Policy Gradient Methods

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Shipra Agrawal’s lecture notes

1/71

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Outline

a Policy gradient methods
@ Finite horizon MDP

2/71

Policy gradient methods

@ In Q-learning function approximation was used to approximate
Q-function, and policy was a greedy policy based on estimated
QO-function. In policy gradient methods, we approximate a
stochastic policy directly using a parametric function
approximator.

@ More formally, given an MDP (S, A, s,R,P), let my : S — A4
denote a randomized policy parameterized by parameter vector
¢ € R? For a scalable formulation, we want d << |S|.

@ For example, the policy my might be represented by a neural
network whose input is a representation of the state, whose
output is action selection probabilities, and whose weights form
the policy parameters 6. (The architecture for such a [deep]
neural network is similar to that for a multi-label classifier, with
input being a state, and labels being different actions. The
network should be trained to predict the probability of different
actions given an input state).
3/71

Policy gradient methods

@ For simplicity, assume that =y is differentiable with respect to 6,
ie. %%7(5’”) exists. This is true for example, if a neural network
with differentiable activation functions is used to define my. Let
p (mg) denote the gain of policy my.This may be defined as long
term average reward, long term discounted reward or total
reward in an episode or finite horizon. Therefore, solving for

optimal policy reduces to the problem of solving

max p (7g)
@ In order to use stochastic gradient descent algorithm for finding a

stationary point of the above problem, we need to compute (an
unbiased) estimate of gradient of p (7y) with respect to 6.

4/71

Finite horizon MDP

@ Here performance measure to optimize is total expected reward
over a finite horizon H.

p(r) =E

H
2 : t—1

Y 7";‘71_,5']
t=1

@ Let 7 (s, a) denote the probability of action a in state s for
randomized policy 7. Let D™ (7) denote the probability distribution
of a trajectory (state-action sequence)

T = (s1,a1,%2,...,an—1,sy) Of states on starting from state s; and
following policy 7. That is,

H—1
D™(1) == H 7 (si,ai) P (sis @iy Siv1)
i=1

5/71

Finite horizon MDP

For finite horizon MDP (S, A, s1, P, R, H), let R(7) be the total reward
for an sample trajectory 7, on following 7y for H steps, starting from
state s;. Then,

H—-1
Vop (m9) = E [R(7)Volog (D™ (7))] = E; |R(7) D Ve log (mg (si, ar))

=1

Proof. Let R(7) be expected total reward for an entire sample
trajectory 7, on following my for H steps, starting from states;. That is,
given a sample trajectory 7 = (s, a1, 52, ...,an—1,sg) from distribution
D,

H-1
R(T) := Z YR (51, a0)
=1

6/71

Proof of Theorem 2

Then,

p(mg) = Erprg[R(T)]

Now, (the calculations below implicitly assume finite state and action
space, so that the distribution D(7) has a finite support)

dp (mp)
00

)

0
0
7:D70 (7)>0

S D) gy les (07 RC)

7:D™6 (7)>0

E, om0 [,0?‘9 log (D™ (7)) R(r)

D™ (7)R(7)

771

Proof of Theorem 2

Further, for a given sample trajectory 7'

H-1
Vg log (D™ (Ti)) = Z Vg log (mg (sﬁ, ai)) + Vglog P (sﬁ, a, s§+1)

1
= Vylog (7r9 (si, ai))

t=1

P 1

8/71

Finite horizon MDP

@ The gradient representation given by above theorem is extremely
useful, as given a sample trajectory this can be computed only
using the policy parameter, and does not require knowledge of
the transition model P(-, -, -)! This does seem to require
knowledge of reward model, but that can be handled by
replacing R (') by R (7') = ri + 2 + ..., ¥ 2ry_1, the total of
sample rewards observed in this trajectory.

@ Since, given a trajectory 7, the quantity D™ (7) is determined,
and E[R(7)|7] = R(7)

7 [R(7) Vg log (D™ (7))]

r [R(T)Vg log (D™ (7'))}
H—1

+ |R(T) Z Ve log (mg (s;, ar))

=1

VQp (7['9) E
E

I
=

9/71

Unbiased estimator of gradient from samples

@ From above, given sample trajectories 7/, i = 1,...,m, an
unbiased estimator for gradient Vyp (mp) is given as:

) L . .
g = - ZR (T’) Vg log (D”G (T’))
H—-1

LS R () S Valog (ma ()

i=1 =1

10/71

Baseline

@ Note that for any constant b (or b that is conditionally
independent of sampling from 7y given 6), we have:

d B
E. [bag log (D™ (7)) |6, sl] /09 (D bae /D (1) =0

@ Therefore, choosing any 'baseline’ b, following is also an
unbiased estimator of the Vyp (mp):

H— 1

E’”: N — b Vg log (7r9 (s,,a,))

i=1 t=1

11/71

Baseline

@ Or, more generally, one could even use a state and time
dependent baseline b, (si) conditionally is independent of
sampling from 7, given si, 6, to get estimator:

g:;i (R (') — by (s1)) Vo log (mo (i) (1)

@ Below we show this is unbiased. The expectations below are
over trajectories (si,ai,...,an—1,su), Where a, ~ w (s, -), given
s¢. For any fixed 6, 1, the baseline b; (s;) |s; needs to be
deterministic or independent of «|s,. For simplicity we assume it
is deterministic.

12/71

Baseline

H—1
0
ET Z bt (Sl) 870 log (7r9 (sl7at)) ’07*91]

= E Z]E [bt St) log (o (s1,ar)) |st] |9,s1]
= E Zb, (s7) [-log (7o (51, a4))|s,]]0,s1]
= E Zb, St ZTI‘@ Sty a log(we (7,))|0,s1]

1
= E th(st)zae_ﬂe(sna)waﬁ]
L =1 a J

13/71

Baseline

@ An example of such state dependent baseline b,(s), given s and
9, is Vi ,(s), i.e., the value of policy 7y, starting from state s at
time r. We will see later that such a baseline is useful in reducing
the variance of gradient estimates.

14/71

Vanilla policy gradient algorithm

Initialize policy parameter 6, and baseline.
In each iteration,

@ Execute current policy 7y to obtain several sample trajectories 7/,
i=1,...,m.

@ Use these sample trajectories and chosen baseline to compute
the gradient estimator g as in (1)

@ Update 0 < 6 + ag

@ Update baseline as required.

Above is essentially same as the REINFORCE algorithm introduced
by [Williams, 1988, 1992].

15/71

Softmax policies

@ Consider policy set parameterized by 6 € R? such that given
s € S, probability of picking action a € A is given by:
e

Za/EA eeTqu/

where each ¢, is an d-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of policy space
called softmax policies. Here,

mo(s,a) =

Vy log (7T9(S Cl = Gsa — (Z ¢sa’7r9 Sy da) = Gsa — Ea’ww(s) [qbsa’]

a' €A

16/71

Gaussian policy for continuous action spaces

@ In continuous action spaces, it is natural to use Gaussian
policies. Given state s, the probability of action « is given as:

mo(s,a) =N (qb(s)TH,Uz)

for some constant o. Here ¢(s) is a feature representation of s.
Then,

—(a—0T(s))* To(s) —a
Vo log (mg(s,a)) = Vg (a =07 6(s)) = © ¢(2))tb(s)

202 o

17/71

Outline

© Actor-critic methods

18/71

Actor-critic methods

@ Actor-only methods (vanilla policy gradient) work with a
parameterized family of policies.

@ The gradient of the performance, with respect to the actor
parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.

@ A possible drawback of such methods is that the gradient
estimators may have a large variance.

@ As the policy changes, a new gradient is estimated

independently of past estimates (by sampling trajectories).

@ There is no "learning”, in the sense of accumulation and
consolidation of older information.

19/71

Actor-critic methods

@ Critic-only methods (e.g., O-learning, TD-learning) rely
exclusively on value function approximation and aim at learning
an approximate solution to the Bellman equation, which will then
hopefully prescribe a near-optimal policy.

@ Such methods are indirect in the sense that they do not try to
optimize directly over a policy space.

@ A method of this type may succeed in constructing a "good"
approximation of the value function, yet lack reliable guarantees
in terms of near-optimality of the resulting policy.

20/71

Actor-critic methods

@ Actor-critic methods aim at combining the strong points of
actor-only and critic-only methods, by incorporating value
function approximation in the policy gradient methods.

@ We already saw the potential of using value function
approximation for picking baseline for variance reduction.

@ Another more obvious place to incorporate Q-value
approximation is for approximating Q-function in the policy
gradient expression. Recall, by policy gradient theorem:

Vogp (71‘9) = Z dr (S)EaNW(s) [(QWG (S, Cl) — b (S)) Vg log (71'9 (S7 a))]

N

for any baseline ™ (-).

21/71

Theorem 1 (Sutton et al. [1999])

If function f,, is compatible with policy parametrization ¢ in the sense
that for every s, a,

1

mo(s,a)

Vfu(s,a) = Vomo(s,a) = Vglog (my(s,a))

And, further we are given parameter w which is a stationary point of
the following least squares problem:

min By gmo gy (s [(Q7(5,@) = b(530) = fuls,))’]

where b(-; 0) is any baseline, which may depend on the current policy
mg. Then,

Vaop (7['9) = Eygmo Eaeﬂ'g (s) [fw (57 a)Vg log (71—6’ (S, a))]

That is, function approximation f,, can be used in place of QO-function
to obtain gradient with respect to 6.

22/71

Proof of Policy gradient theorem

(Here, we abuse the notation and use E;.,m [x] as a shorthand for
>-,.d™(s)x. This is not technically correct in the discounted case since
in that case d™ (s) = E, [>_7°, Pr (s, = s;m,51)7'~'], which is not a
distribution. In fact in discounted case, (1 — v)d™ is a distribution.)
Proof. Given 0, for stationary point w of the least squares problem:

Es~d’*0,a~7r9(s,-) [(QWQ (S, a) - b(s; 0) _fw(s’a» vwﬁu(sv Cl)] =0

Substituting the compatibility condition:

E‘swd”G ,a~g(s,) (QWQ (S, a) - b(s; 0) *fw (S, a)) Veﬁe(s’ a)ﬂ_

23/71

Proof of Policy gradient theorem

Or,
Zd’re va s, a) ,a) — b(s;0) — fi,(s,a)) =0

Since b(s;6) >, Vomg(s,a) =0
Zdw" ZV@T(@ (s,a) ,a) — fu(s,a)) =0

using this with the policy gradient theorem, we get

Vop (mp) Z d™ (s Z Vomo(s,a)fu(s,a)

24/71

Example: softmax policy

@ Consider policy set parameterized by 8 such that given s € S,
probability of picking action a € A is given by:
e

Za’e \ PUAR

where each ¢, is an ¢-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of parameterization.
Here,

mo(s,a) =

Vomo(s,a) = ¢samo(s,a) (Z ¢sa/7T9 s,d) mo(s,a)

a’'eA

25/71

Example: softmax policy

@ Meeting the compatibility condition in Theorem 1 requires that

Vifu(s,a) =

V@?TQ(S,CI) = @sa — Z Gsar o (S’a/)

a’eA

1
o (S, (1)

@ A natural form of f,,(s, a) satisfying this condition is:

ful(s,a) = w! <¢sa - Z (Z)Sbﬂg(s, b))

beA

@ Thus f,, must be linear in the same features as the policy, except
normalized to be mean zero for each state. In this sense it is
better to think of f,, as an approximation of the advantage
function, A™(s,a) = Q™ (s,a) — V™ (s), rather than Q™.

26/71

Example: Gaussian policy for continuous action
spaces

@ In continuous action spaces, it is natural to use Gaussian policy.
Given state s, the probability of action a is given as:

mo(s,a) = N (6(5)76,0%)
for some constant 0. Here ¢(s) is a feature representation of s.
Then, compatibility condition for £, (s, a):

—(a—0T¢(s)) To(s) —a
Vot (5.) = Volog (mo(s,a)) = Vo0 20 (070) —a)

202 o

@ For f,, to satisfy this, it must be linear in w, e.g.,

fuls,a) = 0= Ty

27/71

Policy iteration algorithm with function approximation

Let f,,(-, -) be such that Vf,,(s,a) = Vglogmy(s,a) for all w, 6, s, a.
Initialize 6, 7 := my,. Pick step sizes oy, o,
In iterationk =1,2,3,...,

@ Policy evaluation: Find wy = w such that

B Barr(s) [(Q™ (5,) — bi(s) = fu(s,a)) Vo log (mi(s, a))] = 0

(Here, d™ is not normalized to 1, and sums to 1/(1 —7).)
@ Policy improvement:

Op+1 < Ok + auEgam EaNﬂk(s) [fw (S, a)VH log (7Tk(S, a))]

A similar algorithm appears in Konda and Tsitsiklis [1999].

28/71

Convergence Guarantees

Following version of convergence guarantees were provided by
Sutton et al. [1999] for infinite horizon MDPs (average or discounted).

Theorem 2 (Sutton et al. [1999])
Given oy, an, ..., such that

T T
lim E oy = 00, lim E oF < 00
T—o0 — T—o0 —

and maxg 4 azggi(gj’“) < oo. Then, for 0;,6,, ..., obtained by the

above algorithm,

Jim Vop (8)]g, =0

29/71

Pseudocode: Vanilla Policy Gradient Algorithm

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters 6y, initial value function parameters ¢

2 fork=0,1,2,...do

Collect set oftrajectorles Dy = {7} by running policy 7y = (6;) in the environment.

Compute rewards-to-go ;.

Compute advantage estimates, A, (using any method of advantage estimation) based on the current value function V-

o gk wh

Estimate policy gradient as

Z Z Vg logmy Hr|51)‘9k Ar

Dl TEDy 1=0
7: Compute policy update, either using standard gradient ascent,
Ok1 = O + oudy,

or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:

T

b1 = argmin —— S S (Vy(s) — &),

¢ "D“T TEDy 1=0

typically via some gradient descent algorithm.
9: end for

30/71

Outline

© TRPO and PPO

31/71

Trust Region Policy Optimization (John Schulman, etc)

@ Assume start-state distribution d, is independent with policy
@ Total expected discounted reward with policy =

= E<[)_7'r(s)]
t=0
@ Advantage function: A, (s,a) = Qx(s,a) — Vz(s)
@ Between any two different policy 7 and 7

n() = n(m) + Ex (> An (51, a1)]
=0

+ Z ZP s[= S|7T Z (a|s)’7tA7T(Sv a)

=0 s

RIS ILTRIE) e

s =0

(m +Zd% s Zﬂ' als)Ax(s,a).

32/71

Trust Region Policy Optimization

@ Find new policy 7 to maximize n(7) — n() for given =, that is
maxn)+ Zd~ Z (al$)Ax(s,a)
@ For simpleness, maximize the approximator
)+ Z d(Z (al$)Ar(s,a)
@ Parameterize the policy w(als) := mg(als)

Lz, old (7T9 7T9 old + Z d’”’ old Z 7T9 a| o, Id)

33/71

Why L,, (m)?

@ A sufficiently small step 6,,; — 6 improves Ly, (mp) also improves 7

Lﬂ@otd (ﬂ-aﬂld) :7](7'1'9”,4),
VGL“H (79)‘0:9”,“, :V0n(79)|0:90ld.

old

@ Lower bounds on the improvement of n

where
€ =max |Ea~7r9wA7T9“M (s,a)]

« :D'#\%X(WG(»(/HWGMW) = InSaXDTV(ﬂ-@o/d("S)'|7T0npw('|s))

34/71

Lower bound
@ TV divergence between two distribution p, g (discrete case)

Drv(pllq) = Z Ip(X

@ KL divergence between two distribution p, g (discrete case)

(X)

Dxi(pllq) = ZP log X)

@ (Drv(pllg))? < Dxwu(pllg) (Pollard(2000),Ch.3)

@ Thus obtain a lower bound

N(T0p00) = Lrng,, (T6,0,) —

where

35/71

Practical algorithm
@ The penalty coefficient (12_5—3)2 is large in practice, which yields small
update
@ Take a constraint on the KL divergence, i.e., a trust region constraint:

mQaX LTr9(1d (7T9)

0

s.t. D%Zx(ﬂ‘g()m”ﬂg) <9

@ A heuristic approximation
mg‘X Lﬂ'eam (71'9)

B 00t
s.t. Dy (7o

old 779) <90

where

— P
Dy, (0,||70) = Eny,, (Dir(76,,(-]5)| o (-]s))

36/71

TRPO

@ The objective and constraint are both zero when 6 = 6;.
Furthermore, the gradient of the constraint with respect to 6 is
zero when 6 = 6,.

@ The theoretical TRPO update isn’t the easiest to work with, so
TRPO makes some approximations to get an answer quickly. We
Taylor expand the objective and constraint to leading order
around 6:

Lo, (0) ~ " (0 — 6)

Dk (0¢]|0) ~ %(9 —00)TH(9 — 6;)

resulting in an approximate optimization problem,
Ok+1 = arg max " (0 —6)

s.t. %(9 — 00 TH(O - 6;) < 6.

37/71

TRPO

@ By happy coincidence, the gradient g of the surrogate advantage
function with respect to 6, evaluated at § = 6,, is exactly equal to
the policy gradient, VyJ(mg)

@ This approximate problem can be analytically solved by the
methods of Lagrangian duality, yielding the solution:

26

H_lg.
gTH g

Orr1 = Or +

@ TRPO adds a modification to this update rule: a backtracking line
search,

-1
gTH—lg 8

Or+1 = 01 + o

where « € (0, 1) is the backtracking coefficient, and j is the
smallest nonnegative integer such that 7y, , satisfies the KL

constraint and produces a positive surrogate advantage.
38/71

TRPO

@ computing and storing the matrix inverse, H~', is painfully
expensive when dealing with neural network policies with
thousands or millions of parameters. TRPO sidesteps the issue
by using the ‘conjugate gradient’ algorithm to solve Hx = g for
x = H™'g, requiring only a function which can compute the
matrix-vector product Hx instead of computing and storing the
whole matrix H direcitly.

Hx =V, ((V@DKL(Hk\|9))Tx>

39/71

Pseudocode: TRPO

Algorithm 2 Trust Region Policy Optimization

1: Input: initial policy 6y, initial value function ¢, KL-divergence limit &, backtracking coefficient o

2 fork =0,1,2,... do

Collect set oftrajectorles Dy = {7} by running policy m; = m(6;) in the environment.

Compute rewards-to-go R;.

Compute advantage estimates, A, (using any method of advantage estimation) based on the current value function V(Pk'

Estimate policy gradient as
1 I .
a=—— > > Y log mg (arsi)lg, Ar-
1Dkl 2D, i=0

7: Use the conjugate gradient algorithm to compute &, ~ Fl;‘gk, where f, is the Hessian of the sample average KL-
divergence.

8: Update the policy by backiracking line search with 6,1 = 6; + of X, Where j is the smallest value which

TF/
&

improves the sample loss and satisfies the sample KL-divergence constraint.
9: Fit value function by regression on mean-squared error:

T
@r41 = arg min Z Z Vd)(f,)—R[) s
FoT PP

typically via some gradient descent algorithm.
10: end for

40/71

Proximal Policy Optimization (PPO)

@ PPO is motivated by the same question as TRPO: how can we
take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we
accidentally cause performance collapse? Where TRPO ftries to
solve this problem with a complex second-order method, PPO is
a family of first-order methods that use a few other tricks to keep
new policies close to old.

@ PPO-Penalty approximately solves a KL-constrained update like
TRPO, but penalizes the KL-divergence in the objective function
instead of making it a hard constraint, and automatically adjusts
the penalty coefficient over the course of training so that it's
scaled appropriately.

@ PPO-Clip doesn’t have a KL-divergence term in the objective
and doesn’t have a constraint at all. Instead relies on specialized
clipping in the objective function to remove incentives for the new
policy to get far from the old policy.

a41/71

Key Equations

@ PPO-clip updates policies via

Ok+1 = argmax E [L(s,a,0k,0)],

7] 5,anvTe,

typically taking multiple steps of (usually minibatch) SGD to
maximize the objective. Here L is given by

L(s,a,6,0) = min (M(as)A”k (s,a), clip (mo(als) Jd—e 1+ e) A% (S,a)> ;

o, (als) o, (als)

in which € is a (small) hyperparameter which roughly says how
far away the new policy is allowed to go from the old.

@ https:
//openai.com/research/openai-baselines-ppo

42/71

https://openai.com/research/openai-baselines-ppo
https://openai.com/research/openai-baselines-ppo

@ This is a pretty complex expression, and it’s hard to tell at first
glance what it’s doing, or how it helps keep the new policy close
to the old policy. As it turns out, there’s a considerably simplified
version of this objective which is a bit easier to grapple with

L(s,a, 0k, 0) = min (::((c;|?)147r9k (s,a), g(e,A™% (s,a))) ,

where ()
[(1+eA A>0
g(g’A){ (1—e)A A<O.

@ To figure out what intuition to take away from this, let’s look at a
single state-action pair (s, a), and think of cases.

43/71

Pseudocode: PPO

Algorithm 3 PPO-Clip

1: Input: initial policy parameters 6y, initial value function parameters ¢
2:fork=0,1,2,...do

3. Collect set oftrajectorles Dy = {7} by running policy 7y = 7 (6y) in the environment.
4. Compute rewards-to-go R;.
5: Compute advantage estimates, A, (using any method of advantage estimation) based on the current value function V-
6: Update the policy by maximizing the PPO-Clip objective:
01 = argmax —— i (o (arlst) ATk (s1,ar), g(e, A" 0% (s;,a))>
k1 = @ a — St>ar), s Sty dr s
o ‘Dk‘T TEDy 1= ”ek(“z\sr)
typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:
T
P41 = arg min —— Z Z Ve (s1) — R, s
@ "Dk‘T TEDy =0
typically via some gradient descent algorithm.
8: end for

44/71

Reinforcement Learning from Human Feedback

RLHF: Nisan Stiennon, etc, Learning to summarize with human
feedback, NeurlPS 2020

© Collect human feedback © Train reward model © Train policy with PPO
A Reddit post is One post with Anew post is
sampled from two summaries 'sampled from the —
the Reddit judged by a dataset.
TL;DR dataset. human are fed

to the reward

l

The policy 11
Various policies The reward generates a
are used to

sample a set of

summaries.

A

el - |

Two summaries
are selected for
evaluation.

model summary for the
calculates a Ppost.
reward r for

i

each summary.
I

I k

A human judges
which is a better
summary of the
post.

on the rewards L areward for the

and human label, ., _ _ summary.

i uoad 10 loss Sloa(aRr)

update the

reward model. T The reward is J
used to update

the policy via
PPO.

The loss is b I ’ The reward
calculated based ; model calculates

s better than k” 5 is better than k”

InstructGPT

provide detailed, accurate, and instructive responses to user queries.

Step1
Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our
prompt dataset.

\
A labeler
demonstrates the @
desired output
) V4
behavior.

Some people went

to the moon.

This datais used

to fine-tune GPT-3 ./’/\?.;{\.
with supervised \}5&{/
learning. 2

Explain the moon
landing to a 6 year old

Step 2

Collect comparison data,
and train a reward model.

A prompt and

several model

Explain the moon
outputs are landing to a 6 year old
sampled.

%{_4
A labeler ranks

the outputs from @
best to worst.

This data is used aY
to train our ey
reward model. Ny

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

i ™
is sampled from A
the dataset. about frogs
|
Y
The policy o
enerates 25
B ./)?.ﬂ.
an output. W
|
\l

Once upon a time.

\

The reward model a
— O

N4
the output.
The reward is
used to update T
the policy
using PPO.

-

46/71

ChatGPT

generate human-like text based on the input it’s given, and it can
carry out a wide-ranging conversation on various topics.

Step1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

>
x/
Explain reinforcement

learning to a 6 year old.

'

@©

2

We give treats and

punishments to teach...

/

SFT.
o0
e e e

7

¢z
BEEE

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

Alabeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

~

~/
Explain reinforcement
learning to a 6 year old.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

e

Write a story
about otters.

Once upon atime..

ar7mn

Outline

@ MCTS and AlphaGo Zero

48/71

Monte-Carlo Tree Search (MCTS)

MCTS is a recent algorithm for sequential decision making

MCTS is a versatile algorithm (it does not require knowledge
about the problem)

especially, does not require any knowledge about the Bellman
value function

stable on high dimensional problems

it outperforms all other algorithms on some problems (difficult
games like Go, general game playing, ...)

49/71

MCTS

Problems are represented as a tree structure:
@ blue circles = states
@ plain edges + red squares = decisions
@ dashed edges = stochastic transitions between two states

} Current state (root)

Explored decisions

t1

} Stochastic transitions

) } Explored states

t2

50/71

Main steps of MCTS

..

selection expansion simulation propagation

tn—»i

51/71

Main steps of MCTS

Starting from an initial state:
@ Selection: select the state we want to expand from

© Expansion: One (or more) child nodes are added to expand the
tree, according to the available actions.

© Simulation: A simulation is run from the new node(s) according
to the default policy (pick actions randomly) to produce an
outcome.

© Back-propagation of some information:
@ N(s,a) : number of times decision a has been simulated in s
e N(s) : number of time s has been visited in simulations

@ QO(s,a) : mean reward of simulations where a was chosen in s

52/71

Main steps of MCTS

1. selection 2. expansion 3. simulation 4. propagation
@
@
th—> - - -> — tn+l

© atn

& , 6

X horizon

The selected decision
a,, = the most visited decision from the current state (root node)

53/71

Selection step

How to select the state to expand ?

54/71

How to select the state to expand ?

argmax scoreuws(s.a)

The selection phase is driven by Upper Confidence Bound (UCB):

log(2 + N(s))
Scoreucb(s, a) = Q(S, Cl) + 2—|—N—(S,Cl)
1

2

@ mean reward of simulations including action a in state s
@ the uncertainty on this estimation of the action’s value

55/71

How to select the state to expand ?

The selection phase is driven by Upper Confidence Bound (UCB):

B log(2 + N(s))
Scoreucb(s, Cl) = Q(S, a) + 2—|—N—(s,a)
1

2

The selected action:

a* = arg max SCOre|,qp (s, a)

55/71

Example: Back-propagation

Selection Expansion Simulation Backpropagation

(22) (2) (2) ()
@ 0 @ 0 @ 06 @ @
OO OOCOD O0RCOD OQTO
® O ®® ® @ @@
@ @ @

0/1

56/71

AlphaZero

2018/12/7, AlphaZero at “Science”. It demonstrates learning chess,
shogi and go, tabula rasa without any domain-specific human
knowledge or data, only using self-play. The evaluation is performed

against strongest programs available.

A
Chess Shogi

AlphaZero vs. EImo

Go
AlphaZero vs. AGO

2\H BT T T HBHE

%% | %% |%| %%

ES)
EJE

555555555

E[HE|R| 8| E |2 |REF &

W:29.0% D:70.6% L:0.4% W:842% D:22% L:13.6%

o | I
ol I

W: 2.0% D:97.2% L:0.8% W:98.2% D:0.0% L: 1.8%

W: 68.9% L:31.1%

W:53.7% L:46.3%

Figure 2 of the paper "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al

57/71

AlphaZero

@ AlphaZero uses a neural network predicting (p(s), v(s)) = f(s, 6)
for a given state s

e p(s) is a vector of move probabilities
@ v(s) is expected outcome of the game in range [—1, 1].

@ Unlike the standard MCTS, Alpha Go Zero does not use a
default policy to perform a rollout in order to achieve an estimate
of the value of a state.

@ By a sequence of simulated self-play games, the search can
improve the estimate of p and v, and can be considered a
powerful policy evaluation operator given a network f predicting
policy p and value estimate v, MCTS produces a more accurate
policy m and better value estimate w for a given state:

(m(s), w(s)) <= MCTS(p(s), v(s).f) for (p(s), v(s)) = f(s,0).

58/71

AlphaZero: MCTS

MCTS keeps a tree of currently explored states from a fixed root
state. Each node corresponds to a game state and to every non-root
node we got by performing an action a from the parent state. Each
state-action pair (s, a) stores the following set of statistics:

@ visit count N(s, a)
@ total action-value W(s, a)

@ mean action-value Q(s,a) = W(s,a)/N(s,a), which is not stored
explicitly

@ prior probability P(s,a) of selecting action a in state s

59/71

AlphaZero: UCB

@ Each simulation starts in the root node and finishes in a leaf
node s;. In a state s, an action is selected using a variant of
PUCT algorithm as

a, = argmax Q(s;,a) + U(sy,a)
a
where

U(s,a) = C(s)P(s,a)

Chase

with C(s) = log <71+N(S)+C”““"> + Cinit-

@ In the Alphazero paper, ciyir = 1.25 and cpgse = 19652.

60/71

AlphaZero

When reaching a leaf node s,
@ evaluate it by the network, generating (p,v)

@ add all its children with N = W = 0 and the prior probability p,

@ in the backward pass for all r < L, we update the statistics in
nodes by performing
@ N(s;,a;) < N(s;,a,) + 1, and
@ W(s;,a;) < W(s;,a;) + v, depending on the player on turn.

a Select b Expand and evaluate € Backup d Play
L Repeat)
it i Y i
L ANIY YN oV - /%
Vﬁ Vﬁ Vﬁ Vﬁ Al A\
020 h,010 /N | PR ANA A

61/71

AlphaZero

@ The MCTS runs usually several hundreds simulations in a single
tree. The result is a distribution proportional to exponentiated
visit counts N (s, a)'/7 using a temperature (r = 1 is mostly
used), together with the predicted value function.

@ The next move is chosen as either:
e proportional to visit counts N (s, -)'/™

71—moi(a) ~ N(Sroota ')1/T

e deterministically as the most visited action

Troot — arg In[?,X N(sruof7 Cl)

@ During self-play, the stochastic policy is used for the first 30
moves of the game, while the deterministic is used for the rest of
the moves. (This does not affect the internal MCTS search, there

we always sample according to PUCT rule.)
62/71

AlphaZero: Loss function

@ The network is trained from self-play games.

@ A game is played by repeatedly running MCTS from a state s,
and choosing a move a, ~ 7, until a terminal position st is
encountered, which is then scored according to game rules as
z€{-1,0,1}.

@ Finally, the network parameters are trained to minimize

L= (z—v)*+7 logp+c||?

e a mean squared error between the predicted outcome v and the
simulated outcome z

e a crossentropy/KL divergence for the action distribution, i.e., the
similarity of the policy vector p and the search probabilities =

o L2 regularization

63/71

AlphaGo Zero

How AlphaGo Zero chooses its next move

The current gome state (=)
Each potenticl action from a game
state stores four numbers:

N The number of times action a has
been taken from state s

W The total value of the next state
The mean value of the next state

The prior probability of selecting
action a

leof node

Move probabilifies

The current gome stote (=)

64/71

AlphaGo Zero

First. run the following simulation
1.600 times_.

Start at the root node of the tree (the current game state)

1. Choose the action that maximises

Q+U
e ™~ A Function of P and N that
- increases if an action hasn'+ been
i ot Roseret of explored much. relative to the other
actions. or if +he prior probabirty of
the action is high

Early on in the simulation. U dominates (more exploration).
but later: Q is more important (less exploration)

2. Continue until a leaf node is reached

The game state of the leaf node is passed into the neural
network. which outputs predictions about +wo things:

p Move probabilities
v Value of the state (for the current player)

The move probabilities p are attached to the new feasible
actions from the leaf node

3. Backup previous edges
Each edge that was traversed to get to the leaf node is updated

as follows:
N — N +1
W — W + v
Q = W/N

65/71

AlphaGo Zero

.then select a move
After 1,600 smulations, the move can either be chosen:

Tunatgmeil Other points
= The sub-tree from the chosen move is refained
N800 2 for calculating subsequent moves
Deterministically (for competitive ploy) is600

Choose the action from the current state with greatest N N:200

= The rest of the treeis discanded
Stochastically (for exploratory ploy)
Choose the action from the curnent state from the distrbution
T[N]AF Chone Hismore et
~ 1fsfchase, sl fronctegrcl dsfbon
where T is a tempenatune panameter controling exploration TU sihprbaites 05, 0125, 0.375)

66/71

AlphaGo Zero

(SELF PLAY A

Create a 'training set’

The best current player plays 25,000 games against itself
See MCTS section to understand how AlphaGo Zero selects each move

At each move, the following information is stored

T Y

The game state The search probabilities The winner
(see "What is a Game (from the MCTS) (+1if this player won, -1if
State section’) this player lost - added once

the game has finished) J

67/71

AlphaGo Zero

"WHAT IS A ‘GAME STATE'

1if black stone here

0 if black stone not here

Current position of 19 x 19 x 17 stack
black’s stones

..and for the previous
7 time periods

Current position of
white's stones

..and for the previous

All1if black to play 7 time periods

All O if white to play

k This stack is the input to the deep neural network J

68/71

AlohaGo Zero

The value head

game ok for currant player
e

Fuity comected layer

Rectifiar ron-ineartty

Futy connected layer

Rectfier r]x-h-uavry -

1 - -
Beteh T,,,.m -
1 ettt b -

et

A convolutional layer
- —— Ll RS
§ s - .

Batch normatsation

it (323)

ot

The network learns “tabula rasa’ (From a blank slate)
At no point is the network trained using human knowledge or expert moves

U0 sy

The network

THE DEEP NEURAL NETWORK ARCHITECTURE

How AlphaGo Zero assesses new positions

The policy head

19219 + 1 (For posed
oo log* probobans.

Fusby conmacted layer

s Im —a -

1 - =
Bateh normetsaton

1 .
e =

T

Tt

A residual layer
- .

| &= =

S comaction

256 comhutiondt
s 3a3)

69/71

AlphaGo Zero

Optimise the network weights

A TRAINING LOOP
Sample a mini-batch of 2048 positions from the last 500,000 games

Retrain the current neural network on these positions
— The game states are the input (see 'Deep Neurd Network Architecture’)

Loss function
Compares predictions from the neural network with the search probabilities and actual winner

p Cross-entropy

PREDICTIONS + ACTUAL

v Mean-squared error Y

Regularisation

(RETRAIN NETWORK R

k After every 1,000 training loops, evaluate the network J

70/71

AlphaGo Zero

GVALUATE NETWORK

Test to see if the new network is stronger

Play 400 games between the latest neural network and the current best

neural network

Both players use MCTS to select their moves, with their respective neural
networks to evaluate leaf nodes

Latest player must win 55% of games to be declared the new best player

Y ¥

_

~

71/

	Policy gradient methods
	Finite horizon MDP

	Actor-critic methods
	TRPO and PPO
	MCTS and AlphaGo Zero

