phase retrieval via SDP

Phase retrieval problem

find x find tr(X)
st by = |{ap,x) | st. AX)=b, X>0

Theorem (C. and Li (’12); C., Strohmer and Voroninski ('11))

» a, independently and uniformly sampled on unit sphere
> m=>n
Then with prob. 1 — O(e=""), only feasible point is xx*

{X: A(X) = b, and X = 0} = {xx*}
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Extensions to physical setups

xray
sample source

mask l !

diffraction
pattern
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Coded diffraction

Collect diffraction patterns of modulated samples

| F (w(t]x[e])|* wew

Makes problem well-posed (for some choices of W) )
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Exact recovery

—IOnginaI slg;w\ —‘Onginal signal
8 ~==="Raconatruction 8 ~=="" Reconstruction
2 2
1 1
0 o
1 1
2 2
0 20 40 60 BO 100 120 0 20 40 60 BO 100 120
(a) Smooth signal (real part) (b) Random signal (real part)

Figure: Recovery from 6 random binary masks

21/47



Numerical results: noiseless 2D images

= 00 150

original image

3 Gaussian masks

= 00 15 200 250

s 150

8 binary masks error with 8 binary masks
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@ PhaseCut
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PhaseCut

@ GivenA e (""" and b € R"
find x, s.t. |Ax| = b.
(Candes et al. 2011b, Alexandre d’Aspremont 2013)

@ An equivalent model

1
eln 2|| x =yl

s.t. [y =b.
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PhaseCut
@ Reformulation:

1
in  —|Ax — diag(b)ul|?
xeé]ﬁfirécwz” x — diag(b)ul[;

skt ui|l=1,,i=1,...,m.
@ Given u, the signal variable is x = Afdiag(h)u. Then
min  u*Mu
ueCnm

st uil=1i=1,...,m,

where M = diag(b)(I — AAT)diag(b) is positive semidefinite.

@ The MAXCUT problem

min 7r(UM)
UESm

st. Uy=1,i=1,---,m, U*= 0.
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e Wirtinger Flows
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Phase retrieval by non-convex optimization

Solve the equations: y, = |(a,,x)|*, r=1,2,...m
@ Gaussian model:

ar € C" K N(0,1)2) +iN(0,1)2).

@ Coded Diffraction model:

n—1 2

> " xlfd(r)e= 2

t=0

V= r=(k), 0<k<n—1, 1<I<L.

Nonlinear least square problem:
1 m
: Z 2y2
min = — |{a
zeCr " dm — Y~ llax, 2

@ Pro: operates over vectors and not matrices

@ Con: f is nonconvex, many local minima
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Wirtinger flow: C., Li and Soltanolkotabi (’1

Strategies:
@ Start from a sufficiently accurate initialization

@ Make use of Wirtinger derivative

79 = g 200k~ o)

=1

1 m
Vi(z) = 72 {ax, ) — i) (axag )z

=1

E

@ Careful iterations to avoid local minima

4)
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Algorithm: Gaussian model

@ Spectral Initialization:
1 Input measurements {a,} and observation {y,}(r = 1,2,...,m).

2 Calculate z to be the leading eigenvector of ¥ = L 3™y, 4,47

>
>

3 Normalize z, such that ||zo||2 = n

@ lteration via Wirtinger derivatives: forr =0,1,...

Zrtl = 2r ﬁhﬂlzvf()

29/47



Convergence property: Gaussian model

distance (up to global phase)

dist(z,x) = arg min —
(6.6) = arg_min_ [l2— €]

w€e|0,27

Convergence for Gaussian model (C. Li and Soltanolkotabi ("14))

@ number of samples m = nlogn

@ Step size u < ¢/n(c > 0)
Then with probability at least 1 — 10e="" — 8 /n* — me~"", we have dist(zo, x)
and after  iteration

dist(z,,x) < ~(1 — 2y ).
=8 4

Here v is a positive constant.

< gl
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Numerical results: 1D signals

Consider the following two kinds of signals:
e Random low-pass signals:

M/2
x[f] = Z (Xk_i_l-Yk)e%ri(kfl)(tfl)/n’
k=—(M/2—1)

with M=n/8 and X; and Y, are i.i.d. N/(0,1).

¢ Random Guassian signals: where x € C" is a random complex
Gaussian vector with i.i.d. entries of the form

X[1] = X +iY,

with X and Y distributed as A/ (0, 1/2).
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Success rate

e Setn =128.

e Apply 50 iterations of the power method as initialization.

e Set y, = min(1 — e~7/7,0.2), where 7y ~ 330.

e Stop after 2500 iterations, and declare a trial successful if the
relative error of the reconstruction dist(x, x)/||x|| falls below 1073,
The empirical probability of success is an average over 100 trials.

Gaussian model Coded diffraction model

T T T T T T T T T T T
1r 1 1r N
g osr 4 08fF .
= 06| | 06| .
2 04l 4 04l .
2 o2l 4 02 1

s T - - ~ - -

—e— Gaussian signal —e— Gaussian signal
0 —&— low-pass signal | O0F —&— low-pass signal |4

1 1 1 I I I I | 1 1 I I I

2 25 3 35 4 45 5 2 4 6 8 10 12

mfn mfn 2/47



Numerical results: natural images

View RGB image as n; x n; x 3 array, and run the WF algorithm
separately on each color band.

Apply 50 iterations of the power method as initialization.
Set the step length parameter j, = min(1 — exp(—7/79),0.4),
where 7y ~ 330. Stop after 300 iterations.

One FFT unit is the amount of time it takes to perform a single
FFT on an image of the same size.
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Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080 x 1920 pixels; timing is 1318.1
sec or 41900 FFT units. The relative error is 9.3 x 10~6.




Recall the main theorems

Convergence for Gaussian model (C. Li and Soltanolkotabi ('14))
@ number of samples m 2 nlogn
@ Step size u < ¢/n(c > 0)
Then with probability at least 1 — 10e="" — 8/n> — me~'>", we have
dist(zo,x) < g|lx|| and after T iteration

1
dist(zr,x) < (1 = £)77]].

Here ~ is a positive constant.
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Regularity condition

Definition

Definition We say that the function f satisfies the regularity condition
or RC(a, 3, €) if for all vectors z € E(e) we have

, 1 1
Re ({Vf(2).2 =20 ) > “diste.2) + 5|V QI

* ¢(z) = argmingep oq |z — €x]].
o dist(z,x) := ||z — Qx|
o E(e) :={z € C": dist(z,x) < €}.
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Proof of convergence

Assume that f obeys RC((«, 3, ¢€)) for all z € E(e). Furthermore,

suppose zy € E(e), and assume 0 < p < 2/3. Consider the following
update

Zr+1 = 2r — uVf(zr).
Then for all 7 we have z. € E(¢) and

2 T
disi(zp,) < (1 - ;”) dist(20,).
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Proof of convergence

Proof.

We prove that if z € E(¢) thenforall 0 < 4 <2/
2+ =z — pVf(2)

obeys

2
dist*(z4,x) < (1 - :) dist*(z,x).

Then the lemma holds by inductively applying the equation above.
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Proof of convergence

Simple algebraic manipulations together with the regularity condition

give

<

which concludes the proof.

74 — xe?@ ’
2

z— xe" */Nf()H

(¢vr(2),2 - xe"¢<z>>) + 1 V()

T (e re @ + g 1vr@IR)

+02 |V @)1

Bl
<1 - ) H xe"z’(z)

z— xei¢(1)

7 — xe'?@

i (u -2 I
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Proof of regularity condition

We will make use of the following lemma:

@ xis a solution obeying ||x|| = 1, and is independent from the
sampling vectors;
@ m > c(d)nlogn in Gaussian model or L > ¢(5) log® n in CD model.
Then,
V3 (x) — EV3f(x)]| < 6

holds with pabability at least 1 — 10e=" — 8/n? and 1 — (2L + 1) /n> for
the Gaussian and CD model, respectively.

e The concentration of the Hessian matrix at the optimizers.
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Proof of regularity condition

Based on the lemma above with § = 0.01, we prove the regularity
condition by establishing the local curvature condition and the local
smoothness condition.

Local curvature condition

We say that the function f satisfies the local curvature condition or
LCC(a,€,0) if for all vectors z € E(e),

al(z — xe'

r=

V.

The LCC condition states that the function curves sufficiently upwards
along most directions near the curve of global optimizers.
For the CD model, LCC holds with o > 30 and ¢ = ﬁ;

For the Gaussian model, LCC holds with o > 8 and € = .

&l
~
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Proof of regularity condition

Local smoothness condition

We say that the function f satisfies the local smoothness condition or
LSC(B,¢,0) if for all vectors z € E(e) we have

I9£ ()12 </3<( stz + 5 3 fat (e~ xe9) 4).
r=1

The LSC condition states that the gradient of the function is well
behaved near the curve of global optimizers. Using § = 0.01, LSC
holds with 3 > 550 + 3n

B >550 for e=1/(8/n),
B>550+3n for e=1/8.
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Proof of regularity condition

In conclusion, when § = 0.01, for the Gaussian model, the regularity
condition holds with

a>8,8>550+3n, and e = 1/8.
while for the CD model, the regularity condition holds with
a > 30,83 > 550, and ¢ = 1/(8y/n),
Therefore, for the Gaussian model, linear convergence holds if the

initial points satisfies dist(zo,x) < 1/8; for the CD model, linear
convergence holds if dist(zp,x) < 1/(8y/n).
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Proof of initialization

Recall the initialization algorithm:
1 Input measurements {a,} and observation {y,}(r = 1,2, ...,m).

m
2 Calculate z to be the leading eigenvector of ¥ = 1 3" y,q,a.
r=1

3 Normalize zo such that ||zo|*> = nZZIi'ayrllz'

Ideas:

E = I + 2xx",

1 m
m Z yrayay

r=1

and any leading eigenvector of I + 2xx* is of the form A\x. Therefore,
by the strong law of large number, the initialization step would recover
the direction of x perfectly as long as there are enough samples.
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Proof of initialization

In the detailed proof, we will use the following lemma:

In the setup of Lemma 2,
I .
I— — -
m;aa

holds with probability at least 1 — 2¢~7™ for the Gaussian model and 1 — 1/n? for the
CD model. On this event,

<4,

m

> larhl? < (1+6)[A)°

r=1

1

m

(1= &)|Al* <

holds for all » € C".

45/47



Proof of initialization

Detailed proof:
Lemma 2 gives

|Y — (xx* + [|x]]2D)|| < e := 0.001.

Let Zo be the unit eigenvector corresponding to the top eigenvalue )\
of Y, then

Ao — (206> + )] = [Z5(Y — (x" +1))Z0] < [IY — (* + D) < e.

Therefore, yzgx|2 > Ao — 1 — e. Meanwhile, since A is the top
eigenvalue of Y, and ||x|| = 1, we have
M >XYx=x"Y—-([T+xx)x+2>2—¢

Combining the above two inequalities together, we have
1
16
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Proof of initialization

Now consider the normalization. Recall that zop = <1 |15 ]a:x|2> 20-
r=1

By Lemma 3, with high probability we have

1 m
- g lax|? — 1
r=1

1
<Hd< —

2 _
llzoll = 1] < [|lzol* = 1] = 16

Therefore, we have

. 1
dist(z0,x) < ||zo — 20| + dist(zo,x) < |||zo|| — 1| + dist(Zo,x) < 3
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