
Policy Gradient Methods

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

Acknowledgement: this slides is based on Prof. Shipra Agrawal’s lecture notes

1/71

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html

2/71

Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero

3/71

Policy gradient methods

In Q-learning function approximation was used to approximate
Q-function, and policy was a greedy policy based on estimated
Q-function. In policy gradient methods, we approximate a
stochastic policy directly using a parametric function
approximator.
More formally, given an MDP (S,A, s1,R,P), let πθ : S→ ∆A

denote a randomized policy parameterized by parameter vector
θ ∈ Rd For a scalable formulation, we want d << |S|.
For example, the policy πθ might be represented by a neural
network whose input is a representation of the state, whose
output is action selection probabilities, and whose weights form
the policy parameters θ. (The architecture for such a [deep]
neural network is similar to that for a multi-label classifier, with
input being a state, and labels being different actions. The
network should be trained to predict the probability of different
actions given an input state).

4/71

Policy gradient methods

For simplicity, assume that πθ is differentiable with respect to θ,
i.e. ∂πθ(s,a)

∂θ exists. This is true for example, if a neural network
with differentiable activation functions is used to define πθ. Let
ρ (πθ) denote the gain of policy πθ.This may be defined as long
term average reward, long term discounted reward or total
reward in an episode or finite horizon. Therefore, solving for
optimal policy reduces to the problem of solving

max
θ

ρ (πθ)

In order to use stochastic gradient descent algorithm for finding a
stationary point of the above problem, we need to compute (an
unbiased) estimate of gradient of ρ (πθ) with respect to θ.

5/71

Finite horizon MDP

Here performance measure to optimize is total expected reward
over a finite horizon H.

ρ(π) = E

[
H∑

t=1

γt−1rt|π, s1

]

Let π(s, a) denote the probability of action a in state s for
randomized policy π. Let Dπ(τ) denote the probability distribution
of a trajectory (state-action sequence)
τ = (s1, a1, s2, . . . , aH−1, sH) of states on starting from state s1 and
following policy π. That is,

Dπ(τ) :=

H−1∏
i=1

π (si, ai)P (si, ai, si+1)

6/71

Finite horizon MDP

Theorem 2
For finite horizon MDP (S,A, s1,P,R,H), let R(τ) be the total reward
for an sample trajectory τ , on following πθ for H steps, starting from
state s1. Then,

∇θρ (πθ) = Eτ [R(τ)∇θ log (Dπθ(τ))] = Eτ

[
R(τ)

H−1∑
t=1

∇θ log (πθ (st, at))

]

Proof. Let R(τ) be expected total reward for an entire sample
trajectory τ , on following πθ for H steps, starting from states1. That is,
given a sample trajectory τ = (s1, a1, s2, . . . , aH−1, sH) from distribution
Dπθ ,

R(τ) :=
H−1∑
t=1

γt−1R (st, at)

7/71

Proof of Theorem 2

Then,
ρ (πθ) = Eτ∼Dπθ[R(τ)]

Now, (the calculations below implicitly assume finite state and action
space, so that the distribution D(τ) has a finite support)

∂ρ (πθ)

∂θ
=

∂

∂θ
Eτ∼Dπθ [R(τ)]

=
∂

∂θ

∑
τ :Dπθ (τ)>0

Dπθ(τ)R(τ)

=
∑

τ :Dπθ (τ)>0

Dπθ(τ)
∂

∂θ
log (Dπθ(τ))R(τ)

= Eτ∼Dπθ

[
∂

∂θ
log (Dπθ(τ))R(τ)

]

8/71

Proof of Theorem 2

Further, for a given sample trajectory τ i.

∇θ log
(
Dπθ

(
τ i)) =

H−1∑
t=1

∇θ log
(
πθ
(
si

t, ai
t
))

+∇θ logP
(
si

t, ai
t, si

t+1
)

=

H−1∑
t=1

∇θ log
(
πθ
(
si

t, ai
t
))

9/71

Finite horizon MDP

The gradient representation given by above theorem is extremely
useful, as given a sample trajectory this can be computed only
using the policy parameter, and does not require knowledge of
the transition model P(·, ·, ·)! This does seem to require
knowledge of reward model, but that can be handled by
replacing R

(
τ i
)

by R̂
(
τ i
)
= r1 + γr2 + . . . , γH−2rH−1, the total of

sample rewards observed in this trajectory.
Since, given a trajectory τ , the quantity Dπθ(τ) is determined,
and E[R̂(τ)|τ] = R(τ)

∇θρ (πθ) = Eτ [R(τ)∇θ log (Dπθ(τ))]

= Eτ

[
R̂(τ)∇θ log (Dπθ(τ))

]
= Eτ

[
R̂(τ)

H−1∑
t=1

∇θ log (πθ (st, at))

]

10/71

Unbiased estimator of gradient from samples

From above, given sample trajectories τ i, i = 1, . . . ,m, an
unbiased estimator for gradient ∇θρ (πθ) is given as:

ĝ =
1
m

m∑
i=1

R̂
(
τ i)∇θ log

(
Dπθ

(
τ i))

=
1
m

m∑
i=1

R̂
(
τ i) H−1∑

t=1

∇θ log
(
πθ
(
si

t, ai
t
))

11/71

Baseline

Note that for any constant b (or b that is conditionally
independent of sampling from πθ given θ), we have:

Eτ

[
b
∂

∂θj
log (Dπθ(τ)) |θ, s1

]
= b

∫
τ

∂

∂θj
(Dπθ(τ)) = b

∂

∂θj

∫
τ

Dπθ(τ) = 0

Therefore, choosing any ’baseline’ b, following is also an
unbiased estimator of the ∇θρ (πθ):

ĝ =
1
m

m∑
i=1

H−1∑
t=1

(
R̂
(
τ i)− b

)
∇θ log

(
πθ
(
si

t, ai
t
))

12/71

Baseline

Or, more generally, one could even use a state and time
dependent baseline bt

(
si

t
)

conditionally is independent of
sampling from πθ given si

t, θ, to get estimator:

ĝ =
1
m

m∑
i=1

H−1∑
t=1

(
R̂
(
τ i)− bt

(
si

t
))
∇θ log

(
πθ
(
si

t, ai
t
))

(1)

Below we show this is unbiased. The expectations below are
over trajectories (s1, a1, . . . , aH−1, sH), where at ∼ π (st, ·), given
st. For any fixed θ, t, the baseline bt (st) |st needs to be
deterministic or independent of at|st. For simplicity we assume it
is deterministic.

13/71

Baseline

Eτ

[
H−1∑
t=1

bt (st)
∂

∂θj
log (πθ (st, at)) |θ, s1

]

= E

[
H−1∑
t=1

E
[

bt (st)
∂

∂θj
log (πθ (st, at)) |st

]
|θ, s1

]

= E

[
H−1∑
t=1

bt (st)E
[
∂

∂θj
log (πθ (st, at)) |st

]
|θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∑

a

πθ (st, a)
∂

∂θj
log (πθ (st, a)) |θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∑

a

∂

∂θj
πθ (st, a) |θ, s1

]

14/71

Baseline

= E

[
H−1∑
t=1

bt (st)
∂

∂θj

∑
a

πθ (st, a) | θ, s1

]

= E

[
H−1∑
t=1

bt (st)
∂

∂θj
1 | θ, s1

]
= 0

An example of such state dependent baseline bt(s), given s and
θ, is Vπθ

H−t(s), i.e., the value of policy πθ, starting from state s at
time t. We will see later that such a baseline is useful in reducing
the variance of gradient estimates.

15/71

Vanilla policy gradient algorithm

Initialize policy parameter θ, and baseline.
In each iteration,

Execute current policy πθ to obtain several sample trajectories τ i,
i = 1, . . . ,m.
Use these sample trajectories and chosen baseline to compute
the gradient estimator ĝ as in (1)
Update θ ← θ + αĝ

Update baseline as required.
Above is essentially same as the REINFORCE algorithm introduced
by [Williams, 1988, 1992].

16/71

Softmax policies

Consider policy set parameterized by θ ∈ Rd such that given
s ∈ S, probability of picking action a ∈ A is given by:

πθ(s, a) =
eθ

⊤ϕsa∑
a′∈A eθ⊤ϕsa′

where each ϕsa is an d-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of policy space
called softmax policies. Here,

∇θ log (πθ(s, a)) = ϕsa −

(∑
a′∈A

ϕsa′πθ
(
s, a′

))
= ϕsa − Ea′∼π(s) [ϕsa′]

17/71

Gaussian policy for continuous action spaces

In continuous action spaces, it is natural to use Gaussian
policies. Given state s, the probability of action a is given as:

πθ(s, a) = N
(
ϕ(s)Tθ, σ2)

for some constant σ. Here ϕ(s) is a feature representation of s.
Then,

∇θ log (πθ(s, a)) = ∇θ
−
(
a− θ⊤ϕ(s)

)2

2σ2 =

(
θ⊤ϕ(s)− a

)
σ2 ϕ(s)

18/71

Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero

19/71

Actor-critic methods

Actor-only methods (vanilla policy gradient) work with a
parameterized family of policies.
The gradient of the performance, with respect to the actor
parameters, is directly estimated by simulation, and the
parameters are updated in a direction of improvement.
A possible drawback of such methods is that the gradient
estimators may have a large variance.
As the policy changes, a new gradient is estimated
independently of past estimates (by sampling trajectories).
There is no "learning", in the sense of accumulation and
consolidation of older information.

20/71

Actor-critic methods

Critic-only methods (e.g., Q-learning, TD-learning) rely
exclusively on value function approximation and aim at learning
an approximate solution to the Bellman equation, which will then
hopefully prescribe a near-optimal policy.
Such methods are indirect in the sense that they do not try to
optimize directly over a policy space.
A method of this type may succeed in constructing a "good"
approximation of the value function, yet lack reliable guarantees
in terms of near-optimality of the resulting policy.

21/71

Actor-critic methods

Actor-critic methods aim at combining the strong points of
actor-only and critic-only methods, by incorporating value
function approximation in the policy gradient methods.
We already saw the potential of using value function
approximation for picking baseline for variance reduction.
Another more obvious place to incorporate Q-value
approximation is for approximating Q-function in the policy
gradient expression. Recall, by policy gradient theorem:

∇θρ (πθ) =
∑

s

dπθ(s)Ea∼π(s) [(Q
πθ(s, a)− bπθ(s))∇θ log (πθ(s, a))]

for any baseline bπθ(·).

22/71

Theorem 1 (Sutton et al. [1999])
If function fω is compatible with policy parametrization θ in the sense
that for every s, a,

∇ωfω(s, a) =
1

πθ(s, a)
∇θπθ(s, a) = ∇θ log (πθ(s, a))

And, further we are given parameter ω which is a stationary point of
the following least squares problem:

min
ω

Es∼dπθ ,a∼πθ(s,)

[
(Qπθ(s, a)− b(s; θ)− fω(s, a))2

]
where b(·; θ) is any baseline, which may depend on the current policy
πθ. Then,

∇θρ (πθ) = Es∼dπθEa∈πθ(s) [fω(s, a)∇θ log (πθ(s, a))]

That is, function approximation fω can be used in place of Q-function
to obtain gradient with respect to θ.

23/71

Proof of Policy gradient theorem

(Here, we abuse the notation and use Es∼dπθ [x] as a shorthand for∑
s dπθ(s)x. This is not technically correct in the discounted case since

in that case dπθ(s) = Es1

[∑∞
t=1 Pr (st = s;π, s1) γ

t−1
]
, which is not a

distribution. In fact in discounted case, (1− γ)dπθ is a distribution.)
Proof. Given θ, for stationary point ω of the least squares problem:

Es∼dπθ,a∼πθ(s,·) [(Q
πθ(s, a)− b(s; θ)− fω(s, a))∇ωfω(s, a)] = 0

Substituting the compatibility condition:

Es∼dπθ ,a∼πθ(s,·)

[
(Qπθ(s, a)− b(s; θ)− fω(s, a))∇θπθ(s, a)

1
πθ(s, a)

]
= 0

24/71

Proof of Policy gradient theorem

Or, ∑
s

dπθ(s)
∑

a

∇θπθ(s, a) (Qπθ(s, a)− b(s; θ)− fω(s, a)) = 0

Since b(s; θ)
∑

a∇θπθ(s, a) = 0∑
s

dπθ(s)
∑

a

∇θπθ(s, a) (Qπθ(s, a)− fω(s, a)) = 0

using this with the policy gradient theorem, we get

∇θρ (πθ) =
∑

s

dπθ(s)
∑

a

∇θπθ(s, a)fω(s, a)

25/71

Example: softmax policy

Consider policy set parameterized by θ such that given s ∈ S,
probability of picking action a ∈ A is given by:

πθ(s, a) =
eθ

⊤ϕsa∑
a′∈A eθ⊤ϕsa′

where each ϕsa is an ℓ-dimensional feature vector characterizing
state-action pair s, a. This is a popular form of parameterization.
Here,

∇θπθ(s, a) = ϕsaπθ(s, a)−

(∑
a′∈A

ϕsa′πθ
(
s, a′

))
πθ(s, a)

26/71

Example: softmax policy

Meeting the compatibility condition in Theorem 1 requires that

∇ωfω(s, a) =
1

πθ(s, a)
∇θπθ(s, a) = ϕsa −

∑
a′∈A

ϕsa′πθ
(
s, a′

)
A natural form of fω(s, a) satisfying this condition is:

fω(s, a) = ω⊤

(
ϕsa −

∑
b∈A

ϕsbπθ(s, b)

)

Thus fω must be linear in the same features as the policy, except
normalized to be mean zero for each state. In this sense it is
better to think of fω as an approximation of the advantage
function, Aπ(s, a) = Qπ(s, a)− Vπ(s), rather than Qπ.

27/71

Example: Gaussian policy for continuous action
spaces

In continuous action spaces, it is natural to use Gaussian policy.
Given state s, the probability of action a is given as:

πθ(s, a) = N
(
ϕ(s)Tθ, σ2)

for some constant σ. Here ϕ(s) is a feature representation of s.
Then, compatibility condition for fω(s, a):

∇ωfω(s, a) = ∇θ log (πθ(s, a)) = ∇θ
−
(
a− θ⊤ϕ(s)

)2

2σ2 =

(
θ⊤ϕ(s)− a

)
σ2 ϕ(s)

For fω to satisfy this, it must be linear in ω, e.g.,

fω(s, a) = (θ⊤ϕ(s)−a)
σ2 ϕ(s)⊤ω

28/71

Policy iteration algorithm with function approximation

Let fω(·, ·) be such that ∇fω(s, a) = ∇θ log πθ(s, a) for all ω, θ, s, a.
Initialize θ1, π1 := πθ1 . Pick step sizes α1, α2, . . . ,.
In iteration k = 1, 2, 3, . . . ,

Policy evaluation: Find wk = w such that

Es∼dπkEa∼πk(s) [(Q
πk(s, a)− bk(s)− fω(s, a))∇θ log (πk(s, a))] = 0

(Here, dπk is not normalized to 1, and sums to 1/(1− γ).)
Policy improvement:

θk+1 ← θk + αkEs∼dπkEa∼πk(s) [fω(s, a)∇θ log (πk(s, a))]

A similar algorithm appears in Konda and Tsitsiklis [1999].

29/71

Convergence Guarantees

Following version of convergence guarantees were provided by
Sutton et al. [1999] for infinite horizon MDPs (average or discounted).

Theorem 2 (Sutton et al. [1999])
Given α1, α2, . . . , such that

lim
T→∞

T∑
k=1

αk =∞, lim
T→∞

T∑
k=1

α2
k <∞

and maxθ,s,a,i,j
∂2πθ(s,a)

∂θiθj
<∞. Then, for θ1, θ2, . . . , obtained by the

above algorithm,
lim

k→∞
∇θρ (θ)|θk

= 0

30/71

Pseudocode: Vanilla Policy Gradient Algorithm

Algorithm 1 Vanilla Policy Gradient Algorithm
1: Input: initial policy parameters θ0, initial value function parameters ϕ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Estimate policy gradient as

ĝk =
1

|Dk|

∑
τ∈Dk

T∑
t=0

∇θ log πθ(at|st)|θk
Ât.

7: Compute policy update, either using standard gradient ascent,

θk+1 = θk + αk ĝk,

or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
9: end for

31/71

Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero

32/71

Trust Region Policy Optimization (John Schulman, etc)

Assume start-state distribution d0 is independent with policy

Total expected discounted reward with policy π

η(π) = Eπ[

∞∑
t=0

γtr(st)]

Advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

Between any two different policy π̃ and π

η(π̃) = η(π) + Eπ̃[

∞∑
t=0

γtAπ(st, at)]

= η(π) +

∞∑
t=0

∑
s

P(st = s|π̃)
∑

a

π̃(a|s)γtAπ(s, a)

= η(π) +
∑

s

∞∑
t=0

γtP(st = s|π̃)
∑

a

π̃(a|s)Aπ(s, a)

= η(π) +
∑

s

dπ̃(s)
∑

a

π̃(a|s)Aπ(s, a).

33/71

Trust Region Policy Optimization

Find new policy π̃ to maximize η(π̃)− η(π) for given π, that is

max
π̃

η(π) +
∑

s

dπ̃(s)
∑

a

π̃(a|s)Aπ(s, a)

For simpleness, maximize the approximator

Lπ(π̃) = η(π) +
∑

s

dπ(s)
∑

a

π̃(a|s)Aπ(s, a)

Parameterize the policy π(a|s) := πθ(a|s)

Lπθold
(πθ) = η(πθold) +

∑
s

dπθold
(s)
∑

a

πθ(a|s)Aπθold
(s, a)

34/71

Why Lπθold
(πθ)?

A sufficiently small step θold → θ improves Lπθold
(πθ) also improves η

Lπθold
(πθold) =η(πθold),

∇θLπθold
(πθ)|θ=θold =∇θη(πθ)|θ=θold .

Lower bounds on the improvement of η

η(πθnew) ≥ Lπθold
(πθnew)−

2ϵγ
(1− γ)2 α

2

where

ϵ =max
s
|Ea∼πθnew

Aπθold
(s, a)|

α =Dmax
TV (πθold ||πθnew) = max

s
DTV(πθold(·|s)||πθnew(·|s))

35/71

Lower bound

TV divergence between two distribution p, q (discrete case)

DTV(p∥q) =
1
2

∑
X

|p(X)− q(X)|

KL divergence between two distribution p, q (discrete case)

DKL(p∥q) =
∑

X

p(X) log
p(X)
q(X)

(DTV(p||q))2 ≤ DKL(p||q) (Pollard(2000),Ch.3)

Thus obtain a lower bound

η(πθnew) ≥ Lπθold
(πθnew)−

2ϵγ
(1− γ)2 α

where

α = Dmax
KL (πθold ||πθnew) := max

s
DKL(πθold(·|s)||πθnew(·|s))

36/71

Practical algorithm

The penalty coefficient 2ϵγ
(1−γ)2 is large in practice, which yields small

update

Take a constraint on the KL divergence, i.e., a trust region constraint:

max
θ

Lπθold
(πθ)

s.t. Dmax
KL (πθold ||πθ) ≤ δ

A heuristic approximation

max
θ

Lπθold
(πθ)

s.t. D
ρπθold
KL (πθold ||πθ) ≤ δ

where

D
ρπθold
KL (πθold ||πθ) = Eπθold

(DKL(πθold(·|s)||πθ(·|s))

37/71

TRPO

The objective and constraint are both zero when θ = θk.
Furthermore, the gradient of the constraint with respect to θ is
zero when θ = θk.

The theoretical TRPO update isn’t the easiest to work with, so
TRPO makes some approximations to get an answer quickly. We
Taylor expand the objective and constraint to leading order
around θk:

Lθk(θ) ≈ gT(θ − θk)

D̄KL(θk||θ) ≈
1
2
(θ − θk)

TH(θ − θk)

resulting in an approximate optimization problem,

θk+1 = argmax
θ

gT(θ − θk)

s.t.
1
2
(θ − θk)

TH(θ − θk) ≤ δ.

38/71

TRPO

By happy coincidence, the gradient g of the surrogate advantage
function with respect to θ, evaluated at θ = θk, is exactly equal to
the policy gradient, ∇θJ(πθ)

This approximate problem can be analytically solved by the
methods of Lagrangian duality, yielding the solution:

θk+1 = θk +

√
2δ

gTH−1g
H−1g.

TRPO adds a modification to this update rule: a backtracking line
search,

θk+1 = θk + αj

√
2δ

gTH−1g
H−1g,

where α ∈ (0, 1) is the backtracking coefficient, and j is the
smallest nonnegative integer such that πθk+1 satisfies the KL
constraint and produces a positive surrogate advantage.

39/71

TRPO

computing and storing the matrix inverse, H−1, is painfully
expensive when dealing with neural network policies with
thousands or millions of parameters. TRPO sidesteps the issue
by using the ‘conjugate gradient’ algorithm to solve Hx = g for
x = H−1g, requiring only a function which can compute the
matrix-vector product Hx instead of computing and storing the
whole matrix H directly.

Hx = ∇θ

(
(∇θD̄KL(θk||θ))T x

)

40/71

Pseudocode: TRPO

Algorithm 2 Trust Region Policy Optimization
1: Input: initial policy θ0, initial value function ϕ0, KL-divergence limit δ, backtracking coefficient α
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Estimate policy gradient as

ĝk =
1

|Dk|

∑
τ∈Dk

T∑
t=0

∇θ log πθ(at|st)|θk
Ât.

7: Use the conjugate gradient algorithm to compute x̂k ≈ Ĥ−1
k ĝk , where Ĥk is the Hessian of the sample average KL-

divergence.

8: Update the policy by backtracking line search with θk+1 = θk + αj
√

2δ
x̂T
k Ĥk x̂k

x̂k , where j is the smallest value which

improves the sample loss and satisfies the sample KL-divergence constraint.
9: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
10: end for

41/71

Proximal Policy Optimization (PPO)

PPO is motivated by the same question as TRPO: how can we
take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we
accidentally cause performance collapse? Where TRPO tries to
solve this problem with a complex second-order method, PPO is
a family of first-order methods that use a few other tricks to keep
new policies close to old.

PPO-Penalty approximately solves a KL-constrained update like
TRPO, but penalizes the KL-divergence in the objective function
instead of making it a hard constraint, and automatically adjusts
the penalty coefficient over the course of training so that it’s
scaled appropriately.

PPO-Clip doesn’t have a KL-divergence term in the objective
and doesn’t have a constraint at all. Instead relies on specialized
clipping in the objective function to remove incentives for the new
policy to get far from the old policy.

42/71

Key Equations

PPO-clip updates policies via

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] ,

typically taking multiple steps of (usually minibatch) SGD to
maximize the objective. Here L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk (a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk (a|s)

, 1 − ϵ, 1 + ϵ

)
Aπθk (s, a)

)
,

in which ϵ is a (small) hyperparameter which roughly says how
far away the new policy is allowed to go from the old.

https:
//openai.com/research/openai-baselines-ppo

https://openai.com/research/openai-baselines-ppo
https://openai.com/research/openai-baselines-ppo

43/71

This is a pretty complex expression, and it’s hard to tell at first
glance what it’s doing, or how it helps keep the new policy close
to the old policy. As it turns out, there’s a considerably simplified
version of this objective which is a bit easier to grapple with

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ,Aπθk (s, a))
)
,

where

g(ϵ,A) =
{

(1 + ϵ)A A ≥ 0
(1− ϵ)A A < 0.

To figure out what intuition to take away from this, let’s look at a
single state-action pair (s, a), and think of cases.

44/71

Pseudocode: PPO

Algorithm 3 PPO-Clip
1: Input: initial policy parameters θ0, initial value function parameters ϕ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t .
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current value function Vϕk

.

6: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)

πθk
(at|st)

A
πθk (st, at), g(ϵ, A

πθk (st, at))

)
,

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st) − R̂t

)2
,

typically via some gradient descent algorithm.
8: end for

45/71

Reinforcement Learning from Human Feedback

RLHF: Nisan Stiennon, etc, Learning to summarize with human
feedback, NeurIPS 2020

46/71

InstructGPT

provide detailed, accurate, and instructive responses to user queries.

47/71

ChatGPT

generate human-like text based on the input it’s given, and it can
carry out a wide-ranging conversation on various topics.

48/71

Outline

1 Policy gradient methods
Finite horizon MDP

2 Actor-critic methods

3 TRPO and PPO

4 MCTS and AlphaGo Zero

49/71

Monte-Carlo Tree Search (MCTS)

MCTS is a recent algorithm for sequential decision making

MCTS is a versatile algorithm (it does not require knowledge
about the problem)

especially, does not require any knowledge about the Bellman
value function

stable on high dimensional problems

it outperforms all other algorithms on some problems (difficult
games like Go, general game playing, . . .)

50/71

MCTS

Problems are represented as a tree structure:
blue circles = states
plain edges + red squares = decisions
dashed edges = stochastic transitions between two states

Explored decisions

Explored states

Stochastic transitions

.

.

.

Current state (root)

t 1

.

.

.

t 2

51/71

Main steps of MCTS

+1

+1

+1

+1

horizon

selection expansion simulation propagation

t n t n+1

52/71

Main steps of MCTS

Starting from an initial state:
1 Selection: select the state we want to expand from

2 Expansion: One (or more) child nodes are added to expand the
tree, according to the available actions.

3 Simulation: A simulation is run from the new node(s) according
to the default policy (pick actions randomly) to produce an
outcome.

4 Back-propagation of some information:
N(s, a) : number of times decision a has been simulated in s

N(s) : number of time s has been visited in simulations

Q(s, a) : mean reward of simulations where a was chosen in s

53/71

Main steps of MCTS

+1

+1

+1

+1

horizon

1. selection 2. expansion 3. simulation 4. propagation

t n t n+1

a t n

The selected decision
atn = the most visited decision from the current state (root node)

54/71

Selection step

How to select the state to expand ?

?

?

55/71

How to select the state to expand ?

? ? ?

argmax scoreucb(s,a)
 a

The selection phase is driven by Upper Confidence Bound (UCB):

scoreucb(s, a) = Q(s, a)︸ ︷︷ ︸
1

+

√
log(2 + N(s))

2 + N(s, a)︸ ︷︷ ︸
2

1 mean reward of simulations including action a in state s
2 the uncertainty on this estimation of the action’s value

55/71

How to select the state to expand ?

? ? ?

argmax scoreucb(s,a)
 a

The selection phase is driven by Upper Confidence Bound (UCB):

scoreucb(s, a) = Q(s, a)︸ ︷︷ ︸
1

+

√
log(2 + N(s))

2 + N(s, a)︸ ︷︷ ︸
2

The selected action:

a⋆ = argmax
a

scoreucb(s, a)

56/71

Example: Back-propagation

57/71

AlphaZero

2018/12/7, AlphaZero at “Science”. It demonstrates learning chess,
shogi and go, tabula rasa without any domain-specific human
knowledge or data, only using self-play. The evaluation is performed
against strongest programs available.

58/71

AlphaZero

AlphaZero uses a neural network predicting (p(s), v(s)) = f (s, θ)
for a given state s

p(s) is a vector of move probabilities
v(s) is expected outcome of the game in range [−1, 1].

Unlike the standard MCTS, Alpha Go Zero does not use a
default policy to perform a rollout in order to achieve an estimate
of the value of a state.

By a sequence of simulated self-play games, the search can
improve the estimate of p and v, and can be considered a
powerful policy evaluation operator given a network f predicting
policy p and value estimate v, MCTS produces a more accurate
policy π and better value estimate w for a given state:

(π(s),w(s))← MCTS(p(s), v(s), f) for (p(s), v(s)) = f (s, θ).

59/71

AlphaZero: MCTS

MCTS keeps a tree of currently explored states from a fixed root
state. Each node corresponds to a game state and to every non-root
node we got by performing an action a from the parent state. Each
state-action pair (s, a) stores the following set of statistics:

visit count N(s, a)

total action-value W(s, a)

mean action-value Q(s, a) = W(s, a)/N(s, a), which is not stored
explicitly

prior probability P(s, a) of selecting action a in state s

60/71

AlphaZero: UCB

Each simulation starts in the root node and finishes in a leaf
node sL. In a state st, an action is selected using a variant of
PUCT algorithm as

at = argmax
a

Q(st, a) + U(st, a)

where

U(s, a) = C(s)P(s, a)

√
N(s)

1 + N(s, a)
,

with C(s) = log
(

1+N(s)+cbase
cbase

)
+ cinit.

In the Alphazero paper, cinit = 1.25 and cbase = 19652.

61/71

AlphaZero

When reaching a leaf node sL,
evaluate it by the network, generating (p, v)

add all its children with N = W = 0 and the prior probability p,

in the backward pass for all t ≤ L, we update the statistics in
nodes by performing

N(st, at)← N(st, at) + 1, and
W(st, at)← W(st, at)± v, depending on the player on turn.

62/71

AlphaZero

The MCTS runs usually several hundreds simulations in a single
tree. The result is a distribution proportional to exponentiated
visit counts N(sroot, a)1/τ using a temperature (τ = 1 is mostly
used), together with the predicted value function.

The next move is chosen as either:
proportional to visit counts N(sroot, ·)1/τ

πroot(a) ∼ N(sroot, ·)1/τ

deterministically as the most visited action

πroot = argmax
a

N(sroot, a)

During self-play, the stochastic policy is used for the first 30
moves of the game, while the deterministic is used for the rest of
the moves. (This does not affect the internal MCTS search, there
we always sample according to PUCT rule.)

63/71

AlphaZero: Loss function

The network is trained from self-play games.

A game is played by repeatedly running MCTS from a state st

and choosing a move at ∼ πt, until a terminal position sT is
encountered, which is then scored according to game rules as
z ∈ {−1, 0, 1}.

Finally, the network parameters are trained to minimize

L = (z− v)2 + π⊤ log p + c∥θ∥2

a mean squared error between the predicted outcome v and the
simulated outcome z
a crossentropy/KL divergence for the action distribution, i.e., the
similarity of the policy vector p and the search probabilities π
L2 regularization

64/71

AlphaGo Zero

65/71

AlphaGo Zero

66/71

AlphaGo Zero

67/71

AlphaGo Zero

68/71

AlphaGo Zero

69/71

AlphaGo Zero

70/71

AlphaGo Zero

71/71

AlphaGo Zero

	Policy gradient methods
	Finite horizon MDP

	Actor-critic methods
	TRPO and PPO
	MCTS and AlphaGo Zero

